WO2017190405A1 - 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种高模量玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2017190405A1
WO2017190405A1 PCT/CN2016/086022 CN2016086022W WO2017190405A1 WO 2017190405 A1 WO2017190405 A1 WO 2017190405A1 CN 2016086022 W CN2016086022 W CN 2016086022W WO 2017190405 A1 WO2017190405 A1 WO 2017190405A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight percentage
glass
ratio
glass fiber
cao
Prior art date
Application number
PCT/CN2016/086022
Other languages
English (en)
French (fr)
Inventor
章林
曹国荣
邢文忠
张毓强
顾桂江
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112018000203-8A priority Critical patent/BR112018000203B1/pt
Priority to ES16900927T priority patent/ES2773984T3/es
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to EP16900927.1A priority patent/EP3354628B1/en
Priority to DK16900927.1T priority patent/DK3354628T3/da
Priority to RU2017145115A priority patent/RU2017145115A/ru
Priority to PL16900927T priority patent/PL3354628T3/pl
Priority to KR1020177036922A priority patent/KR102034946B1/ko
Priority to SI201630605T priority patent/SI3354628T1/sl
Priority to MX2018000065A priority patent/MX2018000065A/es
Priority to AU2016405716A priority patent/AU2016405716B2/en
Priority to US15/739,110 priority patent/US10329189B2/en
Priority to MA41723A priority patent/MA41723B1/fr
Priority to JP2017566822A priority patent/JP6499329B2/ja
Priority to CA2990296A priority patent/CA2990296C/en
Publication of WO2017190405A1 publication Critical patent/WO2017190405A1/zh
Priority to ZA2017/08765A priority patent/ZA201708765B/en
Priority to SA518390680A priority patent/SA518390680B1/ar
Priority to HRP20200157TT priority patent/HRP20200157T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Definitions

