WO2016169408A1 - 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2016169408A1
WO2016169408A1 PCT/CN2016/078518 CN2016078518W WO2016169408A1 WO 2016169408 A1 WO2016169408 A1 WO 2016169408A1 CN 2016078518 W CN2016078518 W CN 2016078518W WO 2016169408 A1 WO2016169408 A1 WO 2016169408A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass fiber
mgo
cao
ratio
Prior art date
Application number
PCT/CN2016/078518
Other languages
English (en)
French (fr)
Inventor
章林
曹国荣
邢文忠
顾桂江
洪秀成
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to EP16782556.1A priority Critical patent/EP3287425B1/en
Priority to DK16782556.1T priority patent/DK3287425T3/da
Priority to ES16782556T priority patent/ES2828726T3/es
Priority to US15/565,412 priority patent/US10399889B2/en
Priority to BR112017022438-0A priority patent/BR112017022438B1/pt
Publication of WO2016169408A1 publication Critical patent/WO2016169408A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Definitions

  • the present invention relates to a high performance glass fiber composition, and more particularly to a high performance glass fiber composition capable of reinforcing a substrate as an advanced composite material, and glass fibers and composite materials thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high-performance glass fiber was originally used in the defense, military and other fields of defense, military and other fields. With the advancement of technology and economic development, high-performance glass fiber has been widely used in civil and industrial fields such as motors, wind blades, pressure vessels, offshore oil pipelines, sports equipment, and the automotive industry.
  • the main components of Gaoqiang 2# glass fiber also include SiO 2 , Al 2 O 3 , MgO, and also introduce some parts of Li 2 O, B 2 O 3 , CeO 2 and Fe 2 O 3 , which also have high strength and Modulus, and its molding temperature is only about 1245 ° C, the liquidus temperature is 1320 ° C, the temperature of both is much lower than S glass fiber, but its molding temperature is lower than the liquidus temperature, but it is not good for glass fiber. Drawing, the drawing temperature must be increased, and a special form of the leaking nozzle is used to prevent the glass from devitrifying during the drawing process, which causes difficulty in temperature control and is difficult to achieve large-scale industrial production.
  • the present invention is directed to solving the problems described above. It is an object of the present invention to provide a high performance glass fiber composition which not only significantly improves the mechanical properties of the glass, but also makes it higher than conventional R glass; and can also greatly reduce the viscosity and crystallization risk of the glass. A lower liquidus temperature, wire drawing temperature and number of bubbles are obtained, making it significantly lower than conventional R glass, making the glass fiber composition more suitable for large scale kiln production.
  • a glass fiber composition comprising the following components, the content of each component being expressed by weight percentage as follows:
  • the glass fiber composition further comprises SrO, and the weight percentage of SrO is 0-2%.
  • the content of SrO is represented by 0.2 to 1.5% by weight.
  • the molar ratio ratio C1 Li 2 O/Al 2 O 3 ranges from 0.105 to 0.22
  • the weight percentage ratio C3 ( The range of MgO+SrO)/CaO is from 0.58 to 0.9.
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the glass fiber composition of the present invention by introducing a higher content of Li 2 O, the content of the percentage by weight of CaO and MgO, the molar ratio of MgO/(CaO+MgO) and Li 2 O/Al 2 O 3 are appropriately arranged.
  • the use of Li 2 O and Al 2 O 3 , Li 2 O and MgO, CaO and MgO combination effect can not only significantly improve the mechanical properties of the glass, making it higher than the conventional R glass; but also can greatly reduce the viscosity of the glass and The crystallization risk, obtaining a lower liquidus temperature, wire drawing temperature and number of bubbles, makes it significantly lower than conventional R glass, making the glass fiber composition more suitable for large-scale kiln production.
  • the present invention can selectively introduce an appropriate amount of SrO, and further enhance the above advantageous technical effects by utilizing the ternary mixed alkaline earth effect of CaO, MgO, and SrO.
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components.
  • the content of SiO 2 is limited to 58.5-62.5%, and if the content is too low, the mechanical properties of the glass are affected; if the content is too high, the viscosity of the glass is too high to cause melting, Clarify the difficulties.
  • the content of SiO 2 may be limited to 59-62%.
  • Al 2 O 3 is a glass network intermediate oxide, which has two coordination states of tetracoordinate (tetrahedron) and hexacoordinate (octahedron), and is a conditional glass former.
  • tetracoordinate tetrahedron
  • octahedron hexacoordinate
  • AlO 6 aluminum octahedron
  • Al 2 O 3 can be promoted into the glass network structure in the form of aluminum oxide tetrahedron [AlO 4 ], and is affected by the accumulation of large field strong metal ions, and the structure of Al 2 O 3 to the network structure.
