WO2016189987A1 - ラップフィルム - Google Patents

ラップフィルム Download PDF

Info

Publication number
WO2016189987A1
WO2016189987A1 PCT/JP2016/061657 JP2016061657W WO2016189987A1 WO 2016189987 A1 WO2016189987 A1 WO 2016189987A1 JP 2016061657 W JP2016061657 W JP 2016061657W WO 2016189987 A1 WO2016189987 A1 WO 2016189987A1
Authority
WO
WIPO (PCT)
Prior art keywords
wrap film
film
plane
slow axis
axis direction
Prior art date
Application number
PCT/JP2016/061657
Other languages
English (en)
French (fr)
Inventor
裕子 松浦
細田 友則
裕寿 峯岸
仁 氏家
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2017520288A priority Critical patent/JP6538162B2/ja
Priority to CN201680026073.5A priority patent/CN107531378B/zh
Publication of WO2016189987A1 publication Critical patent/WO2016189987A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a wrap film, and more particularly, to a wrap film containing a polyvinylidene chloride resin.
  • PVDC resin polyvinylidene chloride resin
  • properties such as adhesion to containers, transparency, barrier properties, heat resistance, and fragrance retention properties. It is known that the film is suitable as a film (for example, JP 2011-168750 A (Patent Document 1)).
  • PVDC resin wrap film is wound around a core material and loaded into a dedicated carton as a wrap film wound body. Then, when used, a wrap film having a required length is pulled out of the carton and cut with a saw blade mounted on the carton.
  • the wrap film made of PVDC resin when pulled out of the carton and cut with a saw blade attached to the carton, the wrap film may be torn in the vertical direction or the saw blade may be deteriorated. Then, when the cause of these malfunctions was examined, the present inventors found out that the strong force applied when cutting a wrap film was the cause.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a PVDC resin wrap film that can be easily cut with a weak force.
  • the thickness of the wrap film of the present invention is preferably 5 to 15 ⁇ m.
  • the polyvinylidene chloride resin is preferably a copolymer of vinylidene chloride and a comonomer copolymerizable with the vinylidene chloride, and the comonomer is preferably vinyl chloride.
  • the slow axis direction in the film plane is preferably the longitudinal direction (MD) of the wrap film.
  • MD machine direction
  • MD is the flow direction of the film at the time of inflation biaxial stretching.
  • Such a wrap film of the present invention is used in the state of a wrap film wound body loaded in a carton in which a longitudinal direction (MD) is a winding direction and a saw blade is mounted.
  • MD longitudinal direction
  • the wrap film of the present invention is a wrap film containing a polyvinylidene chloride resin (PVDC resin).
  • PVDC resin used in the present invention is a copolymer of vinylidene chloride (VD) and a comonomer copolymerizable with vinylidene chloride.
  • the content of vinylidene chloride in the PVDC resin is preferably 60 to 98% by mass, more preferably 65 to 97% by mass, still more preferably 70 to 95%, particularly preferably 75 to 90% by mass, and the comonomer
  • the content of is preferably 2 to 40% by mass, more preferably 3 to 35% by mass, still more preferably 5 to 30% by mass, and particularly preferably 10 to 25% by mass.
  • the comonomer content is less than the lower limit, the internal plasticization of the PVDC resin becomes insufficient and the melt processability tends to decrease.
  • the upper limit is exceeded, the gas barrier property and the water vapor barrier property tend to decrease. It is in.
  • Examples of the comonomer include vinyl chloride (VC); alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, etc.
  • VC vinyl chloride
  • alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, etc.
  • alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate (alkyl group having 1 to 18 carbon atoms); acrylonitrile, methacrylonitrile Vinyl cyanide such as styrene; aromatic vinyl such as styrene; vinyl ester of aliphatic carboxylic acid (carbon number 1 to 18) such as vinyl acetate; alkyl vinyl ether (alkyl group having 1 to 18 carbon atoms); acrylic acid, methacrylic acid , Murray Vinyl polymerizable unsaturated carboxylic acids such as acid, fumaric acid and itaconic acid; alkyl esters of vinyl polymerizable unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid (including partial esters.
  • alkyl methacrylates such as methyl me
  • epoxy group-containing vinyl polymerizable monomers such as glycidyl acrylate and glycidyl methacrylate
  • diene monomers such as butadiene and isoprene
  • chlorinated diene monomers such as chloroprene
  • divinylbenzene ethylene glycol diacrylate, ethylene glycol methacrylate, etc.
  • polyfunctional monomers having two or more polymerizable double bonds in the molecule.
  • These comonomers may be used individually by 1 type, or may use 2 or more types together.
  • vinyl chloride (VC) methyl acrylate, ethyl acrylate, butyl acrylate, and lauryl acrylate are preferable, and vinyl chloride (VC) is more preferable.
  • the reduced viscosity ( ⁇ ) (unit, L / g) of the PVDC resin is preferably 0.030 to 0.070, from the viewpoint of melt processability, stretch processability, packaging machine suitability, and cold resistance, and 0.033 To 0.065 is more preferable, and 0.035 to 0.060 L / g is particularly preferable.
  • the reduced viscosity of the PVDC resin is less than the lower limit, the stretch processability tends to decrease, or the strength and cutability of the film tend to decrease.
  • the upper limit is exceeded, the melt processability decreases or coloring There is a tendency to do.
  • two or more kinds of PVDC resins having different reduced viscosities may be mixed to adjust the reduced viscosity to the above range.
  • Such a PVDC resin can be synthesized by a known method such as suspension polymerization, emulsion polymerization, solution polymerization, etc., but a powder resin having an average particle size of 40 to 600 ⁇ m can be obtained without pulverization. From this viewpoint, suspension polymerization is preferable.
  • the PVDC resin may be used alone, or the PVDC resin may be added to a plasticizer, a heat stabilizer, an antioxidant, a lubricant, a dispersion aid, a filler, an ultraviolet absorber, an interface.
  • Various additives such as an activator and a pH adjuster may be added and used as a PVDC resin composition.
  • the PVDC resin composition containing the additive can be prepared by adding the additive to the polymerization reaction system at any time before, during, or after the synthesis of the PVDC resin.
  • plasticizer examples include dioctyl phthalate, acetyl tributyl citrate, dibutyl sebacate, dioctyl sebacate, acetylated monoglyceride, acetylated diglyceride, polycondensate of adipic acid and 1,3-butanediol, adipic acid And polycondensates of 1,4-butanediol and the like. These plasticizers may be used alone or in combination of two or more.
  • the addition amount of the plasticizer is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and particularly preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the PVDC resin.
  • heat stabilizers examples include epoxidized vegetable oils such as epoxidized soybean oil and epoxidized linseed oil, epoxidized animal oils, epoxidized fatty acid esters such as epoxidized octyl stearate, and epoxidized resin prepolymers such as bisphenol A glycidyl ether. Epoxy compounds; epoxy group-containing resins such as glycidyl group-containing acrylic resins and glycidyl group-containing methacrylic resins can be mentioned. These heat stabilizers may be used alone or in combination of two or more. The amount of the heat stabilizer added is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 4 parts by mass, and particularly preferably 1 to 3 parts by mass with respect to 100 parts by mass of the PVDC resin.
  • antioxidant examples include those described in JP2011-94035A.
  • other resins may be mixed with the PVDC resin.
  • the mixing amount of the other resin is preferably 30 parts by mass or less with respect to 100 parts by mass of the PVDC resin, more preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less from the viewpoint of compatibility with the PVDC resin.
  • the content of the vinylidene chloride component in the mixed resin of the PVDC resin and the other resin is preferably 50% by mass or more, and 60% by mass or more from the viewpoints of gas barrier property, water vapor barrier property, and heat resistance. Is more preferable, and 70 mass% or more is particularly preferable.
  • the other resins include ethylene-vinyl acetate copolymer, ethylene-vinyl chloride copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic acid ester copolymer (preferably Ethylene-acrylic acid alkyl ester copolymer (alkyl group having 1 to 18 carbon atoms)), ethylene-methacrylic acid ester copolymer (preferably ethylene-methacrylic acid alkyl ester copolymer (alkyl group having 1 carbon atom) To 18)), ethylene-glycidyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer, acrylic acid ester (preferably, alkyl acrylate ester (alkyl group having 1 to 18 carbon atoms)) homopolymer, and Copolymer (eg, methyl acrylate-butyl acrylate copolymer), meta Homopolymers and copo
