WO2016045221A1 - 一种玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2016045221A1
WO2016045221A1 PCT/CN2014/095400 CN2014095400W WO2016045221A1 WO 2016045221 A1 WO2016045221 A1 WO 2016045221A1 CN 2014095400 W CN2014095400 W CN 2014095400W WO 2016045221 A1 WO2016045221 A1 WO 2016045221A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass fiber
sro
weight percentage
mgo
Prior art date
Application number
PCT/CN2014/095400
Other languages
English (en)
French (fr)
Inventor
曹国荣
邢文忠
章林
顾桂江
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to BR112017005497-3A priority Critical patent/BR112017005497B1/pt
Priority to CA2961675A priority patent/CA2961675C/en
Priority to DK14902825.0T priority patent/DK3181530T3/da
Priority to JP2017516767A priority patent/JP6408699B2/ja
Priority to ES14902825T priority patent/ES2725905T3/es
Priority to KR1020177010444A priority patent/KR101960367B1/ko
Priority to EP14902825.0A priority patent/EP3181530B1/en
Priority to US15/511,585 priority patent/US10351465B2/en
Priority to PL14902825T priority patent/PL3181530T3/pl
Publication of WO2016045221A1 publication Critical patent/WO2016045221A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3423Cerium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a composition and glass fiber and composite thereof, and more particularly to a glass fiber composition and glass fiber and composite material thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high-performance glass fiber was originally used in the defense, military and other fields of defense, military and other fields. With the advancement of technology and economic development, high-performance glass fiber has been widely used in civil and industrial fields such as motors, wind blades, pressure vessels, offshore oil pipelines, sports equipment, and the automotive industry.
  • the main components of Gaoqiang 2# glass fiber also include SiO2, Al2O3, MgO, and also introduce some parts of Li2O, B2O3, CeO2 and Fe2O3, which also have high strength and modulus, and the molding temperature is only about 1245 °C, liquid
  • the phase temperature is 1320 ° C, the temperature of both is much lower than that of S glass fiber, but the molding temperature is lower than the liquidus temperature, which is not conducive to the good drawing of the glass fiber, the drawing temperature must be increased, and the special form of the nozzle is used. To prevent the occurrence of glass loss during the drawing process. This creates difficulties in temperature control and makes it difficult to achieve large-scale industrial production.
  • the glass fiber composition not only ensures that the glass fiber has higher mechanical properties, lower crystallization temperature and crystallization risk, but also greatly improves the refractive index of the glass, and can significantly block harmful rays to the human body.
  • a glass fiber composition comprising the following components, the content of each component being expressed by weight percentage as follows:
  • the weight percentage of CeO 2 ranges from 0.02 to 0.4%; or the weight percentage of CaO ranges from 8 to 11%.
  • the ratio of the weight percentages C2 MgO / SrO is greater than 2.
  • the ratio of the weight percentages C4 Li 2 O / Na 2 O is 1-4.
  • the ratio of the weight percentages C4 Li 2 O / Na 2 O is 1.5 - 3.0.
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the mechanical properties of the R glass grade are achieved, and the refractive index of the glass is greatly improved, and the harmful rays to the human body can be significantly blocked, and Further reducing the crystallization risk and production cost of the glass makes the glass fiber composition more suitable for large-scale kiln production.
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components.
  • the content of SiO 2 is limited to 58-63%, and if the content is too low, the mechanical properties of the glass are affected; if the content is too high, the viscosity of the glass is too high to cause melting, Clarify the difficulties.
  • the content of SiO 2 may be limited to 59-62%.
  • Al 2 O 3 is also an oxide forming a glass skeleton. When combined with SiO 2 , it can play a substantial role in the mechanical properties of the glass and plays an important role in preventing phase separation and water resistance of the glass.
  • the content of Al 2 O 3 is limited to 13-17%, and if the content is too low, the liquidus temperature is increased, and the mechanical properties and water resistance of the glass are deteriorated; If the content is too high, the viscosity of the glass is too high to cause melting and clarification, and the risk of devitrification of the glass is increased.
  • the content of Al 2 O 3 may be limited to 14-16.5%.
  • the glass fiber composition of the present invention utilizes a ternary mixed alkaline earth effect of CaO, MgO and SrO.
  • a ternary mixed alkaline earth effect of CaO, MgO and SrO In general, those skilled in the art are familiar with the binary mixed alkaline earth effect of CaO and MgO, but on the ternary mixed alkaline earth of CaO, MgO and SrO.
  • there have been few reports of effects especially the special ternary mixed alkaline soil effect with a total content of CaO+MgO+SrO exceeding 15% and a SrO content exceeding 3%.
  • the ternary mixed alkaline earth effect of CaO, MgO and SrO in the present invention and how to select the contents of CaO, MgO and SrO are explained in detail below.
  • CaO mainly plays a role in adjusting the viscosity of the glass and controlling the crystallization of the glass.
  • MgO has a similar effect and plays an important role in increasing the modulus of the glass.
  • the ternary mixed alkaline soil effect is better than the binary mixed alkaline earth effect. This is because more alkaline earth ions of different radii are involved in the substitution, and the structure is more likely to form a close packing, thereby making the glass mechanical properties, optical properties and corrosion resistance more excellent.
  • the order of the three ions is important for the close packing of the structure. Since the ionic radii of Mg 2+ , Ca 2+ , and Sr 2+ are sequentially increased, it is necessary to well match the ions of the smallest radius and the ions of the largest radius.
  • the CaO content in the present application is relatively low, which not only can make the glass frit smooth, improve the drawing efficiency of the high performance glass, and can also use a higher content.
  • the MgO is matched to SrO to make the ternary structure closer.
  • the CaO content should not be too low. If the CaO content is too low, the competitive growth between the anorthite and the diopside crystal will be out of balance, and the risk of devitrification of the glass will increase.
  • the content of MgO is appropriately increased, which can remarkably enhance the synergistic effect of the two.
  • studies have shown that in the glass system with high alkaline earth metal oxide content, if the content of SrO is controlled to be more than 3%, especially controlled at 3.05-8%, under the joint action of SrO and MgO, not only can Effectively increase the refractive index of the glass, and also significantly block radiation harmful to the human body, such as X-rays, gamma rays and beta rays.
  • the content of SrO can be limited to 3.05 to 5%. More preferably, the content of SrO may be further limited to 3.1 to 4.5%.
  • the ternary mixed alkaline earth effect of CaO, MgO and SrO is comprehensively considered and the content of suitable SrO is selected to achieve higher mechanical properties, lower crystallization temperature and crystallization risk, and effective Increase the refractive index of the glass and significantly block harmful rays to the human body.
  • the content of CaO may be limited to 8-11%.
  • the content of MgO may be limited to 8-10%.