  • the reinforcing effect is more remarkable, which not only improves the mechanical properties of the glass, but also reduces the risk of crystallization of the glass.
  • the high content of Li 2 O just meets the above conditions. The inventors have found that Li 2 O not only provides considerable free oxygen, but also has a strong ion field strength, which facilitates the formation of tetrahedral coordination of more aluminum ions, thereby enhancing the network structure of the glass. Therefore, it is important to select the appropriate content and ratio of Al 2 O 3 and Li 2 O.
  • the range of 2 O/Al 2 O 3 is 0.105-0.22.
  • CaO is a glass network exosome oxide with only six coordination states. It can adjust the viscosity of the glass, control the crystallization of the glass, increase the strength of the glass, and shorten the glass frit and increase the molding speed of the glass fiber. MgO is also a glass network exosome oxide. There are two coordination states (tetrahedral) and six coordination (octahedron), most of which are located in octahedrons. MgO can also adjust the viscosity of the glass, control the crystallization of the glass, and is more conducive to increasing the modulus of the glass. When replacing part of CaO with MgO, the glass frit becomes gentle.
  • the crystal phase contained in the high-performance glass mainly composed of MgO-CaO-Al 2 O 3 -SiO 2 system mainly includes diopside (CaMgSi 2 O 6 ) and anorthite (CaAl 2 Si 2 O 8 ). .
  • diopside CaMgSi 2 O 6
  • anorthite CaAl 2 Si 2 O 8
  • the molecular formula Ca 2+ /Mg 2+ molar ratio of diopside is 1.
  • Ca 2+ and Mg 2+ it is necessary to have sufficient Ca 2+ and Mg 2+ at the same time.
  • anorthite is also An environment rich in Ca 2+ is needed to grow quickly.
  • the significant decrease in the degree of crystallization of the crystal phase is manifested by the significant decrease in the intensity of the X-ray diffraction peak, and the grain morphology of the diopside in the SEM scan of the crystal phase changes from column to rod to slender needle. It becomes smaller and the integrity is reduced.
  • the content of CaO is limited to a range of from 10.5 to 14.5%
  • the content of MgO is in the range of from 8 to 10%
  • the content of CaO ranges from 11.8 to 14.5%
  • the range of C2 MgO / (CaO + MgO) is from 0.44 to 0.53.
  • Both K 2 O and Na 2 O reduce the viscosity of the glass and are good fluxing agents.
  • replacing Na 2 O with K 2 O can reduce the crystallization tendency of the glass and improve the fiber forming property; and can also lower the surface tension of the glass liquid and improve the glass melting performance. Therefore, in the glass fiber composition of the present invention, the content of Na 2 O is limited to 0.05-1%, and the content of K 2 O is in the range of 0.05 to 1%, and a good effect can be obtained.
  • Fe 2 O 3 is advantageous for the melting of glass and also for improving the crystallization properties of glass.
  • the amount of introduction is not preferable. Therefore, in the glass fiber composition of the present invention, the content of Fe 2 O 3 is limited to a range of 0.05 to 1%.
  • TiO 2 not only reduces the viscosity of the glass at high temperatures, but also has a certain fluxing effect. Therefore, TiO 2 is added to the glass fiber composition of the present invention, and the content of TiO 2 is limited to a range of from 0.15 to 1.5%.
  • the present invention can also selectively introduce an appropriate amount of SrO, and further enhance the above advantageous technical effects by utilizing the ternary mixed alkaline earth effect of CaO, MgO, and SrO.
  • the inventors have found through a large number of studies that the technical effects of the mixed alkaline earth effect of CaO, MgO and SrO are significantly improved compared with the mixed alkaline earth effect of CaO and MgO under the premise of reasonable ratio. This is because more alkaline earth ions of different radii are involved in the substitution, and the structure is more likely to form close packing, thereby making the crystallization property and mechanical properties of the glass more excellent.
  • the crystallization process of glass is actually the process of nucleation and continuous growth, which is the process of reorganization and reorganization of various atoms in glass.
  • the ternary alkaline earth system designed in the invention is more likely to realize the close packing of the glass structure, and at the same time, due to the large ionic radius of Sr 2+ , it is not only difficult to move by itself, but also can effectively block Mg 2+ and Ca 2+ ions under the same conditions.
  • the mobile recombination achieves the purpose of suppressing the tendency of crystallization and reducing the rate of crystallization. Therefore, the glass fiber composition of the present invention can obtain more excellent glass crystallization properties.
  • the ternary mixed alkaline earth effect of CaO, MgO and SrO is comprehensively considered and the appropriate SrO content is selected to achieve lower liquidus temperature and crystallization degree, and higher mechanical properties.
