WO2016165530A2 - 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2016165530A2
WO2016165530A2 PCT/CN2016/076884 CN2016076884W WO2016165530A2 WO 2016165530 A2 WO2016165530 A2 WO 2016165530A2 CN 2016076884 W CN2016076884 W CN 2016076884W WO 2016165530 A2 WO2016165530 A2 WO 2016165530A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
fiber composition
weight percentage
high performance
content
Prior art date
Application number
PCT/CN2016/076884
Other languages
English (en)
French (fr)
Other versions
WO2016165530A3 (zh
Inventor
章林
曹国荣
张毓强
邢文忠
顾桂江
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56332045&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016165530(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MX2018001033A priority Critical patent/MX2018001033A/es
Priority to SI201631356T priority patent/SI3406576T1/sl
Priority to EP16779505.3A priority patent/EP3406576B1/en
Priority to CA2989206A priority patent/CA2989206C/en
Priority to PL16779505T priority patent/PL3406576T3/pl
Priority to KR1020177036424A priority patent/KR102001761B1/ko
Priority to JP2017564688A priority patent/JP6487577B2/ja
Priority to ES16779505T priority patent/ES2899985T3/es
Priority to HRP20211579TT priority patent/HRP20211579T1/hr
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to EP21182112.9A priority patent/EP3909926A1/en
Priority to BR112017027193-1A priority patent/BR112017027193B1/pt
Priority to RU2018117560A priority patent/RU2712988C2/ru
Priority to US15/739,081 priority patent/US10377662B2/en
Priority to DK16779505.3T priority patent/DK3406576T3/da
Priority to MA42575A priority patent/MA42575B1/fr
Priority to AU2016248267A priority patent/AU2016248267B2/en
Publication of WO2016165530A2 publication Critical patent/WO2016165530A2/zh
Publication of WO2016165530A3 publication Critical patent/WO2016165530A3/zh
Priority to ZA2018/03244A priority patent/ZA201803244B/en
Priority to SA518391605A priority patent/SA518391605B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Definitions

