WO2016190612A1 - 발광 소자 및 이의 제조 방법 - Google Patents

발광 소자 및 이의 제조 방법 Download PDF

Info

Publication number
WO2016190612A1
WO2016190612A1 PCT/KR2016/005333 KR2016005333W WO2016190612A1 WO 2016190612 A1 WO2016190612 A1 WO 2016190612A1 KR 2016005333 W KR2016005333 W KR 2016005333W WO 2016190612 A1 WO2016190612 A1 WO 2016190612A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron blocking
sub
blocking layer
uneven
Prior art date
Application number
PCT/KR2016/005333
Other languages
English (en)
French (fr)
Inventor
김종국
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/576,194 priority Critical patent/US10333027B2/en
Publication of WO2016190612A1 publication Critical patent/WO2016190612A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Definitions

  • the embodiment relates to a light emitting device and a method of manufacturing the same.
  • a light emitting diode is one of light emitting devices that emit light when a current is applied.
  • Light emitting diodes can emit high-efficiency light at low voltage, resulting in excellent energy savings.
  • the luminance problem of the light emitting diode has been greatly improved, and has been applied to various devices such as a backlight unit, a display board, a display device, and a home appliance of a liquid crystal display device.
  • the light emitting diode includes a light emitting structure including an N type semiconductor layer, an active layer, and a P type semiconductor layer provided on a supporting substrate, and includes an N type electrode and a P type electrode connected to the light emitting structure.
  • the active layer has a problem in that V-pits caused by dislocations are formed to lower the luminous efficiency.
  • the embodiment provides a light emitting device having improved carrier injection efficiency.
  • the embodiment provides a light emitting device having improved luminous efficiency.
  • a light emitting device the first semiconductor layer; An active layer disposed on the first semiconductor layer and including a plurality of first uneven parts; An electron blocking layer including a plurality of second uneven parts disposed on the plurality of first uneven parts; And a second semiconductor layer formed on the electron blocking layer, wherein the electron blocking layer may have at least two peak doping concentration peaks of the P-type dopant in a thickness direction.
  • the thickness of the plurality of second uneven parts may be formed to be thinner than the thickness of the flat region formed between the plurality of second uneven parts.
  • the electron blocking layer may have at least two peak sections in the thickness direction of the flat region.
  • the electron blocking layer may include a plurality of sub layers, and may have the peak period at an interface between the plurality of sub layers.
  • Members of the plurality of sub-layers may be the same.
  • the electron blocking layer may include a first sub layer closest to the active layer and a second sub layer formed on the first sub layer, and the first sub layer may have at least two peak sections in a thickness direction. have.
  • the electron blocking layer includes a first sub layer closest to the active layer, and a second sub layer formed on the first sub layer, wherein the first sub layer is undoped with a P-type dopant, and the second sub layer Silver may have at least two peak sections in the thickness direction.
  • a light emitting device the first semiconductor layer; An active layer disposed on the first semiconductor layer and including a plurality of first uneven parts; An electron blocking layer including second uneven parts disposed on the plurality of first uneven parts; And a second semiconductor layer formed on the electron blocking layer, wherein the electron blocking layer has a first carrier injection path in a region between the plurality of second uneven parts, and a second carrier at a sidewall of the second uneven part. It can have an injection route.
  • the thickness of the plurality of second uneven parts may be thinner than the thickness of a region between the plurality of second uneven parts.
  • the electron blocking layer may include a plurality of sub layers, and may have a doping concentration peak of a P-type dopant at an interface between the plurality of sub layers.
  • At least a portion of the boundary surfaces of the plurality of sub layers may overlap at sidewalls of the uneven parts.
  • a method of manufacturing a light emitting device may include forming an active layer having a plurality of first uneven parts; And forming an electron blocking layer having a second uneven portion formed on the active layer on which the plurality of first uneven portions are formed, wherein the forming of the electron blocking layer includes growth of blocking supply of raw materials for a predetermined time. It may have an intermittent section.
  • the supply of raw materials may be blocked a plurality of times while maintaining a nitrogen atmosphere.
  • the second uneven portion may be grown to be thinner than the thickness of the region between the plurality of second uneven portions.
  • holes may be effectively injected through the sidewalls of the second uneven portion of the electron blocking layer. Therefore, the optical characteristics can be improved even if the size of the uneven portion is increased.
  • holes can be injected directly into the center portion of the active layer can be improved luminous efficiency. Therefore, the droop phenomenon in which the light efficiency is low while the current density is lowered can be alleviated.
  • FIG. 1 is a conceptual diagram of a light emitting device according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of a portion A of FIG. 1;
  • FIG. 5 is a view for explaining a process of bonding the P-type dopant in the interface between the sub-layers of the electron blocking layer
  • FIG. 6 is a modification of FIG. 4,
  • 9A to 9C are views for explaining the structure of various types of electron blocking layers
  • FIG. 10 is a flowchart of a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • FIG. 11 is a detailed flowchart of a step of forming an electron blocking layer
  • FIG. 12 is a timing diagram illustrating a process of forming an interface between sublayers by an intermittent section.
  • 13 to 15 are diagrams for describing various types of electron blocking layers in which an interruption interval and a thickness are controlled.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a conceptual diagram of a light emitting device according to an embodiment of the present invention
  • Figure 2 is a view for explaining the irregularities of various sizes according to an embodiment of the present invention
  • Figure 3 is an enlarged view of a portion A of FIG. .
  • a light emitting device may include a first semiconductor layer 30 disposed on a support substrate 10 and a plurality of first semiconductor layers 30 disposed on the first semiconductor layer 30.
  • An active layer 50 including one uneven portion 50a, an electron blocking layer 60 including a plurality of second uneven portions 60a disposed on the plurality of first uneven portions 50a, and an electron blocking layer And a second semiconductor layer 70 formed on the layer 60.
  • the support substrate 10 includes a conductive substrate or an insulating substrate.
  • the support substrate 10 may be a material or carrier wafer suitable for semiconductor material growth.
  • the support substrate 10 may be formed of a material selected from sapphire (Al 2 O 3 ), SiC, GaAs, GaN, ZnO, Si, GaP, InP, and Ge, but is not limited thereto.
  • a buffer layer 20 may be further provided between the first semiconductor layer 30 and the support substrate 10.
  • the buffer layer 20 may mitigate lattice mismatch between the light emitting structure provided on the support substrate 10 and the support substrate 10.
  • the buffer layer 20 may have a form in which group III and group V elements are combined or include any one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN.
  • the dopant may be doped in the buffer layer 20, but is not limited thereto.
  • the buffer layer 20 may grow as a single crystal on the support substrate 10, and the buffer layer 20 grown as the single crystal may improve the crystallinity of the first semiconductor layer 30 grown on the buffer layer 20.
  • the light emitting structure provided on the support substrate 10 includes a first semiconductor layer 30, an active layer 50, and a second semiconductor layer 70.
  • the light emitting structure as described above may be separated into a plurality by cutting the support substrate 10.
  • the first semiconductor layer 30 may be formed of a compound semiconductor such as a group III-V group or a group II-VI, and the first dopant may be doped into the first semiconductor layer 30.
  • the first semiconductor layer 30 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example GaN, AlGaN, InGaN, InAlGaN and the like can be selected.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first semiconductor layer 30 doped with the first dopant may be an n-type semiconductor layer.