  • the present invention defines the content of SrO in the range of 0 to 2%.
  • the content of SrO ranges from 0.2 to 1.5%
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the molar ratio ratio C1 Li 2 O/Al 2 O 3 ranges from 0.105 to 0.22
  • the weight percentage ratio C3 ( The range of MgO+SrO)/CaO is from 0.58 to 0.9.
  • each component in the glass fiber composition according to the present invention can not only significantly improve the mechanical properties of the glass, but also make it higher than the conventional R glass; and can also greatly reduce the viscosity and crystallization risk of the glass, and obtain a lower
  • the liquidus temperature and the wire drawing temperature make it significantly lower than conventional R glass, making the glass fiber composition more suitable for large-scale kiln production.
  • the specific content values of SiO 2 , Al 2 O 3 , CaO, MgO, Li 2 O, Na 2 O, K 2 O, Fe 2 O 3 , TiO 2 and SrO in the glass fiber composition of the present invention are selected as examples. Compare with the performance parameters of traditional E glass and traditional R glass. In performance comparison, six performance parameters are selected:
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • Young's modulus which is the elastic modulus along the longitudinal direction, characterizing the ability of the glass to resist elastic deformation, tested according to ASTM 2343.
  • the number of bubbles wherein the approximate method of measuring the number of bubbles is: using a special mold to press each sample batch into a sample of the same shape, placed in a sample platform of a high temperature microscope, and then programmed to a set space temperature. At 1500 ° C, the glass samples were cooled to room temperature with the furnace; then, the number of bubbles of each glass sample was observed from a microscopic angle by a polarizing microscope. Among them, the number of bubbles is based on the imaging range of the microscope.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid
  • the glass fiber is formed by the leaking nozzle on the drain plate being pulled out, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a yarn group.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • the above-described embodiments of the glass fiber composition of the present invention and other examples are further given below by way of a list. Comparison with the performance parameters of conventional E glass, conventional R glass and modified R glass. Wherein, the content of the glass fiber composition is expressed by weight percentage. It should be noted that the total content of the components of the examples is slightly less than 100%, and it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages as compared with the conventional R glass and the modified R glass: (1) having a much lower liquidus temperature, which is advantageous for reducing the glass analysis. Crystal risk, improve fiber The drawing efficiency of the dimension; (2) the significantly improved mechanical properties; (3) the much lower number of bubbles, which indicates that the quality of the glass liquid of the present invention is greatly improved.
  • the glass fiber composition of the present invention has made a breakthrough in the improvement of the crystallization risk and the improvement of the mechanical properties of the R-grade glass, and the number of bubbles under the same conditions is significantly reduced, and the overall technical scheme is improved compared with the conventional R glass.
  • R glass fiber is easier to achieve large-scale industrial production.
  • the invention adopts a higher content of Li 2 O, reasonably configures the weight percentage content of CaO and MgO, the molar ratio ratio range of MgO/(CaO+MgO) and Li 2 O/Al 2 O 3 , and utilizes Li 2 O and Al.
  • the combination effect of 2 O 3 , Li 2 O and MgO, CaO and MgO can not only significantly improve the mechanical properties of the glass, but also make it higher than the traditional R glass; it can also greatly reduce the viscosity and crystallization risk of the glass, and obtain lower The liquidus temperature, wire drawing temperature and number of bubbles make it significantly lower than conventional R glass. Therefore, the glass fiber composition of the present invention is more suitable for large scale kiln production.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the composition of the invention can not only significantly improve the mechanical properties of the glass, but also make it higher than the conventional R glass; and can also greatly reduce the viscosity and crystallization risk of the glass, and obtain lower liquidus temperature, wire drawing temperature and number of bubbles. It is significantly lower than traditional R glass and is more suitable for large-scale kiln production.