  • the present invention relates to a high performance glass fiber composition, and more particularly to a high performance glass fiber composition capable of reinforcing a substrate as an advanced composite material, and glass fibers and composite materials thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high-performance glass fiber was originally used in the defense, military and other fields of defense, military and other fields. With the advancement of technology and economic development, high-performance glass fiber has been widely used in civil industry such as wind blades, high-pressure vessels, marine pipelines, and automobile manufacturing.
  • the earliest high-performance glass components are mainly MgO-Al 2 O 3 -SiO 2 system.
  • the typical scheme is S-2 glass developed by American OC Company.
  • the modulus is 89-90GPa, but its production is too difficult.
  • the fiber molding temperature is as high as 1571 ° C, and the liquidus temperature is as high as 1470 ° C. It is difficult to achieve large-scale pool kiln production. Therefore, OC Company voluntarily gave up the production of S-2 fiberglass and transferred its patent rights to AGY Company of the United States.
  • OC also developed HiPer-tex glass with a modulus of 87-89 GPa, which is a compromise strategy at the expense of some glass properties to reduce production difficulty, but since the design is only a simple improvement of S-2 glass, The glass fiber forming temperature and liquidus temperature are still high, and the production difficulty is still very large, and it is difficult to realize large-scale pool kiln production. Therefore, OC also abandoned the production of HiPer-tex fiberglass and transferred its patent to European 3B.
  • France Saint-Gobain has developed an R glass based on the MgO-CaO-Al 2 O 3 -SiO 2 system with a modulus of 86-89 GPa.
  • the traditional R glass has a high total content of silicon and aluminum, and lacks an effective solution to improve the crystallization performance of the glass.
  • the ratio of calcium to magnesium is also unreasonable, resulting in difficulty in forming glass and high risk of crystallization, and the surface tension of the glass is large and difficult to clarify.
  • High, its glass fiber molding temperature reaches 1410 ° C, and the liquidus temperature reaches 1350 ° C, which all cause difficulties in the efficient drawing of glass fiber, and it is also difficult to achieve large-scale pool kiln production.
  • Nanjing Glass Fiber Research and Design Institute has developed a kind of HS2 glass with a modulus of 84-87GPa. Its main components also include SiO 2 , Al 2 O 3 and MgO, and also introduce some Li 2 O and B 2 O 3 .
  • the present invention is directed to solving the problems described above.
  • the object of the present invention is to provide a high performance glass fiber composition, which can greatly improve the elastic modulus and chemical stability of the glass, and on the basis of the above, overcomes the high risk of crystallization of conventional high performance glass and is difficult to clarify. It is difficult to carry out the problem of high-efficiency pool kiln production, which can significantly reduce the liquidus temperature and molding temperature of high-performance glass, and greatly reduce the crystallization rate of glass under the same conditions, and is particularly suitable for use in pool kiln production with excellent chemical stability.
  • High performance fiberglass is difficult to carry out the problem of high-efficiency pool kiln production, which can significantly reduce the liquidus temperature and molding temperature of high-performance glass, and greatly reduce the crystallization rate of glass under the same conditions, and is particularly suitable for use in pool kiln production with excellent chemical stability.
  • a high performance glass fiber composition comprising the following components, the content of each component being expressed in weight percent as follows:
  • the content of Li 2 O is further limited to be 0.05 to 0.85% by weight.
  • the content of Li 2 O is further limited to be 0.05% by weight or more and 0.55% by weight or less.
  • the content of Li 2 O is further limited to be 0.1% to 0.5% by weight.
  • the content of SiO 2 +Al 2 O 3 is further limited to be less than 80.4% by weight.
  • the content of RE 2 O 3 Y 2 O 3 +La 2 O 3 +Gd 2 O 3 is further limited, and is 0.5-6% by weight.
  • the content of Na 2 O+K 2 O is further limited, and is represented by less than 0.7% by weight.
  • the content of TiO 2 is further limited to be expressed by weight percentage of 0.75% or less.
  • the content of Al 2 O 3 is further limited, expressed by weight percentages of more than 19% and less than or equal to 19.4%.
  • the content of Al 2 O 3 is further limited to be greater than 19.4% and less than or equal to 23% by weight.
  • the content of SrO is further limited, and is 0.1 to 2% by weight.
  • the content of Gd 2 O 3 is further limited, and is 0.05 to 1% by weight.
  • the content of CaO is further limited, and is represented by 5-10% by weight.
  • the content of MgO is further limited, and is 8.1 to 12% by weight.
  • the content of La 2 O 3 is further limited, and is 0.1 to 2% by weight.
  • the high performance glass fiber composition further contains F 2 in an amount of from 0 to 1.2% by weight.
  • the high performance glass fiber composition further contains B 2 O 3 in an amount of 0 to 2% by weight.
  • the high performance glass fiber composition further contains CeO 2 in an amount of 0-1% by weight.
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the main innovation is the introduction of rare earth oxides Y 2 O 3 , La 2 O 3 and Gd 2 O 3 based on the introduction of high content of alumina and low alkali metal oxides.
  • rare earth oxides Y 2 O 3 , La 2 O 3 and Gd 2 O 3 based on the introduction of high content of alumina and low alkali metal oxides.
  • One or more of them using the synergistic effect between rare earth oxides, alkali metal oxides and alumina, and controlling the ratio of RE 2 O 3 /R 2 O and Al 2 O 3 /MgO, rationally arranging Al 2 a content range of O 3 , R 2 O, Li 2 O, Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , CaO, and CaO+MgO+SrO, and a mixed alkaline earth effect using CaO, MgO, and SrO, It is also possible to selectively introduce an appropriate amount of F 2 , B 2 O 3 , CeO 2
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components.
  • the weight percentage of SiO 2 is limited to range from 53 to 64%.
  • the weight percentage of SiO 2 can be defined to range from 54 to 62%.
  • Al 2 O 3 is also an oxide forming a glass skeleton. When combined with SiO 2 , it can play a substantial role in the mechanical properties of the glass and plays an important role in water and acid corrosion resistance. In order for the glass to obtain sufficiently high mechanical properties and resistance to water and acid corrosion, it is desirable that the Al 2 O 3 content is higher, but the Al 2 O 3 content is too high, so that the glass viscosity is too high, resulting in difficulty in clarification, and the glass is prone to crystallization. Even split. In one embodiment, the inventors have unexpectedly discovered that when the weight percentage of Al 2 O 3 is controlled to be greater than 19% and less than 25%, the content of Li 2 O+Na 2 O+K 2 O is less than or equal to 1% by weight.
  • the weight percentage of Al 2 O 3 is defined to be in the range of more than 19% and less than 25%.
  • the weight percentage of Al 2 O 3 may be defined to be in the range of more than 19% and less than or equal to 23%.
  • the weight percentage of Al 2 O 3 may be defined to be greater than 19% and less than or equal to 19.4%; in another embodiment, the weight percentage of Al 2 O 3 may be defined to be greater than 19.4% and less than or equal to 23%.
  • the weight percentage of SiO 2 +Al 2 O 3 may be limited to be less than 82%.
  • the weight percentage of SiO 2 +Al 2 O 3 may be limited to less than 80.4%.
  • Al 2 O 3 generally has two structural forms of tetracoordinate [AlO 4 ] and hexacoordinate [AlO 6 ].
  • the inventors have found that one or more of the rare earth oxides Y 2 O 3 , La 2 O 3 and Gd 2 O 3 are introduced on the basis of introducing a high content of alumina and a low content of alkali metal oxide, and the rare earth is oxidized.
  • the strong alkali property of the material provides considerable non-bridge oxygen characteristics, which can significantly increase the number of aluminum-oxygen coordination in the structure, and promote the entry of Al 3+ into the glass network, which is beneficial to improve the tightness of the glass skeleton.
  • the above three kinds of rare earth ions are difficult to enter the glass network, generally as inter-network ions between the network spaces, and they have high coordination number, high electric charge, strong field, strong accumulation ability, and can further enhance the stability of the glass structure and improve The mechanical properties and chemical stability of the glass. At the same time, they can effectively prevent the movement or exchange of other ions, thereby reducing the tendency of glass crystallization and improving chemical stability.
  • Y 2 O 3 acts better than La 2 O 3 and Gd 2 O 3 in increasing the glass modulus and inhibiting glass crystallization.
  • Y 2 O 3 acts better than La 2 O 3 and Gd 2 O 3 in increasing the glass modulus and inhibiting glass crystallization.
  • two or more rare earth oxides are used at the same time and their ratios are controlled to appropriate values, their synergistic effects are remarkable, and the effect of increasing the glass modulus and suppressing glass crystallization is superior to using a rare earth oxide alone. , got unexpected results.
  • a plurality of rare earth oxides can provide a richer network external ion coordination structure, which is advantageous for improving the stability of the glass structure and thereby increasing the glass modulus; and second, when the temperature is lowered, The probability of regular arrangement of rare earth ions of different radii is also reduced, which is beneficial to significantly reduce the growth rate of the crystal, thereby further improving the anti-crystallization ability of the glass.
  • the content of La 2 O 3 + Gd 2 O 3 may be limited to a content ranging from 0.1 to 3% by weight.