  • the content of SrO can be limited to 3.05 to 5%. More preferably, the content of SrO may be further limited to 3.1 to 4.5%.
  • Both K 2 O and Na 2 O reduce the viscosity of the glass and are good fluxing agents.
  • replacing Na 2 O with K 2 O can reduce the crystallization tendency of the glass and improve the fiber forming property; and can also lower the surface tension of the glass liquid and improve the glass melting performance.
  • a small amount of Li 2 O is also introduced in the present invention. Compared with Na 2 O and K 2 O, Li 2 O can significantly lower the viscosity of the glass, thereby improving the glass melting performance, and is obviously helpful for improving the mechanical properties of the glass.
  • the amount of alkali metal introduced is not much to avoid reducing the chemical stability of the glass.
  • the total content of Na 2 O + K 2 O + Li 2 O is defined to be in the range of 0.1 to 2%.
  • the introduction of Fe 2 O 3 facilitates the melting of the glass and also improves the crystallization properties of the glass.
  • the amount of introduction is not preferable. Therefore, in the glass fiber composition of the present invention, the content of Fe 2 O 3 is limited to be in the range of 0.1 to 1%.
  • CeO 2 can not only perform good clarification but also is non-toxic, and can also oxidize part of the divalent ferrous ions into ferric ions to make the green color of the glass fibers lighter. In the prior art, high-performance glass is difficult to clarify and homogenize. Therefore, in order to ensure the clarification and homogenization quality of the molten glass, an appropriate amount of CeO 2 may be added to the glass fiber composition of the present invention, and the content of CeO 2 is in the range of 0. -1%. Preferably, the weight percentage of CeO 2 may range from 0.02 to 0.4%.
  • TiO 2 not only reduces the viscosity of the glass at high temperatures, but also has a certain fluxing effect. Therefore, TiO 2 is added to the glass fiber composition of the present invention, and the content of TiO 2 is limited to range from 0 to 2 %. Preferably, the weight percentage of TiO 2 may range from 0.1 to 1.5%.
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentages C2 MgO / SrO is greater than 2.
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentages C4 Li 2 O / Na 2 O is 1-4.
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentages C4 Li2O / Na2O is 1.5 - 3.0.
  • the basic idea of the present invention is to effectively utilize the glass fiber to effectively improve the glass by making full use of the combined action of CaO, MgO and SrO, and selecting respective suitable content ranges and ratio relationships, and adjusting the ratio of the added trace elements.
  • the refractive index significantly blocks rays that are harmful to the human body.
  • the glass fiber composition of the present invention is selected from the group consisting of SiO 2 , Al 2 O 3 , CaO, MgO, SrO, Na 2 O, K 2 O, Fe 2 O 3 , Li 2 O, CeO 2 ,
  • the specific content of TiO 2 is used as an example to compare with the performance parameters of conventional E glass and conventional R glass. In performance comparison, five performance parameters are selected:
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • the strength of the monofilament, the tensile strength of the glass fiber strand unit can withstand the fineness.
  • Refractive index the ratio of the speed of light in air to the speed of light in the glass.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid
  • the glass fiber is formed by the leaking nozzle on the drain plate being pulled out, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a yarn group.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • a glass fiber composition wherein the glass fiber composition comprises the following components, the content and weight percentage of each component are:
  • the ratio of the weight percentage C3 K 2 O / (Na 2 O + Li 2 O ) is 1.0.
  • a glass fiber composition wherein the glass fiber composition comprises the following components, the content and weight percentage of each component are:
  • the ratio of the weight percentage C3 K 2 O / (Na 2 O + Li 2 O ) is 0.84.
  • a glass fiber composition wherein the glass fiber composition comprises the following components, the content and weight percentage of each component are:
  • the ratio of the weight percentage C3 K 2 O / (Na 2 O + Li 2 O ) is 0.85.
  • the content of the glass fiber composition is expressed by weight percentage. It should be noted that the total content of the components of the examples is slightly less than 100%, and it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has a much lower molding temperature and liquidus temperature than conventional R glass, which is advantageous for reducing energy consumption and improving fiber drawing efficiency;
  • the present invention has a relatively high refractive index of glass; at the same time, the strength of the monofilament of the present invention is comparable to that of R glass fibers.
  • the molding temperature of the modified R glass is greatly reduced, but the crystallization temperature is still high, the crystallization risk is large, and the molding window range is small, the efficiency of mass production is low, and the refractive index of the glass is similar to that of the conventional R glass.
  • the glass fiber composition of the present invention Compared to the modified R glass, the glass fiber composition of the present invention has a much lower liquidus temperature and a much wider molding window range, a greater increase in the refractive index of the glass, and a slightly higher monofilament strength.
  • the glass fiber composition of the present invention has a much higher monofilament strength than conventional E glass.
  • this issue The glass fiber composition of Ming has also made a breakthrough in the improvement of the melting of R-grade glass. The number of bubbles under the same conditions has been greatly reduced, and the overall technical solution is more cost-effective than the conventional R glass and modified R glass fiber. Easy to achieve large-scale industrial production.
  • the glass fiber By rationally designing the proportional relationship between CaO, MgO and SrO, and making SrO above 3%, the glass fiber not only ensures higher mechanical properties, lower crystallization temperature and crystallization risk, but also effectively improves the glass fiber.
  • the refractive index of the glass can significantly block harmful rays to the human body.
  • the melting effect and fiber forming efficiency of the glass are greatly improved, and the melting temperature and drawing temperature are significantly lower than those of the conventional R glass, and the number of bubbles, viscosity and crystallization risk of the glass are further reduced. Therefore, the glass fiber composition of the present invention is more suitable for large scale kiln production.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the glass fiber composition of the invention not only ensures that the glass fiber has higher mechanical properties, lower crystallization temperature and crystallization risk, but also greatly improves the refractive index of the glass, and can significantly block radiation harmful to the human body. At the same time, the melting effect and fiber forming efficiency of the glass are greatly improved, and the melting temperature and drawing temperature are significantly lower than those of the conventional R glass, and the number of bubbles, viscosity and crystallization risk of the glass are further reduced. Therefore, the glass fiber composition of the present invention is more suitable for large scale kiln production. Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.