  • the present invention relates to a high modulus glass fiber composition, and more particularly to a high modulus glass fiber composition capable of reinforcing a substrate as an advanced composite material, and glass fibers and composite materials thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high modulus glass fiber was originally used in the fields of defense, military and other defense industries. With the advancement of technology and economic development, high modulus glass fiber has been widely used in civil industry such as wind blades, high pressure vessels, marine pipelines, and automobile manufacturing.
  • the earliest high-modulus glass component is mainly composed of MgO-Al 2 O 3 -SiO 2 system.
  • the typical scheme is S-2 glass developed by American OC Company.
  • the modulus is 89-90 GPa, but its production is too difficult.
  • the glass fiber molding temperature is as high as 1571 ° C, and the liquidus temperature is as high as 1470 ° C. It is difficult to achieve large-scale pool kiln production. Therefore, OC Company voluntarily gave up the production of S-2 fiberglass and transferred its patent rights to AGY Company of the United States.
  • OC also developed HiPer-tex glass with a modulus of 87-89 GPa, which is a compromise strategy at the expense of some glass properties to reduce production difficulty, but since the design is only a simple improvement of S-2 glass, The glass fiber forming temperature and liquidus temperature are still high, and the production difficulty is still very large, and it is difficult to realize large-scale pool kiln production. Therefore, OC also abandoned the production of HiPer-tex fiberglass and transferred its patent to European 3B.
  • France Saint-Gobain has developed an R glass based on the MgO-CaO-Al 2 O 3 -SiO 2 system with a modulus of 86-89 GPa.
  • the traditional R glass has a high total content of silicon and aluminum, and lacks an effective solution to improve the crystallization performance of the glass.
  • the ratio of calcium to magnesium is also unreasonable, resulting in difficulty in forming glass and high risk of crystallization, and the surface tension of the glass is large and difficult to clarify.
  • High, its glass fiber molding temperature reaches 1410 ° C, and the liquidus temperature reaches 1350 ° C, which all cause difficulties in the efficient drawing of glass fiber, and it is also difficult to achieve large-scale pool kiln production.
  • Nanjing Glass Fiber Research and Design Institute has developed a kind of HS2 glass with a modulus of 84-87GPa. Its main components also include SiO 2 , Al 2 O 3 and MgO, and also introduce some Li 2 O and B 2 O 3 .
  • an object of the present invention is to provide a high modulus glass fiber composition which can greatly increase the elastic modulus of glass, and on the basis of this, overcomes the high risk of crystallization of conventional high modulus glass and clarifies It is difficult to carry out the problem of high-efficiency pool kiln production. Under the same conditions, the liquidus temperature, crystallization rate and bubble rate of glass can be significantly reduced, which is especially suitable for high-modulus glass fiber with low bubble rate in pool kiln production. .
  • a high modulus glass fiber composition comprising the following components, the content of each component being expressed by weight percentage as follows:
  • the content of La 2 O 3 +CeO 2 is further limited, and is 0.1 to 2% by weight.
  • the ratio of the further defined weight percentage C2 SiO 2 /CaO ranges from 5.8 to 9.3.
  • the content of Li 2 O is further limited to be 0.05 to 0.55% by weight.
  • the content of Y 2 O 3 is further limited, expressed as 0.5-3.9% by weight.
  • the ratio C1 Y 2 O 3 /(Y 2 O 3 +La 2 O 3 ) which further defines the weight percentage ranges from 0.75 to 0.97.
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the content of La 2 O 3 is further limited to be 0.05 to 1.2% by weight.
  • the content of CeO 2 is further limited, and is 0.05 to 1% by weight.
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the content of CaO is further limited, and is represented by 8-9.3% by weight.
  • Li 2 O+Na 2 O+K 2 O is further defined, expressed as 0.4-0.94% by weight.
  • the content of Na 2 O+K 2 O is further limited, and is represented by 0.15 to 0.55% by weight.
  • the content of Y 2 O 3 is further limited, expressed as a percentage by weight of 1.3 to 3.9%.
  • the content of Y 2 O 3 +La 2 O 3 +CeO 2 is further limited, and is represented by 1.4 to 4.2% by weight.
  • the high modulus glass fiber composition further contains B 2 O 3 in an amount of from 0 to 3% by weight.
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the main innovation is the introduction of various rare earth oxides Y 2 O 3 , La 2 O 3 and CeO 2 , utilizing the mixed rare earth effect generated therebetween, and controlling Y 2 reasonably.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components.
  • the weight percentage of SiO 2 is limited to range from 55.7 to 58.9%.
  • the weight percentage of SiO 2 can be defined to range from 56.5 to 58.9%.
  • Al 2 O 3 is also an oxide forming a glass skeleton, and when combined with SiO 2 , it can exert a substantial effect on the mechanical properties of the glass.
  • the content of Al 2 O 3 is limited to 15-19.9% by weight, and if it is low in content, high enough mechanical properties of the glass cannot be obtained; if the content is too high, the glass is made. Too high a viscosity results in difficulty in melting and clarification.
  • the weight percentage of Al 2 O 3 may be defined to range from 16 to 19.5%. More preferably, the weight percentage of Al 2 O 3 may be defined to be in the range of 16.7-19.3%.
  • Y 2 O 3 is an important rare earth oxide, and the inventors have found that it is particularly effective in increasing the glass modulus and also has a good effect in suppressing glass crystallization.
  • Y 3+ is difficult to enter the glass network. It is generally used as an external ion in the network space. It has high coordination number, high field strength, high charge and strong accumulation ability. It can capture free oxygen to fill network defects and improve the stability of the glass structure. Sex, increase the glass modulus, and at the same time effectively prevent the movement of other ions, to reduce the tendency of glass crystallization.
  • the inventors have found that when the content of cerium oxide exceeds 4.3%, the effect of increasing the amount of the mechanical properties is not obvious, but the glass density is still significantly increased, thereby limiting the increase in specific modulus and specific strength. Under the conditions, it will even decrease, which is not conducive to the lightweight of glass fiber.
  • La 2 O 3 is also an important rare earth oxide, and the inventors have found that when it is used alone, the effect in increasing the glass modulus and suppressing glass crystallization is significantly weaker than Y 2 O 3 .
  • the synergistic effect of the two is remarkable, and it is superior to Y 2 O 3 or La 2 O alone in improving the glass modulus and suppressing glass crystallization. 3 , got an unexpected effect.
  • the cerium ions are generally in a six-coordinate structure, and the cerium ions are generally It is in an eight-coordinate structure. Therefore, when two rare earth oxides are used in combination and the ratios thereof are reasonably controlled, the first aspect can provide a richer network external ion coordination structure, and the hexagonal structure of the europium ion is dominant. Combining the eight-coordinate structure of cerium ions is beneficial to improve the stability of the glass structure and increase the glass modulus. In the second aspect, cerium oxide can increase the amount of free oxygen and promote the conversion of more [AlO 6 ] to [AlO 4 ].
  • a plurality of ions are mutually pinned, and when the temperature is lowered, the probability of regular arrangement of ions is also reduced, which is advantageous for significantly reducing the growth rate of the crystal, thereby Further improve the anti-crystallization ability of the glass.
  • the amount of ruthenium introduced should not be too much.
  • CeO 2 is an important rare earth glass clarifying agent.
  • the inventors found that the introduction of a small amount of CeO 2 under the premise of replacing some cerium oxide or cerium oxide has a significant positive effect on increasing the glass modulus and inhibiting glass crystallization, especially This effect is more remarkable when the above three rare earth oxides are used at the same time and the ratio between them is reasonably controlled.
  • CeO 2 can provide more free oxygen to the network to fill the network defects; on the other hand, the mixed use of three different ionic radii and field strength rare earth ions can improve the tight packing of the structure, not only It can further enhance the integrity of the glass structure, improve the performance of the glass, and further strengthen the mutual pinning between the ions to improve the anti-crystallization ability of the glass.
  • the content of Y 2 O 3 is limited to a content ranging from 0.1 to 4.3% by weight.
  • the content of Y 2 O 3 can be defined as a weight percentage ranging from 1.3 to 3.9%.
  • the weight percentage of the defined La 2 O 3 is in the range of 1.5% or less.
  • the weight percentage of La 2 O 3 can be defined to range from 0.05 to 1.2%.
  • the content by weight of CeO 2 is limited to 1.2% or less.
  • the CeO 2 content may be limited to a weight percentage ranging from 0.05 to 1%.
  • the content of La 2 O 3 +CeO 2 may be limited to a content ranging from 0.1 to 2% by weight.
  • CaO, MgO and SrO mainly control the crystallization of glass and adjust the viscosity and material properties of the glass. Especially in controlling the crystallization of glass, the inventors obtained unexpected effects by controlling their introduction amount and proportional relationship.
  • high-performance glass mainly composed of MgO-CaO-Al 2 O 3 -SiO 2 system
  • the crystal phase contained in the glass after crystallization is mainly composed of diopside (CaMgSi 2 O 6 ) and anorthite ( CaAl 2 Si 2 O 8 ).
  • the mixed alkaline soil is utilized.
  • the effect forms a tighter packing structure, which requires more energy to form and grow the nucleus, thereby achieving the purpose of suppressing the tendency of the glass to devitrify, and at the same time effectively improving the glass frit.