  • the content of Y 2 O 3 can be defined as a weight percentage ranging from 0.5 to 5%.
  • the weight percentage of La 2 O 3 may be defined to range from 0.1 to 2%.
  • the weight percentage of Gd 2 O 3 may be limited to range from 0.05 to 1%.
  • Li 2 O not only can significantly reduce the viscosity of the glass, thereby improving the glass melting performance, and is obviously helpful for improving the mechanical properties of the glass.
  • a small amount of Li 2 O can provide considerable non-bridged oxygen, which is beneficial to form more tetra-coordinates of aluminum ions and enhance the network structure of the glass system.
  • the alkali metal ions are too much, the chemical stability of the glass is remarkably lowered, so the amount of introduction is not preferable.
  • the content of Li 2 O + Na 2 O + K 2 O is limited to a content of 1% by weight or less.
  • the content by weight of Li 2 O+Na 2 O+K 2 O ranges from less than 0.97%; preferably, the content by weight of Li 2 O+Na 2 O+K 2 O ranges from less than or equal to 0.95%;
  • the content of Li 2 O+Na 2 O+K 2 O is in the range of 0.85% by weight or less.
  • the weight percentage of Li 2 O can be defined to range from 0.05 to 0.85%.
  • the weight percentage of Li 2 O may be defined to be in the range of 0.05% or more and less than 0.55%; preferably, the content of Li 2 O may be limited to a content ranging from 0.1 to 0.5% by weight. Further, the content of Na 2 O+K 2 O can be defined as less than 0.7% by weight.
  • CaO, MgO and SrO mainly control the crystallization of glass and adjust the viscosity of glass. Especially in controlling the crystallization of glass, the inventors obtained unexpected effects by controlling their introduction amount and proportional relationship.
  • high-performance glass mainly composed of MgO-CaO-Al 2 O 3 -SiO 2 system
  • the crystal phase contained in the glass after crystallization is mainly composed of diopside (CaMgSi 2 O 6 ) and anorthite ( CaAl 2 Si 2 O 8 ).
  • the mixed alkaline soil is utilized.
  • the effect forms a tighter packing structure, which requires more energy to form and grow the nucleus, thereby achieving the purpose of suppressing the crystallization tendency of the glass.
  • the glass structure formed by introducing an appropriate amount of cerium oxide is more stable, which is advantageous for further improvement of glass properties.
  • the content of CaO+MgO+SrO is limited to a content of 10-24% by weight.
  • the content of CaO can be limited to a content ranging from 1.5 to 12% by weight.
  • the weight percentage of CaO can be defined in the range of 5-10%.
  • the role of MgO in glass is similar to that of CaO, but the field strength of Mg 2+ is greater, which plays an important role in increasing the glass modulus.
  • it may be defined that the weight percentage of MgO ranges from 8.1 to 12%.
  • the weight percentage of SrO can be limited to a range of less than 3%.
  • the weight percentage of SrO can be defined to range from 0.1 to 2%.
  • TiO 2 has a fluxing effect, and can also significantly improve the chemical stability of the glass, and also has a certain effect on reducing the surface tension of the glass liquid. However, since too much Ti 4+ causes unsuitable coloration of the glass, the amount of introduction is not preferable.
  • the weight percentage of the defined TiO 2 ranges from less than 2%. Preferably, the weight percentage of TiO 2 can be defined to be in the range of 0.75% or less.
  • Fe 2 O 3 is advantageous for the melting of glass and also for improving the crystallization properties of glass. However, since iron ions and ferrous ions have a coloring effect, the amount of introduction is not preferable. Thus, in the glass fiber composition of the present invention, the weight percentage of Fe 2 O 3 is limited to less than 1.5%.
  • an appropriate amount of F 2 , B 2 O 3 and CeO 2 may be selectively introduced to further improve the crystallization tendency and the clarifying effect of the glass.
  • the content of F 2 may be limited to a content of 0 to 1.2%, and the content of B 2 O 3 may be limited to 0% by weight, and the content of CeO 2 may be limited.
  • the range is 0-1%.
  • the glass fiber composition of the present invention is also allowed to contain a small amount of other components, and the total content by weight is generally not more than 2%.
  • the glass fibers formed from the composition have an elastic modulus of greater than 90 GPa.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percent as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass fiber formed from the composition has an elastic modulus of more than 95 GPa.
  • the basic idea of the present invention is that the content of each component of the glass fiber composition is expressed by weight percentage: SiO 2 is 53-64%, Al 2 O 3 is more than 19% and less than 25%, and Y 2 O 3 + La 2 O 3 +Gd 2 O 3 is 0.05-7%, Li 2 O+Na 2 O+K 2 O is 1% or less, CaO+MgO+SrO is 10-24%, CaO is 1.5-12%, TiO 2 Less than 2%, Fe 2 O 3 is less than 1.5%.
  • the composition can greatly improve the elastic modulus and chemical stability of the glass, and on the basis of the above, overcomes the problems of high risk of crystallization of traditional high-performance glass, difficulty in clarification, difficulty in high-efficiency kiln production, and can significantly reduce high
  • the liquidus temperature and molding temperature of the performance glass greatly reduce the crystallization rate of the glass under the same conditions, and are particularly suitable for the high-performance glass fiber with excellent chemical stability in the kiln production.
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • the temperature of the crystallization peak which corresponds to the temperature of the strongest peak of glass crystallization during the DTA test.
  • the higher the temperature the more energy is required to grow the crystal nucleus, and the crystallization tendency of the glass is smaller.
  • the modulus of elasticity which is the modulus of elasticity along the machine direction, characterizes the ability of the glass to resist elastic deformation and is tested in accordance with ASTM 2343.
  • the weight loss rate of the powder is roughly as follows: the melted glass sample is moderately crushed and milled, and then sieved, and a glass powder of 0.4-0.6 mm on a 60-mesh sieve and an 80-mesh sieve is taken for use. Weigh 3 parts of 3g glass powder samples, Do not put in a quantitative 10% HCL solution, and bath at 95 ° C for 24 hours. The chemical stability of the glass is characterized by calculating the average weight loss rate of the glass frit in the high temperature acid.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid
  • the glass fiber is formed by the leaking nozzle on the drain plate being pulled out, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a yarn group.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • the content of the glass fiber composition is expressed by weight percentage. It should be noted that the total content of the components of the examples is slightly less than 100%, and it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages as compared with S glass and conventional R glass: (1) having a much higher modulus of elasticity; and (2) having a much lower
  • the liquidus temperature which is beneficial to reduce the crystallization risk of the glass and improve the drawing efficiency of the fiber; has a higher crystallization peak temperature, which indicates that the nucleation and growth of the glass requires more energy during crystallization. That is to say, the crystallization rate of the glass of the invention is smaller under the same conditions.
  • the glass fiber composition of the present invention has the following advantages as compared with the modified R glass: (1) having a much higher modulus of elasticity; and (2) having a higher peak temperature of crystallization, indicating that the glass is crystallization.
  • the formation and growth of the crystal nucleus requires more energy, that is to say, the crystallization rate of the glass of the invention is smaller under the same conditions; (3) the weight loss rate is significantly reduced, This indicates that the chemical stability of the glass has been significantly improved.
  • both S glass and conventional R glass cannot achieve pool kiln production.
  • Improved R glass reduces the liquidus temperature and molding temperature by sacrificing part of the performance to reduce the production difficulty and realize the kiln kiln production.
  • the composition of the present invention not only has a sufficiently low liquidus temperature and a smaller crystallization rate, but can also perform kiln kiln production, and at the same time achieve a substantial increase in glass modulus and chemical stability, breaking The performance level of S-class and R-grade glass fiber cannot be synchronized with the technical bottleneck of production scale.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the composition of the invention not only has a sufficiently low liquidus temperature and a smaller crystallization rate, but can also perform kiln kiln production, and at the same time achieves a substantial increase in glass modulus and chemical stability, breaking the S and R grades.
  • the performance level of glass fiber cannot be synchronized with the production bottleneck.
  • the glass fiber composition of the invention has achieved breakthrough in elastic modulus, crystallization performance and chemical stability. Progress, under the same conditions, the elastic modulus of the glass is greatly improved, the risk of crystallization is significantly reduced, and the chemical stability is obviously improved.
  • the overall technical solution is particularly suitable for the high-performance glass fiber with excellent chemical stability in the kiln production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明提供一种高性能玻璃纤维组合物及其玻璃纤维和复合材料。其中,玻璃纤维组合物各组分的含量以重量百分比表示如下:SiO2为53-64%,Al2O3为大于19%且小于25%,Y2O3+La2O3+Gd2O3为0.05-7%,Li2O+Na2O+K2O为小于等于1%,CaO+MgO+SrO为10-24%,CaO为1.5-12%,TiO2为小于2%,Fe2O3为小于1.5%。该组合物能大幅提高玻璃的弹性模量和化学稳定性,在此基础上,克服了传统高性能玻璃析晶风险高、澄清难度大,难于进行高效率池窑生产的问题,能显著降低高性能玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率,特别适合用于池窑化生产化学稳定性优异的高性能玻璃纤维。