  • the active layer 50 is a layer where electrons (or holes) injected through the first semiconductor layer 30 meet holes (or electrons) injected through the second semiconductor layer 70.
  • the active layer 50 may transition to a low energy level as electrons and holes recombine, and may generate light having a corresponding wavelength.
  • the active layer 50 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 50
  • the structure of is not limited to this.
  • lattice defects such as dislocations D may occur in the first semiconductor layer 30 due to lattice mismatch between the support substrate 10 and the first semiconductor layer 30.
  • the leakage current increases due to the potential D and the light emitting device may be vulnerable to external static electricity.
  • the active layer 50 may have a V-shaped first uneven portion 50a caused by the dislocation D. As shown in FIG. The first uneven portion 50a relieves the stress of the first semiconductor layer 30 and the active layer 50, and the dislocation D extends to the active layer 50 and the second semiconductor layer 70. It can prevent and improve the quality of a light emitting element.
  • the first concave-convex portion 50a may improve the yield of electrostatic discharge (ESD) by preventing leakage current due to the potential D.
  • ESD electrostatic discharge
  • the region in which the first uneven portion 50a is formed does not contribute to light emission, and thus there is a problem that the luminous intensity is lowered.
  • the size of the first uneven portion 50a may be variously formed.
  • the second semiconductor layer 70 is formed on the active layer 50, and may be implemented as a compound semiconductor such as group III-V or group II-VI, and the second semiconductor layer 70 may be doped with the second dopant.
  • the second semiconductor layer 70 is a semiconductor material having a composition formula of In x5 Al y2 Ga 1 -x5- y2 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1) or AlInN, AlGaAs It may be formed of a material selected from GaP, GaAs, GaAsP, AlGaInP.
  • the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
  • the second semiconductor layer 70 doped with the second dopant may be a p-type semiconductor layer.
  • An electron blocking layer (EBL) 60 is disposed between the active layer 50 and the second semiconductor layer 70.
  • the electron blocking layer 60 blocks the flow of electrons supplied from the first semiconductor layer 30 to the second semiconductor layer 70 to increase the probability of recombination of electrons and holes in the active layer 50.
  • the energy bandgap of the electron blocking layer 60 may be larger than the energy bandgap of the active layer 50 and / or the second semiconductor layer 70.
  • the electron blocking layer 60 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1- y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example AlGaN. , InGaN, InAlGaN, etc. may be selected, but is not limited thereto.
  • the electron blocking layer 60 Since the electron blocking layer 60 is formed on the active layer 50 having the first uneven portion 50a, the electron blocking layer 60 has a second uneven portion 60a corresponding to the shape of the first uneven portion 50a.
  • the electron blocking layer 60 includes a plurality of second uneven portions 60a and a region (hereinafter, referred to as a flat region) between the second uneven portions 60a.
  • the flat region 60b may be a region that is relatively flat compared to the second uneven portion 60a.
  • the flat region 60b may be defined as a region grown on a (0001) crystal plane, and the sidewall 60a-1 of the second uneven portion may be defined as a region grown on a (1-101) crystal plane.
  • the electron blocking layer 60 may be doped with a P-type dopant to improve hole injection.
  • P-type dopant may be any one or more selected from the group consisting of Mg, Zn, Ca, Sr, Ba.
  • the second uneven part 60b has a relatively high concentration of Al and the low concentration of the P-type dopant. have. That is, the second uneven portion 60b may have a higher resistance than the flat region 60b. As the thickness of the second uneven portion 60b becomes thinner, the doping of the P-type dopant becomes difficult.
  • FIG. 4 is a view for explaining the characteristics of the electron blocking layer according to an embodiment of the present invention
  • Figure 5 is a view for explaining the process of coupling the P-type dopant in the interface between the sub-layer of the electron blocking layer
  • 6 is a modification of FIG. 4.
  • the electron blocking layer 60 includes a plurality of sublayers 61 and has a concentration peak section (hereinafter, referred to as a peak section) of a P-type dopant at an interface 62 of the plurality of sublayers 61.
  • a concentration peak section hereinafter, referred to as a peak section
  • the plurality of sublayers 61 may all include the same member.
  • the sub layers 61 may be AlGaN doped with Mg. Therefore, the energy blocking gap of the electron blocking layer 60 may be substantially uniform in the thickness direction.
  • the peak period may be defined as an inflection point at which the concentration of the P-type dopant increases and decreases.
  • the interface 62 may be an imaginary line connecting peak sections.
  • the sub layer 61 may be a layer having a physical boundary, but is not necessarily limited thereto, and may be a virtual layer defined up and down based on a peak period.
  • the doping concentration of the electron blocking layer 60 may be relatively high.
  • FIG. 4 it is illustrated as having two peak sections P1 and P2 in the thickness direction of the electron blocking layer 60, but the number of peak sections is not limited thereto.
  • the second uneven portion 60b of the electron blocking layer 60 may also increase the concentration of the P-type dopant to effectively inject holes. Accordingly, in the electron blocking layer 60, the first carrier injection path L1 may be formed in the flat region 60b, and the second carrier injection path L2 may be formed in the sidewall 60a-1 of the second uneven portion. have. Since the second carrier injection path L2 is much thinner than the first carrier injection path L1, the injection efficiency of the second carrier injection path L2 may be improved.
  • Holes may be effectively injected to the lower flat region of the active layer 50 through the relatively thin second carrier injection path 50a. Therefore, the light emitting efficiency can be improved since a relatively large number of well layers participate in light emission.
  • the electron blocking layer 60 may simultaneously increase the brightness, reduce the droop phenomenon, and improve the ESD.
  • the formation of peak periods at the interface 62 of the sublayer 61 may be enabled by applying an interruption period when forming each sublayer 61.
  • the P-type dopant dispersed around the intermittent section may be coupled to the surface (boundary surface) of the sub layer 61 in which growth is stopped.
  • the intermittent section may provide time for the P-type dopant to be bonded to the surface (boundary surface) of the sublayer 61. Therefore, by performing the interruption section a plurality of times, a plurality of peak sections may be generated in the thickness direction to increase the concentration of the dopant.
  • the intermittent section is preferably controlled relatively short so that the P-type dopant is not volatilized again.
  • the interval between about 1 sec and 10 sec the P-type dopant bonded to the surface can be effectively trapped between the sub layers 61.
  • the interface 62 can be observed in the flat region 60b. Since the thickness D2 of the sidewalls 60a-1 of the second uneven portion is relatively thin, a part of the plurality of boundary surfaces 62 may overlap 63 in the second uneven portion 60a. Therefore, as the number of the boundary surfaces 62 increases, the concentration of the P-type dopant on the sidewall 60a-1 of the second uneven portion may further increase.
  • the hole may have a poor injection efficiency if the thickness of the electron blocking layer 60 is not very thin due to the relatively heavy effective mass.
  • the second uneven portion 60a formed in the electron blocking layer 60 may have a thickness D2 that is relatively thinner than the thickness D1 of the flat region 60b.
  • the second uneven portion 60a since the second uneven portion 60a has a high concentration of P-type dopant and low resistance, hole injection may be accelerated.
  • the embodiment may further include a trigger layer 40 disposed between the first semiconductor layer 30 and the active layer 50.
  • the indium (In) content of the trigger layer 40 may be higher than the indium content of the first semiconductor layer 30.
  • Indium (In) generally has a large lattice size. Therefore, as the gallium nitride (GaN) layer containing a lot of indium, the uneven portion due to lattice mismatch can be easily formed.
  • the region of the first uneven portion 50a of the active layer 50 may also contribute to light emission, thereby intentionally increasing the density and size of the first uneven portion 50a.
