WO2016165531A2 - 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2016165531A2
WO2016165531A2 PCT/CN2016/076885 CN2016076885W WO2016165531A2 WO 2016165531 A2 WO2016165531 A2 WO 2016165531A2 CN 2016076885 W CN2016076885 W CN 2016076885W WO 2016165531 A2 WO2016165531 A2 WO 2016165531A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
glass
fiber composition
high performance
weight percentage
Prior art date
Application number
PCT/CN2016/076885
Other languages
English (en)
French (fr)
Other versions
WO2016165531A3 (zh
Inventor
章林
曹国荣
张毓强
邢文忠
顾桂江
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020187026739A priority Critical patent/KR102133662B1/ko
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to MA43292A priority patent/MA43292B1/fr
Priority to BR112018068475-9A priority patent/BR112018068475B1/pt
Priority to MX2018010963A priority patent/MX2018010963A/es
Priority to EP16779506.1A priority patent/EP3409649B1/en
Priority to ES16779506T priority patent/ES2955836T3/es
Priority to JP2018548181A priority patent/JP6651647B2/ja
Priority to PL16779506.1T priority patent/PL3409649T3/pl
Priority to US16/081,350 priority patent/US10590027B2/en
Priority to CA3017536A priority patent/CA3017536C/en
Publication of WO2016165531A2 publication Critical patent/WO2016165531A2/zh
Publication of WO2016165531A3 publication Critical patent/WO2016165531A3/zh
Priority to ZA201805678A priority patent/ZA201805678B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a high performance glass fiber composition, and more particularly to a high performance glass fiber composition capable of reinforcing a substrate as an advanced composite material, and glass fibers and composite materials thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high-performance glass fiber was originally used in the defense, military and other fields of defense, military and other fields. With the advancement of technology and economic development, high-performance glass fiber has been widely used in civil industry such as wind blades, high-pressure vessels, marine pipelines, and automobile manufacturing.
  • the earliest high-performance glass components are mainly MgO-Al 2 O 3 -SiO 2 system.
  • the typical scheme is S-2 glass developed by American OC Company.
  • the modulus is 89-90GPa, but its production is too difficult.
  • the fiber molding temperature is as high as 1571 ° C, and the liquidus temperature is as high as 1470 ° C. It is difficult to achieve large-scale pool kiln production. Therefore, OC Company voluntarily gave up the production of S-2 fiberglass and transferred its patent rights to AGY Company of the United States.
  • OC also developed HiPer-tex glass with a modulus of 87-89 GPa, which is a compromise strategy at the expense of some glass properties to reduce production difficulty, but since the design is only a simple improvement of S-2 glass, The glass fiber forming temperature and liquidus temperature are still high, and the production difficulty is still very large, and it is difficult to realize large-scale pool kiln production. Therefore, OC also abandoned the production of HiPer-tex fiberglass and transferred its patent to European 3B.
  • France Saint-Gobain has developed an R glass based on the MgO-CaO-Al 2 O 3 -SiO 2 system with a modulus of 86-89 GPa.
  • the traditional R glass has a high total content of silicon and aluminum, and lacks an effective solution to improve the crystallization performance of the glass.
  • the ratio of calcium to magnesium is also unreasonable, resulting in difficulty in forming glass and high risk of crystallization, and the surface tension of the glass is large and difficult to clarify.
  • High, its glass fiber molding temperature reaches 1410 ° C, and the liquidus temperature reaches 1350 ° C, which all cause difficulties in the efficient drawing of glass fiber, and it is also difficult to achieve large-scale pool kiln production.
  • Nanjing Glass Fiber Research and Design Institute has developed a kind of HS2 glass with a modulus of 84-87GPa. Its main components also include SiO 2 , Al 2 O 3 and MgO, and also introduce some Li 2 O and B 2 O 3 .
  • CeO 2 and Fe 2 O 3 its molding temperature is only 1245 ° C, the liquidus temperature is 1320 ° C, the temperature of both is much lower than S glass, but its molding temperature is lower than the liquidus temperature, ⁇ T
  • the value is negative, which is not conducive to the efficient drawing of the glass fiber.
  • the drawing temperature must be increased.
  • a special form of the leaking nozzle is used to prevent the glass from devitrifying during the drawing process, which causes difficulty in temperature control and is difficult to realize a large-scale pool. Kiln production.
  • the present invention is directed to solving the problems described above.
  • the object of the present invention is to provide a high performance glass fiber composition, which can greatly improve the mechanical properties and thermal stability of the glass.
  • the traditional high performance glass has high risk of crystallization and is difficult to clarify. It is difficult to carry out the problem of high-efficiency pool kiln production, which can significantly reduce the liquidus temperature and molding temperature of high-performance glass, and greatly reduce the crystallization rate of glass under the same conditions, and is particularly suitable for the thermal stability of the kiln production.
  • High performance fiberglass is highly efficient glass fiber composition, which can greatly improve the mechanical properties and thermal stability of the glass.
  • a high performance glass fiber composition comprising the following components, the content of each component being expressed in weight percent as follows:
  • the content of Li 2 O is further limited to be 0.1% to 1.5% by weight.
  • the high performance glass fiber composition further contains Y 2 O 3 in an amount of 0.05-5% by weight.
  • the high performance glass fiber composition further contains La 2 O 3 in an amount of 0.05 to 3% by weight.
  • the content of SiO 2 +Al 2 O 3 is further limited to be less than 82% by weight.
  • the content of SiO 2 +Al 2 O 3 is further limited, and is represented by 70-81% by weight.
  • the content of MgO is further limited, expressed as 6-12% by weight.
  • the content of Sm 2 O 3 is further limited, expressed as 0.05-3% by weight.
  • the content of Gd 2 O 3 is further limited, expressed as 0.05-2% by weight.
  • the content of Sm 2 O 3 + Gd 2 O 3 is further limited, and is 0.1-4% by weight.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is 0.02 or more.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the content of SrO is further limited, and is 0.1 to 2% by weight.
  • the content of Gd 2 O 3 +La 2 O 3 is further limited, expressed as 0.5-1.5% by weight.
  • the content of Gd 2 O 3 +La 2 O 3 +TiO 2 is further limited, and is 1-3.5% by weight.