Description

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2016年3月15日提交中国专利局、申请号为201610147905.0、发明名称为“一种高性能玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高性能玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高性能玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高性能玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高性能玻璃纤维在风力叶片、高压容器、海洋管道、汽车制造等民用工业领域得到了广泛应用。
最早的高性能玻璃成分以MgO-Al2O3-SiO2系统为主体,典型方案如美国OC公司开发的S-2玻璃,模量在89-90GPa,但是它的生产难度过大,其玻纤成型温度高达1571℃,液相线温度高达1470℃,难于实现大规模池窑化生产。因此,OC公司主动放弃了生产S-2玻璃纤维,将其专利权转让给了美国AGY公司。
随后,OC公司还开发了HiPer-tex玻璃,模量在87-89GPa,这是一种以牺牲部分玻璃性能以降低生产难度的折衷策略,不过由于设计方案只是对S-2玻璃的简单改进,造成玻纤成型温度和液相线温度依然很高,生产难度还是很大,难于实现大规模池窑化生产。因此,OC公司也放弃了生产HiPer-tex玻璃纤维,将其专利权转让给了欧洲3B公司。
法国圣戈班公司开发过一种以MgO-CaO-Al2O3-SiO2系统为主体的R玻璃,模量在86-89GPa。但是传统R玻璃的硅铝总含量较高,又缺乏改善玻璃析晶性能的有效方案,钙镁比例也不合理,造成玻璃成型困难、析晶风险高,同时玻璃液的表面张力大、澄清难度高,其玻纤成型温度达到1410℃,液相线温度达到1350℃,这都造成玻璃纤维高效拉制上的困难,同样难于实现大规模池窑化生产。
在国内,南京玻璃纤维研究设计院开发过一种HS2玻璃,模量在84-87GPa,其主要成分 也包括SiO2、Al2O3、MgO,同时还引入部分Li2O、B2O3、CeO2和Fe2O3,它的成型温度只有1245℃,液相线温度为1320℃,两者的温度均比S玻璃低得多,但其成型温度比液相线温度低△T值为负,极不利于玻璃纤维的高效拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模池窑化生产。
综上所述,我们发现,现阶段的各类高性能玻璃纤维在实际生产中均存在池窑化生产难度大的普遍问题,具体表现为玻璃的液相线温度偏高、析晶速率快,成型温度偏高、澄清难度大,△T值小甚至为负。为此,大部分公司往往以牺牲部分玻璃性能的方式来降低生产难度,这造成上述玻璃纤维的性能水平无法与生产规模同步提升,也一直无法突破S玻璃的模量瓶颈。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种高性能玻璃纤维组合物,该组合物能大幅提高玻璃的弹性模量和化学稳定性,在此基础上,克服了传统高性能玻璃析晶风险高、澄清难度大,难于进行高效率池窑生产的问题,能显著降低高性能玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率,特别适合用于池窑化生产化学稳定性优异的高性能玻璃纤维。
根据本发明的一个方面,提供一种高性能玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000001
其中,进一步限定重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
其中,进一步限定Li2O的含量,以重量百分比表示为0.05-0.85%。
其中,进一步限定R2O=Li2O+Na2O+K2O的含量,以重量百分比表示为小于0.97%。
其中,进一步限定Li2O的含量,以重量百分比表示为大于等于0.05%且小于0.55%。
其中,进一步限定Li2O的含量,以重量百分比表示为0.1-0.5%。
其中,进一步限定重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
其中,进一步限定重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
其中,进一步限定SiO2+Al2O3的含量,以重量百分比表示为小于80.4%。
其中,进一步限定RE2O3=Y2O3+La2O3+Gd2O3的含量,以重量百分比表示为0.5-6%。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000002
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000003
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000004
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
其中,进一步限定R2O=Li2O+Na2O+K2O的含量,以重量百分比表示为小于等于0.95%。
其中,进一步限定R2O=Li2O+Na2O+K2O的含量,以重量百分比表示为小于等于0.85%。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000005
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000006
Figure PCTCN2016076884-appb-000007
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000008
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000009
Figure PCTCN2016076884-appb-000010
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于1,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
其中,进一步限定Na2O+K2O的含量,以重量百分比表示为小于0.7%。
其中,进一步限定TiO2的含量,以重量百分比表示为小于等于0.75%。
其中,进一步限定Al2O3的含量,以重量百分比表示为大于19%且小于等于19.4%。
其中,进一步限定Al2O3的含量,以重量百分比表示为大于19.4%且小于等于23%。
其中,进一步限定SrO的含量,以重量百分比表示为0.1-2%。
其中,进一步限定Gd2O3的含量,以重量百分比表示为0.05-1%。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000011
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000012
Figure PCTCN2016076884-appb-000013
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
其中,进一步限定重量百分比的比值C1=RE2O3/R2O的范围为1.5-5。
其中,进一步限定重量百分比的比值C2=Al2O3/MgO的范围为2-2.45。
其中,进一步限定CaO的含量,以重量百分比表示为5-10%。
其中,进一步限定MgO的含量,以重量百分比表示为8.1-12%。
其中,进一步限定La2O3的含量,以重量百分比表示为0.1-2%。
其中,所述高性能玻璃纤维组合物还含有F2,其含量以重量百分比表示为0-1.2%。
其中,所述高性能玻璃纤维组合物还含有B2O3,其含量以重量百分比表示为0-2%。
其中,所述高性能玻璃纤维组合物还含有CeO2,其含量以重量百分比表示为0-1%。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的第三方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的高性能玻璃纤维组合物,主要创新点是在引入高含量氧化铝和低含量碱金属氧化物的基础上,引入稀土氧化物Y2O3、La2O3和Gd2O3中的一种或多种,利用稀土氧化物、碱金属氧化物与氧化铝之间的协同效应,并控制RE2O3/R2O和Al2O3/MgO的比值,合理配置Al2O3、R2O、Li2O、Y2O3、La2O3、Gd2O3、CaO和CaO+MgO+SrO的含量范围,以及利用CaO、MgO、SrO的混合碱土效应,此外还可以选择性引入适量F2、B2O3和CeO2等。
具体来说,根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000014
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。在本发明的玻璃纤维组合物中,限定SiO2的重量百分比含量范围为53-64%。优选地,可以限定SiO2的重量百分比含量范围为54-62%。
Al2O3也是形成玻璃骨架的氧化物,与SiO2结合时可对玻璃的机械性能起到实质性的作用,并且在抗水、耐酸腐蚀方面起着重要作用。为了玻璃能获得足够高的机械性能和抗水、耐酸腐蚀性能,希望Al2O3含量高一些,但Al2O3含量太高会使玻璃粘度过高从而导致澄清困难,同时玻璃易于析晶甚至分相。在一实施方案中,发明人意外发现,当控制Al2O3的重量百分比含量大于19%且小于25%,Li2O+Na2O+K2O的重量百分比含量小于等于1%,并引入适量稀土氧化物时,玻璃能获得特别优异的弹性模量、化学稳定性、抗析晶能力及成型范围△T值。因此,在本发明的玻璃纤维组合物中,限定Al2O3的重量百分比含量范围为大于19%且小于25%。优选地,可以限定Al2O3的重量百分比含量范围为大于19%且小于等于23%。进一步地,在一实施方案中,可以限定Al2O3的重量百分比含量范围为大于19%且小于等于19.4%;在另一实施方案中,可以限定Al2O3的重量百分比含量范围为大于19.4%且小于等于23%。此外,进一步地,可以限定SiO2+Al2O3的重量百分比含量范围为小于82%。优选地,可以限定SiO2+Al2O3的重量百分比含量范围为小于80.4%。
在玻璃结构中,Al2O3一般存在四配位[AlO4]和六配位[AlO6]两种结构形式。发明人发现,在引入高含量氧化铝和低含量碱金属氧化物的基础上,引入稀土氧化物Y2O3、La2O3和Gd2O3中的一种或多种,利用稀土氧化物具有较强的碱性能提供可观非桥氧的特性,可以使结构中铝氧四配位的数量明显增多,促进Al3+进入玻璃网络,有利于提高玻璃骨架的紧密度。而且,上述三种稀土离子均很难进入玻璃网络,一般处于网络空隙间作为网络外离子,它们配位数高、电荷高、场强大,积聚能力强,能进一步增强玻璃结构的稳定性,提高玻璃的机械性能 和化学稳定性。同时,它们还能有效阻止其他离子的移动排列或交换,达到降低玻璃析晶倾向和提高化学稳定性的目的。
发明人还发现,当单独使用它们时,在提高玻璃模量及抑制玻璃析晶方面,Y2O3的作用会优于La2O3和Gd2O3。而且,当同时使用两种及以上稀土氧化物并控制它们的比值在合适数值时,它们的协同效应显著,在提高玻璃模量及抑制玻璃析晶方面的作用优于单独使用一种稀土氧化物,获得了意想不到的效果。发明人认为,第一方面,多种稀土氧化物能提供更丰富的网络外离子配位结构,有利于提高玻璃结构的稳定性,从而提高玻璃模量;第二方面,当温度降低时,多种不同半径的稀土离子产生规则排列的机率也会减少,这有利于显著降低晶体的生长速率,从而进一步提高玻璃的抗析晶能力。
在本发明的玻璃纤维组合物中,限定RE2O3=Y2O3+La2O3+Gd2O3的重量百分比含量范围为0.05-7%。优选地,可以限定RE2O3=Y2O3+La2O3+Gd2O3的重量百分比含量范围为0.5-6%。进一步地,可以限定La2O3+Gd2O3的重量百分比含量范围为0.1-3%。进一步地,可以限定Y2O3的重量百分比含量范围为0.5-5%。进一步地,可以限定La2O3的重量百分比含量范围为0.1-2%。进一步地,可以限定Gd2O3的重量百分比含量范围为0.05-1%。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。同Na2O和K2O相比,Li2O不仅能显著地降低玻璃粘度,从而改善玻璃熔制性能,并且对提高玻璃的机械性能有明显帮助。同时,少量Li2O就能提供可观的非桥氧,有利于更多的铝离子形成四配位,增强玻璃体系的网络结构。但由于碱金属离子过多会显著降低玻璃的化学稳定性,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Li2O+Na2O+K2O的重量百分比含量范围为小于等于1%。优选地,Li2O+Na2O+K2O的重量百分比含量范围为小于0.97%;优选地,Li2O+Na2O+K2O的重量百分比含量范围为小于等于0.95%;优选地,Li2O+Na2O+K2O的重量百分比含量范围为小于等于0.85%。进一步地,可以限定Li2O的重量百分比含量范围为0.05-0.85%。优选地,可以限定Li2O的重量百分比含量范围为大于等于0.05%且小于0.55%;优选地,可以限定Li2O的重量百分比含量范围为0.1-0.5%。进一步地,可以限定Na2O+K2O的含量以重量百分比表示为小于0.7%。
进一步地,为了让碱金属氧化物提供的非桥氧能够更有效地被稀土离子积聚,促进它们以[AlO4]形式进入玻璃网络结构。在本发明的玻璃纤维组合物中,可以限定重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。优选地,可以限定重量百分比的比值C1=RE2O3/R2O的范围为大于1;优选地,可以限定重量百分比的比值C1=RE2O3/R2O的范围为1.5-5。
