WO2019080776A1 - 抗紫外线耐碱硼硅酸盐玻璃及其应用 - Google Patents

抗紫外线耐碱硼硅酸盐玻璃及其应用

Info

Publication number
WO2019080776A1
WO2019080776A1 PCT/CN2018/111039 CN2018111039W WO2019080776A1 WO 2019080776 A1 WO2019080776 A1 WO 2019080776A1 CN 2018111039 W CN2018111039 W CN 2018111039W WO 2019080776 A1 WO2019080776 A1 WO 2019080776A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
weight
borosilicate glass
resistance
ceo
Prior art date
Application number
PCT/CN2018/111039
Other languages
English (en)
French (fr)
Inventor
洪伟强
贺新前
江永
周争上
朱连英
李志勇
黄芳芳
Original Assignee
广东东阳光药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东东阳光药业有限公司 filed Critical 广东东阳光药业有限公司
Priority to EP18870441.5A priority Critical patent/EP3702334A4/en
Priority to CN202111483737.XA priority patent/CN114292022A/zh
Priority to CN201880067289.5A priority patent/CN111372900A/zh
Priority to US16/755,600 priority patent/US11299419B2/en
Publication of WO2019080776A1 publication Critical patent/WO2019080776A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/84Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for corrosive chemicals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2207/00Compositions specially applicable for the manufacture of vitreous enamels