  • the inventors have found that compared with the conventional R glass and the modified R glass, the content of MgO is greatly increased in the present invention, and when the MgO content is precisely defined at 9.05-9.95%, the ratio of MgO/(CaO+SrO) is reasonably controlled. At 0.9-1.6, higher glass modulus and lower crystallization temperature and rate can be obtained.
  • the inventors have also found that due to the high MgO content in the present invention, the growth dynamics of diopside in the two crystallized crystals are relatively strong, and the growth of anorthite can be effectively adjusted by further rationally controlling the ratio of SiO 2 /CaO, thereby The purpose of effectively suppressing the tendency of the glass to devitrify is achieved.
  • the weight percentage of MgO is limited to range from 9.05 to 9.95%.
  • the weight percentage of the defined CaO ranges from 6 to 10%.
  • the weight percentage of CaO can be defined as 6.8-9.3%.
  • the weight percentage of CaO may be limited to range from 8 to 9.3%. Further, the weight percentage of SrO can be limited to a range of 2% or less.
  • the ratio C3 MgO/(CaO+SrO) which can be defined as a weight percentage ranges from 0.9 to 1.6.
  • Both K 2 O and Na 2 O reduce the viscosity of the glass and are good fluxing agents.
  • the inventors have found that replacing K 2 O with Na 2 O in the case where the total amount of alkali metal oxide is constant can lower the crystallization tendency of the glass and improve the fiber forming property.
  • Li 2 O not only can significantly reduce the viscosity of the glass, thereby improving the glass melting performance, and is obviously helpful for improving the mechanical properties of the glass.
  • a small amount of Li 2 O can provide considerable free oxygen, which is beneficial to the formation of tetrahedral coordination of more aluminum ions, enhance the network structure of the glass system, and further reduce the crystallization ability of the glass.
  • the content by weight of Li 2 O+Na 2 O+K 2 O is limited to be less than or equal to 0.99%.
  • the weight percentage of the defined Li 2 O is in the range of 0.65% or less.
  • the content of Li 2 O+Na 2 O+K 2 O may be limited to a content ranging from 0.4 to 0.94% by weight.
  • the weight percentage of Li 2 O can be defined to range from 0.05 to 0.55%.
  • the weight percentage of Na 2 O+K 2 O can be defined to range from 0.15 to 0.55%.
  • Fe 2 O 3 is advantageous for the melting of glass and also for improving the crystallization properties of glass. However, since iron ions and ferrous ions have a coloring effect, the amount of introduction is not preferable. Thus, in the glass fiber composition of the present invention, the weight percentage of Fe 2 O 3 is limited to less than 1%.
  • TiO 2 not only reduces the viscosity of the glass at high temperatures, but also has a certain fluxing effect. However, titanium ions have a certain coloring effect. Therefore, in the glass fiber composition of the present invention, the content of TiO 2 is limited to a content ranging from 0.1 to 1.5% by weight. Preferably, the weight percentage of TiO 2 can be defined to range from 0.1 to 1%.
  • an appropriate amount of B 2 O 3 may be selectively introduced to further improve the crystallization tendency of the glass. Further, in the glass fiber composition of the present invention, it is further possible to define a B 2 O 3 content by weight in the range of 0 to 3%.
  • the glass fiber composition of the present invention is also allowed to contain a small amount of other components, and the total weight percentage is generally not More than 2%.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of weight percentage C3 MgO / (CaO + SrO) ranges from 0.9 to 1.6.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1.05 to 1.4.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the high modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C3 MgO / (CaO + SrO) ranges from 1 to 1.5.
  • the basic idea of the present invention is that the content of each component of the glass fiber composition is expressed by weight percentage: SiO 2 is 55.7-58.9%, Al 2 O 3 is 15-19.9%, and Y 2 O 3 is 0.1-4.3%.
  • the composition can greatly increase the elastic modulus of the glass, and on the basis of the above, overcomes the problem of high risk of crystallization of conventional high modulus glass, difficulty in clarification, difficulty in high efficiency kiln production, and significant reduction of high modulus glass.
  • the liquidus temperature and molding temperature under the same conditions, greatly reduce the crystallization rate and bubble ratio of the glass, and are particularly suitable for the production of high modulus glass fibers with low bubble ratio in the kiln.
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • the temperature of the crystallization peak which corresponds to the temperature of the strongest peak of glass crystallization during the DTA test.
  • the higher the temperature the more energy is required to grow the crystal nucleus, and the crystallization tendency of the glass is smaller.
  • the modulus of elasticity which is the modulus of elasticity along the machine direction, characterizes the ability of the glass to resist elastic deformation and is tested in accordance with ASTM 2343.
  • the number of bubbles wherein the approximate method of measuring the number of bubbles is: using a special mold to press each sample batch into a sample of the same shape, placed in a sample platform of a high temperature microscope, and then programmed to a set space temperature. At 1500 ° C, the glass samples were cooled to room temperature with the furnace; then, the number of bubbles of each glass sample was observed from a microscopic angle by a polarizing microscope. Among them, the number of bubbles is based on the imaging range of the microscope.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid
  • the glass fiber is formed by the leaking nozzle on the drain plate being pulled out, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a yarn group.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • the content of the glass fiber composition is expressed by weight percentage. It should be noted that if the total content of the components of the examples is slightly less than 100%, it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages as compared with S glass and conventional R glass: (1) has a much higher modulus of elasticity; (2) has a much lower Liquidus temperature, which is beneficial to reduce the crystallization risk of the glass and improve the drawing efficiency of the fiber; has a much higher crystallization peak temperature, which indicates that the glass is in the crystallization process
  • the formation and growth of the nucleus requires more energy, that is, the crystallization rate of the glass of the present invention is smaller under the same conditions; (3) the number of bubbles is greatly reduced, which indicates that the clarification effect of the glass is particularly excellent.
  • both S glass and conventional R glass cannot achieve pool kiln production.
  • Improved R glass reduces the liquidus temperature and molding temperature by sacrificing part of the performance to reduce the production difficulty and realize the kiln kiln production.
  • the composition of the present invention not only has a sufficiently low liquidus temperature and a smaller crystallization rate, but can also perform kiln kiln production, while also achieving a substantial increase in glass modulus, breaking the S-class and The modulus level of R-grade glass fiber cannot be technically bottlenecked by the simultaneous increase in production scale.
  • the glass fiber composition of the present invention has made a breakthrough in elastic modulus, crystallization performance and glass clarification compared with the current mainstream high modulus glass, and the elastic modulus of the glass under the same conditions is large.
  • the risk of upgrading and crystallization is greatly reduced, and the number of bubbles is greatly reduced.
  • the overall technical solution is particularly suitable for the production of high modulus glass fibers with low bubble ratio in the kiln.
  • a glass fiber composition containing three rare earth elements at the same time has an exceptionally outstanding advantage compared to a glass fiber composition containing cerium oxide alone (Example A11): (a) has a much higher crystallization peak temperature, This indicates that the formation and growth of the nucleus of the glass requires more energy during the crystallization process, that is to say, the crystallization rate of the glass of the invention is smaller under the same conditions; the lower the liquidus temperature, which is advantageous for lowering The risk of crystallization of the glass, the improvement of the drawing efficiency of the fiber; (b) the higher modulus of elasticity; and (c) the large decrease in the number of bubbles, indicating that the clarifying effect of the glass is particularly excellent.
  • the crystallization peak temperature of A9 is increased by 14 ° C
  • the liquidus temperature is lowered by 12 ° C
  • the elastic modulus is increased by 2.5 GPa
  • the number of bubbles is reduced by 75%
  • various performance indexes are improved. Very significant, with unintended technical effects.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the composition of the invention not only has a sufficiently low liquidus temperature and a smaller crystallization rate, but can also perform kiln kiln production, and at the same time, achieves a substantial increase in glass modulus, breaking the mold of S-class and R-grade glass fibers.
  • the technical bottleneck that the quantity level cannot be increased synchronously with the production scale, the glass fiber composition of the present invention has made a breakthrough in elastic modulus, crystallization performance and glass clarification compared with the current mainstream high modulus glass, and the same Under the condition, the elastic modulus of the glass is greatly increased, the risk of crystallization is greatly reduced, and the number of bubbles is greatly reduced.
  • the overall technical solution is particularly suitable for the production of high modulus glass fibers with low bubble ratio in the kiln.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