  • the glass fiber composition of the invention has made a breakthrough in tensile strength, crystallization performance and Young's modulus, and the mechanical properties of the glass are greatly improved and crystallized under the same conditions. The risk is significantly reduced and the overall technical solution is particularly suitable for high performance fiberglass for large scale kiln production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料。该玻璃纤维组合物含有的各组分的含量以重量百分比表示如下:SiO 2 58.5-62.5%,Al 2O 3 14.5-17%,CaO 10.5-14.5%,MgO 8-10%,Li 2O >0.5%且≤1%,Na 2O 0.05-1%,K 2O 0.05-1%,Fe 2O 3 0.05-1%,TiO 2 0.15-1.5%,其中摩尔百分比的比值C1=Li 2O/Al 2O 3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55。该组合物能提高玻璃的力学性能,降低玻璃的粘度、析晶风险及气泡数量,更适于大规模池窑生产。

Description

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2015年4月21日提交中国专利局、申请号为201510191134.0、发明名称为“一种高性能玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高性能玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高性能玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高性能玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高性能玻璃纤维在民用、工业领域如电机、风力叶片、压力容器、海上石油管道、体育器材、汽车行业得到了广泛应用。
自从美国欧文斯科宁公司(简称OC公司)开发出S-2玻璃纤维后,各国竞相开发生产各种成分的高性能玻璃纤维,如法国圣戈班公司开发的R玻璃纤维、美国OC公司开发的HiPer-tex玻璃纤维、中国南京玻璃纤维研究设计院开发的高强2#玻璃纤维等。最初的高性能玻璃成分以MgO-Al2O3-SiO2系统为主体,典型方案如美国OC公司的S-2玻璃,不过它的生产难度过大,成型温度高达1571℃左右,液相线温度达到1470℃,难于实现大规模工业化生产。OC公司主动放弃了生产S-2玻璃纤维,将其专利权转让给了美国AGY公司,后者一直致力于小规模生产S型玻璃纤维及其改进产品。
随后,为了降低玻璃的熔化温度及成型温度使其能更好地满足规模化池窑生产的要求,国外各大公司陆续开发了以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,典型方案如法国圣戈班公司的R玻璃和美国OC公司的HiPer-tex玻璃,这是一种以牺牲部分玻璃性能换取生产规模的折衷策略,不过由于设计方案过于保守,尤其是将Al2O3含量保持在20%以上,优选25%,造成生产难度依然很高,虽然实现了小规模的池窑化生产,但生产效率低下、产品性价比不高。因此,OC公司也放弃了生产HiPer-tex玻璃纤维,将其专利权转让给了欧洲3B公司。2007年前后,由于OC公司和圣戈班公司的玻纤业务合并成立OCV公司,R玻璃纤 维的核心技术也相应转让给了OCV公司。传统的R玻璃成型困难,成型温度达到1410℃左右,液相线温度达到1330℃,这也造成玻璃纤维拉制上的困难,同样难于实现大规模工业化生产。
另外,还有一种改良的R玻璃纤维,这种玻璃纤维具有比传统E玻璃纤维高得多的强度及模量,熔化和拉制状态也优于传统R玻璃纤维,但是该玻璃的析晶风险较大,同时由于Li2O的引入量过大,不仅降低玻璃的化学稳定性,而且大幅提高了原料成本,也不利于大规模工业化生产。
高强2#玻璃纤维的主要成分也包括SiO2、Al2O3、MgO,同时还引入了部分Li2O、B2O3、CeO2和Fe2O3,它也具有较高的强度及模量,且其成型温度只有1245℃左右,液相线温度为1320℃,两者的温度均比S玻璃纤维低得多,但其成型温度比液相线温度低却不利于玻璃纤维的良好拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模工业化生产。
出于生产方式的限制,即由于不能实现池窑的规模化生产,现阶段高性能玻璃纤维的制造成本和售价都非常昂贵,产量因此受到严重制约,其用途仅限于航空、航天,以及国防军工等领域,不能够全面满足诸如大功率风力发电叶片、高压管道、压力容器等新型行业对高性能玻璃纤维的大量需求。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种高性能玻璃纤维组合物,该玻璃纤维组合物不仅可以明显提高玻璃的力学性能,使其高于传统R玻璃;而且还可以大幅降低玻璃的粘度和析晶风险,获得更低的液相线温度、拉丝成型温度和气泡数量,使其显著低于传统R玻璃,使该玻璃纤维组合物更适于大规模池窑生产。
根据本发明的一个方面,提供一种玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000001
Figure PCTCN2016078518-appb-000002
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55。
其中,所述玻璃纤维组合物还包括SrO,并且SrO的重量百分比是0-2%。
其中,摩尔百分比的比值C1=MgO/(CaO+MgO)的范围为0.44-0.53。
其中,SrO的含量以重量百分比表示为0.2-1.5%。
其中,重量百分比的比值C3=(MgO+SrO)/CaO的范围为0.58-0.9。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000003
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.125-0.21,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000004
Figure PCTCN2016078518-appb-000005
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.155-0.21,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