  • FIG. 7 is a result of SIMS analysis of a conventional light emitting device
  • FIG. 8 is a result of SIMS analysis of a light emitting device according to an embodiment of the present invention.
  • the concentration of the P-type dopant increases as the thickness of the conventional electron blocking layer 60 is grown without an intermittent section.
  • the P-type dopant is hardly doped by the memory effect. Therefore, the conventional electron blocking layer 60 has a peak P1 of one P-type dopant concentration at the point where growth is finally completed.
  • the electron blocking layer 60 forms at least one intermittent section of growth, thereby having the first peak P2 at an intermediate point of the thickness, and then the growth is completed.
  • the second peak P3 is obtained at the point.
  • a plurality of peak sections may be generated in the thickness direction to increase the concentration of the dopant.
  • 9A to 9C are diagrams for describing the structure of various types of electron blocking layers.
  • the electron blocking layer may include a first sub layer 61a disposed adjacent to the active layer, and a second sub layer 61b formed on the first sub layer 61a.
  • the first sub layer 61a may promote doping of the P-type dopant by supplying indium (In) during growth.
  • the first sub layer 61a may have at least two peak sections in the thickness direction.
  • the second sub layer 61b may be the same layer as the first sub layer 61a or may be a layer doped with a P-type dopant in a conventional manner without an intermittent section.
  • the first sub layer 61a and the third sub layer 61c have a single peak section in the thickness direction, and the second sub layer 61b has at least two peak sections in the thickness direction.
  • the first sub layer 61a and the third sub layer 61c may be layers doped with a P-type dopant in a conventional manner without an intermittent section, and the second sub layer 61b may apply a plurality of peak sections by applying an intermittent section. It may be a formed layer.
  • the first sub layer 61a may be a layer undoped with the P-type dopant
  • the second sub layer 61b may be a layer in which a plurality of peak sections are formed by applying an intermittent section.
  • the first sub layer 61a may be disposed closest to the active layer to function as an insulating layer. Therefore, it can play a role of effectively blocking the movement of electrons.
  • the first sub layer 61a undoped with the P-type dopant may serve as a barrier to prevent the diffusion of the P-type dopant into the active layer when the second sub-layer 61b is formed.
  • the second sub layer 61b and the third sub layer 61c may be layers in which a plurality of peak sections are formed by applying an intermittent section.
  • FIG. 10 is a flowchart of a method of manufacturing a light emitting device according to an embodiment of the present invention
  • FIG. 11 is a detailed flowchart of a step of forming an electron blocking layer.
  • the active layer 50 (S10), after forming the first semiconductor layer 30 on the support substrate 10, the barrier layer and the well layer are repeatedly formed thereon.
  • the active layer 50 may have a first uneven portion 50a caused by the potential D.
  • Forming the electron blocking layer (S20) may have a growth control interval for blocking the supply of the raw material a plurality of times for a predetermined time.
  • the forming of the electron blocking layer may include: supplying a raw material in a nitrogen atmosphere (S21), stopping the supply of raw materials for a predetermined intermittent period (S22), and then again using the raw material.
  • the supplying step S23 may be repeated a plurality of times.
  • the thickness D2 of the second uneven portion 60a may be grown to be thinner than the thickness D1 of the flat region 60b.
  • the electron blocking layer has a plurality of boundary surfaces 62 according to the number of intermittent sections.
  • the P-type dopant is combined at the interface 62 during the intermittent period to increase the doping concentration.
  • the raw materials of Ga, Al, Mg, and N trimethyl gallium (TMGa), trimethyl aluminum (TMAl), cyclopentadienyl magnesium (CP 2 Mg), and ammonia (NH 3 ) were used, but not limited thereto. I never do that. In this case, ammonia may be continuously supplied without applying an intermittent section to maintain a nitrogen atmosphere.
  • the forming of the electron blocking layer may be variously modified.
  • the intermittent section may be controlled to 2 sec to form 15 layers of p-AlGaN layers having an Al composition of 20%, or the intermittent section to 5 sec as illustrated in FIG. 13B. You can also control with.
  • the thickness of the layer may be controlled to 1 nm to form 30 multilayers.
  • a plurality of p-AlGaN layers having different Al compositions may be formed.
  • a first p-AlGaN layer having an Al composition of 25% and a second p-AlGaN layer having an Al composition of 10% may be stacked with a thickness of 2 nm, respectively.
  • the intermittent section may be controlled to 2 sec between the first p-AlGaN layer growth and the second p-AlGaN layer growth. The process can then be repeated eight times.
  • an intermittent section may be controlled to be 2 sec between the first p-AlGaN layer having an Al composition of 25% and the second p-AlGaN layer having an Al composition of 10%. The process can then be repeated eight times.
  • a first p-AlGaN layer having an Al composition of 25% and a second p-AlGaN layer having an Al composition of 10% may be stacked with a thickness of 2 nm, respectively.
  • the intermittent section may be controlled to 5 sec between the first p-AlGaN layer growth and the second p-AlGaN layer growth.
  • an interruption interval may be controlled to 5 sec between the first p-AlGaN layer having an Al composition of 25% and the second p-AlGaN layer having an Al composition of 10%.
  • a first p-AlGaN layer having an Al composition of 25% and a thickness of 1 nm and a second p-AlGaN layer having an Al composition of 10% and a thickness of 2 nm may be grown.
  • the second p-AlGaN layer may be grown after repeating the first p-AlGaN layer growth twice by controlling the intermittent period to 2 sec. The process can then be repeated eight times.
  • a first p-AlGaN layer having an Al composition of 25% and a second p-AlGaN layer having an Al composition of 10% may be stacked with a thickness of 1 nm, respectively.
  • the interruption period to 2 sec the first p-AlGaN layer growth may be repeated twice, and the second p-AlGaN layer growth may be repeated twice to complete the process. The process can then be repeated eight times.
  • a first p-AlGaN layer having an Al composition of 25% and a thickness of 1 nm and a second p-AlGaN layer having an Al composition of 10% and a thickness of 2 nm may be grown.
  • the second p-AlGaN layer may be grown after repeating the first p-AlGaN layer growth twice by controlling the intermittent period to 5 sec. The process can then be repeated eight times.
  • a first p-AlGaN layer having an Al composition of 25% and a second p-AlGaN layer having an Al composition of 10% may be stacked with a thickness of 1 nm, respectively.
  • the interruption period to 5 sec
  • the first p-AlGaN layer growth may be repeated twice
  • the second p-AlGaN layer growth may be repeated twice to complete the process. The process can then be repeated eight times.
  • the light emitting device may further include an optical member such as a light guide plate, a prism sheet, and a diffusion sheet to function as a backlight unit.
  • an optical member such as a light guide plate, a prism sheet, and a diffusion sheet to function as a backlight unit.
  • the light emitting device of the embodiment may be further applied to a display device, a lighting device, and a pointing device.
  • the display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter.
  • the bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet may form a backlight unit.
  • the reflecting plate is disposed on the bottom cover, and the light emitting module emits light.
  • the light guide plate is disposed in front of the reflective plate to guide light emitted from the light emitting module to the front, and the optical sheet includes a prism sheet or the like and is disposed in front of the light guide plate.
  • the display panel is disposed in front of the optical sheet, the image signal output circuit supplies the image signal to the display panel, and the color filter is disposed in front of the display panel.
  • the lighting apparatus may include a light source module including a substrate and a light emitting device according to an embodiment, a heat dissipation unit for dissipating heat of the light source module, and a power supply unit for processing or converting an electrical signal provided from the outside and providing the light source module to the light source module.
  • the lighting device may include a lamp, a head lamp, a street lamp or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