一种高模量玻璃纤维组合物及其玻璃纤维和复合材料。其中,玻璃纤维组合物各组分的含量以重量百分比表示如下:SiO 2为55.7-58.9%,Al 2O 3为15-19.9%,Y 2O 3为0.1-4.3%,La 2O 3为小于等于1.5%,CeO 2为小于等于1.2%,CaO为6-10%,MgO为9.05-9.95%,SrO为小于等于2%,Li 2O+Na 2O+K 2O为小于等于0.99%,Li 2O为小于等于0.65%,Fe 2O 3为小于1%,TiO 2为0.1-1.5%,重量百分比的比值C1=Y 2O 3/(Y 2O 3+La 2O 3+CeO 2)的范围为大于0.6。该组合物能大幅提高玻璃的弹性模量,还能显著降低玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率和气泡率,特别适合用于池窑化生产低气泡率的高模量玻璃纤维。

Description

一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2016年06月07日提交中国专利局、申请号为201610403705.7、发明名称为“一种高模量玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高模量玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高模量玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高模量玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高模量玻璃纤维在风力叶片、高压容器、海洋管道、汽车制造等民用工业领域得到了广泛应用。
最早的高模量玻璃成分以MgO-Al2O3-SiO2系统为主体,典型方案如美国OC公司开发的S-2玻璃,模量在89-90GPa,但是它的生产难度过大,其玻纤成型温度高达1571℃,液相线温度高达1470℃,难于实现大规模池窑化生产。因此,OC公司主动放弃了生产S-2玻璃纤维,将其专利权转让给了美国AGY公司。
随后,OC公司还开发了HiPer-tex玻璃,模量在87-89GPa,这是一种以牺牲部分玻璃性能以降低生产难度的折衷策略,不过由于设计方案只是对S-2玻璃的简单改进,造成玻纤成型温度和液相线温度依然很高,生产难度还是很大,难于实现大规模池窑化生产。因此,OC公司也放弃了生产HiPer-tex玻璃纤维,将其专利权转让给了欧洲3B公司。
法国圣戈班公司开发过一种以MgO-CaO-Al2O3-SiO2系统为主体的R玻璃,模量在86-89GPa。但是传统R玻璃的硅铝总含量较高,又缺乏改善玻璃析晶性能的有效方案,钙镁比例也不合理,造成玻璃成型困难、析晶风险高,同时玻璃液的表面张力大、澄清难度高,其玻纤成型温度达到1410℃,液相线温度达到1350℃,这都造成玻璃纤维高效拉制上的困难,同样难于实现大规模池窑化生产。
在国内,南京玻璃纤维研究设计院开发过一种HS2玻璃,模量在84-87GPa,其主要成分 也包括SiO2、Al2O3、MgO,同时还引入部分Li2O、B2O3、CeO2和Fe2O3,它的成型温度只有1245℃,液相线温度为1320℃,两者的温度均比S玻璃低得多,但其成型温度比液相线温度低△T值为负,极不利于玻璃纤维的高效拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模池窑化生产。
综上所述,我们发现,现阶段的各类高模量玻璃纤维在实际生产中均存在池窑化生产难度大的普遍问题,具体表现为玻璃的液相线温度偏高、析晶速率快,成型温度偏高、表面张力大、澄清难度大,△T值小甚至为负。为此,大部分公司往往以牺牲部分玻璃性能的方式来降低生产难度,这造成上述玻璃纤维的模量水平无法与生产规模同步提升,也一直无法突破S玻璃的模量瓶颈。
发明内容
针对上述问题,本发明的目的是提供一种高模量玻璃纤维组合物,该组合物能大幅提高玻璃的弹性模量,在此基础上,克服了传统高模量玻璃析晶风险高、澄清难度大,难于进行高效率池窑生产的问题,同等条件下能显著降低玻璃的液相线温度、析晶速率和气泡率,特别适合用于池窑化生产低气泡率的高模量玻璃纤维。
根据本发明的一个方面,提供一种高模量玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000001
Figure PCTCN2016086022-appb-000002
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6。
其中,进一步限定La2O3+CeO2的含量,以重量百分比表示为0.1-2%。
其中,进一步限定重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3。
其中,进一步限定重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
其中,进一步限定Li2O的含量,以重量百分比表示为0.05-0.55%。
其中,进一步限定Y2O3的含量,以重量百分比表示为0.5-3.9%。
其中,进一步限定重量百分比的比值C1=Y2O3/(Y2O3+La2O3)的范围为0.75-0.97。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000003
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
其中,进一步限定La2O3的含量,以重量百分比表示为0.05-1.2%。
其中,进一步限定CeO2的含量,以重量百分比表示为0.05-1%。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000004
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000005
Figure PCTCN2016086022-appb-000006
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000007
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为0.75-0.97,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
其中,进一步限定CaO的含量,以重量百分比表示为8-9.3%。
其中,进一步限定Li2O+Na2O+K2O的含量,以重量百分比表示为0.4-0.94%。
其中,进一步限定Na2O+K2O的含量,以重量百分比表示为0.15-0.55%。
其中,进一步限定重量百分比的比值C2=SiO2/CaO的范围为6.7-8。
其中,进一步限定重量百分比的比值C3=MgO/(CaO+SrO)的范围为1.05-1.4。
其中,进一步限定重量百分比的比值C4=La2O3/CeO2的范围为大于1。
其中,进一步限定Y2O3的含量,以重量百分比表示为1.3-3.9%。
其中,进一步限定Y2O3+La2O3+CeO2的含量,以重量百分比表示为1.4-4.2%。
其中,所述高模量玻璃纤维组合物还含有B2O3,其含量以重量百分比表示为0-3%。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的第三个方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的高模量玻璃纤维组合物,主要创新点是引入多种稀土氧化物Y2O3、La2O3和CeO2,利用它们之间产生的混合稀土效应,并合理控制Y2O3/(Y2O3+La2O3)、La2O3/CeO2、SiO2/CaO和MgO/(CaO+SrO)的比值,合理配置Y2O3、La2O3、CeO2、Li2O、CaO、MgO、La2O3+CeO2、Y2O3+La2O3+CeO2、Na2O+K2O和Li2O+Na2O+K2O的含量范围,以及利用CaO、MgO、SrO的混合碱土效应和K2O、Na2O、Li2O的混合碱效应,此外还可选择性地引入适量B2O3等。
具体来说,根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000008
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6。
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。在本发明的玻璃纤维组合物中,限定SiO2的重量百分比含量范围为55.7-58.9%。优选地,可以限定SiO2的重量百分比含量范围为56.5-58.9%。
Al2O3也是形成玻璃骨架的氧化物,与SiO2结合时可对玻璃的机械性能起到实质性的作用。在本发明的玻璃纤维组合物中,限定Al2O3的重量百分比含量范围为15-19.9%,若其含量较低会无法获得足够高的玻璃机械性能;若其含量太高则会使玻璃的粘度过高导致熔化、澄清困难。优选地,可以限定Al2O3的重量百分比含量范围为16-19.5%。更优选地,可以限定Al2O3的重量百分比含量范围为16.7-19.3%。
Y2O3是一种重要的稀土氧化物,发明人发现,它在提高玻璃模量方面特别有效,在抑制玻璃析晶方面也有较好效果。Y3+很难进入玻璃网络,一般处于网络空隙间作为网络外离子,它的配位数高、场强高、电荷高,积聚能力强,能捕获游离氧填补网络缺陷,提高玻璃结构的稳定性,提高玻璃模量,同时还能有效阻止其他离子的移动排列,达到降低玻璃析晶倾向的目的。此外,发明人发现,当氧化钇含量超过4.3%后,继续提高用量对机械性能的提升作用变得不明显,但依然会显著地提高玻璃密度,从而限制比模量和比强度的提高,一定条件下甚至会有所降低,不利于玻纤的轻量化。