其中,各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000006
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55,重量百分比的比值C3=(MgO+SrO)/CaO的范围为0.58-0.9。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的另一个方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的玻璃纤维组合物,通过引入较高含量的Li2O,合理配置CaO、MgO的重量百分比含量,MgO/(CaO+MgO)、Li2O/Al2O3的摩尔百分比比值范围,利用Li2O与Al2O3、Li2O与MgO、CaO与MgO的组合效果,不仅可以明显提高玻璃的力学性能,使其高于传统R玻璃;而且还可以大幅降低玻璃的粘度和析晶风险,获得更低的液相线温度、拉丝成型温度和气泡数量,使其显著低于传统R玻璃,使该玻璃纤维组合物更适于大规模池窑生产。此外,本发明还可以选择性地引入适量SrO,利用CaO、MgO、SrO的三元混合碱土效应进一步增 强上述的有利技术效果。
具体来说,根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000007
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55。
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。在本发明的玻璃纤维组合物中,限定SiO2的含量范围为58.5-62.5%,若其含量太低会影响玻璃的力学性能;若其含量太高则会使玻璃的粘度过高导致熔化、澄清困难。优选地,SiO2的含量范围可以限定为59-62%。
Al2O3是一种玻璃网络中间体氧化物,存在四配位(四面体)和六配位(八面体)两种配位状态,是有条件的玻璃形成体。在高性能玻璃体系中,氧化铝的含量一般较高,并且随着氧化铝含量的提高,其中铝氧八面体[AlO6]的比例会随之增高,这会导致玻璃析晶或分相的风险不断变大。发明人经过大量实验研究发现,在高性能玻璃体系中,如果拥有足够的游离氧,且当具有较多离子场强大的金属离子时,在高温熔制阶段,能有效提高氧化铝的熔化效率,在低温成型阶段,能促进更多的Al2O3以铝氧四面体[AlO4]的形式进入玻璃网络结构,同时受大场强金属离子积聚效应的影响,Al2O3对网络结构的补强作用更加显著,不仅能提高玻璃的力学性能,还能降低玻璃的析晶风险。而高含量的Li2O恰好能满足上述条件。发明人发现,Li2O不仅能提供可观的游离氧,还拥有强大的离子场强,有利于更多的铝离子形成四面体配位,从而增强玻璃的网络结构。因此,选择Al2O3和Li2O的合适含量及比例至关重要。
为此,在本发明的玻璃纤维组合物中,限定Al2O3的含量范围为14.5-17%,Li2O的含量范围为>0.5%且≤1%,并且摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22。优选地,Al2O3的含量范围为15-16.5%,Li2O的含量范围为>0.6%且≤1%,并且摩尔百分比的比值C1=Li2O/Al2O3的范围为0.125-0.21。更优选地,Li2O的含量范围为>0.75%且≤1%,并且摩尔百分比的比值C1=Li2O/Al2O3的范围为0.155-0.21。
CaO是一种玻璃网络外体氧化物,只有六配位一种配位状态。它既可以调节玻璃粘度、控制玻璃析晶,也可以提高玻璃的强度,还能使玻璃料性变短,提高玻璃纤维的成型速度。MgO也是一种玻璃网络外体氧化物,存在四配位(四面体)和六配位(八面体)两种配位状态,其中大部分位于八面体中。MgO也可以调节玻璃粘度、控制玻璃析晶,更有利于提高玻璃的模量,以MgO替代部分CaO时,玻璃料性变得平缓。
以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃析晶后所包含的晶相主要包括透辉石(CaMgSi2O6)和钙长石(CaAl2Si2O8)。其中,透辉石的分子式Ca2+/Mg2+摩尔比为1,要保证透辉石结晶完整的快速生长需要同时拥有足量的Ca2+和Mg2+;同理,钙长石也需要富Ca2+的环境才能快速生长。本发明中引入摩尔百分比的比值C2=MgO/(CaO+MgO)来衡量和控制Ca2+和Mg2+之间的摩尔比关系,以达到同时抑制两种晶相生长的目的。发明人发现,传统的高性能玻璃结构中,Ca2+离子的数量往往偏多,MgO/(CaO+MgO)的摩尔比值较低,一般低于0.43,甚至低于0.41,这种情况下由于保证两种晶相完整快速生长的Ca2+离子是足够的,因此只是透辉石和钙长石两种晶相的比例发生了变化,但并不能真正达到同时抑制两种晶相生长的效果。
进一步研究中,发明人意外发现,在本发明的玻璃纤维组合物中,当控制摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55时,它的玻璃液相线温度和析晶程度均有显著的降低。其中,晶相析晶程度的显著降低表现为X射线衍射峰的强度明显减弱,同时晶相的SEM扫描图中透辉石的晶粒形态由柱、棒状向细长针状转变,晶粒尺寸变小且完整度下降。发明人认为,这种情况主要是因为随着MgO/(CaO+MgO)摩尔比值的提高,Mg2+离子的相对数量不断提高,Ca2+离子的数量逐渐无法保证两种晶相完整快速生长的需要,透辉石和钙长石的析晶过程都会受到显著影响,从而达到了同时抑制两种晶相析晶倾向的效果。同时,随着MgO/(CaO+MgO)摩尔比值的提高,由于MgO的分子量小于CaO,用相同质量的MgO替代CaO时,MgO能提供的氧远远多于CaO,这有利于更多的铝离子形成四面体配位,增强玻璃体系的网络结构,可进一步降低玻璃的析晶倾向。但是,MgO/(CaO+MgO)摩尔比值也不宜过高,否则镁离子会大量过剩,这一定程度上会增强新晶相镁橄榄石(Mg2Si2O6)的析晶 倾向。
为此,在本发明的玻璃纤维组合物中,限定CaO的含量范围为10.5-14.5%,MgO的含量范围为8-10%,并且摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55。优选地,CaO的含量范围为11.8-14.5%,C2=MgO/(CaO+MgO)的范围为0.44-0.53。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。在碱金属氧化物总量不变的情况下,用K2O替代Na2O,能降低玻璃的析晶倾向,改善纤维成型性能;还能降低玻璃液的表面张力,改善玻璃熔制性能。因此,在本发明的玻璃纤维组合物中,限定Na2O的含量范围为0.05-1%,K2O的含量范围为0.05-1%,能达到较好的效果。
Fe2O3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的含量范围为0.05-1%。
TiO2不仅可以降低高温时的玻璃粘度,还具有一定的助熔作用。因此,本发明的玻璃纤维组合物中加入TiO2,且限定TiO2的含量范围0.15-1.5%。