실시 예는 제1반도체층; 상기 제1반도체층 상에 배치되고 복수 개의 제1요철부를 포함하는 활성층; 상기 복수 개의 제1요철부 상에 배치된 복수 개의 제2요철부를 포함하는 전자 차단층; 및 상기 전자 차단층 상에 형성되는 제2반도체층을 포함하고, 상기 전자 차단층은 두께 방향으로 P형 도펀트의 도핑농도 피크 구간을 적어도 2개 이상 갖는 발광소자를 개시한다.

Description

발광 소자 및 이의 제조 방법
실시 예는 발광 소자 및 이의 제조 방법에 관한 것이다.
발광 다이오드(Light Emitting Diode: LED)는 전류가 인가되면 광을 방출하는 발광 소자 중 하나이다. 발광 다이오드는 저 전압으로 고효율의 광을 방출할 수 있어 에너지 절감 효과가 뛰어나다. 최근, 발광 다이오드의 휘도 문제가 크게 개선되어, 액정 표시 장치의 백라이트 유닛(Backlight Unit), 전광판, 표시기, 가전 제품 등과 같은 각종 기기에 적용되고 있다.
발광 다이오드는 지지 기판 상에 구비되는 N형 반도체층, 활성층, 및 P형 반도체층을 포함하는 발광 구조물을 포함하며, 발광 구조물과 접속되는 N형 전극과 P형 전극을 포함한다.
그러나, 발광 구조물과 지지 기판의 격자 불일치로 인해, 제1반도체층에 전위(Dislocation)와 같은 격자 결함이 형성될 수 있다. 활성층은 전위에 의해 유발된 V-피트가 형성되어 발광 효율이 저하되는 문제가 있다.
실시 예는 캐리어 주입 효율이 향상된 발광소자를 제공한다.
실시 예는 발광효율이 향상된 발광소자를 제공한다.
본 발명의 일 실시 예에 따른 발광소자는, 제1반도체층; 상기 제1반도체층 상에 배치되고 복수 개의 제1요철부를 포함하는 활성층; 상기 복수 개의 제1요철부 상에 배치된 복수 개의 제2요철부를 포함하는 전자 차단층; 및 상기 전자 차단층 상에 형성되는 제2반도체층을 포함하고, 상기 전자 차단층은 두께 방향으로 P형 도펀트의 도핑농도 피크 구간을 적어도 2개 이상 가질 수 있다.
상기 복수 개의 제2요철부의 두께는 상기 복수 개의 제2요철부 사이에 형성된 평탄 영역의 두께보다 얇게 형성될 수 있다.
상기 전자 차단층은 상기 평탄 영역의 두께 방향으로 상기 피크 구간을 적어도 2개 이상 가질 수 있다.
상기 전자 차단층은 복수 개의 서브층을 포함하고, 상기 복수 개의 서브층의 경계면에서 상기 피크 구간을 가질 수 있다.
상기 복수 개의 서브층의 구성원소는 동일할 수 있다.
상기 전자 차단층은 상기 활성층에 가장 인접한 제1서브층, 및 상기 제1서브층상에 형성된 제2서브층을 포함하고, 상기 제1서브층은 두께 방향으로 상기 피크 구간을 적어도 2개 이상 가질 수 있다.
상기 전자 차단층은 상기 활성층에 가장 인접한 제1서브층, 및 상기 제1서브층상에 형성된 제2서브층을 포함하고, 상기 제1서브층은 P형 도펀트가 언도프되고, 상기 제2서브층은 두께 방향으로 상기 피크 구간을 적어도 2개 이상 가질 수 있다.
본 발명의 다른 실시 예에 따른 발광소자는, 제1반도체층; 상기 제1반도체층 상에 배치되고 복수 개의 제1요철부를 포함하는 활성층; 상기 복수 개의 제1요철부 상에 배치된 제2요철부를 포함하는 전자 차단층; 및 상기 전자 차단층 상에 형성되는 제2반도체층을 포함하고, 상기 전자 차단층은 상기 복수 개의 제2요철부 사이 영역에서 제1캐리어 주입 경로를 갖고, 상기 제2요철부의 측벽에서 제2캐리어 주입 경로를 가질 수 있다.
상기 복수 개의 제2요철부의 두께는 상기 복수 개의 제2요철부 사이 영역의 두께보다 얇을 수 있다.
상기 전자 차단층은 복수 개의 서브층을 포함하고, 상기 복수 개의 서브층의 경계면에서 P형 도펀트의 도핑 농도 피크를 가질 수 있다.
상기 복수 개의 서브층의 경계면은 상기 요철부의 측벽에서 적어도 일부가 중첩될 수 있다.
본 발명의 일 실시 예에 따른 발광소자 제조방법은, 복수 개의 제1요철부가 형성된 활성층을 형성하는 단계; 및 상기 복수 개의 제1요철부가 형성된 활성층 상에 형성되어 제2요철부를 갖는 전자 차단층을 형성하는 단계;를 포함하고, 상기 전자 차단층을 형성하는 단계는 소정 시간 동안 원료의 공급을 차단하는 성장단속 구간을 가질 수 있다.
상기 전자 차단층을 형성하는 단계는, 질소 분위기를 유지하면서 원료의 공급을 복수 회 차단할 수 있다.
상기 전자 차단층을 형성하는 단계는, 상기 제2요철부의 두께가 상기 복수 개의 제2요철부 사이 영역의 두께보다 얇아지도록 성장시킬 수 있다.
실시 예에 따르면, 전자 차단층의 제2요철부 측벽을 통해 정공이 유효하게 주입될 수 있다. 따라서, 요철부의 사이즈가 커져도 광특성이 향상될 수 있다.
또한, 정공이 활성층의 중앙부로 직접 주입될 수 있어 발광효율이 향상될 수 있다. 따라서, 전류밀도가 낮아지면서 광 효율이 떨어지는 드루프(droop)현상이 완화될 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 발광소자의 개념도이고,
도 2는 본 발명의 일 실시 예에 따른 다양한 크기의 요철부를 설명하기 위한 도면이고,
도 3은 도 1의 A부분 확대도이고,
도 4는 본 발명의 일 실시 예에 따른 전자 차단층의 특징을 설명하기 위한 도면이고,
도 5는 전자 차단층의 서브층 사이 경계면에서 P형 도펀트가 결합하는 과정을 설명하기 위한 도면이고,
도 6은 도 4의 변형예이고,
도 7은 종래 발광소자의 심스(secondary ion mass spectroscopy; SIMS) 분석 결과이고,
도 8은 본 발명의 일 실시 예에 따른 발광소자의 심스(secondary ion mass spectroscopy; SIMS) 분석 결과이고,
도 9a 내지 도 9c는 다양한 형태의 전자 차단층의 구조를 설명하기 위한 도면이고,
도 10은 본 발명의 일 실시 예에 따른 발광소자 제조방법의 흐름도이고,
도 11은 전자 차단층을 형성하는 단계의 세부 흐름도이고,
도 12는 단속 구간에 의해 서브층 사이에 경계면이 형성되는 과정을 설명하기 위한 타이밍도이고,
도 13 내지 도 15는 단속 구간 및 두께를 제어한 다양한 형태의 전자 차단층을 설명하기 위한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예를 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명 실시 예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 실시 예의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 실시 예의 권리 범위를 벗어나지 않으면서 제 2 구성 요소는 제 1 구성 요소로 명명될 수 있고, 유사하게 제 1 구성 요소도 제 2 구성 요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명 실시 예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 발광소자의 개념도이고, 도 2는 본 발명의 일 실시 예에 따른 다양한 크기의 요철부를 설명하기 위한 도면이고, 도 3은 도 1의 A부분 확대도이다.
도 1을 참고하면, 본 발명의 일 실시 예에 따른 발광소자는, 지지 기판(10) 상에 배치되는 제1반도체층(30)과, 제1반도체층(30)상에 배치되고 복수 개의 제1요철부(50a)를 포함하는 활성층(50)과, 복수 개의 제1요철부(50a) 상에 배치된 복수 개의 제2요철부(60a)를 포함하는 전자 차단층(60), 및 전자 차단층(60)상에 형성되는 제2반도체층(70)을 포함한다.
지지 기판(10)은 전도성 기판 또는 절연성 기판을 포함한다. 지지 기판(10)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼일 수 있다. 지지 기판(10)은 사파이어(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP 및 Ge 중 선택된 물질로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
제1반도체층(30)과 지지 기판(10) 사이에는 버퍼층(20)이 더 구비될 수 있다. 버퍼층(20)은 지지 기판(10) 상에 구비된 발광 구조물과 지지 기판(10)의 격자 부정합을 완화할 수 있다.
버퍼층(20)은 Ⅲ족과 Ⅴ족 원소가 결합된 형태이거나 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중에서 어느 하나를 포함할 수 있다. 버퍼층(20)에는 도펀트가 도핑될 수도 있으나, 이에 한정하지 않는다.
버퍼층(20)은 지지 기판(10) 상에 단결정으로 성장할 수 있으며, 단결정으로 성장한 버퍼층(20)은 버퍼층(20)상에 성장하는 제1반도체층(30)의 결정성을 향상시킬 수 있다.
지지 기판(10) 상에 구비되는 발광 구조물은 제1반도체층(30), 활성층(50), 및 제2반도체층(70)을 포함한다. 일반적으로 상기와 같은 발광 구조물은 지지 기판(10)을 절단하여 복수 개로 분리될 수 있다.
제1반도체층(30)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1반도체층(30)에 제1도펀트가 도핑될 수 있다. 제1반도체층(30)은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1반도체층(30)은 n형 반도체층일 수 있다.