La2O3也是一种重要的稀土氧化物,发明人发现,当单独使用它时,在提高玻璃模量及抑制玻璃析晶方面的作用明显弱于Y2O3。但是,当混合使用两种稀土氧化物并控制它们的比值在合适数值时,两者的协同效应显著,在提高玻璃模量及抑制玻璃析晶方面优于单独使用Y2O3或La2O3,获得了意想不到的效果。发明人认为,Y2O3和La2O3属于同族氧化物,各项物理、化学性质比较相近,但是两者的配位状态却不相同,钇离子一般处于六配位结构,镧离子一般处于八配位结构,因此,当混合使用两种稀土氧化物并合理控制它们的比值时,第一方面,能够提供更丰富的网络外离子配位结构,以钇离子的六配位结构为主结合镧离子的八配位结构,有利于提高玻璃结构的稳定性,提高玻璃模量;第二方面,氧化镧能增加游离氧的数量,促使更多的[AlO6]转变为[AlO4],进一步增强玻璃结构的完整性,提高玻璃模量;第三方面,多种离子相互牵制,当温度降低时,离子产生规则排列的机率也会减少,这有利于显著降低晶体的生长速率,从而进一步提高玻璃的抗析晶能力。但是,由于镧的摩尔质量和离子半径均较大,且过量的八配位离子不利于结构稳定,因此镧的引入量不宜太多。
CeO2是一种重要的稀土玻璃澄清剂,发明人发现,在替代部分氧化钇或氧化镧的前提下 引入少量CeO2,对提高玻璃模量及抑制玻璃析晶有较显著的积极效果,尤其是在同时使用上述三种稀土氧化物并合理控制相互间的比值时,这种效果更佳显著。发明人认为,一方面,CeO2能提供更多的游离氧给钇用于填补网络缺陷;另一方面,三种不同离子半径和场强的稀土离子混合使用可以提高结构的紧密堆积程度,不仅能进一步增强玻璃结构的完整性、提高玻璃性能,还能进一步加强离子间的相互牵制,提高玻璃的抗析晶能力。
因此,在本发明的玻璃纤维组合物中,限定Y2O3的重量百分比含量范围为0.1-4.3%。优选地,可以限定Y2O3的重量百分比含量范围为0.5-3.9%。更优选地,可以限定Y2O3的重量百分比含量范围为1.3-3.9%。限定La2O3的重量百分比含量范围为小于等于1.5%。优选地,可以限定La2O3的重量百分比含量范围为0.05-1.2%。限定CeO2的重量百分比含量范围为小于等于1.2%。优选地,可以限定CeO2的重量百分比含量范围为0.05-1%。
同时,限定重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6。优选地,可以限定重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7。更优选地,可以限定重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为0.75-0.97。同时,进一步地,可以限定La2O3+CeO2的重量百分比含量范围为0.1-2%。进一步地,可以限定重量百分比的比值C4=La2O3/CeO2的范围为大于1。进一步地,可以限定Y2O3+La2O3+CeO2的重量百分比含量范围为1.4-4.2%。
CaO、MgO和SrO主要起控制玻璃析晶、调节玻璃粘度和料性的作用。尤其是在控制玻璃析晶方面,发明人通过控制它们的引入量和比例关系获得了意想不到的效果。一般来说,以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,其玻璃析晶后所包含的晶相主要包括透辉石(CaMgSi2O6)和钙长石(CaAl2Si2O8)。为了有效抑制两种晶相的析晶倾向,降低玻璃的液相线温度和析晶速率,本发明中通过合理控制CaO、MgO、SrO的含量范围及各组分间的比例关系,利用混合碱土效应形成更紧密的堆积结构,使其晶核形成和长大时需要更多的能量,从而达到抑制玻璃析晶倾向的目的,同时有效改善玻璃料性。发明人发现,与传统R玻璃和改良R玻璃相比,本发明中大幅提高了MgO的含量,且当精确限定MgO含量在9.05-9.95%,并合理控制MgO/(CaO+SrO)的比值在0.9-1.6时,可以获得更高的玻璃模量和更低的析晶温度及速率。发明人还发现,由于本发明中的MgO含量较高,两种析晶晶体中透辉石的生长动力相对较强,通过进一步合理控制SiO2/CaO比值能够有效调节钙长石的生长,从而达到有效抑制玻璃析晶倾向的目的。
因此,在本发明的玻璃纤维组合物中,限定MgO的重量百分比含量范围为9.05-9.95%。限定CaO的重量百分比含量范围为6-10%。优选地,可以限定CaO的重量百分比含量范围为 6.8-9.3%。
此外,在一些技术方案中,进一步地,可以限定CaO的重量百分比含量范围为8-9.3%。进一步地,可以限定SrO的重量百分比含量范围为小于等于2%。
同时,进一步地,可以限定重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3。优选地,可以限定重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5。更优选地,可以限定重量百分比的比值C2=SiO2/CaO的范围为6.7-8。进一步地,可以限定重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。优选地,可以限定重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。更优选地,可以限定重量百分比的比值C3=MgO/(CaO+SrO)的范围为1.05-1.4。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。发明人发现,在碱金属氧化物总量不变的情况下,用K2O替代Na2O,能降低玻璃的析晶倾向,改善纤维成型性能。同Na2O和K2O相比,Li2O不仅能显著地降低玻璃粘度,从而改善玻璃熔制性能,并且对提高玻璃的力学性能有明显帮助。同时,少量Li2O就能提供可观的游离氧,有利于更多的铝离子形成四面体配位,增强玻璃体系的网络结构,可进一步降低玻璃的析晶能力。但由于碱金属离子过多会降低玻璃的耐腐蚀性,故引入量不宜多。此外,由于稀土氧化物具有较强的碱性,在某些方面能起到类似于碱金属氧化物和碱土金属氧化物的作用。因此,在本发明的玻璃纤维组合物中,限定Li2O+Na2O+K2O的重量百分比含量范围为小于等于0.99%。限定Li2O的重量百分比含量范围为小于等于0.65%。进一步地,可以限定Li2O+Na2O+K2O的重量百分比含量范围为0.4-0.94%。进一步地,可以限定Li2O的重量百分比含量范围为0.05-0.55%。进一步地,可以限定Na2O+K2O的重量百分比含量范围为0.15-0.55%。
Fe2O3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的重量百分比含量范围为小于1%。
TiO2不仅可以降低高温时的玻璃粘度,还具有一定的助熔作用。但由于钛离子具有一定的着色作用。因此,在本发明的玻璃纤维组合物中,限定TiO2的重量百分比含量范围为0.1-1.5%。优选地,可以限定TiO2的重量百分比含量范围为0.1-1%。
本发明的玻璃纤维组合物中,还可以选择性地引入适量B2O3,以进一步改善玻璃的析晶倾向。在本发明的玻璃纤维组合物中,进一步地,可以限定B2O3的重量百分比含量范围为0-3%。
此外,本发明的玻璃纤维组合物中还允许含有少量其他组分,重量百分比总含量一般不 超过2%。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果在后面会通过实施例给出具体实验数据来说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000009
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3。
优选示例二
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000010
Figure PCTCN2016086022-appb-000011
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为0.75-0.97。
优选示例三
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000012
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的 比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
优选示例四
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000013
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
优选示例五
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000014
Figure PCTCN2016086022-appb-000015
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
优选示例六
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000016
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
优选示例七
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000017
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为0.75-0.97,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
优选示例八
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000018
Figure PCTCN2016086022-appb-000019
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
优选示例九
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000020
Figure PCTCN2016086022-appb-000021
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