Definitions

  • the invention relates to an ultraviolet-resistant alkali-resistant borosilicate glass and an application thereof.
  • Borosilicate glass is widely used in the pharmaceutical packaging industry due to its excellent chemical stability, high thermal shock resistance and low linear thermal expansion coefficient.
  • the known industrial pharmaceutical ampoules have HGB class 1 water resistance (H, according to YBB00362004-2015, glass particles at 98 ° C water resistance measurement and classification method, corresponding to "DIN ISO 719"), grade 1 acid resistance ( S, according to YBB00342004-2015, glass boiling resistance hydrochloric acid etch test and classification method, corresponding to "DIN 12116") and grade 2 alkali resistance (L, according to YBB00352004-2015, glass boiling resistance mixed alkali aqueous solution etchability determination and fractional method corresponding to "DIN ISO 695"), is representative of the prior art transparent glass Fiolax TM.
  • the prior art In order to make the glass have anti-ultraviolet properties, the prior art generally adopts a neutral borosilicate glass of brown, brown or amber, which has good chemical stability, mechanical strength and impact resistance, and high UV cutoff rate, but these Glass often contains iron compounds, such as ferric oxide, which has a general alkali resistance and cannot meet the requirements of both ultraviolet and alkali resistance.
  • the present invention provides a borosilicate glass, which has a weight loss of less than 75 mg/dm 2 according to YBB00352004-2015, and achieves grade 1 alkali resistance (L) while maintaining HGB class 1 water resistance (H) and grade 1 It is resistant to acid (S) and has good UV resistance.
  • the wavelength is ⁇ 380nm, the UV-Vis transmittance T% ⁇ 10%.
  • the thermal expansion coefficient of the glass of the present invention provides a line of 4.4 ⁇ 10 -6 /K-5.8 ⁇ 10 -6 / K , has high thermal shock resistance and good processing properties, and the present invention provides glass having low at processing temperatures (V a) 1300 °C and suitable or relatively lower transition temperature (Tg), favor the production of glass.
  • the inventors have found that the addition of Fe 2 O 3 (ferric oxide) to the glass contributes to the improvement of the ultraviolet resistance of the glass, but it is not conducive to the improvement of the alkali resistance, and the addition of ferric oxide makes the alkali resistance of the glass. Significantly reduced; while adding an appropriate amount of TiO 2 (titanium dioxide) or CeO 2 (cerium oxide) alone in the glass can improve the UV resistance of the glass, but it is difficult to meet the transmittance T% ⁇ 10 at a wavelength of ⁇ 380 nm.
  • the glass in the case of not using iron compounds (such as Fe 2 O 3 ), using an appropriate amount of TiO 2 and an appropriate amount of CeO 2 , the glass can be improved in ultraviolet resistance and can satisfy the transmittance T at a wavelength of ⁇ 380 nm. % ⁇ 10% requirement, when using proper amount of TiO 2 and proper amount of CeO 2 to make the glass have better UV resistance and better transmittance, use an appropriate amount of Y 2 O 3 (yttrium oxide).
  • Y 2 O 3 yttrium oxide
  • the glass also has good alkali resistance when it has good UV resistance and transmittance, and achieves grade 1 alkali resistance, but if the amount of TiO 2 , CeO 2 and/or Y 2 O 3 cannot satisfy the certain amount The scope of the requirements, the glass obtained is difficult to meet the better resistance at the same time Outside properties, good transmittance and better alkali resistance requirements.
  • the borosilicate glass provided by the present invention has a composition based on an oxide, and has the following components in terms of weight fraction (wt%): TiO 2 2.0-5.0 wt%, CeO 2 0.25 -2.5 wt% and Y 2 O 3 0.25-3.0 wt%, and no iron compound such as ferric oxide.
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 Wt%, CeO 2 0.25-2.5 wt%, Y 2 O 3 0.25-3.0 wt%; and the total amount of SiO 2 (silica), TiO 2 and CeO 2 is not less than 72.0 wt%; no iron A compound such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, or/or better light transmission.
  • wt% weight fraction containing the following components: TiO 2 2.0-5.0 Wt%, CeO 2 0.25-2.5 wt%, Y 2 O 3 0.25-3.0 wt%; and the total amount of SiO 2 (silica), TiO 2 and CeO 2 is not less than 72.0 wt%; no iron A compound such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, or/or better light transmission.
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 wt%, CeO 2 0.25- 2.5 wt%, Y 2 O 3 0.25-3.0 wt%, SiO 2 65.0-75.0 wt%, B 2 O 3 (diboron trioxide) 6.0-12.0 wt%, Al 2 O 3 (alumina) 3.5- 6.5 wt%; and the total amount of Na 2 O (sodium oxide), K 2 O (potassium oxide) and Li 2 O (lithium oxide) is 5.5-9.5 wt%; CaO (calcium oxide), MgO (magnesium oxide) And the total amount of BaO (yttria) is 1.0-5.5 wt%; and does not contain iron compounds such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, Or / or better light transmission rate.
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 wt%, CeO 2 0.25- 2.5 wt%, Y 2 O 3 0.25-3.0 wt%, SiO 2 65.0-75.0 wt%, B 2 O 3 6.0-12.0 wt%, Al 2 O 3 3.5-6.5 wt%; SiO 2 , TiO 2 and CeO 2 The total amount of the three is not less than 72.0 wt%; the total amount of Na 2 O, K 2 O and Li 2 O is 5.5-9.5 wt%; the total amount of CaO, MgO and BaO is 1.0-5.5 wt. %; and does not contain iron compounds such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, or / or better light transmission.
  • wt% weight fraction
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 wt%, CeO 2 0.5- 1.5 wt%, Y 2 O 3 0.25-3.0 wt%, and no iron compound such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, or / or better Light transmission rate.
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 Wt%, CeO 2 0.5-1.5wt%, Y 2 O 3 0.25-3.0wt%; the total amount of SiO 2 , TiO 2 and CeO 2 is not less than 72.0% by weight; and does not contain iron compounds such as trioxide Two irons.
  • the provided borosilicate glass can have better ultraviolet resistance and better alkali resistance, and the transmittance T ⁇ 10% when the wavelength of light does not exceed 380 nm.
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 wt%, CeO 2 0.5- 1.5 wt%, Y 2 O 3 0.25-3.0 wt%, SiO 2 65.0-75.0 wt%, B 2 O 3 6.0-12.0 wt%, Al 2 O 3 3.5-6.5 wt%; and Na 2 O, K 2 O And the total amount of Li 2 O is 5.5-9.5 wt%; the total amount of CaO, MgO and BaO is 1.0-5.5 wt%; and does not contain an iron compound such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, or / or better light transmission.
  • wt% weight fraction
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing the following components: TiO 2 2.0-5.0 wt%, CeO 2 0.5- 1.5 wt%, Y 2 O 3 0.25-3.0 wt%, SiO 2 65.0-75.0 wt%, B 2 O 3 6.0-12.0 wt%, Al 2 O 3 3.5-6.5 wt%, and SiO 2 , TiO 2 and CeO 2
  • the total amount of the three is not less than 72.0% by weight; and the total amount of Na 2 O, K 2 O and Li 2 O is 5.5-9.5 wt%; the total amount of CaO, MgO and BaO is 1.0- 5.5 wt%; and does not contain iron compounds such as ferric oxide; the glass provided can have relatively good UV resistance, and or alkali resistance, or / or better light transmission.