  • the wrap film of the present invention is formed by melt-extruding the PVDC resin or the PVDC resin composition using, for example, an extruder to form a film, cooling, stretching (preferably biaxial stretching), and further relaxation. It can manufacture by giving a process, It is preferable to manufacture especially by the inflation biaxial stretching method by a circular die.
  • the birefringence ⁇ n of the resulting wrap film is expressed by the following formula (1a): 0.0003 ⁇ ⁇ n ⁇ 0.0013 (1a)
  • the degree of plane orientation ⁇ P satisfies the following condition (2a): ⁇ 0.0120 ⁇ ⁇ P ⁇ ⁇ 0.0102 (2a)
  • the cooling temperature, stretching temperature, stretching ratio, relaxation temperature, and relaxation rate of the melt-extruded film are adjusted so as to satisfy the condition represented by
  • the birefringence ⁇ n exceeds 0.0013 or the plane orientation ⁇ P exceeds ⁇ 0.0102, the wrap film is easily stretched, and it is difficult to easily cut the wrap film with a weak force.
  • the birefringence ⁇ n is expressed by the following formula (1b): 0.0005 ⁇ ⁇ n ⁇ 0.0013 (1b)
  • the plane orientation degree ⁇ P is preferably the following formula (2b): ⁇ 0.0115 ⁇ ⁇ P ⁇ ⁇ 0.0102 (2b) It is preferable that the condition represented by
  • the birefringence ⁇ n tends to decrease as the stretching ratio (molecular orientation) in the machine direction (MD) increases or as the relaxation rate in the machine direction (MD) decreases. Since the orientation degree ⁇ P tends to decrease as the draw ratio increases or the relaxation rate decreases, the birefringence degree ⁇ n is controlled by controlling the stretch ratio and relaxation rate based on these tendencies. And the plane orientation degree ⁇ P can be adjusted within the above range.
  • the cooling temperature of the film after melt extrusion cannot be generally determined, for example, it is preferably 20 ° C. or lower, more preferably 15 ° C. or lower. If the cooling temperature exceeds the upper limit, crystallization of the resin proceeds and the stretchability tends to deteriorate, and the wrap film tends to whiten and the transparency tends to be impaired.
  • the cooling temperature is preferably 20 ° C. or lower, more preferably 15 ° C. or lower. If the cooling temperature exceeds the upper limit, crystallization of the resin proceeds and the stretchability tends to deteriorate, and the wrap film tends to whiten and the transparency tends to be impaired.
  • 3 degreeC or more is preferable and 5 degreeC or more is more preferable from a viewpoint of economical efficiency (specifically cooling capability).
  • the stretching temperature cannot be determined in general, but is preferably 15 ° C. or higher, and more preferably 20 ° C. or higher. When the stretching temperature is less than the lower limit, the stretchability is deteriorated and the inflation bubbles tend to burst.
  • stretching temperature From a viewpoint of workability
  • the stretching ratio cannot be determined in general, but, for example, the stretching ratio in the machine direction (MD) is preferably 3.6 to 5.0 times, more preferably 3.8 to 4.6 times.
  • MD machine direction
  • the stretching ratio in the machine direction (MD) is less than the lower limit, inflation bubbles tend to be loosened, making continuous film formation difficult.
  • the upper limit is exceeded, an air bag is generated and the bubble shape becomes unstable. , Tend to cause uneven width and uneven thickness.
  • the stretching ratio in the transverse direction (TD) is preferably 4.0 to 5.5 times, more preferably 4.5 to 5.1 times.
  • the stretching ratio in the transverse direction (TD) is less than the lower limit, the bubble shape becomes unstable and tends to cause unevenness in width and thickness.
  • it exceeds the upper limit it tends to easily burst.
  • the relaxation temperature cannot be determined in general, it is preferably 20 to 100 ° C., and more preferably 25 to 85 ° C.
  • the relaxation temperature is less than the lower limit, a sufficient relaxation rate cannot be obtained, winding tightening tends to occur, and problems such as deformation of the core portion tend to occur.
  • the upper limit is exceeded, the transparency of the film Tend to be damaged.
  • the longitudinal (MD) relaxation rate is preferably 4.5 to 12.0%, more preferably 5.0 to 11.0%.
  • the relaxation rate in the machine direction (MD) is less than the lower limit, the relaxation is insufficient, and when creating a wrap film wound body, there is a tendency for tightening to occur over time, whereas, when the upper limit is exceeded, The film is slack and tends to wrinkle during winding.
  • the relaxation rate in the transverse direction (TD) is preferably 2.5 to 6.5%, more preferably 3.0 to 6.1%.
  • the transverse direction (TD) relaxation rate is less than the lower limit, the film width tends to change after the wrap film is wound.
  • wrinkles occur during winding. It tends to be easy.
  • the thickness of the wrap film thus obtained is preferably 5 to 15 ⁇ m.
  • the thickness of the wrap film is less than the lower limit, sufficient strength cannot be obtained, and it tends to be broken during use.
  • the upper limit is exceeded, a large force tends to be required when cutting, and , Rigidity increases and practical adhesion tends to deteriorate.
  • the slow axis direction in the film plane is preferably the longitudinal direction (MD) of the wrap film.
  • the wrap film of the present invention is preferably obtained as a wound body in which the longitudinal direction (MD) of inflation biaxial stretching is the winding direction.
  • the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
  • the reduced viscosity of the polyvinylidene chloride resin, the birefringence degree and the plane orientation degree of the wrap film were measured by the following methods.
  • (1/4) ⁇ ⁇ (t 2 / t 1 ) ⁇ 1 ⁇ (In the formula, t 1 represents the flow down time (unit: second) of cyclohexanone (solvent) at 30 ° C., and t 2 represents the flow down time (unit: second) of the sample solution at 30 ° C.) was used to determine the reduced viscosity ( ⁇ ).
  • a wrap film is attached to a phase difference measuring device (“KOBRA-WR” manufactured by Oji Scientific Instruments) so that the longitudinal direction (MD) of the film is 0 ° of the measuring device,
  • the orientation angle display range was set to -90 degrees to 90 degrees. Accordingly, when the orientation angle is in the range of ⁇ 45 ° to 45 °, polyvinylidene chloride has negative intrinsic birefringence, which means that the slow axis direction of the wrap film is the machine direction (MD). . That is, it means that the orientation in the transverse direction (TD) of the wrap film is stronger than that in the longitudinal direction (MD), and that the orientation in the longitudinal direction (MD) becomes stronger as ⁇ n becomes smaller.
  • MD machine direction
  • PVDC resin vinylidene chloride-vinyl chloride copolymer
  • a PVDC resin composition was prepared.
  • Example 1 The wrap film was produced using the manufacturing apparatus shown in FIG. That is, after the PVDC resin composition obtained in Preparation Example 1 was melt-extruded from a circular die at 175 ° C. using a single-screw extruder 1 having a diameter of 75 cm, the obtained tubular parison was cooled to a 10 ° C. cooling bath (1 The bath was quenched with 2 and then passed through a warm water bath (2 baths) 3 at 40 ° C. Thereafter, air is pressed into the tubular parison between the pinch rollers 4 and 5 having different rotational speeds to expand, and the stretching temperature is 25 ° C., the longitudinal direction (MD) is 4.2 times, and the transverse direction (TD) is 5.1 times.
  • MD longitudinal direction
  • TD transverse direction
  • Inflation biaxial stretching is performed at a stretching ratio of 25 ° C., and the relaxation temperature is 25 ° C., the longitudinal direction (MD) is 10.1%, the lateral direction (TD) is 4.0% between the pinch rollers 5 and 6 having different rotational speeds.
  • the film was wound up with the winding roller 7 and then rolled back with a slit to obtain a 20-m roll wrap film roll (width 30 cm).
  • the stretching temperature is the temperature of the atmosphere in which the tubular parison taken out from the two baths is exposed during biaxial stretching (that is, the environmental temperature in the region between the pinch rollers 4 and 5), and the relaxation temperature is The temperature of the atmosphere to which the film after biaxial stretching is exposed during the relaxation treatment (that is, the environmental temperature in the region between the pinch rollers 5 and 6).
  • the obtained wrap film thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • the results are shown in Table 1. Further, the orientation angle of the obtained wrap film was in the range of ⁇ 45 degrees to 45 degrees. From this, it was found that the slow axis direction of the obtained wrap film was the machine direction (MD), and the orientation in the transverse direction (TD) was stronger than that in the machine direction (MD).
  • Example 2 Stretching temperature 25 ° C, longitudinal direction (MD) 4.4 times, transverse direction (TD) inflation biaxial stretching at a draw ratio of 5.0 times, relaxation temperature 25 ° C, longitudinal direction (MD) 10.1%,