  • the high performance glass fiber composition further contains CeO 2 in an amount of 0-1% by weight.
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the main innovation is the introduction of rare earth oxides Sm 2 O 3 and Gd 2 O 3 , which have small radius and strong field, strong accumulation effect and good synergistic effect. And controlling the ratio of (Li 2 O+Sm 2 O 3 +Gd 2 O 3 )/Al 2 O 3 , reasonably arranging Sm 2 O 3 , Gd 2 O 3 , Li 2 O, Al 2 O 3 , CaO, MgO And a content range of CaO+MgO+SrO, and a mixed alkaline earth effect using CaO, MgO, and SrO, and optionally, an appropriate amount of Y 2 O 3 , La 2 O 3 , CeO 2 , or the like can be selectively introduced.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components.
  • the weight percentage of SiO 2 is limited to range from 52 to 67%.
  • the weight percentage of SiO 2 can be defined to range from 54 to 64%. More preferably, the weight percentage of SiO 2 can be defined to range from 54 to 62%.
  • Al 2 O 3 is also an oxide forming a glass skeleton, and when combined with SiO 2 , it can exert a substantial effect on the mechanical properties and thermal stability of the glass. If the content is too low, the glass cannot obtain sufficiently high mechanical properties and thermal stability; if the content is too high, the viscosity of the glass is too high, resulting in difficulty in clarification, and the risk of glass crystallization is greatly increased.
  • the weight percentage of Al 2 O 3 is defined to range from 12 to 24%.
  • the weight percentage of Al 2 O 3 can be defined to range from 13 to 23%. More preferably, the weight percentage of Al 2 O 3 may be defined to range from 13 to 22 %.
  • Al 2 O 3 generally has two structural forms of tetracoordinate [AlO 4 ] and hexacoordinate [AlO 6 ].
  • one or both of the rare earth oxides Sm 2 O 3 and Gd 2 O 3 may be introduced, and on the one hand, the two rare earth oxides are strong according to the lanthanide contraction effect.
  • Alkaline can provide more non-bridge oxygen, can significantly increase the number of aluminum-oxygen coordination in the structure, promote Al 3+ into the glass network, and help to improve the tightness of the glass skeleton; on the other hand, Sm 3 + and Gd 3+ have small radii, high charge and strong field.
  • Sm 3+ and Gd 3+ have similar ionic radii and similar coordination states, and there is a good synergistic effect between the two, and if they are used at the same time, they have more excellent effects.
  • the content of Sm 2 O 3 + Gd 2 O 3 is limited to a content ranging from 0.05 to 4.5% by weight.
  • the content of Sm 2 O 3 + Gd 2 O 3 may be limited to a content ranging from 0.1 to 4% by weight.
  • the content of Sm 2 O 3 may be limited to a content ranging from 0.05 to 3% by weight.
  • the weight percentage of Gd 2 O 3 may be limited to range from 0.05 to 2%.
  • the weight percentage of SiO 2 +Al 2 O 3 may be limited to be less than 82%.
  • the weight percentage of SiO 2 +Al 2 O 3 can be defined to range from 70 to 81%.
  • Li 2 O not only can significantly reduce the viscosity of the glass, thereby improving the glass melting performance, and is obviously helpful for improving the mechanical properties of the glass.
  • a small amount of Li 2 O can provide considerable free oxygen, which is beneficial to the formation of tetrahedral coordination of more aluminum ions and enhance the network structure of the glass system.
  • the amount of introduction is not particularly high.
  • the weight percentage of Li 2 O+Na 2 O+K 2 O is limited to less than 2%. Further, the weight percentage of Li 2 O can be defined to range from 0.1 to 1.5%.
  • the range of 2 O 3 )/Al 2 O 3 is greater than 0.01.
  • the first aspect can provide a richer network external ion coordination structure, which is beneficial to improve the stability of the glass structure;
  • the second aspect the hexacoordinate structure of the cerium ion combined with the octave coordination of other ions
  • the structure can further enhance the integrity of the glass structure and improve the glass performance; in the third aspect, when the temperature is lowered, the probability of regular arrangement of ions is also reduced, which is beneficial to reduce the growth rate of the crystal, thereby further improving the anti-analysis of the glass.
  • the content of Y 2 O 3 may be limited to a range of 0.05 to 5% by weight, and the content of La 2 O 3 may be limited to a content of 0.05 to 3% by weight.
  • the inventors have also found that when cerium oxide is used in combination with cerium oxide, the thermal stability of the glass is significantly enhanced. Further, the weight percentage of Gd 2 O 3 +La 2 O 3 may be limited to range from 0.5 to 1.5%.
  • CaO, MgO and SrO mainly control the crystallization of glass and adjust the viscosity of glass. Especially in controlling the crystallization of glass, the inventors obtained unexpected effects by controlling their introduction amount and proportional relationship.
  • high-performance glass mainly composed of MgO-CaO-Al 2 O 3 -SiO 2 system
  • the crystal phase contained in the glass after crystallization is mainly composed of diopside (CaMgSi 2 O 6 ) and anorthite ( CaAl 2 Si 2 O 8 ).
  • the mixed alkaline soil is utilized.
  • the effect forms a tighter packing structure, which requires more energy to form and grow the nucleus, thereby achieving the purpose of suppressing the crystallization tendency of the glass.
  • the glass structure formed by introducing an appropriate amount of cerium oxide is more stable, which is advantageous for further improvement of glass properties.
  • the content of CaO+MgO+SrO is limited to a content of 10-24% by weight.
  • the content of CaO is limited to a content of less than 16% by weight.
  • the CaO content can be defined to be less than 14%.
  • the role of MgO in glass is similar to that of CaO, but the field strength of Mg 2+ is greater, which plays an important role in increasing the glass modulus.
  • the weight percentage of MgO is limited to less than 13%.
  • the content of MgO can be defined to range from 6 to 12%.
  • the weight percentage of SrO can be limited to a range of less than 3%.
  • the weight percentage of SrO can be defined to range from 0.1 to 2%.
  • TiO 2 has a fluxing effect and can also significantly improve the thermal and chemical stability of the glass.
  • the inventors have found that when titanium oxide is used in combination with cerium oxide or cerium oxide, the thermal stability of the glass is greatly enhanced. However, since too much Ti 4+ causes a certain coloration of the glass, the amount of introduction is not excessive.
  • the weight percent content of the defined TiO 2 ranges from less than 3%. Further, the weight percentage of Gd 2 O 3 + La 2 O 3 + TiO 2 may be limited to a range of from 1 to 5%.