优选示例十
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000022
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.7-8,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
优选示例十一
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000023
Figure PCTCN2016086022-appb-000024
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1.05-1.4。
优选示例十二
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000025
Figure PCTCN2016086022-appb-000026
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C4=La2O3/CeO2的范围为大于1。
优选示例十三
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000027
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
优选示例十四
根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016086022-appb-000028
Figure PCTCN2016086022-appb-000029
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO2为55.7-58.9%,Al2O3为15-19.9%,Y2O3为0.1-4.3%,La2O3为小于等于1.5%,CeO2为小于等于1.2%,CaO为6-10%,MgO为9.05-9.95%,SrO为小于等于2%,Li2O+Na2O+K2O为小于等于0.99%,Li2O为小于等于0.65%,Fe2O3为小于1%,TiO2为0.1-1.5%,并且重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6。该组合物能大幅提高玻璃的弹性模量,在此基础上,克服了传统高模量玻璃析晶风险高、澄清难度大,难于进行高效率池窑生产的问题,能显著降低高模量玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率和气 泡率,特别适合用于池窑化生产低气泡率的高模量玻璃纤维。
选取本发明的玻璃纤维组合物中SiO2、Al2O3、Y2O3、La2O3、CeO2、CaO、MgO、Li2O、Na2O、K2O、Fe2O3、TiO2和SrO的具体含量值作为实施例,与S玻璃、传统R玻璃和改良R玻璃的性能参数进行对比。在性能对比时,选用六个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(4)析晶峰温度,DTA测试过程中对应于玻璃析晶最强峰的温度。一般情况下,该温度越高,表明晶核长大所需能量越多,玻璃的析晶倾向越小。
(5)弹性模量,是沿纵向的弹性模量,表征玻璃抵抗弹性变形的能力,按ASTM2343测试。
(6)气泡数量,其中测定气泡数量的大致方法为:利用专用的模具将每个实施例配合料压制成一样形状的样品,放置于高温显微镜的样品平台,然后按程序升温至设定空间温度1500℃,不保温,玻璃样品随炉冷却至常温;然后,通过偏光显微镜从微观角度观察各个玻璃样品的气泡数量。其中,气泡数量按显微镜成像范围为准。
上述六个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面给出根据本发明的玻璃纤维组合物的具体实施例。
实施例一
Figure PCTCN2016086022-appb-000030
Figure PCTCN2016086022-appb-000031
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)为0.86,重量百分比的比值C2=SiO2/CaO为7.11,重量百分比的比值C3=MgO/(CaO+SrO)为1.20,重量百分比的比值C4=La2O3/CeO2为4.3。
在实施例一中测定的六个参数的数值分别是:
Figure PCTCN2016086022-appb-000032
实施例二
Figure PCTCN2016086022-appb-000033
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)为0.90,重量百分比的比值C2=SiO2/CaO为7.41,重量百分比的比值C3=MgO/(CaO+SrO)为1.22,重量百分比的比值C4=La2O3/CeO2为1.67。
在实施例二中测定的六个参数的数值分别是:
Figure PCTCN2016086022-appb-000034
实施例三
Figure PCTCN2016086022-appb-000035
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)为0.93,重量百分比的比值C2=SiO2/CaO为7.22,重量百分比的比值C3=MgO/(CaO+SrO)为1.21,重量百分比的比值C4=La2O3/CeO2为5.0。
在实施例三中测定的六个参数的数值分别是:
Figure PCTCN2016086022-appb-000036
Figure PCTCN2016086022-appb-000037
实施例四
Figure PCTCN2016086022-appb-000038
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)为0.89,重量百分比的比值C2=SiO2/CaO为7.17,重量百分比的比值C3=MgO/(CaO+SrO)为1.21,重量百分比的比值C4=La2O3/CeO2为3.0。
在实施例四中测定的六个参数的数值分别是:
Figure PCTCN2016086022-appb-000039
实施例五
Figure PCTCN2016086022-appb-000040
Figure PCTCN2016086022-appb-000041
并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)为0.97,重量百分比的比值C2=SiO2/CaO为7.27,重量百分比的比值C3=MgO/(CaO+SrO)为1.22,重量百分比的比值C4=La2O3/CeO2为1.4。
在实施例五中测定的六个参数的数值分别是:
Figure PCTCN2016086022-appb-000042
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的上述实施例以及其他实施例与S玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,若实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1A
Figure PCTCN2016086022-appb-000043
表1B
Figure PCTCN2016086022-appb-000044
表1C
Figure PCTCN2016086022-appb-000045
由上述表中的具体数值可知,与S玻璃和传统R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(1)具有高得多的弹性模量;(2)具有低得多的液相线温度,这有利于降低玻璃的析晶风险、提高纤维的拉丝效率;具有高得多的析晶峰温度,这表明玻璃在析晶过程中 晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶速率更小;(3)气泡数量大幅减少,这表明玻璃的澄清效果特别优异。
S玻璃和传统R玻璃均无法实现池窑化生产,改良R玻璃通过牺牲部分性能的方式来降低液相线温度和成型温度,以降低生产难度实现池窑化生产。与之不同的是,本发明组合物不仅拥有足够低的液相线温度和更小的析晶速率,可以进行池窑化生产,同时还实现了玻璃模量的大幅提升,打破了S级和R级玻璃纤维的模量水平无法与生产规模同步提升的技术瓶颈。
由此可知,与目前主流的高模量玻璃相比,本发明的玻璃纤维组合物在弹性模量、析晶性能和玻璃澄清方面取得了突破性的进展,同等条件下玻璃的弹性模量大幅提升、析晶风险大幅下降、气泡数量大幅减少,整体技术方案特别适合用于池窑化生产低气泡率的高模量玻璃纤维。
此外,与单独含有氧化钇的玻璃纤维组合物(实施例A11)相比,同时含有三种稀土元素的玻璃纤维组合物拥有异常突出的优势:(a)具有高得多的析晶峰温度,这表明玻璃在析晶过程中晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶速率更小;具有更低的液相线温度,这有利于降低玻璃的析晶风险、提高纤维的拉丝效率;(b)具有更高的弹性模量;(c)气泡数量大幅下降,这表明玻璃的澄清效果特别优异。例如,与实施例A11相比,A9的析晶峰温度提高了14℃,液相线温度下降了12℃,弹性模量提高了2.5GPa,气泡数量降低了75%,各项性能指标的提升非常显著,获得了意向不到的技术效果。
由根据本发明的玻璃纤维组合物可制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明组合物不仅拥有足够低的液相线温度和更小的析晶速率,可以进行池窑化生产,同时还实现了玻璃模量的大幅提升,打破了S级和R级玻璃纤维的模量水平无法与生产规模同步提升的技术瓶颈,与目前主流的高模量玻璃相比,本发明的玻璃纤维组合物在弹性模量、析晶性能和玻璃澄清方面取得了突破性的进展,同等条件下玻璃的弹性模量大幅提升、析晶风险大幅下降、气泡数量大幅减少,整体技术方案特别适合用于池窑化生产低气泡率的高模量玻璃纤维。