  • a wrapped wrap film was produced in the same manner as in Example 1 except that the relaxation treatment was performed at a relaxation rate of 4.8% in the transverse direction (TD).
  • thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • the results are shown in Table 1. Further, the orientation angle of the obtained wrap film was in the range of ⁇ 45 degrees to 45 degrees. From this, it was found that the slow axis direction of the obtained wrap film was the machine direction (MD), and the orientation in the transverse direction (TD) was stronger than that in the machine direction (MD).
  • Example 3 Stretching temperature 25 ° C, longitudinal direction (MD) 4.6 times, transverse direction (TD) inflation biaxial stretching at a draw ratio of 4.7 times, relaxation temperature 25 ° C, longitudinal direction (MD) 5.0%, A wrapped wrap film was produced in the same manner as in Example 1 except that the relaxation treatment was performed at a relaxation rate of 5.1% in the transverse direction (TD). About the obtained wrap film, thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • DELTA birefringence degree
  • DELTA plane orientation degree
  • Example 4 Change the temperature of the cooling bath (1 bath) to 11 ° C and the temperature of the hot water bath (2 baths) to 45 ° C, stretching temperature 25 ° C, longitudinal direction (MD) 4.0 times, transverse direction (TD) 5.
  • a wrap film wound body was produced in the same manner as in Example 1. About the obtained wrap film, thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • the orientation angle of the obtained wrap film was in the range of ⁇ 45 degrees to 45 degrees. From this, it was found that the slow axis direction of the obtained wrap film was the machine direction (MD), and the orientation in the transverse direction (TD) was stronger than that in the machine direction (MD).
  • Example 5 Stretch temperature 25 ° C, longitudinal direction (MD) 4.5 times, transverse direction (TD) inflation biaxial stretching at a draw ratio of 4.8 times, relaxation temperature 25 ° C, longitudinal direction (MD) 5.0%, A wrapped wrap film was produced in the same manner as in Example 4 except that the relaxation treatment was performed at a relaxation rate of 4.0% in the transverse direction (TD). About the obtained wrap film, thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • DELTA birefringence degree
  • DELTA plane orientation degree
  • Example 6 The temperature of the hot water bath (2 baths) is changed to 30 ° C., inflation biaxial stretching is performed at a stretching temperature of 30 ° C., a stretching ratio of machine direction (MD) of 4.2 times, and transverse direction (TD) of 4.6 times.
  • a wrapped wrap film was produced in the same manner as in Example 4 except that the relaxation treatment was performed at a relaxation temperature of 40 ° C., a relaxation rate of 10.8% in the machine direction (MD), and 4.2% in the transverse direction (TD). .
  • thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • the orientation angle of the obtained wrap film was in the range of ⁇ 45 degrees to 45 degrees. From this, it was found that the slow axis direction of the obtained wrap film was the machine direction (MD), and the orientation in the transverse direction (TD) was stronger than that in the machine direction (MD).
  • Example 7 Stretching temperature 30 ° C, longitudinal direction (MD) 4.1 times, transverse direction (TD) inflation biaxial stretching at a stretching ratio of 4.8 times, relaxation temperature 40 ° C, longitudinal direction (MD) 10.7%, A wrapped wrap film was produced in the same manner as in Example 6 except that the relaxation treatment was performed at a relaxation rate of 6.1% in the transverse direction (TD). About the obtained wrap film, thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • DELTA birefringence degree
  • DELTA plane orientation degree
  • Example 8 Stretching temperature 30 ° C, longitudinal direction (MD) 4.3 times, transverse direction (TD) inflation biaxial stretching at a draw ratio of 4.5 times, relaxation temperature 40 ° C, longitudinal direction (MD) 10.7%, A wrapped wrap film was produced in the same manner as in Example 6 except that the relaxation treatment was performed at a relaxation rate of 4.3% in the transverse direction (TD). About the obtained wrap film, thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • DELTA birefringence degree
  • DELTA plane orientation degree
  • Example 4 Change the temperature of the cooling bath (1 bath) to 12 ° C and the temperature of the hot water bath (2 baths) to 30 ° C, stretching temperature 25 ° C, machine direction (MD) 4.0 times, transverse direction (TD) 5.
  • a wrap film wound body was produced in the same manner as in Example 1. About the obtained wrap film, thickness was measured and birefringence degree (DELTA) n (average value) and plane orientation degree (DELTA) P (average value) were calculated
  • DELTA birefringence degree
  • DELTA average value
  • DELTA plane orientation degree
  • the orientation angle of the obtained wrap film was in the range of ⁇ 45 degrees to 45 degrees. From this, it was found that the slow axis direction of the obtained wrap film was the machine direction (MD), and the orientation in the transverse direction (TD) was stronger than that in the machine direction (MD).
  • ⁇ Cutability (cut test)> The wrap films obtained in the examples and comparative examples were cut to 40 mm in the transverse direction (TD) and 140 mm in the longitudinal direction (MD) to prepare test wrap films.
  • One end of the longitudinal direction (MD) of the test wrap film is fixed with a tape inside a commercially available new cle wrap (registered trademark) carton (for 30 cm width) equipped with a plastic saw blade. Attached to. In that case, it fixed so that the center part of the test wrap film which protrudes from the carton might contact the V-shaped front-end
  • the other end in the machine direction (MD) of the test wrap film is sandwiched between chuck portions of a Tensilon universal material tester ("RTC-210A" manufactured by Orientec Co., Ltd.), and a saw blade and the test wrap film
  • the angle of the jig was adjusted so that the angle was 80 °.
  • the test wrap film was pulled upward at a pulling speed of 1000 mm / min, and the strength (peak value (unit: N)) when the wrap film was cut was measured, and the wrap film obtained in Example 1 was measured.
  • the cutting force was divided by the cutting force of the wrap film obtained in each example, and the relative score based on the cutting force of the wrap film obtained in Example 1 was obtained. The results are shown in Table 1.
  • a wrap film having a relative score of 1.00 or more means a wrap film that can be easily cut with a weak force equal to or less than that of the wrap film obtained in Example 1, while the relative score is 1.
  • a wrap film of less than 00 means that the wrap film requires a stronger force than the wrap film obtained in Example 1 and is difficult to cut.
  • Example 7 When comparing the plane orientation degree ⁇ P and the birefringence degree ⁇ n of Example 7 and Comparative Example 4 shown in Table 1, ⁇ P is equivalent, but ⁇ n is smaller in Example 7, so that the longitudinal direction (MD) This suggests that the molecular orientation is large. Since the cutability of the wrap film of the present invention is evaluated for ease of breaking when the film is pulled in a direction perpendicular to the saw blade, the tensile direction (longitudinal direction of the wrap film) and inflation biaxial stretching It is considered that Example 7 having a larger molecular orientation in the vertical direction (MD) was more likely to break when the vertical direction (MD) was matched. On the other hand, although ⁇ n of Comparative Example 6 is smaller than that of Example 7, ⁇ P is large, so it is considered that it was difficult to break.
  • the birefringence ⁇ n is expressed by the following formula (1a): 0.0003 ⁇ ⁇ n ⁇ 0.0013 (1a)
  • the degree of plane orientation ⁇ P satisfies the following condition (2a): ⁇ 0.0120 ⁇ ⁇ P ⁇ ⁇ 0.0102 (2a) 2 (Examples 1 to 8, within the dotted frame in FIG. 2) can be easily cut with a weak force, and the wrap films obtained in Examples 2 to 8 are examples.
  • the relative score for the wrap film obtained in 1 was 1.00 or more.
  • the wrap film (Comparative Examples 1, 4 to 5) in which the birefringence ⁇ n does not satisfy the condition represented by the formula (1a) and the plane orientation degree ⁇ P do not satisfy the condition represented by the formula (2a).
  • the wrap films (Comparative Examples 1 to 3, 5 to 8) were difficult to cut or could not be cut with a weak force, and the relative score with respect to the wrap film obtained in Example 1 was less than 1.00.
  • the wrap films having the degree of plane orientation ⁇ P of ⁇ 0.0093 or more (Comparative Examples 1 to 3) cannot be cut with a weak force and require a strong force.
  • the relative score was 0.68 or less.
  • the wrap film of the present invention is difficult to tear in the vertical direction and can suppress the deterioration of the saw blade of the carton, it is useful as a wrap film for various packaging such as a home wrap film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Cartons (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Wrappers (AREA)