  • Fe 2 O 3 is advantageous for the melting of glass and also for improving the crystallization properties of glass. However, since iron ions and ferrous ions have a coloring effect, the amount of introduction is not preferable. Thus, in the glass fiber composition of the present invention, the weight percentage of Fe 2 O 3 is limited to less than 1.5%.
  • an appropriate amount of CeO 2 may be selectively introduced to further improve the crystallization tendency and the clarifying effect of the glass.
  • the content of CeO 2 in a weight percentage may be limited to 0-1%.
  • the glass fiber composition of the present invention is also allowed to contain a small amount of other components, and the total content by weight is generally not more than 2%.
  • the glass fibers formed from the composition have an elastic modulus of greater than 90 GPa.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percent as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is 0.02 or more.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is in the range of 0.02 - 0.15.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass fiber formed from the composition has a modulus of elasticity greater than 95 GPa.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 is more than 0.01.
  • the basic idea of the present invention is that the content of each component of the glass fiber composition is expressed by weight percentage: SiO 2 is 52-67%, Al 2 O 3 is 12-24%, and Sm 2 O 3 + Gd 2 O 3 is 0.05-4.5%, Li 2 O+Na 2 O+K 2 O is less than 2%, CaO+MgO+SrO is 10-24%, CaO is less than 16%, MgO is less than 13%, and TiO 2 is less than 3%. , Fe 2 O 3 is less than 1.5%.
  • the composition can greatly improve the mechanical properties and thermal stability of the glass, and can also significantly lower the liquidus temperature and the molding temperature of the glass, and greatly reduce the crystallization rate of the glass under the same conditions, and is particularly suitable for the thermal stability of the kiln production. High performance glass fiber with excellent properties.
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • the temperature of the crystallization peak which corresponds to the temperature of the strongest peak of glass crystallization during the DTA test.
  • the higher the temperature the more energy is required to grow the crystal nucleus, and the crystallization tendency of the glass is smaller.
  • the modulus of elasticity which is the modulus of elasticity along the machine direction, characterizes the ability of the glass to resist elastic deformation and is tested in accordance with ASTM 2343.
  • the standard specified sample is placed in a standard specified furnace to be heated at a heating rate of 5 ⁇ 1 ° C / min, and the corresponding temperature when the sample is elongated by 1 mm per minute, that is, the softening point of the glass temperature.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid
  • the glass fiber is formed by the leaking nozzle on the drain plate being pulled out, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a yarn group.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 was 0.053.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 was 0.141.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 was 0.071.
  • the ratio of the weight percentage C1 (Li 2 O + Sm 2 O 3 + Gd 2 O 3 ) / Al 2 O 3 was 0.053.
  • the content of the glass fiber composition is expressed by weight percentage. It should be noted that the total content of the components of the examples is slightly less than 100%, and it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages as compared with S glass and conventional R glass: (1) having a much higher modulus of elasticity; (b) having a much lower The liquidus temperature, which is beneficial to reduce the crystallization risk of the glass and improve the drawing efficiency of the fiber; has a higher crystallization peak temperature, which indicates that the nucleation and growth of the glass requires more energy during crystallization. That is to say, the crystallization rate of the glass of the invention is smaller under the same conditions.
  • the glass fiber composition of the present invention has the following advantages as compared with the modified R glass: (1) having a much higher modulus of elasticity; and (2) having a higher peak temperature of crystallization, indicating that the glass is crystallization.
  • the formation and growth of crystal nuclei in the process requires more energy, that is to say, the crystallization rate of the glass of the invention is smaller under the same conditions; the liquidus temperature is lower, This is advantageous in reducing the risk of crystallization of the glass and improving the drawing efficiency of the fiber; (3) having a significantly increased softening point temperature, which indicates that the thermal stability of the glass is remarkably improved.
  • both S glass and conventional R glass cannot achieve pool kiln production.
  • Improved R glass reduces the liquidus temperature and molding temperature by sacrificing part of the performance to reduce the production difficulty and realize the kiln kiln production.
  • the composition of the present invention not only has a sufficiently low liquidus temperature and a smaller crystallization rate, but can also perform kiln kiln production, while also achieving a substantial increase in glass modulus, breaking the S-class and The modulus level of R-grade glass fiber cannot be technically bottlenecked by the simultaneous increase in production scale.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the composition of the invention not only has a sufficiently low liquidus temperature and a smaller crystallization rate, but can also perform kiln kiln production, and at the same time, achieves a substantial increase in glass modulus, breaking the mold of S-class and R-grade glass fibers.
  • the technical bottleneck that the quantity level cannot be synchronized with the production scale, the glass fiber composition of the present invention has made a breakthrough in elastic modulus, crystallization performance and thermal stability compared with the current mainstream high performance glass, and the same Under the condition, the elastic modulus of the glass is greatly increased, the risk of crystallization is significantly reduced, and the thermal stability is obviously improved.
  • the overall technical solution is particularly suitable for the high-performance glass fiber with excellent thermal stability in the kiln production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种高性能玻璃纤维组合物及其玻璃纤维和复合材料。其中,玻璃纤维组合物各组分的含量以重量百分比表示如下:SiO2为52-67%,Al2O3为12-24%,Sm2O3+Gd2O3为0.05-4.5%,Li2O+Na2O+K2O为小于2%,CaO+MgO+SrO为10-24%,CaO为小于16%,MgO为小于13%,TiO2为小于3%,Fe2O3为小于1.5%。该组合物能大幅提高玻璃的机械性能和热稳定性,还能显著降低玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率,特别适合用于池窑化生产热稳定性优异的高性能玻璃纤维。