활성층(50)은 제1반도체층(30)을 통해서 주입되는 전자(또는 정공)과 제2반도체층(70)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(50)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다.
활성층(50)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(50)의 구조는 이에 한정하지 않는다.
일반적으로, 지지 기판(10)과 제1반도체층(30)의 격자 불일치로 인해 제1반도체층(30)에 많은 전위(Dislocation, D)와 같은 격자 결함이 발생할 수 있다. 또한, 전위(D)에 의해 누설 전류가 증가하고 발광 소자는 외부 정전기에 취약해질 수 있다.
활성층(50)은 전위(D)에 의해 유발되는 V 형상의 제1요철부(50a)가 형성될 수 있다. 제1요철부(50a)는 제1반도체층(30)과 활성층(50)의 응력(Strain)을 완화시키며, 전위(D)가 활성층(50) 및 제2반도체층(70)에 연장되는 것을 방지하여 발광 소자의 품질을 향상시킬 수 있다.
제1요철부(50a)는 전위(D)에 의한 누설 전류를 방지하여 정전기 방전(ESD, Electrostatic discharge) 수율을 향상시킬 수 있다. 그러나, 제1요철부(50a)가 형성된 영역은 발광에 기여하지 못해 광도가 저하되는 문제가 있다. 도 2를 참고하면, 제1요철부(50a)의 크기는 다양하게 형성될 수 있다.
제2반도체층(70)은 활성층(50) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2반도체층(70)에 제2도펀트가 도핑될 수 있다. 제2반도체층(70)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2반도체층(70)은 p형 반도체층일 수 있다.
활성층(50)과 제2반도체층(70) 사이에는 전자 차단층(EBL, 60)이 배치된다. 전자 차단층(60)은 제1반도체층(30)에서 공급된 전자가 제2반도체층(70)으로 빠져나가는 흐름을 차단하여, 활성층(50) 내에서 전자와 정공이 재결합할 확률을 증대시킬 수 있다. 전자 차단층(60)의 에너지 밴드갭은 활성층(50) 및/또는 제2반도체층(70)의 에너지 밴드갭보다 클 수 있다.
전자 차단층(60)은 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InGaN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.
전자 차단층(60)은 제1요철부(50a)를 갖는 활성층(50) 상에 형성되므로 제1요철부(50a)의 형상에 대응하는 제2요철부(60a)를 갖는다.
도 3을 참고하면, 전자 차단층(60)은 복수 개의 제2요철부(60a), 및 제2요철부(60a) 사이의 영역(이하 평탄 영역이라 함)을 포함한다. 평탄 영역(60b)은 제2요철부(60a)에 비해 상대적으로 평탄한 영역일 수 있다. 평탄 영역(60b)은 (0001)결정면에서 성장한 영역으로 정의할 수 있고, 제2요철부의 측벽(60a-1)은 (1-101)결정면에서 성장한 영역으로 정의할 수 있다.
전자 차단층(60)은 정공 주입을 향상시키기 위해 P형 도펀트가 도핑될 수 있다. P형 도펀트가 도핑되면 저항이 낮아져 전류 주입이 증가될 수 있다. P형 도펀트는 Mg, Zn, Ca, Sr, Ba으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
평탄 영역(60b)에서는 P형 도펀트의 농도가 높아 상대적으로 정공 주입이 용이하나, 제2요철부(60b)는 상대적으로 Al의 농도가 높고 P형 도펀트의 농도가 낮아 정공의 주입이 어려운 문제가 있다. 즉, 평탄 영역(60b)에 비해 제2요철부(60b)는 저항이 높을 수 있다. 제2요철부(60b)의 두께가 얇아질수록 P형 도펀트의 도핑은 어려워진다.
도 4는 본 발명의 일 실시 예에 따른 전자 차단층의 특징을 설명하기 위한 도면이고, 도 5는 전자 차단층의 서브층 사이 경계면에서 P형 도펀트가 결합하는 과정을 설명하기 위한 도면이고, 도 6은 도 4의 변형예이다.
도 4를 참고하면, 전자 차단층(60)은 복수 개의 서브층(61)을 포함하고 복수 개의 서브층(61)의 경계면(62)에서 P형 도펀트의 농도 피크 구간(이하 피크 구간)을 가질 수 있다. 복수 개의 서브층(61)은 모두 동일한 구성원소를 포함할 수 있다. 일 예로, 서브층(61)은 모두 Mg가 도핑된 AlGaN일 수 있다. 따라서, 전자 차단층(60)은 두께방향으로 에너지 밴드 갭이 실질적으로 균일할 수 있다.
피크 구간이란 P형 도펀트의 농도가 증가하다가 감소하는 변곡점으로 정의할 수 있다. 경계면(62)은 피크 구간을 연결한 가상의 선일 수 있다. 서브층(61)은 물리적인 경계를 갖는 층일 수 있으나 반드시 이에 한정되는 것은 아니고, 피크 구간을 기준으로 상하로 정의되는 가상의 층일 수도 있다.
복수 개의 서브층(61)은 경계면(62)에서 피크 구간을 복수 개를 가지므로 전자 차단층(60)의 도핑 농도는 상대적으로 높아질 수 있다. 도 4에서는 전자 차단층(60)의 두께 방향으로 2개의 피크 구간(P1, P2)을 갖는 것으로 예시하였으나 피크 구간의 개수는 이에 한정되지 않는다.
전자 차단층(60)의 제2요철부(60b) 역시 P형 도펀트의 농도가 증가하여 정공이 유효하게 주입될 수 있다. 따라서, 전자 차단층(60)은 평탄 영역(60b)에 제1캐리어 주입 경로(L1)가 형성되고, 제2요철부의 측벽(60a-1)에 제2캐리어 주입 경로(L2)가 형성될 수 있다. 제2캐리어 주입 경로(L2)는 제1캐리어 주입 경로(L1)에 비해 매우 얇으므로, 제2캐리어 주입 경로(L2)의 주입 효율이 향상될 수 있다.
정공은 상대적으로 얇은 제2캐리어 주입 경로(50a)를 통해 활성층(50)의 하부 평탄영역까지 유효하게 주입될 수 있다. 따라서, 상대적으로 많은 우물층이 발광에 참여하므로 발광효율이 향상될 수 있다.
따라서, 정전기 방전 수율을 높이기 위해 제1요철부(50a)의 사이즈를 더 크게 하여도 제2요철부 측벽(60a-1)을 통해 하부 우물층까지 정공 주입이 증가하므로 실질적인 광도 저하는 일어나지 않을 수 있다.
실시 예에 따르면, 전자 차단층(60)에 의해 광도 상승, 드루프(droop)현상 감소, 및 ESD 개선을 동시에 할 수 있다.
서브층(61)의 경계면(62)에서 피크 구간 형성은 각 서브층(61) 형성시 단속 구간(Interruption period)을 적용함으로써 가능해질 수 있다.
도 5를 참고하면, 단속 구간시 주위에 분산된 P형 도펀트가 성장이 중지된 서브층(61)의 표면(경계면)에 결합될 수 있다.
즉, 단속 구간은 P형 도펀트가 서브층(61)의 표면(경계면)에 결합될 수 있는 시간을 제공할 수 있다. 따라서, 이러한 단속 구간을 복수 회 실시함으로써 두께 방향으로 복수 개의 피크 구간을 생성하여 도펀트의 농도를 증가시킬 수 있다.
그러나, 단속 구간이 너무 길어지면 서브층(61)의 표면에 결합된 P형 도펀트가 다시 휘발되는 문제가 발생할 수 있다. 따라서, 단속 구간은 P형 도펀트가 다시 휘발되지 않도록 상대적으로 짧게 제어하는 것이 바람직하다. 단속 구간(Interval)을 약 1sec 내지 10sec로 제어하면 표면에 결합된 P형 도펀트를 유효하게 서브층(61)의 사이에 가둘 수 있다.
도 6을 참고하면, 경계면(62)는 평탄 영역(60b)에서 관찰될 수 있다. 제2요철부의 측벽(60a-1)의 두께(D2)는 상대적으로 얇게 형성되므로 복수 개의 경계면(62)은 제2요철부(60a)에서 일부가 중첩(63)될 수 있다. 따라서, 경계면(62)의 개수가 많아질수록 제2요철부의 측벽(60a-1)에서 P형 도펀트의 농도는 더욱 증가할 수 있다.
정공은 상대적으로 무거운 유효 질량으로 인하여 전자 차단층(60)의 두께가 매우 얇지 않으면 주입 효율이 떨어질 수 있다. 그러나, 전자 차단층(60)에 형성된 제2요철부(60a)는 평탄 영역(60b)의 두께(D1)에 비해 상대적으로 얇은 두께(D2)를 가질 수 있다. 또한, 제2요철부(60a)는 P형 도펀트의 농도가 높아 저항이 낮으므로 정공 주입이 가속화될 수 있다.
도 1을 참고하면, 실시 예에서는 제1반도체층(30)과 활성층(50) 사이에 배치되는 트리거층(40)을 더 포함할 수 있다. 트리거층(40)의 인듐(In) 함량은 제1반도체층(30)의 인듐 함량보다 높을 수 있다. 일반적으로, 인듐(In)은 격자의 크기가 크다. 따라서, 인듐이 많이 함유된 갈륨 질화물(GaN)층일수록 격자 부정합에 의한 요철부가 용이하게 형성될 수 있다. 전술한 바와 같이 실시 예에 따르면 활성층(50)의 제1요철부(50a) 영역도 발광에 기여할 수 있으므로 의도적으로 제1요철부(50a)의 밀도 및 사이즈를 증가시킬 수 있다.
도 7은 종래 발광소자의 심스(secondary ion mass spectroscopy; SIMS) 분석 결과이고, 도 8은 본 발명의 일 실시 예에 따른 발광소자의 심스(secondary ion mass spectroscopy; SIMS) 분석 결과이다.