Abstract

下記式(1): Δn=n-n=Re/d (1) (式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、Reはフィルムの面内レタデーション(単位:nm)を表し、dはフィルムの厚み(単位:nm)を表す) により求められる複屈折度Δnが下記式(1a): 0.0003≦Δn≦0.0013 (1a) で表される条件を満たし、 下記式(2): ΔP=(n+n)/2-n (2) (式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、nはフィルムの厚さ方向の屈折率を表す) により求められる面配向度ΔPが下記式(2a): -0.0120≦ΔP≦-0.0102 (2a) で表される条件を満たすことを特徴とするラップフィルム。

Description

ラップフィルム
 本発明は、ラップフィルムに関し、より詳しくは、ポリ塩化ビニリデン系樹脂を含有するラップフィルムに関する。
 ポリ塩化ビニリデン系樹脂(以下、「PVDC樹脂」と略す)からなるフィルムは、容器への密着性、透明性、バリア性、耐熱性、保香性等の特性に優れており、家庭用ラップフィルムとして好適なフィルムであることが知られている(例えば、特開2011-168750号公報(特許文献1))。このようなPVDC樹脂製ラップフィルムは、芯材に巻き取られ、ラップフィルム巻回体として専用のカートンに装填される。そして、使用する際に、必要な長さのラップフィルムをカートンから引き出し、カートンに装着されたノコ刃でカットされる。
特開2011-168750号公報
 しかしながら、PVDC樹脂製ラップフィルムをカートンから引き出してカートンに装着されたノコ刃でカットする際に、ラップフィルムが縦方向に裂けたり、ノコ刃が劣化したりする場合があった。そこで、これらの不具合の原因を検討したところ、ラップフィルムをカットする際に掛ける強い力が原因であることを本発明者らは見出した。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、弱い力で容易にカットすることが可能なPVDC樹脂製ラップフィルムを提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、複屈折度及び面配向度が所定の条件を満たすPVDC樹脂製ラップフィルムが弱い力でカットできることを見出し、本発明を完成するに至った。
 すなわち、本発明のラップフィルムは、ポリ塩化ビニリデン系樹脂を含有するラップフィルムであって、
 下記式(1):
Δn=n-n=Re/d   (1)
(式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、Reはフィルムの面内レタデーション(単位:nm)を表し、dはフィルムの厚み(単位:nm)を表す)
により求められる複屈折度Δnが下記式(1a):
0.0003≦Δn≦0.0013   (1a)
で表される条件を満たし、
 下記式(2):
ΔP=(n+n)/2-n   (2)
(式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、nはフィルムの厚さ方向の屈折率を表す)
により求められる面配向度ΔPが下記式(2a):
-0.0120≦ΔP≦-0.0102   (2a)
で表される条件を満たすものである。
 本発明のラップフィルムの厚みとしては5~15μmが好ましい。また、前記ポリ塩化ビニリデン系樹脂としては塩化ビニリデンと該塩化ビニリデンと共重合可能なコモノマーとの共重合体が好ましく、前記コモノマーとしては塩化ビニルが好ましい。さらに、フィルム面内の遅相軸方向がラップフィルムの縦方向(MD)であることが好ましい。なお、縦方向(MD)とはインフレーション二軸延伸時のフィルムの流れ方向のことである。
 このような本発明のラップフィルムは、その縦方向(MD)が巻方向であり、ノコ刃が装着されたカートンに装填されているラップフィルム巻回体の状態で使用される。
 本発明によれば、弱い力で容易にカットすることが可能なPVDC樹脂製ラップフィルムを得ることが可能となる。
実施例及び比較例で使用したラップフィルム製造装置を示す概略図である。 実施例及び比較例で得られたラップフィルムについて、面配向度ΔPに対して複屈折度Δnをプロットした結果を示すグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 本発明のラップフィルムについて説明する。本発明のラップフィルムは、ポリ塩化ビニリデン系樹脂(PVDC樹脂)を含有するラップフィルムである。本発明に用いられるPVDC樹脂は、塩化ビニリデン(VD)と、塩化ビニリデンと共重合可能なコモノマーとの共重合体である。前記PVDC樹脂中の塩化ビニリデンの含有量としては、60~98質量%が好ましく、65~97質量%がより好ましく、70~95%が更に好ましく、75~90質量%が特に好ましく、また、コモノマーの含有量としては、2~40質量%が好ましく、3~35質量%がより好ましく、5~30質量%が更に好ましく、10~25質量%が特に好ましい。コモノマーの含有量が前記下限未満になると、PVDC樹脂の内部可塑化が不十分となり、溶融加工性が低下する傾向にあり、他方、前記上限を超えると、ガスバリア性及び水蒸気バリア性が低下する傾向にある。
 前記コモノマーとしては、塩化ビニル(VC);アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル等のアクリル酸アルキルエステル(アルキル基の炭素数1~18);メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル等のメタクリル酸アルキルエステル(アルキル基の炭素数1~18);アクリロニトリル、メタクリロニトリル等のシアン化ビニル;スチレン等の芳香族ビニル;酢酸ビニル等の脂肪族カルボン酸(炭素数1~18)のビニルエステル;アルキルビニルエーテル(アルキル基の炭素数1~18);アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等のビニル重合性不飽和カルボン酸;マレイン酸、フマル酸、イタコン酸等のビニル重合性不飽和ジカルボン酸のアルキルエステル(部分エステルを含む。アルキル基の炭素数1~18);アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有ビニル重合性モノマー;ブタジエン、イソプレン等のジエン系モノマー;クロロプレン等の塩素化ジエン系モノマー;ジビニルベンゼン、エチレングリコールジアクリレート、エチレングリコールメタクリレート等の分子内に2個以上の重合性二重結合を有する多官能性モノマー等が挙げられる。これらのコモノマーは1種を単独で使用しても2種以上を併用してもよい。このようなコモノマーのうち、塩化ビニル(VC)、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ラウリルが好ましく、塩化ビニル(VC)がより好ましい。
 前記PVDC樹脂の還元粘度(η)(単位、L/g)としては、溶融加工性、延伸加工性、包装機械適正、耐寒性の観点から、0.030~0.070が好ましく、0.033~0.065がより好ましく、0.035~0.060L/gが特に好ましい。PVDC樹脂の還元粘度が前記下限未満になると、延伸加工性が低下したり、フィルムの強度やカット性が低下する傾向にあり、他方、前記上限を超えると、溶融加工性が低下したり、着色したりする傾向にある。なお、本発明に用いられるPVDC樹脂においては、還元粘度の異なるPVDC樹脂を2種以上混合して還元粘度を前記範囲に調整してもよい。
 このようなPVDC樹脂は、懸濁重合、乳化重合、溶液重合等の公知の方法により合成することができるが、粉砕処理を施さずに、平均粒径が40~600μmの粉体樹脂が得られるという観点から、懸濁重合が好ましい。
 また、本発明においては、前記PVDC樹脂を単独で使用してもよいし、前記PVDC樹脂に、可塑剤、熱安定剤、抗酸化剤、滑剤、分散助剤、充填剤、紫外線吸収剤、界面活性剤、pH調整剤等の各種添加剤を添加してPVDC樹脂組成物として使用してもよい。前記添加剤を含有するPVDC樹脂組成物は、PVDC樹脂の合成前、合成中、合成後の少なくともいずれかの時点において、重合反応系に前記添加剤を添加することによって調製することができる。