Description

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2016年3月15日提交中国专利局、申请号为201610146263.2、发明名称为“一种高性能玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高性能玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高性能玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高性能玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高性能玻璃纤维在风力叶片、高压容器、海洋管道、汽车制造等民用工业领域得到了广泛应用。
最早的高性能玻璃成分以MgO-Al2O3-SiO2系统为主体,典型方案如美国OC公司开发的S-2玻璃,模量在89-90GPa,但是它的生产难度过大,其玻纤成型温度高达1571℃,液相线温度高达1470℃,难于实现大规模池窑化生产。因此,OC公司主动放弃了生产S-2玻璃纤维,将其专利权转让给了美国AGY公司。
随后,OC公司还开发了HiPer-tex玻璃,模量在87-89GPa,这是一种以牺牲部分玻璃性能以降低生产难度的折衷策略,不过由于设计方案只是对S-2玻璃的简单改进,造成玻纤成型温度和液相线温度依然很高,生产难度还是很大,难于实现大规模池窑化生产。因此,OC公司也放弃了生产HiPer-tex玻璃纤维,将其专利权转让给了欧洲3B公司。
法国圣戈班公司开发过一种以MgO-CaO-Al2O3-SiO2系统为主体的R玻璃,模量在86-89GPa。但是传统R玻璃的硅铝总含量较高,又缺乏改善玻璃析晶性能的有效方案,钙镁比例也不合理,造成玻璃成型困难、析晶风险高,同时玻璃液的表面张力大、澄清难度高,其玻纤成型温度达到1410℃,液相线温度达到1350℃,这都造成玻璃纤维高效拉制上的困难,同样难于实现大规模池窑化生产。
在国内,南京玻璃纤维研究设计院开发过一种HS2玻璃,模量在84-87GPa,其主要成分 也包括SiO2、Al2O3、MgO,同时还引入部分Li2O、B2O3、CeO2和Fe2O3,它的成型温度只有1245℃,液相线温度为1320℃,两者的温度均比S玻璃低得多,但其成型温度比液相线温度低,△T值为负,极不利于玻璃纤维的高效拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模池窑化生产。
综上所述,我们发现,现阶段的各类高性能玻璃纤维在实际生产中均存在池窑化生产难度大的普遍问题,具体表现为玻璃的液相线温度偏高、析晶速率快,成型温度偏高、澄清难度大,△T值小甚至为负。为此,大部分公司往往以牺牲部分玻璃性能的方式来降低生产难度,这造成上述高性能玻璃纤维的各项性能水平无法与生产规模同步提升。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种高性能玻璃纤维组合物,该组合物能大幅提高玻璃的机械性能和热稳定性,在此基础上,克服了传统高性能玻璃析晶风险高、澄清难度大,难于进行高效率池窑化生产的问题,能显著降低高性能玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率,特别适合用于池窑化生产热稳定性优异的高性能玻璃纤维。
根据本发明的一个方面,提供一种高性能玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000001
其中,进一步限定重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
其中,进一步限定Li2O的含量,以重量百分比表示为0.1-1.5%。
其中,所述高性能玻璃纤维组合物还含有Y2O3,其含量以重量百分比表示为0.05-5%。
其中,所述高性能玻璃纤维组合物还含有La2O3,其含量以重量百分比表示为0.05-3%。
其中,进一步限定SiO2+Al2O3的含量,以重量百分比表示为小于82%。
其中,进一步限定SiO2+Al2O3的含量,以重量百分比表示为70-81%。
其中,进一步限定MgO的含量,以重量百分比表示为6-12%。
其中,进一步限定Sm2O3的含量,以重量百分比表示为0.05-3%。
其中,进一步限定Gd2O3的含量,以重量百分比表示为0.05-2%。
其中,进一步限定Sm2O3+Gd2O3的含量,以重量百分比表示为0.1-4%。
其中,进一步限定重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于等于0.02。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000002
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000003
Figure PCTCN2016076885-appb-000004
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000005
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000006
Figure PCTCN2016076885-appb-000007
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于等于0.02。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000008
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000009
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
其中,进一步限定SrO的含量,以重量百分比表示为0.1-2%。
其中,进一步限定重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为0.02-0.15。
其中,进一步限定重量百分比的比值C2=Y2O3/(Sm2O3+Gd2O3+Y2O3)的范围为大于0.4。
其中,进一步限定Gd2O3+La2O3的含量,以重量百分比表示为0.5-1.5%。
其中,进一步限定Gd2O3+La2O3+TiO2的含量,以重量百分比表示为1-3.5%。
其中,所述高性能玻璃纤维组合物还含有CeO2,其含量以重量百分比表示为0-1%。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的第三方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的高性能玻璃纤维组合物,主要创新点是引入稀土氧化物Sm2O3和Gd2O3,两种稀土离子的半径小、场强大,具有强烈的积聚效应和良好的协同效应,并控制(Li2O+Sm2O3+Gd2O3)/Al2O3的比值,合理配置Sm2O3、Gd2O3、Li2O、Al2O3、CaO、MgO和CaO+MgO+SrO的含量范围,以及利用CaO、MgO、SrO的混合碱土效应,此外还可以选择性引入适量Y2O3、La2O3和CeO2等。
具体来说,根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000010
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。在本发明的玻璃纤维组合物中,限定SiO2的重量百分比含量范围为52-67%。优选地,可以限定SiO2的重量百分比含量范围为54-64%。更优选地,可以限定SiO2的重量百分比含量范围为54-62%。
Al2O3也是形成玻璃骨架的氧化物,与SiO2结合时可对玻璃的机械性能和热稳定性起到实质性的作用。若其含量太低,玻璃无法获得足够高的机械性能和热稳定性;若其含量太高,则会使玻璃粘度过高导致澄清困难,还会使玻璃析晶风险大幅提升。在本发明的玻璃纤维组合物中,限定Al2O3的重量百分比含量范围为12-24%。优选地,可以限定Al2O3的重量百分比含量范围为13-23%。更优选地,可以限定Al2O3的重量百分比含量范围为13-22%。