CaO、MgO和SrO主要起控制玻璃析晶、调节玻璃粘度的作用。尤其是在控制玻璃析晶 方面,发明人通过控制它们的引入量和比例关系获得了意想不到的效果。一般来说,以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,其玻璃析晶后所包含的晶相主要包括透辉石(CaMgSi2O6)和钙长石(CaAl2Si2O8)。为了有效抑制两种晶相的析晶倾向,降低玻璃的液相线温度和析晶速率,本发明中通过合理控制CaO+MgO+SrO的含量范围及各组分间的比例关系,利用混合碱土效应形成更紧密的堆积结构,使其晶核形成和长大时需要更多的能量,从而达到抑制玻璃析晶倾向的目的。而且,引入适量氧化锶所形成的玻璃结构更加稳定,有利于玻璃性能的进一步提升。在本发明的玻璃纤维组合物中,限定CaO+MgO+SrO的重量百分比含量范围为10-24%。CaO作为重要的网络外体氧化物,其含量过高会增大玻璃的析晶倾向,造成从玻璃中析出钙长石、硅灰石等晶体的危险。进一步地,可以限定CaO的重量百分比含量范围为1.5-12%。优选地,可以限定CaO的重量百分比含量范围为5-10%。MgO在玻璃中的作用与CaO大体类似,但Mg2+的场强更大,对提高玻璃模量起重要的作用。进一步地,可以限定MgO的重量百分比含量范围为8.1-12%。进一步地,可以限定SrO的重量百分比含量范围为小于3%。优选地,可以限定SrO的重量百分比含量范围为0.1-2%。
进一步地,为了有效控制玻璃析晶,在本发明的玻璃纤维组合物中,可以限定重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。优选地,可以限定重量百分比的比值C2=Al2O3/MgO的范围为大于1.95;优选地,可以限定重量百分比的比值C2=Al2O3/MgO的范围为2-2.45。
TiO2具有助熔作用,还能显著提高玻璃的化学稳定性,对降低玻璃液的表面张力也有一定作用。但由于Ti4+过多会使玻璃产生不合适的着色,故引入量也不宜多。在本发明的玻璃纤维组合物中,限定TiO2的重量百分比含量范围为小于2%。优选地,可以限定TiO2的重量百分比含量范围为小于等于0.75%。
Fe2O3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的重量百分比含量范围为小于1.5%。
在本发明的玻璃纤维组合物中,还可以选择性引入适量F2、B2O3和CeO2,以进一步改善玻璃的析晶倾向和澄清效果。在本发明的玻璃纤维组合物中,可以限定F2的重量百分比含量范围为0-1.2%,可以限定B2O3的重量百分比含量范围为0-2%,可以限定CeO2的重量百分比含量范围为0-1%。
此外,本发明的玻璃纤维组合物中还允许含有少量其他组分,重量百分比总含量一般不超过2%。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果在后面会通过实施例给出具体实验数据来说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。根据下述优选示例,由该组合物形成的玻璃纤维的弹性模量为大于90GPa。
优选示例一
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000015
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
优选示例二
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000016
Figure PCTCN2016076884-appb-000017
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
优选示例三
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000018
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
优选示例四
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000019
Figure PCTCN2016076884-appb-000020
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
优选示例五
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000021
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
优选示例六
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000022
Figure PCTCN2016076884-appb-000023
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于1,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
优选示例七
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000024
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
优选示例八
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000025
Figure PCTCN2016076884-appb-000026
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
优选示例九
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000027
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
优选示例十
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000028
Figure PCTCN2016076884-appb-000029
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于1,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
优选示例十一
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000030
并且,重量百分比的比值C1=RE2O3/R2O的范围为1.5-5。
优选示例十二
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示 如下:
Figure PCTCN2016076884-appb-000031
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为2-2.45。
优选示例十三
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076884-appb-000032
Figure PCTCN2016076884-appb-000033
并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
根据优选示例十三,由该组合物形成的玻璃纤维的弹性模量为大于95GPa。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO2为53-64%,Al2O3为大于19%且小于25%,Y2O3+La2O3+Gd2O3为0.05-7%,Li2O+Na2O+K2O为小于等于1%,CaO+MgO+SrO为10-24%,CaO为1.5-12%,TiO2为小于2%,Fe2O3为小于1.5%。该组合物能大幅提高玻璃的弹性模量和化学稳定性,在此基础上,克服了传统高性能玻璃析晶风险高、澄清难度大,难于进行高效率池窑生产的问题,能显著降低高性能玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率,特别适合用于池窑化生产化学稳定性优异的高性能玻璃纤维。
选取本发明的玻璃纤维组合物中SiO2、Al2O3、CaO、MgO、Li2O、Na2O、K2O、Fe2O3、TiO2、SrO、Y2O3、La2O3、Gd2O3、F2和CeO2具体含量值作为实施例,与S玻璃、传统R玻璃和改良R玻璃的性能参数进行对比。在性能对比时,选用六个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(4)析晶峰温度,DTA测试过程中对应于玻璃析晶最强峰的温度。一般情况下,该温度越高,表明晶核长大所需能量越多,玻璃的析晶倾向越小。
(5)弹性模量,是沿纵向的弹性模量,表征玻璃抵抗弹性变形的能力,按ASTM2343测试。
(6)粉末失重率,大致方法为:将熔制好的玻璃试样进行适度破碎和碾磨,然后进行筛分,取60目筛下和80目筛上0.4-0.6mm的玻璃粉备用。称取3份质量3g的玻璃粉样品,分 别放入定量的10%HCL溶液中,在95℃条件下水浴24小时。通过计算玻璃粉在高温酸液中的平均失重率,从而表征玻璃的化学稳定性。
上述六个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面给出根据本发明的玻璃纤维组合物的具体实施例。
实施例一
Figure PCTCN2016076884-appb-000034
并且,重量百分比的比值C1=RE2O3/R2O为3.83,重量百分比的比值C2=Al2O3/MgO为2.03。
在实施例一中测定的六个参数的数值分别是:
Figure PCTCN2016076884-appb-000035
实施例二
Figure PCTCN2016076884-appb-000036
并且,重量百分比的比值C1=RE2O3/R2O为3.83,重量百分比的比值C2=Al2O3/MgO为2.03。
在实施例二中测定的六个参数的数值分别是:
Figure PCTCN2016076884-appb-000037
实施例三
Figure PCTCN2016076884-appb-000038
Figure PCTCN2016076884-appb-000039
并且,重量百分比的比值C1=RE2O3/R2O为4.17,重量百分比的比值C2=Al2O3/MgO为2.02。
在实施例三中测定的六个参数的数值分别是:
Figure PCTCN2016076884-appb-000040
实施例四
Figure PCTCN2016076884-appb-000041
并且,重量百分比的比值C1=RE2O3/R2O为4.47,重量百分比的比值C2=Al2O3/MgO为2.40。
在实施例四中测定的六个参数的数值分别是:
Figure PCTCN2016076884-appb-000042
实施例五
Figure PCTCN2016076884-appb-000043
并且,重量百分比的比值C1=RE2O3/R2O为4.0,重量百分比的比值C2=Al2O3/MgO为2.06。
在实施例五中测定的六个参数的数值分别是:
Figure PCTCN2016076884-appb-000044
实施例六
Figure PCTCN2016076884-appb-000045
Figure PCTCN2016076884-appb-000046
并且,重量百分比的比值C1=RE2O3/R2O为4.32,重量百分比的比值C2=Al2O3/MgO为2.17。
在实施例六中测定的六个参数的数值分别是:
Figure PCTCN2016076884-appb-000047
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的上述实施例以及其他实施例与S玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1A
Figure PCTCN2016076884-appb-000048
表1B
Figure PCTCN2016076884-appb-000049
表1C
Figure PCTCN2016076884-appb-000050
由上述表中的具体数值可知,与S玻璃、传统R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有低得多的液相线温度,这有利于降低玻璃的析晶风险、提高纤维的拉丝效率;具有较高的析晶峰温度,这表明玻璃在析晶过程中晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶速率更小。
同时,与改良R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有较高的析晶峰温度,这表明玻璃在析晶过程中晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶速率更小;(三)失重率明显降低, 这表明玻璃的化学稳定性得到了显著改善。
S玻璃和传统R玻璃均无法实现池窑化生产,改良R玻璃通过牺牲部分性能的方式来降低液相线温度和成型温度,以降低生产难度实现池窑化生产。与之不同的是,本发明组合物不仅拥有足够低的液相线温度和更小的析晶速率,可以进行池窑化生产,同时还实现了玻璃模量和化学稳定性的大幅提升,打破了S级和R级玻璃纤维的性能水平无法与生产规模同步提升的技术瓶颈。
由根据本发明的玻璃纤维组合物可制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明组合物不仅拥有足够低的液相线温度和更小的析晶速率,可以进行池窑化生产,同时还实现了玻璃模量和化学稳定性的大幅提升,打破了S级和R级玻璃纤维的性能水平无法与生产规模同步提升的技术瓶颈,与目前主流的高性能玻璃相比,本发明的玻璃纤维组合物在弹性模量、析晶性能和化学稳定性方面取得了突破性的进展,同等条件下玻璃的弹性模量大幅提升、析晶风险显著下降、化学稳定性明显提升,整体技术方案特别适合用于池窑化生产化学稳定性优异的高性能玻璃纤维。