Abstract

一种玻璃纤维组合物及其玻璃纤维和复合材料。该玻璃纤维组合物含有以重量百分比表示的各组分的含量如下:SiO2为58-63%,Al2O3为13-17%,CaO为6-11.8%,MgO为7-11%,SrO为3.05-8%,Na2O+K2O+Li2O为0.1-2%,Fe2O3为0.1-1%,CeO2为0-1%,TiO2为0-2%,所述重量百分比的比值C1=(MgO+SrO)/CaO大于1。该玻璃纤维组合物改善了玻璃的折射率,能够阻挡对人体有害的射线,并进一步降低玻璃的析晶风险和生产成本,使该玻璃纤维组合物更适于大规模池窑生产

Description

一种玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2014年09月22日提交中国专利局、申请号为201410486801.3、发明名称为“一种玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种组合物及其玻璃纤维和复合材料,尤其涉及一种玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高性能玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高性能玻璃纤维在民用、工业领域如电机、风力叶片、压力容器、海上石油管道、体育器材、汽车行业得到了广泛应用。
自从美国开发出S-2玻璃纤维后,各国竞相开发生产各种成分的高性能玻璃纤维,如法国开发的R玻璃纤维、美国开发的HiPer-tex玻璃纤维、中国开发的高强2#玻璃纤维等。最初的高性能玻璃成分以MgO-Al2O3-SiO2系统为主体,典型方案如美国的S-2玻璃,不过它的生产难度过大,成型温度高达1571℃左右,液相线温度达到1470℃,难于实现大规模工业化生产。
随后,为了降低玻璃的熔化温度及成型温度使其能更好地满足规模化池窑生产的要求,国外各大公司陆续开发了以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,典型方案如法国的R玻璃和美国的HiPer-tex玻璃,这是一种以牺牲部分玻璃性能换取生产规模的折衷策略,不过由于设计方案过于保守,尤其是将Al2O3含量保持在20%以上,优选25%,造成生产难度依然很高,虽然实现了小规模的池窑化生产,但生产效率低下、产品性价比不高。传统的R玻璃成型困难,成型温度达到1410℃左右,液相线温度达到1330℃,这也造成玻璃纤维拉制上的困难,同样难于实现大规模工业化生产。
高强2#玻璃纤维的主要成分也包括SiO2、Al2O3、MgO,同时还引入了部分Li2O、B2O3、CeO2和Fe2O3,它也具有较高的强度及模量,且其成型温度只有1245℃左右,液相线温度为1320℃,两者的温度均比S玻璃纤维低得多,但其成型温度比液相线温度低却不利于玻璃纤维的良好拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现 象,这造成温度控制上的困难,也难于实现大规模工业化生产。
另外,还有一种改良的R玻璃纤维,这种玻璃纤维具有比传统E玻璃纤维高得多的强度及模量,熔化和拉制状态也优于传统R玻璃纤维,但是该玻璃的析晶风险较大,同时由于Li2O的引入量过大,不仅降低玻璃的化学稳定性,而且大幅提高了原料成本,也不利于大规模工业化生产。
发明内容
本发明的一个目的是提供一种解决以上问题中的任何一个的能作为先进复合材料增强基材的高性能玻璃纤维组合物。该玻璃纤维组合物不仅保证了玻璃纤维拥有更高的力学性能和更低的析晶温度及析晶风险,还大幅改善了玻璃的折射率,能够显著阻挡对人体有害的射线。
根据本发明的一个方面,提供一种玻璃纤维组合物,含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2014095400-appb-000001
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO大于1。
其中,重量百分比的比值C2=MgO/SrO大于2。
其中,重量百分比的比值C3=K2O/(Na2O+Li2O)的范围为0.8-1.5;重量百分比的比值C4=Li2O/Na2O的范围为1-4。
其中,所述重量百分比的比值C1=(MgO+SrO)/CaO=1.05-1.85。
其中,CeO2的重量百分含量范围为0.02-0.4%;或者CaO的重量百分含量范围为8-11%。
其中,各组分的重量百分含量表示如下:
Figure PCTCN2014095400-appb-000002
Figure PCTCN2014095400-appb-000003
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.05-1.85;
所述重量百分比的比值C2=MgO/SrO大于2。
其中,各组分的重量百分含量表示如下:
Figure PCTCN2014095400-appb-000004
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO大于1;
所述重量百分比的比值C2=MgO/SrO大于2;
所述重量百分比的比值C3=K2O/(Na2O+Li2O)为0.8-1.5;
所述重量百分比的比值C4=Li2O/Na2O为1-4。