 可塑剤としては、ジオクチルフタレート、アセチルトリブチルサイトレート、ジブチルセバケート、ジオクチルセバケート、アセチル化モノグリセライド、アセチル化ジグリセライド、アセチル化トリグリセライド、アジピン酸と1、3-ブタンジオールとの重縮合物、アジピン酸と1、4-ブタンジオールとの重縮合物等が挙げられる。これらの可塑剤は1種を単独で使用しても2種以上を併用してもよい。可塑剤の添加量としては、PVDC樹脂100質量部に対して0.05~10質量部が好ましく、0.1~5質量部がより好ましく、0.5~3質量部が特に好ましい。
 熱安定剤としては、エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油、エポキシ化動物油、エポキシ化ステアリン酸オクチル等のエポキシ化脂肪酸エステル、ビスフェノールAグリシジルエーテル等のエポキシ化樹脂プレポリマー等のエポキシ化合物;グリシジル基含有アクリル樹脂、グリシジル基含有メタクリル樹脂等のエポキシ基含有樹脂が挙げられる。これらの熱安定剤は1種を単独で使用しても2種以上を併用してもよい。熱安定剤の添加量としては、PVDC樹脂100質量部に対して0.1~5質量部が好ましく、0.5~4質量部がより好ましく、1~3質量部が特に好ましい。
 抗酸化剤、滑剤、分散助剤、充填剤、紫外線吸収剤、界面活性剤、pH調整剤としては、例えば、特開2011-94035号公報に記載のものが挙げられる。
 また、本発明においては、前記PVDC樹脂にその他の樹脂を混合してもよい。前記その他の樹脂の混合量としては、前記PVDC樹脂100質量部に対して30質量部以下が好ましく、PVDC樹脂との相溶性の観点から、20質量部以下がより好ましく、10質量部以下が特に好ましい。また、前記PVDC樹脂と前記その他の樹脂との混合樹脂中の、塩化ビニリデン成分の含有量としては、ガスバリア性及び水蒸気バリア性、耐熱性の観点から、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が特に好ましい。
 前記その他の樹脂としては、エチレン-酢酸ビニル共重合体、エチレン-塩化ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸エステル共重合体(好ましくは、エチレン-アクリル酸アルキルエステル共重合体(アルキル基の炭素数1~18))、エチレン-メタクリル酸エステル共重合体(好ましくは、エチレン-メタクリル酸アルキルエステル共重合体(アルキル基の炭素数1~18))、エチレン-アクリル酸グリシジル共重合体、エチレン-メタクリル酸グリシジル共重合体、アクリル酸エステル(好ましくは、アクリル酸アルキルエステル(アルキル基の炭素数1~18))の単独重合体及び共重合体(例えば、アクリル酸メチル-アクリル酸ブチル共重合体)、メタクリル酸エステル(好ましくは、メタクリル酸アルキルエステル(アルキル基の炭素数1~18))の単独重合体及び共重合体(例えば、メタアクリル酸メチル-メタアクリル酸ブチル共重合体)、エチレン系アイオノマー、メタクリル酸メチル-ブタジエン-スチレン共重合体、ポリアミド等が挙げられる。これらのその他の樹脂は1種を単独で使用しても2種以上を併用してもよい。
 本発明のラップフィルムは、前記PVDC樹脂又は前記PVDC樹脂組成物を、例えば、押出機を用いて溶融押出してフィルム状に成形し、冷却した後、延伸(好ましくは二軸延伸)し、さらに緩和処理を施すことによって製造することができ、特に、サーキュラーダイによるインフレーション二軸延伸法により製造することが好ましい。このとき、得られるラップフィルムの複屈折度Δnが下記式(1a):
0.0003≦Δn≦0.0013   (1a)
で表される条件を満たし、面配向度ΔPが下記式(2a):
-0.0120≦ΔP≦-0.0102   (2a)
で表される条件を満たすように、溶融押出したフィルムの冷却温度、延伸温度、延伸倍率、緩和温度、緩和率を調整する。前記複屈折度Δnが0.0003未満、或いは前記面向度ΔPが-0.0120未満になると、インフレーション二軸延伸時の破裂が起きやすくなり、安定製膜が困難となる。また、前記複屈折度Δnが0.0013超過、或いは前記面配向度ΔPが-0.0102超過になると、ラップフィルムが伸びやすくなり、ラップフィルムを弱い力で容易にカットすることが困難となる。こうした観点から、前記複屈折度Δnは下記式(1b):
0.0005≦Δn≦0.0013   (1b)
で表される条件を満たすことが好ましく、また、面配向度ΔPが下記式(2b):
-0.0115≦ΔP≦-0.0102   (2b)
で表される条件を満たすことが好ましい。
 なお、前記複屈折度Δnは、下記式(1):
Δn=n-n=Re/d   (1)
(式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、Reはフィルムの面内レタデーション(単位:nm)を表し、dはフィルムの厚み(単位:nm)を表す)
により求められるものであり、面配向度ΔPは、下記式(2):
ΔP=(n+n)/2-n   (2)
(式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、nはフィルムの厚さ方向の屈折率を表す)
により求められるものである。
 前記複屈折度Δnは、縦方向(MD)の延伸倍率(分子配向度)が大きくなるにつれて、或いは、縦方向(MD)の緩和率が小さくなるにつれて、小さくなる傾向にあり、また、前記面配向度ΔPは、延伸倍率が大きくなるにつれて、或いは、緩和率が小さくなるにつれて、小さくなる傾向にあるため、これらの傾向に基づいて、延伸倍率及び緩和率を制御することによって、複屈折度Δn及び面配向度ΔPを前記範囲に調整することができる。
 溶融押出後のフィルムの冷却温度については一概には決定できないが、例えば、20℃以下が好ましく、15℃以下がより好ましい。冷却温度が前記上限を超えると、樹脂の結晶化が進行するため延伸性が悪化する傾向にあり、また、ラップフィルムが白化し、透明性が損なわれる傾向にある。なお、前記冷却温度の下限としては特に制限はないが、経済性(具体的には、冷却能力)の観点から、3℃以上が好ましく、5℃以上がより好ましい。
 延伸温度についても一概には決定できないが、例えば、15℃以上が好ましく、20℃以上がより好ましい。延伸温度が前記下限未満になると、延伸性が悪化し、インフレーションバブルが破裂しやすい傾向にある。なお、前記延伸温度の上限としては特に制限はないが、作業性や経済性(設備の大型化)の観点から、50℃以下が好ましく、45℃以下がより好ましい。
 延伸倍率についても一概には決定できないが、例えば、縦方向(MD)の延伸倍率としては、3.6~5.0倍が好ましく、3.8~4.6倍がより好ましい。縦方向(MD)の延伸倍率が前記下限未満になると、インフレーションバブルが弛み、連続製膜が困難となる傾向にあり、他方、前記上限を超えると、エアバックが生じ、バブル形状が不安定となり、幅ムラや厚みムラを起こす傾向にある。また、横方向(TD)の延伸倍率としては、4.0~5.5倍が好ましく、4.5~5.1倍がより好ましい。横方向(TD)の延伸倍率が前記下限未満になると、バブル形状が不安定となり、幅ムラや厚みムラを起こす傾向にあり、他方、前記上限を超えると、破裂しやすくなる傾向にある。
 緩和温度についても一概には決定できないが、例えば、20~100℃が好ましく、25~85℃がより好ましい。緩和温度が前記下限未満になると、十分な緩和率がとれず、巻締まりが発生し、巻芯部の変形等の問題が発生する傾向にあり、他方、前記上限を超えると、フィルムの透明性が損なわれる傾向にある。
 緩和率についても一概には決定できないが、例えば、縦方向(MD)の緩和率としては、4.5~12.0%が好ましく、5.0~11.0%がより好ましい。縦方向(MD)の緩和率が前記下限未満になると、緩和が不十分であり、ラップフィルム巻回体を作成した際、経時で巻締まりが起きる傾向にあり、他方、前記上限を超えると、フィルムが弛み、巻き取り時にシワが発生しやすい傾向にある。また、横方向(TD)の緩和率としては、2.5~6.5%が好ましく、3.0~6.1%がより好ましい。横方向(TD)の緩和率が前記下限未満になると、ラップフィルム巻回体にした後、フィルム幅の変化等が生じる傾向にあり、他方、前記上限を超えると、巻取り時にシワが発生しやすい傾向にある。