Claims (37)

  1. 一种高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100001
  2. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
  3. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Li2O的含量以重量百分比表示为0.05-0.85%。
  4. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,R2O=Li2O+Na2O+K2O的含量以重量百分比表示为小于0.97%。
  5. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Li2O的含量以重量百分比表示为大于等于0.05%且小于0.55%。
  6. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Li2O的含量以重量百分比表示为0.1-0.5%。
  7. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
  8. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
  9. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,SiO2+Al2O3的含量以重量百分比表示为小于80.4%。
  10. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,RE2O3=Y2O3+La2O3+Gd2O3的含量以重量百分比表示为0.5-6%。
  11. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100002
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
  12. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100003
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
  13. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100004
    Figure PCTCN2016076884-appb-100005
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
  14. 根据权利要求1或11所述的高性能玻璃纤维组合物,其特征在于,R2O=Li2O+Na2O+K2O的含量以重量百分比表示为小于等于0.95%。
  15. 根据权利要求1或11所述的高性能玻璃纤维组合物,其特征在于,R2O=Li2O+Na2O+K2O的含量以重量百分比表示为小于等于0.85%。
  16. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100006
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
  17. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100007
    Figure PCTCN2016076884-appb-100008
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
  18. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100009
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
  19. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100010
    Figure PCTCN2016076884-appb-100011
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于1,重量百分比的比值C2=Al2O3/MgO的范围为大于1.95。
  20. 根据权利要求1或4所述的高性能玻璃纤维组合物,其特征在于,Na2O+K2O的含量以重量百分比表示为小于0.7%。
  21. 根据权利要求4或19所述的高性能玻璃纤维组合物,其特征在于,TiO2的含量以重量百分比表示为小于等于0.75%。
  22. 根据权利要求4或18所述的高性能玻璃纤维组合物,其特征在于,Al2O3的含量以重量百分比表示为大于19%且小于等于19.4%。
  23. 根据权利要求4或19所述的高性能玻璃纤维组合物,其特征在于,Al2O3的含量以重量百分比表示为大于19.4%且小于等于23%。
  24. 根据权利要求1或4所述的高性能玻璃纤维组合物,其特征在于,SrO的含量以重量百分比表示为0.1-2%。
  25. 根据权利要求1或11所述的高性能玻璃纤维组合物,其特征在于,Gd2O3的含量以重量百分比表示为0.05-1%。
  26. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100012
    Figure PCTCN2016076884-appb-100013
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5。
  27. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076884-appb-100014
    并且,重量百分比的比值C1=RE2O3/R2O的范围为大于0.5,重量百分比的比值C2=Al2O3/MgO的范围为大于1.8。
  28. 根据权利要求13或26所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C1=RE2O3/R2O的范围为1.5-5。
  29. 根据权利要求13或26所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C2=Al2O3/MgO的范围为2-2.45。
  30. 根据权利要求13所述的高性能玻璃纤维组合物,其特征在于,CaO的含量以重量百分比表示为5-10%。
  31. 根据权利要求1或30所述的高性能玻璃纤维组合物,其特征在于,MgO的含量以 重量百分比表示为8.1-12%。
  32. 根据权利要求1或13所述的高性能玻璃纤维组合物,其特征在于,La2O3的含量以重量百分比表示为0.1-2%。
  33. 根据权利要求1或26所述的高性能玻璃纤维组合物,其特征在于,所述高性能玻璃纤维组合物还含有F2,其含量以重量百分比表示为0-1.2%。
  34. 根据权利要求1或26所述的高性能玻璃纤维组合物,其特征在于,所述高性能玻璃纤维组合物还含有B2O3,其含量以重量百分比表示为0-2%。
  35. 根据权利要求1或26所述的高性能玻璃纤维组合物,其特征在于,所述高性能玻璃纤维组合物还含有CeO2,其含量以重量百分比表示为0-1%。
  36. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-35中任一项所述的玻璃纤维组合物制成。
  37. 一种复合材料,其特征在于,所述复合材料包括如权利要求36所述的玻璃纤维。
PCT/CN2016/076884 2016-03-15 2016-03-21 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 WO2016165530A2 (zh)