此外,本发明还可以选择性地引入适量SrO,利用CaO、MgO、SrO的三元混合碱土效应进一步增强上述的有利技术效果。发明人通过大量研究认为,在合理配比的前提下,CaO、MgO和SrO三元混合碱土效应的技术效果比CaO和MgO二元混合碱土效应有显著提升。这是因为更多不同半径的碱土金属离子参与替代,结构更容易形成紧密堆积,从而使玻璃的析晶性能、力学性能等方面更加优秀。同时,考虑到离子的大小匹配性,将SrO和MgO联合与CaO进行比例控制是合适的。由于Mg2+、Ca2+、Sr2+的离子半径依次变大、离子场强依次变小,为了实现结构的紧密堆积,三种离子的数量级配就显得很重要。值得特别注意的是,在本发明的玻璃纤维组合物中引入适量SrO,通过合理调节(MgO+SrO)/CaO的比值能够有效控制玻璃的析晶倾向和析晶程度。
从玻璃析晶的原理来看,玻璃的析晶过程其实是晶核形成并不断长大的过程,也就是玻璃中各类原子移动重组的过程。本发明中所设计的三元碱土体系更易实现玻璃结构的紧密堆积,同时由于Sr2+的离子半径大,不仅自身很难移动,而且同等条件下还可以有效阻碍Mg2+和Ca2+离子的移动重组,从而达到抑制析晶倾向和降低析晶速率的目的。因此,本发明的玻璃纤维组合物可以获得更加优秀的玻璃析晶性能。
在本发明中,综合考虑CaO、MgO和SrO的三元混合碱土效应以及选择合适的SrO含量,以能够实现更低的液相线温度和析晶程度、更高的力学性能。不过由于氧化锶的分子量 较大,引入过多会造成玻璃的密度提高,对玻璃纤维的比强度和比模量有一定的负面影响。因此,本发明限定SrO的含量范围为0-2%。优选地,SrO的含量范围为0.2-1.5%,并且重量百分比的比值C3=(MgO+SrO)/CaO范围为0.58-0.9。
此外,根据本发明的玻璃纤维组合物中还允许含有少量的氟,不过鉴于氟对环境的负面影响较大,一般不主动添加。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果在后面会通过实施例给出具体实验数据来说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一
根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000008
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.125-0.21,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
优选示例二
根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000009
Figure PCTCN2016078518-appb-000010
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.155-0.21,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
优选示例三
根据本发明的玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2016078518-appb-000011
并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55,重量百分比的比值C3=(MgO+SrO)/CaO的范围为0.58-0.9。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请 中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO2为58.5-62.5%,Al2O3为14.5-17%,CaO为10.5-14.5%,MgO为8-10%,Li2O为>0.5%且≤1%,Na2O为0.05-1%,K2O为0.05-1%,Fe2O3为0.05-1%,TiO2为0.15-1.5%,SrO为0-2%,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55。根据本发明的玻璃纤维组合物中的各组分采用上述含量不仅可以明显提高玻璃的力学性能,使其高于传统R玻璃;而且还可以大幅降低玻璃的粘度和析晶风险,获得更低的液相线温度、拉丝成型温度,使其显著低于传统R玻璃,使该玻璃纤维组合物更适于大规模池窑生产。
选取本发明的玻璃纤维组合物中SiO2、Al2O3、CaO、MgO、Li2O、Na2O、K2O、Fe2O3、TiO2、SrO的具体含量值作为实施例,与传统E玻璃与传统R玻璃的性能参数进行对比。在进行性能对比时,选用六个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示可能拉丝成型的温度范围。
(4)拉伸强度,表征玻璃纤维直至断裂为止所受的最大拉伸应力,按ASTM2343测试。
(5)杨氏模量,是沿纵向的弹性模量,表征玻璃抵抗弹性变形的能力,按ASTM2343测试。
(6)气泡数量,其中测定气泡数量的大致方法为:利用专用的模具将每个实施例配合料压制成一样形状的样品,放置于高温显微镜的样品平台,然后按程序升温至设定空间温度1500℃,不保温,玻璃样品随炉冷却至常温;然后,通过偏光显微镜从微观角度观察各个玻璃样品的气泡数量。其中,气泡数量按显微镜成像范围为准。
上述六个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的上述实施例以及其他实施例 与传统E玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1
Figure PCTCN2016078518-appb-000012
由上述表中的具体数值可知,与传统R玻璃和改良R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有低得多的液相线温度,这有利于降低玻璃析晶的风险、提高纤 维的拉丝效率;(二)明显改善的力学性能;(三)具有低得多的气泡数量,这表明本发明的玻璃液质量得到了大幅提高。特别地,本发明的玻璃纤维组合物在R级别玻璃的析晶风险改善和力学性能提升方面取得了突破性的进展,而且同等条件下的气泡数量明显下降,整体技术方案比传统R玻璃及改良R玻璃纤维更易于实现大规模工业化生产。
本发明通过引入较高含量的Li2O,合理配置CaO、MgO的重量百分比含量,MgO/(CaO+MgO)、Li2O/Al2O3的摩尔百分比比值范围,利用Li2O与Al2O3、Li2O与MgO、CaO与MgO的组合效果,不仅可以明显提高玻璃的力学性能,使其高于传统R玻璃;而且还可以大幅降低玻璃的粘度和析晶风险,获得更低的液相线温度、拉丝成型温度和气泡数量,使其显著低于传统R玻璃。因此,本发明的玻璃纤维组合物更适于大规模池窑生产。
由根据本发明的玻璃纤维组合物可以制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明组合物不仅可以明显提高玻璃的力学性能,使其高于传统R玻璃;而且还可以大幅降低玻璃的粘度和析晶风险,获得更低的液相线温度、拉丝成型温度和气泡数量,使其显著低于传统R玻璃,更适于大规模池窑生产。与目前主流的高性能玻璃相比,本发明的玻璃纤维组合物在拉伸强度、析晶性能和杨氏模量方面取得了突破性的进展,同等条件下玻璃的力学性能大幅提升、析晶风险显著下降,整体技术方案特别适合用于大规模池窑生产的高性能玻璃纤维。