 このようにして得られたラップフィルムの厚みとしては5~15μmが好ましい。ラップフィルムの厚みが前記下限未満になると、十分な強度が得られず、使用時に破れやすい傾向にあり、他方、前記上限を超えると、カットする際、大きな力が必要となる傾向にあり、また、剛性が上がり、実用上の密着性が悪化する傾向にある。
 また、本発明のラップフィルムにおいては、フィルム面内の遅相軸方向がラップフィルムの縦方向(MD)であることが好ましい。さらに、本発明のラップフィルムは、インフレーション二軸延伸の縦方向(MD)が巻方向である巻回体として得ることが好ましい。これらにより、ラップフィルムの長手方向とインフレーション二軸延伸の縦方向(MD)が一致するため、弱い力で容易にカットすることが可能となる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、ポリ塩化ビニリデン系樹脂の還元粘度、ラップフィルムの複屈折度及び面配向度は以下の方法により測定した。
 (1)還元粘度
 ポリ塩化ビニリデン系樹脂1gを50mlのテトラヒドロフランに添加し、40℃に加熱して溶解した。この溶液をメタノールにを加え、ポリ塩化ビニリデン系樹脂を析出させ、ろ過により回収した後、乾燥した。乾燥後のポリ塩化ビニリデン系樹脂80mgを秤量し、溶媒として30℃のシクロヘキサノン20mlを添加し、70℃で60分間加熱して溶解した。その後、室温で冷却し、ろ過して試料溶液を得た。
 この試料溶液5mlをウベローデ粘度計に注入し、30℃の恒温槽中に5分間静置した後、常法により試料溶液の流下秒数を測定し、次式:
η=(1/4)×{(t/t)-1}
(式中、tは30℃のシクロヘキサノン(溶媒)の流下秒数(単位:秒)を表し、tは30℃の試料溶液の流下秒数(単位:秒)を表す)
により還元粘度(η)を求めた。
 (2)複屈折度
 ラップフィルムを位相差測定装置(王子計測機器(株)製「KOBRA-WR」)に、フィルムの縦方向(MD)が測定装置の0°方向となるように装着し、波長589nmにおけるラップフィルムの面内レタデーションReを測定し、下記式(1):
Δn=n-n=Re/d   (1)
(式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、Reはフィルムの面内レタデーション(単位:nm)を表し、dはフィルムの厚み(単位:nm)を表す)
によりラップフィルムの複屈折度Δnを求めた。この測定を無作為に抽出した5カ所の測定点について行い、その平均値を求めた。なお、この平均値は、小数点以下5桁目を四捨五入して小数点以下4桁の値として求めた。また、配向角表示範囲を-90度から90度とした。それにより、配向角が-45度から45度の範囲であれば、ポリ塩化ビニリデンは負の固有複屈折を持つため、ラップフィルムの遅相軸方向が縦方向(MD)であることを意味する。すなわち、ラップフィルムの横方向(TD)の配向が縦方向(MD)よりも強いことを意味し、また、Δnが小さくなるにつれて縦方向(MD)の配向が強くなっていることを意味する。
 (3)面配向度
 ラップフィルムを位相差測定装置(王子計測機器(株)製「KOBRA-WR」)に、フィルムの縦方向(MD)が測定装置の0°方向となるように装着し、傾斜中心軸を進相軸として入射角が40°となるようにフィルムを傾斜させ、波長589nmにおけるラップフィルムの面内の遅相軸方向の屈折率n、面内の前記遅相軸方向に垂直な方向の屈折率n、厚さ方向の屈折率nを、平均屈折率Nave=1.609として、低位相差モードで測定し、下記式(2):
ΔP=(n+n)/2-n   (2)
によりラップフィルムの面配向度ΔPを求めた。この測定を無作為に抽出した5カ所の測定点について行い、その平均値を求めた。なお、この平均値は、小数点以下5桁目を四捨五入して小数点以下4桁の値として求めた。
 (調製例1)
 塩化ビニリデン(VD)と塩化ビニル(VC)とを、VD:VC=82:18(質量比)で混合し、懸濁重合法により、塩化ビニリデン-塩化ビニル共重合体(PVDC樹脂、還元粘度(η):0.044L/g)を合成した。このPVDC樹脂100質量部に、添加剤として、アセチルトリブチルサイトレート(ATBC)、ジアセチル化モノグリセライド(DALG)、エポキシ化大豆油及び流動パラフィンを合計8.4質量部となるように添加して混合し、PVDC樹脂組成物を調製した。
 (実施例1)
 図1に示す製造装置を用いてラップフィルムを作製した。すなわち、調製例1で得られたPVDC樹脂組成物を、直径75cmの単軸押出機1を用いて175℃で環状ダイから溶融押出した後、得られた管状パリソンを10℃の冷却バス(1浴)2で急冷し、次いで、40℃の温水バス(2浴)3中を通過させた。その後、回転速度の異なるピンチローラ4と5の間で管状パリソン内に空気を圧入して膨張させ、延伸温度25℃、縦方向(MD)4.2倍、横方向(TD)5.1倍の延伸倍率でインフレーション二軸延伸を行い、さらに、回転速度の異なるピンチローラ5と6の間で、緩和温度25℃、縦方向(MD)10.1%、横方向(TD)4.0%の緩和率で緩和処理を行なった後、巻取りローラ7で巻き取った後、スリットと巻き返しを行い、20m巻のラップフィルム巻回体(幅30cm)を得た。なお、前記延伸温度とは、2浴から取り出した管状パリソンが二軸延伸時に曝される雰囲気の温度(すなわち、ピンチローラ4と5の間の領域の環境温度)であり、前記緩和温度とは、二軸延伸後のフィルムが緩和処理時に曝される雰囲気の温度(すなわち、ピンチローラ5と6の間の領域の環境温度)である。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例2)
 延伸温度25℃、縦方向(MD)4.4倍、横方向(TD)5.0倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)10.1%、横方向(TD)4.8%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例3)
 延伸温度25℃、縦方向(MD)4.6倍、横方向(TD)4.7倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)5.0%、横方向(TD)5.1%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例4)
 冷却バス(1浴)の温度を11℃に、温水バス(2浴)の温度を45℃に変更し、延伸温度25℃、縦方向(MD)4.0倍、横方向(TD)5.1倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)5.0%、横方向(TD)5.3%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例5)
 延伸温度25℃、縦方向(MD)4.5倍、横方向(TD)4.8倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)5.0%、横方向(TD)4.0%の緩和率で緩和処理を行なった以外は実施例4と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例6)
 温水バス(2浴)の温度を30℃に変更し、延伸温度30℃、縦方向(MD)4.2倍、横方向(TD)4.6倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度40℃、縦方向(MD)10.8%、横方向(TD)4.2%の緩和率で緩和処理を行なった以外は実施例4と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例7)
 延伸温度30℃、縦方向(MD)4.1倍、横方向(TD)4.8倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度40℃、縦方向(MD)10.7%、横方向(TD)6.1%の緩和率で緩和処理を行なった以外は実施例6と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (実施例8)