Priority Applications (18)

Application Number Priority Date Filing Date Title
AU2016248267A AU2016248267B2 (en) 2016-03-15 2016-03-21 High performance glass fibre composition, and glass fibre and composite material thereof
BR112017027193-1A BR112017027193B1 (pt) 2016-03-15 2016-03-21 Composição de fibra de vidro, de alto desempenho, fibra de vidro e material compósito a partir da mesma.
EP21182112.9A EP3909926A1 (en) 2016-03-15 2016-03-21 High-performance glass fibre composition, and glass fibre and composite material thereof
RU2018117560A RU2712988C2 (ru) 2016-03-15 2016-03-21 Высокоэффективная стекловолоконная композиция, стекловолокно и композиционный материал из него
SI201631356T SI3406576T1 (sl) 2016-03-15 2016-03-21 Sestavek visokozmogljivih steklenih vlaken, stekleno vlakno in kompozitni material iz le-tega
KR1020177036424A KR102001761B1 (ko) 2016-03-15 2016-03-21 고성능 유리섬유 조성물 및 그 유리섬유와 복합재료
JP2017564688A JP6487577B2 (ja) 2016-03-15 2016-03-21 高性能ガラス繊維組成物及びそのガラス繊維並びに複合材料
ES16779505T ES2899985T3 (es) 2016-03-15 2016-03-21 Composición de fibra de vidrio de alto rendimiento, y fibra de vidrio y material compuesto de la misma
HRP20211579TT HRP20211579T1 (hr) 2016-03-15 2016-03-21 Pripravak staklenih vlakana visokih performansi, i njegova staklena vlakna i sastavni materijal
MX2018001033A MX2018001033A (es) 2016-03-15 2016-03-21 Composicion de fibra de vidrio de alto desempeño, y fibra de vidrio y material compuesto de la misma.
EP16779505.3A EP3406576B1 (en) 2016-03-15 2016-03-21 High performance glass fibre composition, and glass fibre and composite material thereof
PL16779505T PL3406576T3 (pl) 2016-03-15 2016-03-21 Kompozycja wysokosprawnego włókna szklanego i włókno szklane oraz materiał kompozytowy z nich
CA2989206A CA2989206C (en) 2016-03-15 2016-03-21 High-performance glass fiber composition, glass fiber and composite material therefrom
US15/739,081 US10377662B2 (en) 2016-03-15 2016-03-21 High performance glass fibre composition, and glass fibre and composite material thereof
DK16779505.3T DK3406576T3 (da) 2016-03-15 2016-03-21 Højtydende glasfibersammensætning og glasfiber og kompositmateriale deraf
MA42575A MA42575B1 (fr) 2016-03-15 2016-03-21 Composition de fibre de verre haute performance, et fibre de verre et matériau composite de celle-ci
ZA2018/03244A ZA201803244B (en) 2016-03-15 2018-05-16 High-performance glass fibre composition, glass fibre and composite material therefrom
SA518391605A SA518391605B1 (ar) 2016-03-15 2018-05-17 تركيبة ألياف زجاجية عالية الأداء، وليف زجاجي، ومادة مركَّبة منه

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610147905.0A CN105753329B (zh) 2016-03-15 2016-03-15 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN201610147905.0 2016-03-15

Publications (2)

Publication Number Publication Date
WO2016165530A2 true WO2016165530A2 (zh) 2016-10-20
WO2016165530A3 WO2016165530A3 (zh) 2017-02-02

Family

ID=56332045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076884 WO2016165530A2 (zh) 2016-03-15 2016-03-21 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (22)

Country Link
US (1) US10377662B2 (zh)
EP (2) EP3909926A1 (zh)
JP (1) JP6487577B2 (zh)
KR (1) KR102001761B1 (zh)
CN (1) CN105753329B (zh)
AU (1) AU2016248267B2 (zh)
BR (1) BR112017027193B1 (zh)
CA (1) CA2989206C (zh)
CL (1) CL2018002633A1 (zh)
DK (1) DK3406576T3 (zh)
ES (1) ES2899985T3 (zh)
HR (1) HRP20211579T1 (zh)
HU (1) HUE056355T2 (zh)
MA (1) MA42575B1 (zh)
MX (1) MX2018001033A (zh)
PL (1) PL3406576T3 (zh)
PT (1) PT3406576T (zh)
RU (1) RU2712988C2 (zh)
SA (1) SA518391605B1 (zh)
SI (1) SI3406576T1 (zh)
WO (1) WO2016165530A2 (zh)
ZA (1) ZA201803244B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521944A (ja) * 2017-01-26 2018-08-09 ジュシ グループ カンパニー リミテッド 高性能ガラス繊維組成物及びそのガラス繊維と複合材
WO2019173360A1 (en) * 2018-03-07 2019-09-12 Electric Glass Fiber America, LLC Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
EP3470382A4 (en) * 2017-08-30 2020-02-05 Jushi Group Co., Ltd. FIBERGLASS COMPOSITION, FIBERGLASS AND COMPOSITE MATERIAL THEREOF

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731813B (zh) * 2016-02-29 2018-07-31 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105819698B (zh) 2016-03-15 2018-09-14 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP7022367B2 (ja) * 2017-09-27 2022-02-18 日本電気硝子株式会社 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
WO2019126252A1 (en) 2017-12-19 2019-06-27 Ocv Intellectual Capital, Llc High performance fiberglass composition
CN108373268A (zh) * 2018-04-08 2018-08-07 重庆国际复合材料股份有限公司 一种高模量玻璃纤维组合物以及玻璃纤维
CN114349354B (zh) 2018-06-22 2024-01-12 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN108675643B (zh) * 2018-07-03 2022-01-11 泰山玻璃纤维有限公司 基于铁锰钛的高模量玻璃纤维组合物
JP7480142B2 (ja) 2018-11-26 2024-05-09 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された比弾性率を有する高性能ガラス繊維組成物
DK3887329T3 (da) 2018-11-26 2024-04-29 Owens Corning Intellectual Capital Llc Højydelsesglasfibersammensætning med forbedret elasticitetskoefficient
CN111807707B (zh) * 2020-07-10 2021-11-09 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
JP7235915B1 (ja) 2022-05-31 2023-03-08 日本板硝子株式会社 ガラス繊維およびガラス繊維用組成物
EP4317097A1 (en) * 2022-05-31 2024-02-07 Nippon Sheet Glass Company, Limited Glass fiber and composition for glass fiber