Claims (10)

  1. 一种玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016078518-appb-100001
    并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55。
  2. 根据权利要求1所述的玻璃纤维组合物,其特征在于,所述玻璃纤维组合物还包括SrO,并且SrO的重量百分比是0-2%。
  3. 根据权利要求1所述的玻璃纤维组合物,其特征在于,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
  4. 根据权利要求2所述的玻璃纤维组合物,其特征在于,SrO的含量以重量百分比表示为0.2-1.5%。
  5. 根据权利要求1或4所述的玻璃纤维组合物,其特征在于,重量百分比的比值C3=(MgO+SrO)/CaO的范围为0.58-0.9。
  6. 根据权利要求1所述的玻璃纤维组合物,其特征在于,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016078518-appb-100002
    Figure PCTCN2016078518-appb-100003
    并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.125-0.21,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
  7. 根据权利要求1所述的玻璃纤维组合物,其特征在于,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016078518-appb-100004
    并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.155-0.21,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.44-0.53。
  8. 根据权利要求1所述的玻璃纤维组合物,其特征在于,各组分的含量以重量百分比表示如下:
    Figure PCTCN2016078518-appb-100005
    Figure PCTCN2016078518-appb-100006
    并且,摩尔百分比的比值C1=Li2O/Al2O3的范围为0.105-0.22,摩尔百分比的比值C2=MgO/(CaO+MgO)的范围为0.435-0.55,重量百分比的比值C3=(MgO+SrO)/CaO的范围为0.58-0.9。
  9. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-8中任一项所述的玻璃纤维组合物制成。
  10. 一种复合材料,其特征在于,所述复合材料包括如权利要求9所述的玻璃纤维。
PCT/CN2016/078518 2015-04-21 2016-04-06 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 WO2016169408A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16782556.1A EP3287425B1 (en) 2015-04-21 2016-04-06 High-performance glass fiber composition, glass fiber thereof, and composite material
DK16782556.1T DK3287425T3 (da) 2015-04-21 2016-04-06 Højeffektiv glasfibersammensætning, glasfiber deraf og kompositmateriale
ES16782556T ES2828726T3 (es) 2015-04-21 2016-04-06 Composición de fibra de vidrio de alto rendimiento, fibra de vidrio de la misma, y material compuesto
US15/565,412 US10399889B2 (en) 2015-04-21 2016-04-06 High-performance glass fiber composition, glass fiber thereof, and composite material
BR112017022438-0A BR112017022438B1 (pt) 2015-04-21 2016-04-06 Composição de fibra de vidro de alto desempenho, fibra de vidro da mesma e material compósito

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510191134.0A CN105016622A (zh) 2015-04-21 2015-04-21 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN201510191134.0 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016169408A1 true WO2016169408A1 (zh) 2016-10-27

Family

ID=54406994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078518 WO2016169408A1 (zh) 2015-04-21 2016-04-06 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (7)

Country Link
US (1) US10399889B2 (zh)
EP (1) EP3287425B1 (zh)
CN (2) CN106938891A (zh)
BR (1) BR112017022438B1 (zh)
DK (1) DK3287425T3 (zh)
ES (1) ES2828726T3 (zh)
WO (1) WO2016169408A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743887B (zh) * 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN106938891A (zh) * 2015-04-21 2017-07-11 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105819698B (zh) * 2016-03-15 2018-09-14 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