其中,各组分的重量百分含量表示如下:
Figure PCTCN2014095400-appb-000005
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.05-1.85;
所述重量百分比的比值C2=MgO/SrO为2.05-3.0;
所述重量百分比的比值C3=K2O/(Na2O+Li2O)为0.85-1.25;
所述重量百分比的比值C4=Li2O/Na2O为1.5-3.0。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的另一个方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的玻璃纤维组合物,通过上述成分的配比和组合,实现了在拥有R玻璃级别的力学性能的同时,还大幅改善了玻璃的折射率,能够显著阻挡对人体有害的射线,并进一步降低玻璃的析晶风险和生产成本,使该玻璃纤维组合物更适于大规模池窑生产。
具体来说,根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2014095400-appb-000006
此外,进一步遵循比值C1=(MgO+SrO)/CaO大于1。
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。在本发明的玻璃纤维组合物中,限定SiO2的含量范围为58-63%,若其含量太低会影响玻璃的机械性能;若其含量太高则会使玻璃的粘度过高导致熔化、澄清困难。优选地,SiO2的含量范围可以限定为59-62%。
Al2O3也是形成玻璃骨架的氧化物,与SiO2结合时可对玻璃的机械性能起到实质性的作用,并且在阻止玻璃分相和抗水性方面起着重要作用。在本发明的玻璃纤维组合物中,限定Al2O3的含量范围为13-17%,若其含量太低会使液相线温度升高,同时使得玻璃的机械性能及抗水性变差;若其含量太高则会使玻璃的粘度过高导致熔化、澄清困难,并且增大玻璃失透的危险性。优选地,Al2O3的含量范围可以限定为14-16.5%。
本发明的玻璃纤维组合物利用了CaO、MgO和SrO的三元混合碱土效应。通常,本领域技术人员熟知CaO和MgO的二元混合碱土效应,但关于CaO、MgO和SrO的三元混合碱土 效应却鲜有报道,其中CaO+MgO+SrO总含量超过15%且SrO含量超过3%的特殊三元混合碱土效应更加没有报道。下面详细说明本发明中CaO、MgO和SrO的三元混合碱土效应以及如何选择CaO、MgO和SrO的含量。
首先,作为对比,简单介绍CaO和MgO的二元混合碱土效应。CaO主要起到调节玻璃粘度和控制玻璃析晶的作用。MgO具有类似的作用,且对提高玻璃的模量起很重要的作用。通过合理设计CaO、MgO的含量比例,利用钙长石(CaAl2Si2O8)与透辉石(CaMgSi2O6)晶体之间的竞争生长,从而延缓这两种晶体的生长,达到降低玻璃失透危险的目的。
我们经过大量实验研究表明,在合理配比的前提下,三元混合碱土效应比二元混合碱土效应更好。这是因为更多不同半径的碱土金属离子参与替代,结构更容易形成紧密堆积,从而使玻璃的力学性能、光学性能和耐腐蚀性能等方面更加优秀。对于本发明玻璃纤维组合物中加入的CaO、MgO和SrO来说,为了结构的紧密堆积,三种离子的数量级配就显得很重要。由于Mg2+、Ca2+、Sr2+的离子半径依次变大,这就需要将最小半径的离子和最大半径的离子进行很好地配合。经研究表明,在玻璃纤维组合物中引入少量SrO,通过合理调节(MgO+SrO)/CaO的比值能够有效控制玻璃的析晶倾向和速率,且一般在MgO含量相对较高的情况下,才适合引入一定量的SrO,当两者的比值MgO/SrO在合理范围时对混合碱土效应有极大的促进作用。故本申请将CaO、MgO和SrO作为控制玻璃纤维力学性能、光学性能和析晶性能的参数,以能在相应的玻璃体系中,通过设计玻璃体系中CaO、MgO和SrO的含量获得更高的力学性能、光学性能和更低的析晶温度及析晶风险。
另外,与利用二元碱土效应的传统玻璃相比,本申请中的CaO含量相对较低,这不仅可以使玻璃料性变得平缓一些,改善高性能玻璃的拉丝效率,还可以用更高含量的MgO来匹配SrO,使三元结构更加紧密。但CaO含量也不能过低,CaO含量过低会导致钙长石与透辉石晶体之间的竞争生长失去平衡,反而增加玻璃失透的危险。
此外,在本申请中,在碱土金属氧化物总含量较高的前提下,为了更有效地引入SrO,适当提高了MgO的含量,这可以显著增强两者的协同效应。对于SrO,经研究表明,在碱土金属氧化物含量高的玻璃体系中,如果将SrO的含量控制在3%以上,特别是控制在3.05-8%,在SrO和MgO的共同作用下,不仅能有效提高玻璃的折射率,还能显著阻挡对人体有害的射线,如X射线、γ射线和β射线等。优选地,SrO的含量范围可以限定为3.05-5%。更优选地,SrO的含量范围可以进一步限定为3.1-4.5%。
因此,在本申请中,综合考虑CaO、MgO和SrO的三元混合碱土效应以及选择合适的SrO的含量,以能够实现更高的力学性能和更低的析晶温度及析晶风险,以及有效提高玻璃的折射率,并能显著阻挡对人体的有害射线。在本发明的玻璃纤维组合物中,本发明限定CaO 的含量范围为6-11.8%,MgO的含量范围为7-11%,SrO的含量范围为3.05-8%,并且重量百分比的比值C1=(MgO+SrO)/CaO大于1。优选地,CaO的含量范围可以限定为8-11%。优选地,MgO的含量范围可以限定为8-10%。优选地,SrO的含量范围可以限定为3.05-5%。更优选地,SrO的含量范围可以进一步限定为3.1-4.5%。优选地,重量百分比的比值C1=(MgO+SrO)/CaO可以为1.05-1.85。