在玻璃结构中,Al2O3一般存在四配位[AlO4]和六配位[AlO6]两种结构形式。在本发明的玻璃纤维组合物中,可以引入稀土氧化物Sm2O3和Gd2O3中的一种或两种,根据镧系收缩效应,一方面,这两种稀土氧化物具有很强的碱性,能提供较多的非桥氧,可以使结构中铝氧四配位的数量明显增多,促进Al3+进入玻璃网络,有利于提高玻璃骨架的紧密度;另一方面,Sm3+和Gd3+离子半径小、电荷高、场强大,一般处于网络空隙间作为网络外离子,对阴离子具有强烈的积聚效应,能进一步增强玻璃结构的稳定性,提高玻璃的机械性能和热稳定性。同时,强烈的积聚效应还能有效阻止其他离子的移动排列,从而达到显著提高玻璃的热稳定性和降低玻璃析晶倾向的目的。而且,Sm3+和Gd3+离子半径相近,配位状态相似,两者存在良好的协同效应,若同时使用具有更优异的效果。因此,在本发明的玻璃纤维组合物中,限定Sm2O3+Gd2O3的重量百分比含量范围为0.05-4.5%。优选地,可以限定Sm2O3+Gd2O3的重量百分比含量范围为0.1-4%。进一步地,可以限定Sm2O3的重量百分比含量范围为0.05-3%。进一步地,可以限定Gd2O3的重量百分比含量范围为0.05-2%。此外,进一步地,可以限定SiO2+Al2O3的重量百分比含量范围为小于82%。优选地,可以限定SiO2+Al2O3的重量百分比含量范围为70-81%。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。同Na2O和K2O相比,Li2O不仅能显著地降低玻璃粘度,从而改善玻璃熔制性能,并且对提高玻璃的力学性能有明显帮助。同时,少量Li2O就能提供可观的游离氧,有利于更多的铝离子形成四面体配位,增强玻璃体系的网络结构。但由于碱金属离子过多会显著降低玻璃的热稳定性和化学稳定性,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Li2O+Na2O+K2O的重量百分比含量范围为小于2%。进一步地,可以限定Li2O的重量百分比含量范围为0.1-1.5%。
此外,为了促使更多的铝离子形成四面体配位进入玻璃网络,在本发明的玻璃纤维组合物中,进一步地,可以限定重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。优选地,可以限定重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于等于0.02。更优选地,可以限定重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为0.02-0.15。
进一步地,还可以选择性地引入稀土氧化物Y2O3和La2O3,Y3+和La3+的配位状态、离子半径、离子场强与Sm3+和Gd3+有所不同,相互结合使用时,第一方面,能提供更丰富的网络外离子配位结构,有利于提高玻璃结构的稳定性;第二方面,钇离子的六配位结构结合其他离子的八配位结构,能进一步增强玻璃结构的完整性,提高玻璃性能;第三方面,当温度降低时,各离子产生规则排列的机率也会减少,有利于降低晶体的生长速率,从而进一步提高玻璃的抗析晶能力。但是,相对于Sm2O3和Gd2O3,Y2O3和La2O3的碱性较弱,而且用量较大时需要碱金属氧化物提供一定量的游离氧来填补空位才能发挥更好的效果。因此,在本发明的玻璃纤维组合物中,可以限定Y2O3的重量百分比含量范围为0.05-5%,可以限定La2O3的重量百分比含量范围为0.05-3%。为了提高玻璃的机械性能,进一步地,可以限定重量百分比的比值C2=Y2O3/(Sm2O3+Gd2O3+Y2O3)的范围为大于0.4。发明人还发现,当氧化钆与氧化镧结合使用时,会对玻璃的热稳定性起到显著的提升作用。进一步地,可以限定Gd2O3+La2O3的重量百分比含量范围为0.5-1.5%。
CaO、MgO和SrO主要起控制玻璃析晶、调节玻璃粘度的作用。尤其是在控制玻璃析晶方面,发明人通过控制它们的引入量和比例关系获得了意想不到的效果。一般来说,以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,其玻璃析晶后所包含的晶相主要包括透辉石(CaMgSi2O6)和钙长石(CaAl2Si2O8)。为了有效抑制两种晶相的析晶倾向,降低玻璃的液相线温度和析晶速率,本发明中通过合理控制CaO+MgO+SrO的含量范围及各组分间的比例关系,利用混合碱土效应形成更紧密的堆积结构,使其晶核形成和长大时需要更多的能量,从而达到抑制玻璃析晶倾向的目的。而且,引入适量氧化锶所形成的玻璃结构更加稳定,有利于玻璃性能的进一步提升。在本发明的玻璃纤维组合物中,限定CaO+MgO+SrO的重量百分比含量范围为10-24%。CaO作为重要的网络外体氧化物,其含量过高会增大玻璃的析晶倾向,造成从玻璃中析出钙长石、硅灰石等晶体的危险。在本发明的玻璃纤维组合物中,限定CaO的重量百分比含量范围为小于16%。优选地,可以限定CaO的含量范围为小于14%。MgO在玻璃中的作用与CaO大体类似,但Mg2+的场强更大,对提高玻璃模量起重要的作用。在本发明的玻璃纤维组合物中,限定MgO的重量百分比含量范围为小于13%。优选地,可以限定MgO的含量范围为6-12%。进一步地,可以限定SrO的重量百分比含量范围为小于3%。优选地,可以限定SrO的重量百分比含量范围为0.1-2%。
TiO2具有助熔作用,还能显著提高玻璃的热稳定性和化学稳定性。发明人发现,当氧化钛与氧化钆、氧化镧结合使用时,会对玻璃的热稳定性起到极大的提升作用。但由于Ti4+过多会使玻璃产生一定的着色,故引入量也不宜过多。因此,在本发明的玻璃纤维组合物中,限定TiO2的重量百分比含量范围为小于3%。进一步地,可以限定Gd2O3+La2O3+TiO2的重量 百分比含量范围为1-3.5%。
Fe2O3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的重量百分比含量范围为小于1.5%。
在本发明的玻璃纤维组合物中,还可以选择性地引入适量CeO2,以进一步改善玻璃的析晶倾向和澄清效果。在本发明的玻璃纤维组合物中,可以限定CeO2的重量百分比含量范围为0-1%。
此外,本发明的玻璃纤维组合物中还允许含有少量其他组分,重量百分比总含量一般不超过2%。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果在后面会通过实施例给出具体实验数据来说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。根据下述优选示例,由该组合物形成的玻璃纤维的弹性模量为大于90GPa。
优选示例一
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000011
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例二
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示 如下:
Figure PCTCN2016076885-appb-000012
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例三
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000013
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例四
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000014
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于等于0.02。
优选示例五
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000015
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例六
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000016
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例七