MX2020006064A (es) * 2017-12-19 2020-08-24 Ocv Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento.
MX2021005461A (es) 2018-11-26 2021-06-18 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo de elasticidad mejorado.
US11524918B2 (en) 2018-11-26 2022-12-13 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
CN112811824A (zh) * 2021-03-12 2021-05-18 山东墨匠新材料科技有限公司 一种高耐碱性玻璃纤维组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580344A (zh) * 2009-06-29 2009-11-18 巨石集团有限公司 一种高强度玻璃纤维组合物
CN101838110A (zh) * 2010-05-19 2010-09-22 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
CN105016622A (zh) * 2015-04-21 2015-11-04 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7799713B2 (en) * 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US7823417B2 (en) * 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
MX2012001466A (es) * 2009-08-04 2012-02-22 Ocv Intellectual Capital Llc Vidrio libre de litio, con modulo mejorado.
KR20190133065A (ko) * 2011-09-09 2019-11-29 피피지 인더스트리즈 오하이오 인코포레이티드 유리 조성물 및 이로부터 제조된 섬유
WO2016040425A1 (en) 2014-09-09 2016-03-17 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
CN104743888B (zh) * 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN104743887B (zh) * 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2015131684A2 (zh) * 2015-01-20 2015-09-11 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580344A (zh) * 2009-06-29 2009-11-18 巨石集团有限公司 一种高强度玻璃纤维组合物
CN101838110A (zh) * 2010-05-19 2010-09-22 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
CN105016622A (zh) * 2015-04-21 2015-11-04 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287425A4 *

Also Published As

Publication number Publication date
BR112017022438A2 (pt) 2018-07-10
ES2828726T3 (es) 2021-05-27
BR112017022438B1 (pt) 2022-07-05
EP3287425A1 (en) 2018-02-28
EP3287425B1 (en) 2020-08-19
EP3287425A4 (en) 2018-08-15
US10399889B2 (en) 2019-09-03
CN106938891A (zh) 2017-07-11
DK3287425T3 (da) 2020-09-14
CN105016622A (zh) 2015-11-04
US20180118608A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
WO2016169408A1 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
KR102034946B1 (ko) 고탄성계수 유리섬유 조성물 및 그 유리섬유와 복합재료
KR102001760B1 (ko) 고탄성계수 유리섬유 조성물 및 그 유리섬유와 복합재료
WO2016165532A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045222A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165507A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
KR102034945B1 (ko) 무붕소유리섬유 조성물 및 그 유리섬유와 복합재료
WO2016165531A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
TWI776565B (zh) 高模量玻璃纖維組合物及其玻璃纖維和複合材料
CN107531552B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2015131684A2 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2022006947A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
KR102656005B1 (ko) 고 모듈러스 유리섬유 조성물 및 그 유리섬유와 복합재료
KR20220007719A (ko) 고탄성계수 유리섬유 조성물 및 그 유리섬유와 복합재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017022438

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017022438

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171018