我们研究表明,从简单替换角度来说,与CaO相比,SrO更能提高玻璃的抗压强度和折射率,两者对料性的作用差异较大;与MgO相比,SrO更能提高玻璃的抗拉强度、弹性模量和折射率,两者对料性的作用差异较小。同时,考虑到离子的大小匹配性,将SrO和MgO联合与CaO进行比例控制是合适的。发明人发现,当控制C1大于1,尤其是在1.05-1.85范围时,一是玻璃的力学性能和折射率等方面的提高幅度特别显著;二是玻璃的析晶温度和析晶程度的下降幅度特别明显。发明人认为,这可能是因为该领域范围内三元碱土氧化物的堆积效果异常紧密,使玻璃结构特别稳定,从而玻璃性能得到了意想不到的提高。
关于本发明申请中充分利用CaO、MgO和SrO的共同作用,并且选择各自合适的含量范围和比例关系,所实现的具体有益效果在后面关于具体实施例的表格中通过测定的相关参数给出。
在选取CaO、MgO和SrO上述百分含量及控制比值C1的情况下,同时如果能遵循MgO和SrO的一定的比例关系,那么对于提高玻璃的折射率以及阻挡对人体有害的射线,具有更好的效果。例如,在本发明中,重量百分比的比值C2=MgO/SrO的比值可以选择大于2。优选地,重量百分比的比值C2=MgO/SrO的比值可以为2.05-3.0。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。在碱金属氧化物总量不变的情况下,用K2O替代Na2O,能降低玻璃的析晶倾向,改善纤维成型性能;还能降低玻璃液的表面张力,改善玻璃熔制性能。本发明中还引入少量Li2O,同Na2O和K2O相比,Li2O能更加显著地降低玻璃粘度,从而改善玻璃熔制性能,并且对提高玻璃的力学性能有明显帮助。但是碱金属的引入量不宜多,以避免降低玻璃的化学稳定性。因此,在本发明的玻璃纤维组合物中,限定Na2O+K2O+Li2O总含量范围为0.1-2%。其中,重量百分比的比值C3=K2O/(Na2O+Li2O)的范围可以为0.8-1.5。其中,重量百分比的比值C4=Li2O/Na2O的范围为1-4。优选地,重量百分比的比值C3=K2O/(Na2O+Li2O)的范围可以为0.85-1.25。其中,重量百分比的比值C4=Li2O/Na2O的范围为1.5-3.0。
Fe2O3的引入有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的含量范围为0.1-1%。
CeO2不仅可以起到良好的澄清作用且无毒,还可以将部分二价亚铁离子氧化成三价铁离子,使玻璃纤维的绿色变浅。现有技术中,高性能玻璃难于澄清、均化,因此为了保证玻璃液的澄清和均化质量,在本发明的玻璃纤维组合物中可加入适量的CeO2,且CeO2的含量范围为0-1%。优选地,CeO2的重量百分含量范围可以为0.02-0.4%。
TiO2不仅可以降低高温时的玻璃粘度,还具有一定的助熔作用。因此,本发明的玻璃纤维组合物中加入TiO2,且限定TiO2的含量范围0-2%。优选地,TiO2的重量百分含量范围可以为0.1-1.5%。
此外,根据本发明的玻璃纤维组合物中还允许含有少量的氟,不过鉴于氟对环境的负面影响较大,一般不主动添加。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果在后面会通过实验数据具体说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一:
根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2014095400-appb-000007
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.05-1.85;
所述重量百分比的比值C2=MgO/SrO大于2。
优选示例二:
根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2014095400-appb-000008
Figure PCTCN2014095400-appb-000009
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO大于1;
所述重量百分比的比值C2=MgO/SrO大于2;
所述重量百分比的比值C3=K2O/(Na2O+Li2O)为0.8-1.5;
所述重量百分比的比值C4=Li2O/Na2O为1-4。
优选示例三:
根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2014095400-appb-000010
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.05-1.85;
所述重量百分比的比值C2=MgO/SrO为2.05-3.0;
所述重量百分比的比值C3=K2O/(Na2O+Li2O)为0.85-1.25;