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000017
Figure PCTCN2016076885-appb-000018
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例八
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000019
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为0.02-0.15。
优选示例九
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000020
Figure PCTCN2016076885-appb-000021
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01,重量百分比的比值C2=Y2O3/(Sm2O3+Gd2O3+Y2O3)的范围为大于0.4。
根据优选示例九,由该组合物形成的玻璃纤维的弹性模量为大于95GPa。
优选示例十
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000022
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
优选示例十一
根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016076885-appb-000023
Figure PCTCN2016076885-appb-000024
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO2为52-67%,Al2O3为12-24%,Sm2O3+Gd2O3为0.05-4.5%,Li2O+Na2O+K2O为小于2%,CaO+MgO+SrO为10-24%,CaO为小于16%,MgO为小于13%,TiO2为小于3%,Fe2O3为小于1.5%。该组合物能大幅提高玻璃的机械性能和热稳定性,还能显著降低玻璃的液相线温度和成型温度,同等条件下大幅降低玻璃的析晶速率,特别适合用于池窑化生产热稳定性优异的高性能玻璃纤维。
选取本发明的玻璃纤维组合物中SiO2、Al2O3、Sm2O3、Gd2O3、Y2O3、La2O3、CaO、MgO、Li2O、Na2O、K2O、Fe2O3、TiO2和SrO的具体含量值作为实施例,与S玻璃、传统R玻璃和改良R玻璃的性能参数进行对比。在性能对比时,选用六个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(4)析晶峰温度,DTA测试过程中对应于玻璃析晶最强峰的温度。一般情况下,该温度越高,表明晶核长大所需能量越多,玻璃的析晶倾向越小。
(5)弹性模量,是沿纵向的弹性模量,表征玻璃抵抗弹性变形的能力,按ASTM2343测试。
(6)软化点温度,将标准规定的样品放入标准规定的炉内以5±1℃/min的升温速率进行加热,当样品每分钟伸长1mm时所对应的温度,即玻璃的软化点温度。
上述六个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面给出根据本发明的玻璃纤维组合物的具体实施例。
实施例一
Figure PCTCN2016076885-appb-000025
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3为0.09。
在实施例一中测定的六个参数的数值分别是:
Figure PCTCN2016076885-appb-000026
Figure PCTCN2016076885-appb-000027
实施例二
Figure PCTCN2016076885-appb-000028
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3为0.053。
在实施例二中测定的六个参数的数值分别是:
Figure PCTCN2016076885-appb-000029
实施例三
Figure PCTCN2016076885-appb-000030
Figure PCTCN2016076885-appb-000031
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3为0.141。
在实施例三中测定的六个参数的数值分别是:
Figure PCTCN2016076885-appb-000032
实施例四
Figure PCTCN2016076885-appb-000033
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3为0.059,重量百分比的比值 C2=Y2O3/(Sm2O3+Gd2O3+Y2O3)为0.88。
在实施例四中测定的六个参数的数值分别是:
Figure PCTCN2016076885-appb-000034
实施例五
Figure PCTCN2016076885-appb-000035
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3为0.071。
在实施例五中测定的六个参数的数值分别是:
Figure PCTCN2016076885-appb-000036
实施例六
Figure PCTCN2016076885-appb-000037
并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3为0.053。
在实施例六中测定的六个参数的数值分别是:
Figure PCTCN2016076885-appb-000038
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的上述实施例以及其他实施例与S玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1A
Figure PCTCN2016076885-appb-000039
表1B
Figure PCTCN2016076885-appb-000040
表1C
Figure PCTCN2016076885-appb-000041
由上述表中的具体数值可知,与S玻璃和传统R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有低得多的液相线温度,这有利于降低玻璃的析晶风险、提高纤维的拉丝效率;具有较高的析晶峰温度,这表明玻璃在析晶过程中晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶速率更小。
同时,与改良R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有较高的析晶峰温度,这表明玻璃在析晶过程中晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶速率更小;具有较低的液相线温度, 这有利于降低玻璃的析晶风险、提高纤维的拉丝效率;(三)具有显著提高的软化点温度,这表明玻璃的热稳定性得到了显著改善。
S玻璃和传统R玻璃均无法实现池窑化生产,改良R玻璃通过牺牲部分性能的方式来降低液相线温度和成型温度,以降低生产难度实现池窑化生产。与之不同的是,本发明组合物不仅拥有足够低的液相线温度和更小的析晶速率,可以进行池窑化生产,同时还实现了玻璃模量的大幅提升,打破了S级和R级玻璃纤维的模量水平无法与生产规模同步提升的技术瓶颈。
由根据本发明的玻璃纤维组合物可制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明组合物不仅拥有足够低的液相线温度和更小的析晶速率,可以进行池窑化生产,同时还实现了玻璃模量的大幅提升,打破了S级和R级玻璃纤维的模量水平无法与生产规模同步提升的技术瓶颈,与目前主流的高性能玻璃相比,本发明的玻璃纤维组合物在弹性模量、析晶性能和热稳定性方面取得了突破性的进展,同等条件下玻璃的弹性模量大幅提升、析晶风险显著下降、热稳定性明显提升,整体技术方案特别适合用于池窑化生产热稳定性优异的高性能玻璃纤维。