도 7을 참고하면, 종래 전자 차단층(60)은 단속 구간 없이 성장시켜 두께가 증가할수록 P형 도펀트의 농도가 증가하게 된다. 그러나, 성장 초기에는 메모리 효과(Memory effect)에 의해 P형 도펀트가 잘 도핑되지 않는다. 따라서, 종래 전자 차단층(60)은 최종적으로 성장이 완료된 지점에서 1개의 P형 도펀트 농도의 피크(P1)를 갖게 된다.
그러나, 도 8을 참고하면, 실시 예에 따른 전자 차단층(60)은 성장 중 적어도 1번의 단속 구간을 형성함으로써, 두께의 중간 지점에서 제1피크(P2)를 갖게 되고, 이후 성장이 완료되는 지점에서 제2피크(P3)를 갖게 된다.
따라서, 이러한 단속 구간을 복수 회 실시함으로써 두께 방향으로 복수 개의 피크 구간을 생성하여 도펀트의 농도를 증가시킬 수 있다.
도 9a 내지 도 9c는 다양한 형태의 전자 차단층의 구조를 설명하기 위한 도면이다.
도 9a를 참고하면, 전자 차단층은 활성층과 인접 배치되는 제1서브층(61a), 및 제1서브층(61a) 상에 형성되는 제2서브층(61b)을 포함할 수 있다. 제1서브층(61a)은 성장시 인듐(In)을 공급함으로써 P형 도펀트의 도핑을 촉진시킬 수 있다.
인듐(In)은 융점이 낮아 결합력이 상대적으로 약하다. 따라서, 인듐이 먼저 Al 자리에 치환된 후 용융되면, P형 도펀트가 도핑될 수 있는 베이컨시(Vacancy)를 형성할 수 있다. 따라서, P형 도펀트의 농도를 증가시킬 수 있다. 제1서브층(61a)은 두께 방향으로 피크 구간을 적어도 2개 이상 가질 수 있다.
제2서브층(61b)은 제1서브층(61a)과 동일한 층이거나, 단속 구간 없이 종래 방법으로 P형 도펀트를 도핑한 층일 수 있다.
도 9b를 참고하면, 제1서브층(61a)과 제3서브층(61c)은 두께 방향으로 단일의 피크 구간을 갖고, 제2서브층(61b)은 두께 방향으로 피크 구간을 적어도 2개 이상 가질 수 있다.
제1서브층(61a)과 제3서브층(61c)은 단속 구간 없이 종래 방법으로 P형 도펀트를 도핑한 층일 수 있고, 제2서브층(61b)은 단속 구간을 적용하여 복수의 피크 구간을 형성한 층일 수 있다.
도 9c를 참고하면, 제1서브층(61a)은 P형 도펀트가 언도프된 층이고, 제2서브층(61b)은 단속 구간을 적용하여 복수의 피크 구간을 형성한 층일 수 있다.
제1서브층(61a)은 활성층에 가장 가까이 배치되어 절연층으로 기능할 수 있다. 따라서, 전자의 이동을 효과적으로 차단하는 역할을 수행할 수 있다.
P형 도펀트가 활성층(50)으로 확산되면 활성층(50)의 내부에 결정 결함이 발생할 수 있다. 따라서, P형 도펀트가 언도프된 제1서브층(61a)은 제2서브층(61b) 형성시 활성층으로 P형 도펀트의 확산되는 것을 방지하는 베리어 역할을 수행할 수도 있다. 제2서브층(61b)과 제3서브층(61c)은 단속 구간을 적용하여 복수의 피크 구간을 형성한 층일 수 있다.
도 10은 본 발명의 일 실시 예에 따른 발광소자 제조방법의 흐름도이고, 도 11은 전자 차단층을 형성하는 단계의 세부 흐름도이다.
도 1 및 도 10을 참고하면, 본 발명의 일 실시 예에 따른 발광소자 제조방법은, 복수 개의 제1요철부(50a)가 형성된 활성층(50)을 형성하는 단계(S10), 및 복수 개의 제1요철부(50a)가 형성된 활성층(50) 상에 형성되어 제2요철부(60a)를 갖는 전자 차단층(60)을 형성하는 단계(S20)를 포함한다.
활성층(50)을 형성하는 단계(S10)는, 지지 기판(10) 상에 제1반도체층(30)을 형성한 후, 그 위에 장벽층 및 우물층을 반복하여 형성한다. 활성층(50)은 전위(D)에 의해 유발된 제1요철부(50a)가 형성될 수 있다.
전자 차단층을 형성하는 단계(S20)는, 미리 정해진 시간 동안 원료의 공급을 복수 회 차단하는 성장단속 구간을 가질 수 있다. 도 11을 참고하면, 전자 차단층을 형성하는 단계는, 질소 분위기에서 원료를 공급하는 단계(S21), 미리 정해진 단속 기간 동안 원료 공급을 차단하여 성장을 중지시키는 단계(S22), 및 다시 원료를 공급하는 단계(S23)를 복수 회 반복할 수 있다. 이때, 제2요철부(60a)의 두께(D2)가 평탄 영역(60b)의 두께(D1)보다 얇아지도록 성장시킬 수 있다.
도 12를 참고하면, 단속 구간의 횟수에 따라 전자 차단층은 복수의 경계면(62)을 갖게 된다. 전술한 바와 같이, 단속 구간 동안 경계면(62)에서는 P형 도펀트가 결합되어 도핑 농도가 증가하게 된다. 이때, Ga, Al, Mg와 N의 원료로는 각각 트리 메틸 갈륨(TMGa), 트리메틸 알루미늄(TMAl), 시클로펜타디에닐 마그네슘(CP2Mg), 및 암모니아(NH3)을 사용하였으나 반드시 이에 한정하지 않는다. 이때, 암모니아는 단속 구간을 적용하지 않고 지속적으로 공급하여 질소 분위기를 유지할 수 있다.
도 13을 참고하면, 전자 차단층을 형성하는 단계는 다양하게 변형될 수 있다.
도 13의 (a)와 같이 단속 구간(Interval)을 2sec로 제어하여 Al 조성이 20%인 p-AlGaN층을 15층으로 형성할 수 있다, 또는 도 13의 (b)와 같이 단속 구간을 5sec로 제어할 수도 있다. 또는, 도 13의 (c), (d)와 같이 층의 두께를 1nm로 제어하여 30층의 멀티 레이어를 형성할 수도 있다.
도 14 및 도 15를 참고하면, Al 조성이 상이한 복수 개의 p-AlGaN층을 형성할 수도 있다.
도 14의 (a)를 참고하면, Al 조성이 25%인 제1 p-AlGaN층과 Al 조성이 10%인 제2 p-AlGaN층을 각각 2nm의 두께로 적층할 수도 있다. 이때, 제1 p-AlGaN층 성장과 제2 p-AlGaN층 성장 사이에 단속 구간을 2sec로 제어할 수 있다. 이후, 공정을 8번 반복할 수 있다.
도 14의 (b)를 참고하면, Al 조성이 25%인 제1 p-AlGaN층과 Al 조성이 10%인 제2 p-AlGaN층 사이에 각각 단속 구간을 2sec로 제어할 수도 있다. 이후, 공정을 8번 반복할 수 있다.
도 14의 (c)를 참고하면, Al 조성이 25%인 제1 p-AlGaN층과 Al 조성이 10%인 제2 p-AlGaN층을 각각 2nm의 두께로 적층할 수도 있다. 이때, 제1 p-AlGaN층 성장과 제2 p-AlGaN층 성장 사이에 단속 구간을 5sec로 제어할 수 있다.
도 14의 (d)를 참고하면, Al 조성이 25%인 제1 p-AlGaN층과 Al 조성이 10%인 제2 p-AlGaN층 사이에 각각 단속 구간을 5sec로 제어할 수도 있다.
도 15의 (a)를 참고하면, Al 조성이 25%이고 두께가 1nm인 제1 p-AlGaN층과 Al 조성이 10%이고 두께가 2nm인 제2 p-AlGaN층을 성장시킬 수 있다. 이때, 제1 p-AlGaN층 성장을 단속 구간을 2sec로 제어하여 2번 반복한 후, 제2 p-AlGaN층을 성장시킬 수 있다. 이후 공정을 8번 반복할 수 있다.
도 15의 (b)를 참고하면, Al 조성이 25%인 제1 p-AlGaN층과 Al 조성이 10%인 제2 p-AlGaN층을 각각 1nm의 두께로 적층할 수도 있다. 이때, 단속 구간을 2sec로 제어하여 제1 p-AlGaN층 성장을 2회 반복한 후, 제2 p-AlGaN층 성장을 2회 반복하여 공정을 완료할 수 있다. 이후, 공정을 8번 반복할 수 있다.
도 15의 (c)를 참고하면, Al 조성이 25%이고 두께가 1nm인 제1 p-AlGaN층과 Al 조성이 10%이고 두께가 2nm인 제2 p-AlGaN층을 성장시킬 수 있다. 이때, 제1 p-AlGaN층 성장을 단속 구간을 5sec로 제어하여 2번 반복한 후 제2 p-AlGaN층을 성장시킬 수 있다. 이후 공정을 8번 반복할 수 있다.
도 15의 (d)를 참고하면, Al 조성이 25%인 제1 p-AlGaN층과 Al 조성이 10%인 제2 p-AlGaN층을 각각 1nm의 두께로 적층할 수도 있다. 이때, 단속 구간을 5sec로 제어하여 제1 p-AlGaN층 성장을 2회 반복한 후, 제2 p-AlGaN층 성장을 2회 반복하여 공정을 완료할 수 있다. 이후, 공정을 8번 반복할 수 있다.
실시 예의 발광 소자는 도광판, 프리즘 시트, 확산 시트 등의 광학 부재를 더 포함하여 이루어져 백라이트 유닛으로 기능할 수 있다. 또한, 실시 예의 발광 소자는 표시 장치, 조명 장치, 지시 장치에 더 적용될 수 있다.
이때, 표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출한다. 도광판은 반사판의 전방에 배치되어 발광 모듈에서 발산되는 빛을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치된다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치된다.
그리고, 조명 장치는 기판과 실시 예의 발광 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 더욱이 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다.
이상에서 설명한 본 발명 실시 예는 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 실시 예의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명 실시 예가 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다.