Claims (24)

  1. 一种高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016086022-appb-100001
    并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6。
  2. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,La2O3+CeO2的含量以重量百分比表示为0.1-2%。
  3. 根据权利要求1或2所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3。
  4. 根据权利要求1或2所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
  5. 根据权利要求1或2所述的高模量玻璃纤维组合物,其特征在于,Li2O的含量以重量百分比表示为0.05-0.55%。
  6. 根据权利要求1或2所述的高模量玻璃纤维组合物,其特征在于,Y2O3的含量以重量百分比表示为0.5-3.9%。
  7. 根据权利要求1或2所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为0.75-0.97。
  8. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016086022-appb-100002
    并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
  9. 根据权利要求1或8所述的高模量玻璃纤维组合物,其特征在于,La2O3的含量以重量百分比表示为0.05-1.2%。
  10. 根据权利要求1或8所述的高模量玻璃纤维组合物,其特征在于,CeO2的含量以重量百分比表示为0.05-1%。
  11. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016086022-appb-100003
    Figure PCTCN2016086022-appb-100004
    并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.6,重量百分比的比值C2=SiO2/CaO的范围为5.8-9.3,重量百分比的比值C3=MgO/(CaO+SrO)的范围为0.9-1.6。
  12. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016086022-appb-100005
    Figure PCTCN2016086022-appb-100006
    并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为大于0.7,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
  13. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016086022-appb-100007
    并且,重量百分比的比值C1=Y2O3/(Y2O3+La2O3+CeO2)的范围为0.75-0.97,重量百分比的比值C2=SiO2/CaO的范围为6.3-8.5,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1-1.5。
  14. 根据权利要求1或11所述的高模量玻璃纤维组合物,其特征在于,CaO的含量 以重量百分比表示为8-9.3%。
  15. 根据权利要求1或11所述的高模量玻璃纤维组合物,其特征在于,Li2O+Na2O+K2O的含量以重量百分比表示为0.4-0.94%。
  16. 根据权利要求1或11所述的高模量玻璃纤维组合物,其特征在于,Na2O+K2O的含量以重量百分比表示为0.15-0.55%。
  17. 根据权利要求8或12所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C2=SiO2/CaO的范围为6.7-8。
  18. 根据权利要求8或12所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C3=MgO/(CaO+SrO)的范围为1.05-1.4。
  19. 根据权利要求2或12所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C4=La2O3/CeO2的范围为大于1。
  20. 根据权利要求1或12所述的高模量玻璃纤维组合物,其特征在于,Y2O3的含量以重量百分比表示为1.3-3.9%。
  21. 根据权利要求1或12所述的高模量玻璃纤维组合物,其特征在于,Y2O3+La2O3+CeO2的含量以重量百分比表示为1.4-4.2%。
  22. 根据权利要求1或12所述的高模量玻璃纤维组合物,其特征在于,还含有B2O3,以重量百分比表示为0-3%。
  23. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-22中任一项所述的玻璃纤维组合物制成。
  24. 一种复合材料,其特征在于,所述复合材料包括如权利要求23所述的玻璃纤维。
PCT/CN2016/086022 2016-06-07 2016-06-16 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料 WO2017190405A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2017566822A JP6499329B2 (ja) 2016-06-07 2016-06-16 高弾性率ガラス繊維組成物及びそのガラス繊維並びに複合材料
SI201630605T SI3354628T1 (sl) 2016-06-07 2016-06-16 Sestavek steklenih vlaken z visokim modulom in stekleno vlakno ter kompozitni material iz njega
EP16900927.1A EP3354628B1 (en) 2016-06-07 2016-06-16 High modulus glass fibre composition, and glass fibre and composite material thereof
DK16900927.1T DK3354628T3 (da) 2016-06-07 2016-06-16 Glasfibersammensætning med højt elasticitetsmodul og glasfiber og kompositmateriale deraf
RU2017145115A RU2017145115A (ru) 2016-06-07 2016-06-16 Высокомодульная стекловолоконная композиция, стекловолокно и композиционный материал из нее
PL16900927T PL3354628T3 (pl) 2016-06-07 2016-06-16 Kompozycja wysoko-modułowego włókna szklanego oraz wytworzone z niej włókno szklane i materiał kompozytowy
KR1020177036922A KR102034946B1 (ko) 2016-06-07 2016-06-16 고탄성계수 유리섬유 조성물 및 그 유리섬유와 복합재료
BR112018000203-8A BR112018000203B1 (pt) 2016-06-07 2016-06-16 Composição de fibra de vidro de alto módulo
MX2018000065A MX2018000065A (es) 2016-06-07 2016-06-16 Composicion de fibra de vidrio de modulo alto, fibra de vidrio y material compuesto de la misma.
US15/739,110 US10329189B2 (en) 2016-06-07 2016-06-16 High modulus glass fibre composition, and glass fibre and composite material thereof
AU2016405716A AU2016405716B2 (en) 2016-06-07 2016-06-16 High modulus glass fibre composition, and glass fibre and composite material thereof
MA41723A MA41723B1 (fr) 2016-06-07 2016-06-16 Composition de fibre de verre à module élevé, fibre de verre et matériau composite à base de celle-ci
ES16900927T ES2773984T3 (es) 2016-06-07 2016-06-16 Composición de fibra de vidrio de alto módulo, y fibra de vidrio y material compuesto de la misma
CA2990296A CA2990296C (en) 2016-06-07 2016-06-16 High-modulus glass fiber composition, glass fiber and composite material therefrom
ZA2017/08765A ZA201708765B (en) 2016-06-07 2017-12-21 High-modulus glass fiber composition, glass fiber and composite material therefrom
SA518390680A SA518390680B1 (ar) 2016-06-07 2018-01-02 تركيبة ألياف زجاجية عالية المعامل، وألياف زجاجية، ومادة مركبة منها
HRP20200157TT HRP20200157T1 (hr) 2016-06-07 2020-01-30 Pripravak od fiberglasa visokih svojstava, fiberglas i njegov kompozitni materijal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610403705.7A CN106082639B (zh) 2016-06-07 2016-06-07 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN201610403705.7 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017190405A1 true WO2017190405A1 (zh) 2017-11-09

Family

ID=57227474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086022 WO2017190405A1 (zh) 2016-06-07 2016-06-16 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (20)