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147718A (en) 1966-08-31 1969-04-02 Aerojet General Co High strength glass fibres
FR2509716A1 (fr) 1981-07-20 1983-01-21 Saint Gobain Isover Composition de verre convenant a la fabrication de fibres
JPH035343A (ja) 1989-05-30 1991-01-11 Central Glass Co Ltd ファイバーガラス組成物
US6214429B1 (en) 1996-09-04 2001-04-10 Hoya Corporation Disc substrates for information recording discs and magnetic discs
DE19906240A1 (de) 1999-02-15 2000-08-17 Schott Glas Hochzirkoniumoxidhaltiges Glas und dessen Verwendungen
FR2879591B1 (fr) 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
JP4746995B2 (ja) * 2006-02-02 2011-08-10 株式会社オハラ 光学ガラス
US9446983B2 (en) * 2009-08-03 2016-09-20 Ppg Industries Ohio, Inc. Glass compositions and fibers made therefrom
US9556059B2 (en) 2009-08-03 2017-01-31 Hong Li Glass compositions and fibers made therefrom
JP2013524418A (ja) * 2010-03-29 2013-06-17 ショット アクチエンゲゼルシャフト 低い熱伝導率の無機成分を有する電池セル用構成要素
CN108558196A (zh) 2010-10-18 2018-09-21 Ocv智识资本有限责任公司 高折射指数的玻璃组合物
CN102276153B (zh) 2011-07-27 2013-11-06 中材科技股份有限公司 高性能耐热耐腐蚀玻璃纤维用组成物
JP5930377B2 (ja) * 2012-02-20 2016-06-08 日本電気硝子株式会社 強化ガラス
CN103539347A (zh) 2012-07-09 2014-01-29 上海华明高技术(集团)有限公司 一种固体废弃物为原料的无机纤维及其制造方法
WO2014062715A1 (en) * 2012-10-16 2014-04-24 Agy Holding Corporation High modulus glass fibers
JP6090705B2 (ja) * 2012-11-09 2017-03-08 日本電気硝子株式会社 薄膜太陽電池用ガラス板
JP6026926B2 (ja) 2012-11-16 2016-11-16 株式会社オハラ 結晶化ガラスおよび情報記録媒体用結晶化ガラス基板
CN110698057A (zh) * 2012-12-21 2020-01-17 康宁股份有限公司 具有改进的总节距稳定性的玻璃
CN103086605A (zh) * 2013-02-19 2013-05-08 重庆国际复合材料有限公司 一种玻璃纤维
US9278883B2 (en) * 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
EP3191421B1 (en) 2014-09-09 2020-04-29 Electric Glass Fiber America, LLC Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
CN104743888B (zh) * 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN105731814B (zh) * 2016-02-29 2019-01-01 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105731813B (zh) * 2016-02-29 2018-07-31 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN106082639B (zh) * 2016-06-07 2018-09-14 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN108358460A (zh) * 2017-01-26 2018-08-03 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521944A (ja) * 2017-01-26 2018-08-09 ジュシ グループ カンパニー リミテッド 高性能ガラス繊維組成物及びそのガラス繊維と複合材
US10207949B2 (en) 2017-01-26 2019-02-19 Jushi Group Co., Ltd. Glass fiber, composition for producing the same, and composite material comprising the same
EP3470382A4 (en) * 2017-08-30 2020-02-05 Jushi Group Co., Ltd. FIBERGLASS COMPOSITION, FIBERGLASS AND COMPOSITE MATERIAL THEREOF
US11339085B2 (en) 2017-08-30 2022-05-24 Jushi Group Co., Ltd. Glass fiber composition, glass fiber and composite material thereof
US11884575B2 (en) 2017-08-30 2024-01-30 Jushi Group Co., Ltd. Glass fiber composition, glass fiber and composite material thereof
WO2019173360A1 (en) * 2018-03-07 2019-09-12 Electric Glass Fiber America, LLC Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
JP2021516206A (ja) * 2018-03-07 2021-07-01 エレクトリック グラス ファイバー アメリカ, エルエルシー ガラス組成物、繊維化可能なガラス組成物、およびそれから作成されたガラス繊維
US11697611B2 (en) 2018-03-07 2023-07-11 Electric Glass Fiber America, LLC Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
EP4286346A1 (en) * 2018-03-07 2023-12-06 Electric Glass Fiber America, LLC Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
JP7475279B2 (ja) 2018-03-07 2024-04-26 エレクトリック グラス ファイバー アメリカ, エルエルシー ガラス組成物、繊維化可能なガラス組成物、およびそれから作成されたガラス繊維

Also Published As

Publication number Publication date
BR112017027193B1 (pt) 2022-05-03
PL3406576T3 (pl) 2022-01-17
KR20180011786A (ko) 2018-02-02
EP3406576A4 (en) 2019-10-23
ES2899985T3 (es) 2022-03-15
EP3406576A2 (en) 2018-11-28
RU2712988C2 (ru) 2020-02-03
CA2989206C (en) 2020-07-07
SI3406576T1 (sl) 2021-12-31
JP2018517654A (ja) 2018-07-05
KR102001761B1 (ko) 2019-10-24
RU2018117560A (ru) 2019-11-11
MA42575B1 (fr) 2019-10-31
AU2016248267B2 (en) 2020-01-02
HUE056355T2 (hu) 2022-02-28
SA518391605B1 (ar) 2021-11-16
EP3406576B1 (en) 2021-09-15
MX2018001033A (es) 2018-11-09
CA2989206A1 (en) 2016-10-20
MA42575A1 (fr) 2018-10-31
CN105753329B (zh) 2018-07-31
ZA201803244B (en) 2019-01-30
PT3406576T (pt) 2021-11-08
HRP20211579T1 (hr) 2021-12-24
AU2016248267A1 (en) 2018-05-24
JP6487577B2 (ja) 2019-03-20
BR112017027193A2 (zh) 2018-10-30
RU2018117560A3 (zh) 2019-11-11
DK3406576T3 (da) 2021-10-11
US10377662B2 (en) 2019-08-13
WO2016165530A3 (zh) 2017-02-02
EP3909926A1 (en) 2021-11-17
US20180179104A1 (en) 2018-06-28
CL2018002633A1 (es) 2019-01-04
CN105753329A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2017190405A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105731814B (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165532A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165507A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105819698B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
WO2016045222A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN107531552B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016169408A1 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2017063247A1 (zh) 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料
WO2022006948A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045221A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2015131684A2 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2019100782A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2022006947A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2989206

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017564688

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177036424

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15739081

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779505

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001033

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027193

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018117560

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016248267

Country of ref document: AU

Date of ref document: 20160321

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112017027193

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016779505

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016779505

Country of ref document: EP

Effective date: 20180821

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017027193

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171215