Claims (20)

  1. 제1반도체층;
    상기 제1반도체층 상에 배치되고 복수 개의 제1요철부를 포함하는 활성층;
    상기 복수 개의 제1요철부 상에 배치된 복수 개의 제2요철부를 포함하는 전자 차단층; 및
    상기 전자 차단층 상에 형성되는 제2반도체층을 포함하고,
    상기 전자 차단층은 두께 방향으로 P형 도펀트의 도핑농도 피크 구간을 적어도 2개 이상 갖는 발광소자.
  2. 제1항에 있어서,
    상기 복수 개의 제2요철부의 두께는 상기 복수 개의 제2요철부 사이에 형성된 평탄 영역의 두께보다 얇은 발광소자.
  3. 제2항에 있어서,
    상기 전자 차단층은 상기 평탄 영역의 두께 방향으로 상기 피크 구간을 적어도 2개 이상 갖는 발광소자.
  4. 제1항에 있어서,
    상기 전자 차단층은 복수 개의 서브층을 포함하고, 상기 복수 개의 서브층의 경계면에서 상기 피크 구간을 갖는 발광소자.
  5. 제1항에 있어서,
    상기 복수 개의 서브층의 구성원소는 동일한 발광소자.
  6. 제1항에 있어서,
    상기 전자 차단층은 상기 활성층에 가장 인접한 제1서브층, 및 상기 제1서브층상에 형성된 제2서브층을 포함하고,
    상기 제1서브층은 두께 방향으로 상기 피크 구간을 적어도 2개 이상 갖는 발광소자.
  7. 제1항에 있어서,
    상기 전자 차단층은 상기 활성층에 가장 인접한 제1서브층, 및 상기 제1서브층상에 형성된 제2서브층을 포함하고,
    상기 제1서브층은 P형 도펀트가 언도프되고,
    상기 제2서브층은 두께 방향으로 상기 피크 구간을 적어도 2개 이상 갖는 발광소자.
  8. 제1항에 있어서,
    상기 전자 차단층은 상기 복수 개의 제2요철부 사이 영역에서 제1캐리어 주입 경로를 갖고, 상기 제2요철부의 측벽에서 제2캐리어 주입 경로를 갖는 발광소자.
  9. 적어도 하나 이상의 발광소자를 포함하고,
    상기 발광소자는,
    제1반도체층;
    상기 제1반도체층 상에 배치되고 복수 개의 제1요철부를 포함하는 활성층;
    상기 복수 개의 제1요철부 상에 배치된 복수 개의 제2요철부를 포함하는 전자 차단층; 및
    상기 전자 차단층 상에 형성되는 제2반도체층을 포함하고,
    상기 전자 차단층은 두께 방향으로 P형 도펀트의 도핑농도 피크 구간을 적어도 2개 이상 갖는 전자 디바이스.
  10. 제9항에 있어서,
    상기 복수 개의 제2요철부의 두께는 상기 복수 개의 제2요철부 사이에 형성된 평탄 영역의 두께보다 얇은 전자 디바이스.
  11. 제10항에 있어서,
    상기 전자 차단층은 상기 평탄 영역의 두께 방향으로 상기 피크 구간을 적어도 2개 이상 갖는 전자 디바이스.
  12. 제9항에 있어서,
    상기 전자 차단층은 복수 개의 서브층을 포함하고, 상기 복수 개의 서브층의 경계면에서 상기 피크 구간을 갖는 전자 디바이스.
  13. 제9항에 있어서,
    상기 복수 개의 서브층의 구성원소는 동일한 전자 디바이스.
  14. 제9항에 있어서,
    상기 전자 차단층은 상기 활성층에 가장 인접한 제1서브층, 및 상기 제1서브층상에 형성된 제2서브층을 포함하고,
    상기 제1서브층은 두께 방향으로 상기 피크 구간을 적어도 2개 이상 갖는 전자 디바이스.
  15. 제9항에 있어서,
    상기 전자 차단층은 상기 활성층에 가장 인접한 제1서브층, 및 상기 제1서브층상에 형성된 제2서브층을 포함하고,
    상기 제1서브층은 P형 도펀트가 언도프되고,
    상기 제2서브층은 두께 방향으로 상기 피크 구간을 적어도 2개 이상 갖는 전자 디바이스.
  16. 제9항에 있어서,
    상기 전자 차단층은 상기 복수 개의 제2요철부 사이 영역에서 제1캐리어 주입 경로를 갖고, 상기 제2요철부의 측벽에서 제2캐리어 주입 경로를 갖는 전자 디바이스.
  17. 제9항에 있어서,
    디스플레이장치, 조명장치, 헤드램프 중 하나인 전자 디바이스.
  18. 복수 개의 제1요철부가 형성된 활성층을 형성하는 단계; 및
    상기 복수 개의 제1요철부가 형성된 활성층 상에 형성되어 제2요철부를 갖는 전자 차단층을 형성하는 단계;를 포함하고,
    상기 전자 차단층을 형성하는 단계는 소정 시간 동안 원료의 공급을 차단하는 성장단속 구간을 갖는 발광소자 제조방법.
  19. 제18항에 있어서,
    상기 전자 차단층을 형성하는 단계는,
    질소 분위기를 유지하면서 성장 원료의 공급을 복수 회 차단하는 발광소자 제조방법.
  20. 제18항에 있어서,
    상기 전자 차단층을 형성하는 단계는,
    상기 제2요철부의 두께가 상기 복수 개의 제2요철부 사이 영역의 두께보다 얇아지도록 성장시키는 발광소자 제조방법.
PCT/KR2016/005333 2015-05-22 2016-05-19 발광 소자 및 이의 제조 방법 WO2016190612A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,194 US10333027B2 (en) 2015-05-22 2016-05-19 Light-emitting device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150071937A KR102391302B1 (ko) 2015-05-22 2015-05-22 발광 소자 및 이의 제조 방법
KR10-2015-0071937 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190612A1 true WO2016190612A1 (ko) 2016-12-01