Country Link
US (1) US10329189B2 (zh)
EP (1) EP3354628B1 (zh)
JP (1) JP6499329B2 (zh)
KR (1) KR102034946B1 (zh)
CN (1) CN106082639B (zh)
AU (1) AU2016405716B2 (zh)
BR (1) BR112018000203B1 (zh)
CA (1) CA2990296C (zh)
DK (1) DK3354628T3 (zh)
ES (1) ES2773984T3 (zh)
HR (1) HRP20200157T1 (zh)
MA (1) MA41723B1 (zh)
MX (1) MX2018000065A (zh)
PL (1) PL3354628T3 (zh)
PT (1) PT3354628T (zh)
RU (2) RU2737097C1 (zh)
SA (1) SA518390680B1 (zh)
SI (1) SI3354628T1 (zh)
WO (1) WO2017190405A1 (zh)
ZA (1) ZA201708765B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731813B (zh) * 2016-02-29 2018-07-31 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105753329B (zh) * 2016-03-15 2018-07-31 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN113800773B (zh) * 2017-01-26 2023-03-14 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN109422464B (zh) 2017-08-30 2020-05-19 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2019080776A1 (zh) * 2017-10-24 2019-05-02 广东东阳光药业有限公司 抗紫外线耐碱硼硅酸盐玻璃及其应用
US11214512B2 (en) 2017-12-19 2022-01-04 Owens Coming Intellectual Capital, LLC High performance fiberglass composition
CN108609859B (zh) * 2018-06-07 2021-09-24 重庆国际复合材料股份有限公司 一种新型高模量玻璃纤维组合物以及玻璃纤维
KR20210096138A (ko) 2018-11-26 2021-08-04 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 비탄성률이 향상된 고성능 섬유 유리 조성물
CA3117892A1 (en) 2018-11-26 2020-06-04 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved elastic modulus
CN111646702A (zh) * 2020-06-08 2020-09-11 重庆国际复合材料股份有限公司 一种高透明度玻璃纤维组合物及其玻璃纤维和复合材料
US20220306521A1 (en) * 2020-07-10 2022-09-29 Jushi Group Co., Ltd. High-modulus glass fiber composition, glass fiber and composite material thereof
CN111807707B (zh) * 2020-07-10 2021-11-09 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN112679098B (zh) * 2021-03-12 2021-05-28 山东墨匠新材料科技有限公司 一种玻璃纤维生产方法
CN113929299B (zh) * 2021-10-21 2023-08-25 泰山玻璃纤维有限公司 高模玻璃组合物、高模玻璃纤维和复合材料
TW202342395A (zh) * 2022-04-18 2023-11-01 美商歐文斯科寧智慧資本有限責任公司 具有減低的能量消耗之高模數玻璃纖維
CN115432932B (zh) * 2022-10-10 2023-07-21 泰山玻璃纤维有限公司 具有超高比模量的玻璃纤维组合物及玻璃纤维

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340034A (zh) * 1999-02-15 2002-03-13 肖特玻璃制造厂 具有高比例氧化锆的玻璃和其应用
US20070179038A1 (en) * 2006-02-02 2007-08-02 Ohara Inc. Optical glass
US20110028606A1 (en) * 2009-08-03 2011-02-03 Hong Li Glass Compositions And Fibers Made Therefrom
CN103221354A (zh) * 2010-10-18 2013-07-24 Ocv智识资本有限责任公司 高折射指数的玻璃组合物
CN105392744A (zh) * 2013-07-15 2016-03-09 Ppg工业俄亥俄公司 玻璃组合物、可纤维化玻璃组合物和由其制造的玻璃纤维

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2129102C1 (ru) 1997-04-18 1999-04-20 Акционерное общество открытого типа "НПО Стеклопластик" Стекло для производства стекловолокна
EP1065177A1 (en) * 1999-07-02 2001-01-03 Corning Incorporated Glass for tungsten-halogen lamp envelope
WO2005015606A1 (ja) 2003-08-08 2005-02-17 Nippon Electric Glass Co., Ltd. 外部電極蛍光ランプ用外套容器
US7515332B2 (en) 2004-02-18 2009-04-07 Nippon Sheet Glass Company, Limited Glass composition that emits fluorescence in infrared wavelength region and method of amplifying signal light using the same
US7799713B2 (en) 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
CN101734862B (zh) * 2009-12-18 2012-04-18 泰山玻璃纤维有限公司 一种环保型高模量玻璃纤维制备方法
CN102786223A (zh) * 2012-08-28 2012-11-21 泰山玻璃纤维有限公司 一种高强度玻璃纤维组合物
WO2014062715A1 (en) * 2012-10-16 2014-04-24 Agy Holding Corporation High modulus glass fibers
US20150001819A1 (en) * 2013-07-01 2015-01-01 Mujezir Licina Snow body board
JP6857601B2 (ja) * 2014-09-09 2021-04-14 エレクトリック グラス ファイバー アメリカ, エルエルシー ガラス組成物、線維化可能ガラス組成物、およびそれらから形成されるガラス繊維
CN104743888B (zh) * 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340034A (zh) * 1999-02-15 2002-03-13 肖特玻璃制造厂 具有高比例氧化锆的玻璃和其应用
US20070179038A1 (en) * 2006-02-02 2007-08-02 Ohara Inc. Optical glass
US20110028606A1 (en) * 2009-08-03 2011-02-03 Hong Li Glass Compositions And Fibers Made Therefrom
CN103221354A (zh) * 2010-10-18 2013-07-24 Ocv智识资本有限责任公司 高折射指数的玻璃组合物
CN105392744A (zh) * 2013-07-15 2016-03-09 Ppg工业俄亥俄公司 玻璃组合物、可纤维化玻璃组合物和由其制造的玻璃纤维

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3354628A4 *

Also Published As

Publication number Publication date
CN106082639A (zh) 2016-11-09
KR102034946B1 (ko) 2019-10-21
US20180186688A1 (en) 2018-07-05
MX2018000065A (es) 2018-03-16
ZA201708765B (en) 2019-06-26
KR20180011240A (ko) 2018-01-31
BR112018000203B1 (pt) 2023-01-31
ES2773984T3 (es) 2020-07-16
JP2018518450A (ja) 2018-07-12
SI3354628T1 (sl) 2020-03-31
RU2737097C1 (ru) 2020-11-24
RU2017145115A (ru) 2019-06-21
MA41723A1 (fr) 2018-09-28
JP6499329B2 (ja) 2019-04-10
US10329189B2 (en) 2019-06-25
BR112018000203A2 (pt) 2018-09-04
EP3354628B1 (en) 2019-12-25
SA518390680B1 (ar) 2021-06-09
AU2016405716B2 (en) 2019-10-31
AU2016405716A1 (en) 2018-05-24
CN106082639B (zh) 2018-09-14
HRP20200157T1 (hr) 2020-05-01
PL3354628T3 (pl) 2020-08-10
PT3354628T (pt) 2020-02-19
CA2990296C (en) 2019-07-23
CA2990296A1 (en) 2017-11-09
EP3354628A1 (en) 2018-08-01
MA41723B1 (fr) 2019-10-31
EP3354628A4 (en) 2018-12-19
DK3354628T3 (da) 2020-02-17
RU2017145115A3 (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2017190405A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165507A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165506A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165532A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165531A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045222A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
KR102034945B1 (ko) 무붕소유리섬유 조성물 및 그 유리섬유와 복합재료
WO2016169408A1 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
TWI776565B (zh) 高模量玻璃纖維組合物及其玻璃纖維和複合材料
CN107531552B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045221A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2015131684A2 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2022006947A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
KR102656005B1 (ko) 고 모듈러스 유리섬유 조성물 및 그 유리섬유와 복합재료
KR20220007719A (ko) 고탄성계수 유리섬유 조성물 및 그 유리섬유와 복합재료

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2990296

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177036922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017145115

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017566822

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 41723

Country of ref document: MA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/000065

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000203

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016405716

Country of ref document: AU

Date of ref document: 20160616

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018000203

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180104

NENP Non-entry into the national phase

Ref country code: DE