所述重量百分比的比值C4=Li2O/Na2O为1.5-3.0。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,通过充分利用CaO、MgO和SrO的共同作用,并且选择各自合适的含量范围和比例关系,并调整所加入的微量元素的配比,以形成的玻璃纤维有效提高玻璃的折射率,显著阻挡对人体有害的射线。
根据上述的具体实施方式,选取本发明的玻璃纤维组合物中SiO2、Al2O3、CaO、MgO、SrO、Na2O、K2O、Fe2O3、Li2O、CeO2、TiO2的具体含量值作为实施例,与传统E玻璃与传统R玻璃的性能参数进行对比。在进行性能对比时,选用五个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示可能拉丝成型的温度范围。
(4)单丝强度,玻璃纤维原丝单位细度能承受的拉伸力。
(5)折射率,光在空气中的速度与光在玻璃中的速度之比率。
上述五个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面给出根据本发明的玻璃纤维组合物的具体实施例。
实施例一
一种玻璃纤维组合物,其中,该玻璃纤维组合物包含下述组分,各组分的含量以及重量百分比为:
Figure PCTCN2014095400-appb-000011
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.06,重量百分比的比值C2=MgO/SrO为2.08,重量百分比的比值C3=K2O/(Na2O+Li2O)为1.0。
在实施例一中测定的五个参数的数值分别是:
Figure PCTCN2014095400-appb-000012
实施例二
一种玻璃纤维组合物,其中,该玻璃纤维组合物包含下述组分,各组分的含量以及重量百分比为:
Figure PCTCN2014095400-appb-000013
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.65,重量百分比的比值C2=MgO/SrO为2.50,重量百分比的比值C3=K2O/(Na2O+Li2O)为0.84。
在实施例二中测定的五个参数的数值分别是:
Figure PCTCN2014095400-appb-000014
实施例三
一种玻璃纤维组合物,其中,该玻璃纤维组合物包含下述组分,各组分的含量以及重量百分比为:
Figure PCTCN2014095400-appb-000015
Figure PCTCN2014095400-appb-000016
并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.18,重量百分比的比值C2=MgO/SrO为3.0,重量百分比的比值C3=K2O/(Na2O+Li2O)为0.85。
在实施例三中测定的五个参数的数值分别是:
Figure PCTCN2014095400-appb-000017
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的上述实施例以及其他实施例与传统E玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1
Figure PCTCN2014095400-appb-000018
表2
Figure PCTCN2014095400-appb-000019
由上述表中的具体数值可知,与传统R玻璃相比,本发明的玻璃纤维组合物具有低得多的成型温度和液相线温度,这有利于降低能耗和提高纤维的拉丝效率;而且本发明具有较高的玻璃折射率;同时本发明的单丝强度与R玻璃纤维相当。改良R玻璃的成型温度大幅下降,但是析晶温度依然很高,析晶风险大,且成型窗口范围很小,进行规模化生产的效率很低,同时玻璃折射率与传统R玻璃类似。与改良R玻璃相比,本发明的玻璃纤维组合物具有低得多的液相线温度和宽得多的成型窗口范围,玻璃折射率有较大幅度的提高,同时单丝强度也略高。与传统E玻璃相比,本发明的玻璃纤维组合物拥有高得多的单丝强度。特别地,本发 明的玻璃纤维组合物在R级别玻璃的熔制改良方面也取得了突破性的进展,同等条件下的气泡数量大幅下降,而且整体技术方案比传统R玻璃及改良R玻璃纤维的性价比更高,易于实现大规模工业化生产。
本发明通过合理设计CaO、MgO和SrO之间的比例关系,并使得SrO在3%以上,不仅保证了玻璃纤维拥有更高的力学性能和更低的析晶温度及析晶风险,以及有效提高玻璃的折射率,并能显著阻挡对人体的有害射线。同时,还大幅改善了玻璃的熔制效果和纤维成型效率,使其熔化温度和拉丝温度显著低于传统R玻璃,并进一步降低玻璃的气泡数量、粘度及析晶风险。因此,本发明的玻璃纤维组合物更适于大规模池窑生产。
由根据本发明的玻璃纤维组合物可以制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明的玻璃纤维组合物不仅保证了玻璃纤维拥有更高的力学性能和更低的析晶温度及析晶风险,还大幅改善了玻璃的折射率,能够显著阻挡对人体有害的射线。同时,还大幅改善了玻璃的熔制效果和纤维成型效率,使其熔化温度和拉丝温度显著低于传统R玻璃,并进一步降低玻璃的气泡数量、粘度及析晶风险。因此,本发明的玻璃纤维组合物更适于大规模池窑生产。由根据本发明的玻璃纤维组合物可以制成具有上述优良性能的玻璃纤维。根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。