Family

ID=57393353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005333 WO2016190612A1 (ko) 2015-05-22 2016-05-19 발광 소자 및 이의 제조 방법

Country Status (3)

Country Link
US (1) US10333027B2 (ko)
KR (1) KR102391302B1 (ko)
WO (1) WO2016190612A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6994510B2 (ja) 2017-01-04 2022-02-04 スージョウ レキン セミコンダクター カンパニー リミテッド 半導体素子及びこれを含む発光素子パッケージ
US11056434B2 (en) * 2017-01-26 2021-07-06 Epistar Corporation Semiconductor device having specified p-type dopant concentration profile
US11557695B2 (en) * 2020-02-04 2023-01-17 Seoul Viosys Co., Ltd. Single chip multi band LED

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120774A (ja) * 2011-12-06 2013-06-17 Yamaguchi Univ 窒化物半導体発光素子およびその製造方法
JP2014518014A (ja) * 2011-09-29 2014-07-24 東芝テクノセンター株式会社 発光ダイオードおよびその形成方法
KR20140101130A (ko) * 2013-02-08 2014-08-19 엘지이노텍 주식회사 발광소자
KR20150017103A (ko) * 2013-08-06 2015-02-16 서울바이오시스 주식회사 전자 차단층 성장 방법 및 그것을 갖는 질화물 반도체 소자 제조 방법
KR20150025264A (ko) * 2013-08-28 2015-03-10 삼성전자주식회사 정공주입층을 구비하는 반도체 발광 소자 및 그 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482343B1 (en) * 2011-01-26 2019-11-27 LG Innotek Co., Ltd. Semiconductor based light emitting diode
US9178114B2 (en) * 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US20140225059A1 (en) * 2013-02-08 2014-08-14 Bridgelux, Inc. LED with Improved Injection Efficiency
JP2016063128A (ja) * 2014-09-19 2016-04-25 スタンレー電気株式会社 半導体発光素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518014A (ja) * 2011-09-29 2014-07-24 東芝テクノセンター株式会社 発光ダイオードおよびその形成方法
JP2013120774A (ja) * 2011-12-06 2013-06-17 Yamaguchi Univ 窒化物半導体発光素子およびその製造方法
KR20140101130A (ko) * 2013-02-08 2014-08-19 엘지이노텍 주식회사 발광소자
KR20150017103A (ko) * 2013-08-06 2015-02-16 서울바이오시스 주식회사 전자 차단층 성장 방법 및 그것을 갖는 질화물 반도체 소자 제조 방법
KR20150025264A (ko) * 2013-08-28 2015-03-10 삼성전자주식회사 정공주입층을 구비하는 반도체 발광 소자 및 그 제조 방법

Also Published As

Publication number Publication date
KR102391302B1 (ko) 2022-04-27
US20180138362A1 (en) 2018-05-17
KR20160137181A (ko) 2016-11-30
US10333027B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2017095154A1 (ko) 발광소자 및 이를 포함하는 조명장치
WO2020101381A1 (en) Light emitting diode, manufacturing method of light emitting diode and display device including light emitting diode
WO2016190664A1 (ko) 발광소자
WO2013018937A1 (ko) 반도체 발광소자
WO2017014512A1 (ko) 발광 소자
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2013015472A1 (ko) 반도체 발광소자 및 그 제조방법
WO2018212416A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2014058224A1 (ko) 발광소자
WO2016190665A1 (ko) 발광소자
WO2014010816A1 (en) Light emitting device, and method for fabricating the same
WO2021137654A1 (ko) 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2016190612A1 (ko) 발광 소자 및 이의 제조 방법
WO2017116048A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2016018010A1 (ko) 발광소자 및 조명시스템
WO2021256839A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 응용품
JP2875437B2 (ja) 半導体発光素子およびその製造方法
WO2017119730A1 (ko) 발광 소자
KR20180016101A (ko) 표시장치 제조방법
WO2017135688A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2020013595A1 (ko) 발광 소자, 발광 소자의 제조 방법 및 발광 소자를 포함하는 디스플레이 장치
WO2016072661A1 (ko) 자외선 발광소자 및 조명시스템
WO2022177306A1 (ko) 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈
WO2021158016A1 (ko) 단일칩 복수 대역 발광 다이오드
WO2016108667A1 (ko) 고전압 구동 발광소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800252

Country of ref document: EP

Kind code of ref document: A1