Claims (26)

  1. 一种高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100001
  2. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
  3. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Li2O的含量以重量百分比表示为0.1-1.5%。
  4. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述高性能玻璃纤维组合物还含有Y2O3,其含量以重量百分比表示为0.05-5%。
  5. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述高性能玻璃纤维组合物还含有La2O3,其含量以重量百分比表示为0.05-3%。
  6. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,SiO2+Al2O3的含量以重量百分比表示为小于82%。
  7. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,SiO2+Al2O3的含量以重量百分比表示为70-81%。
  8. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,MgO的含量以重量百分比表示为6-12%。
  9. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Sm2O3的含量以重量百 分比表示为0.05-3%。
  10. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Gd2O3的含量以重量百分比表示为0.05-2%。
  11. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,Sm2O3+Gd2O3的含量以重量百分比表示为0.1-4%。
  12. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于等于0.02。
  13. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100002
    并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
  14. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100003
    Figure PCTCN2016076885-appb-100004
    并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
  15. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100005
    并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
  16. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100006
    Figure PCTCN2016076885-appb-100007
    并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于等于0.02。
  17. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100008
    并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
  18. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016076885-appb-100009
    Figure PCTCN2016076885-appb-100010
    并且,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为大于0.01。
  19. 根据权利要求1或17所述的高性能玻璃纤维组合物,其特征在于,SrO的含量以重量百分比表示为0.1-2%。
  20. 根据权利要求17或18所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C1=(Li2O+Sm2O3+Gd2O3)/Al2O3的范围为0.02-0.15。
  21. 根据权利要求4或17所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C2=Y2O3/(Sm2O3+Gd2O3+Y2O3)的范围为大于0.4。
  22. 根据权利要求5或18所述的高性能玻璃纤维组合物,其特征在于,Gd2O3+La2O3的含量以重量百分比表示为0.5-1.5%。
  23. 根据权利要求5或18所述的高性能玻璃纤维组合物,其特征在于,Gd2O3+La2O3+TiO2的含量以重量百分比表示为1-3.5%。
  24. 根据权利要求1或17所述的高性能玻璃纤维组合物,其特征在于,所述高性能玻璃纤维组合物还含有CeO2,其含量以重量百分比表示为0-1%。
  25. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-24中任一项所述的玻璃纤维组合物制成。
  26. 一种复合材料,其特征在于,所述复合材料包括如权利要求25所述的玻璃纤维。
PCT/CN2016/076885 2016-03-15 2016-03-21 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 WO2016165531A2 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES16779506T ES2955836T3 (es) 2016-03-15 2016-03-21 Composición de fibra de vidrio de alto rendimiento, y fibra de vidrio y material compuesto de la misma
MA43292A MA43292B1 (fr) 2016-03-15 2016-03-21 Composition de fibre de verre haute performance, et fibre de verre et matériau composite de celle-ci
BR112018068475-9A BR112018068475B1 (pt) 2016-03-15 2016-03-21 Composição, fibra de vidro, e, material compósito
MX2018010963A MX2018010963A (es) 2016-03-15 2016-03-21 Composicion de fibra de vidrio de alto rendimiento, y fibra de vidrio y su material compuesto.
EP16779506.1A EP3409649B1 (en) 2016-03-15 2016-03-21 High performance glass fibre composition, and glass fibre and composite material thereof
KR1020187026739A KR102133662B1 (ko) 2016-03-15 2016-03-21 고성능 유리섬유 조성물 및 그 유리섬유와 복합재료
JP2018548181A JP6651647B2 (ja) 2016-03-15 2016-03-21 高性能ガラス繊維組成物及びそのガラス繊維並びに複合材料
CA3017536A CA3017536C (en) 2016-03-15 2016-03-21 High performance glass fiber composition, and glass fiber and composite material thereof
US16/081,350 US10590027B2 (en) 2016-03-15 2016-03-21 High performance glass fiber composition, and glass fiber and composite material thereof
PL16779506.1T PL3409649T3 (pl) 2016-03-15 2016-03-21 Kompozycja włókna szklanego o wysokiej wydajności, włókno szklane i materiał kompozytowy je zawierający
ZA201805678A ZA201805678B (en) 2016-03-15 2018-08-24 High performance glass fibre composition, and glass fibre and composite material thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610146263.2A CN105819698B (zh) 2016-03-15 2016-03-15 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN201610146263.2 2016-03-15

Publications (2)

Publication Number Publication Date
WO2016165531A2 true WO2016165531A2 (zh) 2016-10-20
WO2016165531A3 WO2016165531A3 (zh) 2017-02-02

Family

ID=56987250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076885 WO2016165531A2 (zh) 2016-03-15 2016-03-21 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (13)