Claims (10)

  1. 一种玻璃纤维组合物,其特征在于,含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2014095400-appb-100001
    并且,所述重量百分比的比值C1=(MgO+SrO)/CaO大于1。
  2. 根据权利要求1所述的玻璃纤维组合物,其特征在于,重量百分比的比值C2=MgO/SrO大于2。
  3. 根据权利要求1或2所述的玻璃纤维组合物,其特征在于,重量百分比的比值C3=K2O/(Na2O+Li2O)的范围为0.8-1.5;重量百分比的比值C4=Li2O/Na2O的范围为1-4。
  4. 根据权利要求1或2所述的玻璃纤维组合物,其特征在于,所述重量百分比的比值C1=(MgO+SrO)/CaO=1.05-1.85。
  5. 根据权利要求1或2所述的玻璃纤维组合物,其特征在于,CeO2的重量百分含量范围为0.02-0.4%;或者CaO的重量百分含量范围为8-11%。
  6. 根据权利要求1所述的玻璃纤维组合物,其特征在于,含有下述组分,各组分的重量百分含量表示如下:
    Figure PCTCN2014095400-appb-100002
    并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.05-1.85;
    所述重量百分比的比值C2=MgO/SrO大于2。
  7. 根据权利要求1所述的玻璃纤维组合物,其特征在于,含有下述组分,各组分的重量百分含量表示如下:
    Figure PCTCN2014095400-appb-100003
    并且,所述重量百分比的比值C1=(MgO+SrO)/CaO大于1;
    所述重量百分比的比值C2=MgO/SrO大于2;
    所述重量百分比的比值C3=K2O/(Na2O+Li2O)为0.8-1.5;
    所述重量百分比的比值C4=Li2O/Na2O为1-4。
  8. 根据权利要求1所述的玻璃纤维组合物,其特征在于,含有下述组分,各组分的重量百分含量表示如下:
    Figure PCTCN2014095400-appb-100004
    并且,所述重量百分比的比值C1=(MgO+SrO)/CaO为1.05-1.85;
    所述重量百分比的比值C2=MgO/SrO为2.05-3.0;
    所述重量百分比的比值C3=K2O/(Na2O+Li2O)为0.85-1.25;
    所述重量百分比的比值C4=Li2O/Na2O为1.5-3.0。
  9. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-9中任一项所述的玻璃纤 维组合物制成。
  10. 一种复合材料,其特征在于,所述复合材料包括如权利要求9所述的玻璃纤维。
PCT/CN2014/095400 2014-09-22 2014-12-29 一种玻璃纤维组合物及其玻璃纤维和复合材料 WO2016045221A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112017005497-3A BR112017005497B1 (pt) 2014-09-22 2014-12-29 Composição de fibra de vidro, fibra de vidro e material compósito a partir dela
CA2961675A CA2961675C (en) 2014-09-22 2014-12-29 Glass fiber composition, glass fiber and composite material therefrom
DK14902825.0T DK3181530T3 (da) 2014-09-22 2014-12-29 Fiberglaskomposit, glasfiber af denne og kompositmateriale heraf
JP2017516767A JP6408699B2 (ja) 2014-09-22 2014-12-29 ガラス繊維組成物及びガラス繊維、並びに複合材料
ES14902825T ES2725905T3 (es) 2014-09-22 2014-12-29 Composite de fibra de vidrio, fibra de vidrio asociada y material composite de la misma
KR1020177010444A KR101960367B1 (ko) 2014-09-22 2014-12-29 유리섬유 조성물 및 그 유리섬유 및 복합재료
EP14902825.0A EP3181530B1 (en) 2014-09-22 2014-12-29 Fiberglass composite, glass fiber of same, and composite material thereof
US15/511,585 US10351465B2 (en) 2014-09-22 2014-12-29 Glass fiber composition, glass fiber and composite material therefrom
PL14902825T PL3181530T3 (pl) 2014-09-22 2014-12-29 Kompozyt włókna szklanego, czyste włókno szklane i materiał kompozytowy z obu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410486801.3 2014-09-22
CN201410486801.3A CN104743887B (zh) 2014-09-22 2014-09-22 一种玻璃纤维组合物及其玻璃纤维和复合材料

Publications (1)

Publication Number Publication Date
WO2016045221A1 true WO2016045221A1 (zh) 2016-03-31

Family

ID=53584257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095400 WO2016045221A1 (zh) 2014-09-22 2014-12-29 一种玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (12)