 延伸温度30℃、縦方向(MD)4.3倍、横方向(TD)4.5倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度40℃、縦方向(MD)10.7%、横方向(TD)4.3%の緩和率で緩和処理を行なった以外は実施例6と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例1)
 延伸温度25℃、縦方向(MD)3.2倍、横方向(TD)5.4倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)10.1%、横方向(TD)4.9%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例2)
 延伸温度25℃、縦方向(MD)3.4倍、横方向(TD)3.3倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)10.1%、横方向(TD)3.5%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例3)
 延伸温度25℃、縦方向(MD)3.4倍、横方向(TD)4.4倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)10.1%、横方向(TD)3.5%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例4)
 冷却バス(1浴)の温度を12℃に、温水バス(2浴)の温度を30℃に変更し、延伸温度25℃、縦方向(MD)4.0倍、横方向(TD)5.1倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)10.1%、横方向(TD)3.9%の緩和率で緩和処理を行なった以外は実施例1と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例5)
 延伸温度25℃、縦方向(MD)3.5倍、横方向(TD)5.3倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)5.0%、横方向(TD)5.2%の緩和率で緩和処理を行なった以外は実施例4と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例6)
 延伸温度25℃、縦方向(MD)4.0倍、横方向(TD)4.7倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度25℃、縦方向(MD)5.0%、横方向(TD)5.8%の緩和率で緩和処理を行なった以外は実施例4と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例7)
 延伸温度30℃、縦方向(MD)4.0倍、横方向(TD)4.7倍の延伸倍率でインフレーション二軸延伸を行ない、緩和温度40℃、縦方向(MD)10.8%、横方向(TD)4.2%の緩和率で緩和処理を行った以外は実施例6と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 (比較例8)
 延伸温度30℃、縦方向(MD)4.0倍、横方向(TD)4.7倍の延伸倍率でインフレーション二軸延伸を行い、緩和温度40℃、縦方向(MD)10.7%、横方向(TD)4.6%の緩和率で緩和処理を行なった以外は実施例6と同様にしてラップフィルム巻回体を作製した。得られたラップフィルムについて、厚みを測定し、複屈折度Δn(平均値)及び面配向度ΔP(平均値)を求めた。その結果を表1に示す。また、得られたラップフィルムの配向角は-45度から45度の範囲であった。このことから、得られたラップフィルムの遅相軸方向が縦方向(MD)であり、横方向(TD)の配向が縦方向(MD)よりも強いことがわかった。
 <カット性(官能試験)>
 実施例及び比較例で得られたラップフィルム巻回体を樹脂製のノコ刃が装着された市販の新品のNEWクレラップ(登録商標)用カートン(30cm幅用)に装填した。カートンからラップフィルムを約30cm引き出し、カートンの蓋を確実に閉め、親指が所定の位置にくるようにカートンを持ち、カートンを内側に回転させてラップフィルムを中央部から横方向(TD)外側に向かって切断した。このラップフィルムの切断を10人のモニターを対象に実施し、下記基準で判定した。その結果を表1に示す。
A:弱い力でカットしやすいもの。
B:弱い力でカットできるが、カットしにくいもの。
C:弱い力でカットできず、比較的強い力が必要なもの。
 <カット性(カット試験)>
 実施例及び比較例で得られたラップフィルムを横方向(TD)に40mm、縦方向(MD)に140mmに裁断して試験用ラップフィルムを作製した。樹脂製のノコ刃が装着された市販の新品のNEWクレラップ(登録商標)用カートン(30cm幅用)の内部に試験用ラップフィルムの縦方向(MD)の一端をテープで固定し、専用の冶具に装着した。その際、カートンからはみ出している試験用ラップフィルムの中央部がカートンのノコ刃のV字部先端に接触するように固定した。次に、試験用ラップフィルムの縦方向(MD)の他端をテンシロン万能材料試験機((株)オリエンテック製「RTC-210A」)のチャック部分で挟持し、ノコ刃と試験用ラップフィルムとの角度が80°となるように治具の角度を調整した。その後、試験用ラップフィルムを上方へ引張速度1000mm/分で引っ張り、ラップフィルムがカットされた時の強さ(ピーク値(単位:N))を測定し、実施例1で得られたラップフィルムのカット力を各実施例で得られたラップフィルムのカット力で除して、実施例1で得られたラップフィルムのカット力を基準とする相対点数を求めた。その結果を表1に示す。なお、相対点数が1.00以上のラップフィルムは、実施例1で得られたラップフィルムと同等以下の弱い力で容易にカットできるラップフィルムであることを意味し、他方、相対点数が1.00未満のラップフィルムは、実施例1で得られたラップフィルムに比べて強い力を必要とするカットしにくいラップフィルムであることを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に示した、実施例7と比較例4の面配向度ΔPと複屈折度Δnを比較すると、ΔPは同等であるが、Δnは実施例7の方が小さいため、縦方向(MD)の分子配向が大きいことを示唆している。本発明のラップフィルムのカット性は、ノコ刃に対して垂直方向にフィルムを引っ張った時の破断し易さを評価していることから、引張方向(ラップフィルムの長手方向)とインフレーション二軸延伸の縦方向(MD)を一致させた場合に、縦方向(MD)の分子配向が大きい実施例7の方が破断し易くなったと考えられる。一方、比較例6のΔnは実施例7よりも小さいが、ΔPが大きいため、破断し難かったと考えられる。
 表1に示した結果に基づいて、複屈折度Δnに対して面配向度ΔPをプロットした。その結果を図2に示す。
 表1及び図2に示した結果から明らかなように、複屈折度Δnが下記式(1a):
0.0003≦Δn≦0.0013   (1a)
で表される条件を満たし、面配向度ΔPが下記式(2a):
-0.0120≦ΔP≦-0.0102   (2a)
で表される条件を満たすラップフィルム(実施例1~8、図2の点線枠内)は、弱い力で容易にカットできるものであり、実施例2~8で得られたラップフィルムは実施例1で得られたラップフィルムに対する相対点数が1.00以上であった。
 一方、複屈折度Δnが前記式(1a)で表される条件を満たさないラップフィルム(比較例1、4~5)並びに面配向度ΔPが前記式(2a)で表される条件を満たさないラップフィルム(比較例1~3、5~8)は、弱い力ではカットしにくいもの或いはカットできないものであり、実施例1で得られたラップフィルムに対する相対点数が1.00未満であった。特に、面配向度ΔPが-0.0093以上のラップフィルム(比較例1~3)は、弱い力ではカットできず、強い力が必要なものであり、実施例1で得られたラップフィルムに対する相対点数が0.68以下であった。
 以上説明したように、本発明によれば、弱い力で容易にカットすることが可能なPVDC樹脂製ラップフィルムを得ることが可能となる。
 したがって、本発明のラップフィルムは、縦方向に裂けにくく、また、カートンのノコ刃の劣化を抑制することができるため、家庭用ラップフィルム等の各種包装用ラップフィルムとして有用である。
 1:押出機
 2:冷却バス
 3:温水バス
 4~6:ピンチローラ
 7:巻取りローラ