Country Link
US (1) US10590027B2 (zh)
EP (1) EP3409649B1 (zh)
JP (1) JP6651647B2 (zh)
KR (1) KR102133662B1 (zh)
CN (1) CN105819698B (zh)
BR (1) BR112018068475B1 (zh)
CA (1) CA3017536C (zh)
ES (1) ES2955836T3 (zh)
MA (1) MA43292B1 (zh)
MX (1) MX2018010963A (zh)
PL (1) PL3409649T3 (zh)
WO (1) WO2016165531A2 (zh)
ZA (1) ZA201805678B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470382A4 (en) * 2017-08-30 2020-02-05 Jushi Group Co., Ltd. FIBERGLASS COMPOSITION, FIBERGLASS AND COMPOSITE MATERIAL THEREOF
JP7476437B2 (ja) 2018-03-14 2024-05-01 エボニック オクセノ ゲーエムベーハー ウント コー. カーゲー オリゴマー化触媒およびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358460A (zh) * 2017-01-26 2018-08-03 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN107216042B (zh) * 2017-06-05 2020-09-08 重庆国际复合材料股份有限公司 一种高模量玻璃纤维组合物以及玻璃纤维
CN107417128A (zh) * 2017-06-19 2017-12-01 重庆国际复合材料有限公司 一种高耐温玻璃纤维及其制备方法
DK3887329T3 (da) 2018-11-26 2024-04-29 Owens Corning Intellectual Capital Llc Højydelsesglasfibersammensætning med forbedret elasticitetskoefficient
CA3117986A1 (en) 2018-11-26 2020-06-04 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
CN113929299B (zh) * 2021-10-21 2023-08-25 泰山玻璃纤维有限公司 高模玻璃组合物、高模玻璃纤维和复合材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1273339A (en) * 1917-06-05 1918-07-23 George D Eighmie Four-wheel drive for automobiles and other vehicles.
JPS60141642A (ja) * 1983-12-28 1985-07-26 Tdk Corp 高温度安定低膨脹ガラス
SU1273339A1 (ru) * 1985-01-22 1986-11-30 Предприятие П/Я М-5314 Стекло дл стекловолокна
DE102006029073B4 (de) * 2005-07-06 2009-07-16 Schott Ag Verfahren zum Durchtrennen eines Flachglases unter Verwendung eines Lasertrennstrahls und alkalifreies Flachglas mit besonderer Eignung hierfür
JP2011011933A (ja) 2009-06-30 2011-01-20 Hitachi Automotive Systems Ltd 耐熱性及び耐食性を有するガラス
CN103086605A (zh) * 2013-02-19 2013-05-08 重庆国际复合材料有限公司 一种玻璃纤维
US9278883B2 (en) * 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
TWI722941B (zh) * 2014-09-09 2021-03-21 美商電子玻璃纖維美國有限責任公司 玻璃組成物,可纖維化玻璃組成物及由其製得之玻璃纖維
CN105016622A (zh) * 2015-04-21 2015-11-04 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105753329B (zh) 2016-03-15 2018-07-31 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105693100B (zh) 2016-03-15 2018-06-26 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470382A4 (en) * 2017-08-30 2020-02-05 Jushi Group Co., Ltd. FIBERGLASS COMPOSITION, FIBERGLASS AND COMPOSITE MATERIAL THEREOF
EP3470382B1 (en) 2017-08-30 2022-01-05 Jushi Group Co., Ltd. Glass fiber composition and glass fiber and composite material thereof
US11339085B2 (en) 2017-08-30 2022-05-24 Jushi Group Co., Ltd. Glass fiber composition, glass fiber and composite material thereof
US11884575B2 (en) 2017-08-30 2024-01-30 Jushi Group Co., Ltd. Glass fiber composition, glass fiber and composite material thereof
JP7476437B2 (ja) 2018-03-14 2024-05-01 エボニック オクセノ ゲーエムベーハー ウント コー. カーゲー オリゴマー化触媒およびその製造方法

Also Published As

Publication number Publication date
BR112018068475B1 (pt) 2022-05-03
JP6651647B2 (ja) 2020-02-19
JP2019508360A (ja) 2019-03-28
KR102133662B1 (ko) 2020-07-13
MX2018010963A (es) 2019-01-10
ES2955836T3 (es) 2023-12-07
PL3409649T3 (pl) 2023-11-13
EP3409649C0 (en) 2023-07-26
EP3409649A2 (en) 2018-12-05
CN105819698A (zh) 2016-08-03
ZA201805678B (en) 2019-11-27
EP3409649A4 (en) 2019-03-13
MA43292B1 (fr) 2020-10-28
CA3017536A1 (en) 2016-10-20
US20190077699A1 (en) 2019-03-14
US10590027B2 (en) 2020-03-17
EP3409649B1 (en) 2023-07-26
BR112018068475A2 (pt) 2019-01-22
CN105819698B (zh) 2018-09-14
CA3017536C (en) 2021-03-30
MA43292A1 (fr) 2020-03-31
KR20180112028A (ko) 2018-10-11
WO2016165531A3 (zh) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2017190405A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165532A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165531A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165506A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165507A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045222A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
CN107531552B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
KR102034945B1 (ko) 무붕소유리섬유 조성물 및 그 유리섬유와 복합재료
WO2015131684A2 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
TWI776565B (zh) 高模量玻璃纖維組合物及其玻璃纖維和複合材料
WO2016169408A1 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045221A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2019100782A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2022006947A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
KR102656005B1 (ko) 고 모듈러스 유리섬유 조성물 및 그 유리섬유와 복합재료

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016779506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/010963

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3017536

Country of ref document: CA

Ref document number: 2018548181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187026739

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026739

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779506

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068475

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016779506

Country of ref document: EP

Effective date: 20180830

ENP Entry into the national phase

Ref document number: 112018068475

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180912