Country Link
US (1) US10351465B2 (zh)
EP (1) EP3181530B1 (zh)
JP (1) JP6408699B2 (zh)
KR (1) KR101960367B1 (zh)
CN (1) CN104743887B (zh)
BR (1) BR112017005497B1 (zh)
CA (1) CA2961675C (zh)
DK (1) DK3181530T3 (zh)
ES (1) ES2725905T3 (zh)
PL (1) PL3181530T3 (zh)
TR (1) TR201902604T4 (zh)
WO (1) WO2016045221A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6857601B2 (ja) 2014-09-09 2021-04-14 エレクトリック グラス ファイバー アメリカ, エルエルシー ガラス組成物、線維化可能ガラス組成物、およびそれらから形成されるガラス繊維
CN106938891A (zh) * 2015-04-21 2017-07-11 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105731814B (zh) 2016-02-29 2019-01-01 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105693100B (zh) * 2016-03-15 2018-06-26 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN109928641B (zh) 2017-12-19 2022-11-15 欧文斯科宁知识产权资产有限公司 高性能玻璃纤维组合物
MX2021005663A (es) 2018-11-26 2021-07-07 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo especifico mejorado.
DK3887329T3 (da) 2018-11-26 2024-04-29 Owens Corning Intellectual Capital Llc Højydelsesglasfibersammensætning med forbedret elasticitetskoefficient
WO2022010829A1 (en) * 2020-07-07 2022-01-13 Owens Corning Intellectual Capital, Llc Fiberglass delivery system to aid seed germination and nutrition in agricultural crop or plant growth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199364A (en) * 1978-11-06 1980-04-22 Ppg Industries, Inc. Glass composition
CN101687692A (zh) * 2007-06-18 2010-03-31 日本板硝子株式会社 玻璃组合物
CN101838110A (zh) * 2010-05-19 2010-09-22 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
JP2011162415A (ja) * 2010-02-12 2011-08-25 Nippon Sheet Glass Co Ltd ガラス組成物及びその用途
CN102482142A (zh) * 2009-08-04 2012-05-30 Ocv智识资本有限责任公司 改善了模量的不含锂玻璃

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892581A (en) 1973-09-10 1975-07-01 Ppg Industries Inc Glass fiber compositions
DE19939789A1 (de) * 1999-08-21 2001-02-22 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
US6858553B2 (en) * 2000-10-03 2005-02-22 Nippon Sheet Glass Co., Ltd. Glass composition
US6809050B1 (en) * 2000-10-31 2004-10-26 Owens Corning Fiberglas Technology, Inc. High temperature glass fibers
ES2384208T3 (es) * 2001-11-01 2012-07-02 Spectrum Pharmaceuticals, Inc. Composiciones medicinales para el tratatamiento intravesical del cáncer de vejiga.
FR2856055B1 (fr) 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
DE10346197B4 (de) * 2003-09-30 2006-02-16 Schott Ag Glaskeramik, Verfahren zur Herstellung einer solchen und Verwendung
JP4777622B2 (ja) 2004-07-09 2011-09-21 旭ファイバーグラス株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形品
FR2879591B1 (fr) 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7823417B2 (en) * 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US7799713B2 (en) * 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US20100016052A1 (en) * 2006-10-11 2010-01-21 Wms Gaming Inc. Location-linked audio/video
CN101691278A (zh) 2009-10-16 2010-04-07 巨石集团有限公司 能作为先进复合材料增强基材的玻璃纤维
JPWO2012108345A1 (ja) * 2011-02-08 2014-07-03 旭硝子株式会社 ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
JP2013121905A (ja) * 2011-03-03 2013-06-20 Nippon Electric Glass Co Ltd 樹脂複合体基板用ガラス
JP2014527299A (ja) 2011-08-04 2014-10-09 コーニング インコーポレイテッド 光電池モジュールパッケージ
TWI691097B (zh) 2011-08-04 2020-04-11 康寧公司 光伏模組
CN104743888B (zh) 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN106938891A (zh) * 2015-04-21 2017-07-11 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199364A (en) * 1978-11-06 1980-04-22 Ppg Industries, Inc. Glass composition
CN101687692A (zh) * 2007-06-18 2010-03-31 日本板硝子株式会社 玻璃组合物
CN102482142A (zh) * 2009-08-04 2012-05-30 Ocv智识资本有限责任公司 改善了模量的不含锂玻璃
JP2011162415A (ja) * 2010-02-12 2011-08-25 Nippon Sheet Glass Co Ltd ガラス組成物及びその用途
CN101838110A (zh) * 2010-05-19 2010-09-22 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3181530A4 *

Also Published As

Publication number Publication date
JP2017529307A (ja) 2017-10-05
CA2961675C (en) 2019-02-12
DK3181530T3 (da) 2019-05-13
EP3181530A4 (en) 2018-04-18
BR112017005497A2 (zh) 2018-08-14
JP6408699B2 (ja) 2018-10-17
US20180230039A1 (en) 2018-08-16
EP3181530B1 (en) 2019-02-20
ES2725905T3 (es) 2019-09-30
CN104743887B (zh) 2016-03-23
TR201902604T4 (tr) 2019-03-21
BR112017005497B1 (pt) 2021-10-26
EP3181530A1 (en) 2017-06-21
PL3181530T3 (pl) 2019-10-31
US10351465B2 (en) 2019-07-16
KR20170057370A (ko) 2017-05-24
CA2961675A1 (en) 2016-03-31
CN104743887A (zh) 2015-07-01
KR101960367B1 (ko) 2019-03-20

Similar Documents

Publication Publication Date Title
WO2016045221A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045222A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2017190405A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
ES2871147T3 (es) Composición de fibra de vidrio sin boro, y fibra de vidrio y material compuesto de la misma
CN105819698B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165532A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
ES2828726T3 (es) Composición de fibra de vidrio de alto rendimiento, fibra de vidrio de la misma, y material compuesto
DK3093276T3 (en) GLASS FIBER COMPOSITION AND GLASS FIBER AND COMPOSITION MATERIALS THEREOF
CN107531552B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2019100782A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
TWI392658B (zh) Glass fiber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511585

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2961675

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014902825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017516767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177010444

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005497

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017005497

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170317