Claims (6)

  1.  ポリ塩化ビニリデン系樹脂を含有するラップフィルムであって、
     下記式(1):
    Δn=n-n=Re/d   (1)
    (式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、Reはフィルムの面内レタデーション(単位:nm)を表し、dはフィルムの厚み(単位:nm)を表す)
    により求められる複屈折度Δnが下記式(1a):
    0.0003≦Δn≦0.0013   (1a)
    で表される条件を満たし、
     下記式(2):
    ΔP=(n+n)/2-n   (2)
    (式中、nはフィルム面内の遅相軸方向の屈折率を表し、nはフィルム面内の前記遅相軸方向に垂直な方向の屈折率を表し、nはフィルムの厚さ方向の屈折率を表す)
    により求められる面配向度ΔPが下記式(2a):
    -0.0120≦ΔP≦-0.0102   (2a)
    で表される条件を満たす、ラップフィルム。
  2.  厚みが5~15μmである、請求項1に記載のラップフィルム。
  3.  前記ポリ塩化ビニリデン系樹脂が塩化ビニリデンと該塩化ビニリデンと共重合可能なコモノマーとの共重合体である、請求項1又は2に記載のラップフィルム。
  4.  前記コモノマーが塩化ビニルである、請求項3に記載のラップフィルム。
  5.  フィルム面内の遅相軸方向がラップフィルムの縦方向(MD)である、請求項1~4のうちのいずれか一項に記載のラップフィルム。
  6.  請求項5に記載のラップフィルムからなる巻回体であって、該ラップフィルムの縦方向(MD)が巻方向であり、ノコ刃が装着されたカートンに装填されているラップフィルム巻回体。
PCT/JP2016/061657 2015-05-27 2016-04-11 ラップフィルム WO2016189987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017520288A JP6538162B2 (ja) 2015-05-27 2016-04-11 ラップフィルム
CN201680026073.5A CN107531378B (zh) 2015-05-27 2016-04-11 缠绕膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015107745 2015-05-27
JP2015-107745 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016189987A1 true WO2016189987A1 (ja) 2016-12-01

Family

ID=57394160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061657 WO2016189987A1 (ja) 2015-05-27 2016-04-11 ラップフィルム

Country Status (4)

Country Link
JP (1) JP6538162B2 (ja)
CN (1) CN107531378B (ja)
TW (1) TWI585111B (ja)
WO (1) WO2016189987A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152747A (ja) * 2019-03-18 2020-09-24 株式会社クレハ 樹脂フィルムおよびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174636A (ja) * 2018-03-28 2019-10-10 コニカミノルタ株式会社 斜め延伸フィルム、偏光板、異形表示装置および斜め延伸フィルムの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227046A (ja) * 1985-04-01 1986-10-09 東レ株式会社 超防湿フイルム
JP2014172312A (ja) * 2013-03-11 2014-09-22 Asahi Kasei Chemicals Corp 塩化ビニリデン系樹脂ラップフィルム及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943230B2 (en) * 2004-04-30 2011-05-17 Toyo Boseki Kabushiki Kaisha Easy tear biaxially stretched polyester based film
KR20080036958A (ko) * 2005-08-11 2008-04-29 니폰 가야꾸 가부시끼가이샤 셀룰로오스 유도체로부터 얻어지는 위상차 필름
JP5241859B2 (ja) * 2008-12-16 2013-07-17 帝人化成株式会社 光学フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227046A (ja) * 1985-04-01 1986-10-09 東レ株式会社 超防湿フイルム
JP2014172312A (ja) * 2013-03-11 2014-09-22 Asahi Kasei Chemicals Corp 塩化ビニリデン系樹脂ラップフィルム及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152747A (ja) * 2019-03-18 2020-09-24 株式会社クレハ 樹脂フィルムおよびその製造方法
WO2020189180A1 (ja) * 2019-03-18 2020-09-24 株式会社クレハ 樹脂フィルムおよびその製造方法
JP7105713B2 (ja) 2019-03-18 2022-07-25 株式会社クレハ 樹脂フィルムおよびその製造方法

Also Published As

Publication number Publication date
TW201641525A (zh) 2016-12-01
CN107531378B (zh) 2019-11-05
TWI585111B (zh) 2017-06-01
JP6538162B2 (ja) 2019-07-03
JPWO2016189987A1 (ja) 2018-01-11
CN107531378A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP7173794B2 (ja) ラップフィルム及びラップフィルム巻回体
JP5501791B2 (ja) ポリ塩化ビニリデン系樹脂ラップフィルム及びラップフィルム巻回体
WO2016189987A1 (ja) ラップフィルム
JP4634701B2 (ja) 塩化ビニリデン系樹脂フィルム、食肉練製品用ケーシング及び包装食肉練製品
JP6739202B2 (ja) 塩化ビニリデン系樹脂フィルムの製造方法および該製造方法に用いるパイル液の再生方法
JP3931994B2 (ja) 塩化ビニリデン共重合体含有樹脂組成物、そのフィルム、その押出加工方法、及びそのフィルムの製造方法
WO2016006306A1 (ja) ラップフィルム、ラップフィルム巻体及びラップフィルム巻体の製造方法
JP3999880B2 (ja) 塩化ビニリデン共重合体樹脂組成物、そのフィルム、その押出加工方法
JP4822912B2 (ja) 塩化ビニリデン系共重合体フィルム及びその製造方法
JP6534736B2 (ja) 塩化ビニリデン系樹脂延伸フィルム
US4144299A (en) Process for producing acrylonitrile polymer film
CA2456312A1 (en) Oriented high density polyethylene film, compositions and process suitable for preparation thereof
JP2004059845A (ja) 生分解性インフレーションフィルム及びその製造方法
WO2020189180A1 (ja) 樹脂フィルムおよびその製造方法
JP2017193617A (ja) ポリアミドフィルム
JP7170788B2 (ja) ラップフィルム及びラップフィルム巻回体
JP6778544B2 (ja) 開封片用フィルム、開封片、包装体用母材フィルム、開封片を備えた包装体及び開封片用フィルムの製造方法
JP2022191174A (ja) 塩化ビニリデン系樹脂フィルム及びその製造方法
JPS6142620B2 (ja)
JP2007253530A (ja) ラップフィルムの製造方法
JPH0441902B2 (ja)
JP2017171741A (ja) 滑り性と安定生産性の優れたポリアミドフィルム
KR19990007022A (ko) 염화비닐리덴 공중합체 수지조성물, 그 필름 및 그 압출가공방법
JP2017171740A (ja) 滑り性の優れたポリアミドフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799695

Country of ref document: EP

Kind code of ref document: A1