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing or having the following components:
  • ⁇ (CaO+MgO+BaO) is 1.0-5.5wt%
  • the present invention provides a borosilicate glass having a composition based on an oxide, based on weight fraction (wt%), containing or having the following components:
  • ⁇ (CaO+MgO+BaO) is 1.0-5.5wt%
  • an appropriate amount of TiO 2 and CeO 2 causes the ultraviolet transmittance of the glass to drastically decrease, and the transmittance T% ⁇ 10% at a wavelength of ⁇ 380 nm;
  • adding an appropriate amount of cerium oxide can greatly improve the alkali resistance of the glass, achieve the glass grade 1 alkali resistance, and satisfy the glass HGB1 grade water resistance and the grade 1 acid resistance, and have suitable linear thermal expansion.
  • the coefficient is conducive to the production of glass; without the addition of ferric oxide, it is beneficial to the improvement of alkali resistance.
  • the borosilicate glass provided by the present invention can increase the alkali resistance of the glass by adding an appropriate amount of cerium oxide, zirconium oxide, cerium oxide and/or zinc oxide.
  • Grade 1 is alkali resistant and meets the HGB class 1 water resistance and grade 1 acid resistance. It has a suitable coefficient of thermal expansion and is beneficial to the production of glass.
  • the content of SiO 2 in the glass of the present invention is from 65.0 to 75.0% by weight, preferably from 68.5 to 7.5% by weight.
  • the content of SiO 2 is within this range, and the glass properties can be ensured under the premise that the basic skeleton of the glass is formed. A higher content will increase the viscosity of the glass and increase the melting temperature. On the other hand, if the SiO 2 content is further lowered, the acid resistance of the glass will be deteriorated.
  • the content of B 2 O 3 in the glass of the present invention is from 6.0 to 12.0% by weight, preferably from 8.0 to 10.0% by weight.
  • the proper introduction of B 2 O 3 plays a crucial role in reducing the linear thermal expansion coefficient, processing temperature and melting temperature, and improving chemical stability.
  • B 2 O 3 binds the alkali metal ions in the glass more firmly to the glass structure, and the alkali metal ions released when measuring the water resistance of the glass are reduced, and the decrease in the content of B 2 O 3 will significantly reduce the water resistance.
  • the inventors of the present invention have found through a large number of experimental studies that as the content of B 2 O 3 increases, the viscosity of the glass gradually decreases, and the linear thermal expansion coefficient gradually decreases.
  • the content of B 2 O 3 is more than 12.0% by weight, the glass may be phase-separated, resulting in uneven internal stress and easy cracking of the glass.
  • the content of B 2 O 3 is further increased, and the more serious the boron is volatilized, which not only aggravates the erosion of the refractory material, causes waste of energy, but also causes fluctuations in the chemical composition of the glass.
  • higher levels of B 2 O 3 can also adversely affect the acid resistance of the glass. Therefore, the content of B 2 O 3 should not be too low or too high, and it is preferably within the above range.
  • the content of Al 2 O 3 in the glass of the invention is from 3.5 to 6.5 wt%, preferably from 4.1 to 5.9 wt%.
  • Al 2 O 3 like B 2 O 3 , firmly fixes an alkali metal oxide, especially Na 2 O, in the glass structure, so an excessively high content causes an increase in the melting temperature and the processing temperature.
  • Al 2 O 3 has a positive effect on the crystallization resistance, and lowering the Al 2 O 3 content may increase the crystallization tendency accordingly.
  • the content of the metal oxide is controlled within a limited range in the glass of the present invention, and the total content of the alkali metal oxides Na 2 O, K 2 O and Li 2 O is 5.5- 9.5 wt%, preferably 6.0-8.0 wt%.
  • the glass according to the invention contains 4.5 to 8.5 wt% of Na 2 O, preferably at least 5.5 to 7.0 wt% of Na 2 O, 0 to 2.5 wt% of K 2 O, preferably 0 to 1.0 wt%.
  • K 2 O 0-1.0 wt% of Li 2 O, preferably 0-0.5 wt% of Li 2 O, the total amount of alkali metal oxides being from 5.5 to 9.5 wt%, preferably from 6.0 to 8.0 wt%.
  • the above alkali metal oxides adjust the glass properties within respective upper limits, for example, the three functions play an important role in adjusting the thermal expansion coefficient of the glass line, and Na 2 O and Li 2 O lower the glass melting temperature and processing temperature, K 2 O and / or Li 2 O plays a beneficial role in reducing glass crystallization, and it is important to maintain a balanced ratio between them.
  • the glass has an excessive coefficient of thermal expansion of the line and is disadvantageous for cost reduction, while an excessively low content of the alkali metal oxide results in a coefficient of thermal expansion of the line being too low. Therefore, when the content of the alkali metal oxide is limited to the above range, borosilicate glass having a linear thermal expansion coefficient and a processing temperature satisfying the requirements can be obtained.
  • the glass of the invention further comprises an alkaline earth metal oxide in an amount of from 1.0 to 5.5 wt%, preferably from 1.5 to 3.0 wt%.
  • the content of CaO (calcium oxide) is 0.5 to 3.5% by weight, preferably 1.0 to 1.8% by weight
  • the content of MgO (magnesium oxide) is 0 to 1.0% by weight, preferably 0 to 0.8% by weight
  • the content of ruthenium) is from 0 to 2.0% by weight, preferably from 0.4 to 1.0% by weight.
  • the above alkaline earth metal oxide changes the "material length of the glass", that is, the processing temperature range of the glass; in addition, the alkaline earth metal oxide reduces the high temperature viscosity of the glass through different network modification, improves the chemical stability, and reduces the crystallization tendency.
  • the viscosity characteristics and other properties of the glass match the specific production and processing.
  • CaO improves acid resistance, but if the CaO content is too much, the content of SiO 2 and B 2 O 3 is lowered, so that the network structure of the glass is loosened and the alkali resistance of the glass is improved; BaO lowers the processing temperature. At the same time, it does not adversely affect the water resistance.
  • the total content of the alkaline earth metal oxide is at most 3.0% by weight.
  • the glass of the present invention further contains 0-1.0% by weight of NaCl (sodium chloride), preferably 0.05-1.0% by weight of NaCl, which is mainly used as a fining agent to clarify the glass.
  • NaCl sodium chloride
  • Other standard fining agents can also be used by those skilled in the art, such as CaF 2 (calcium fluoride) and/or sulfates such as Na 2 SO 4 (sodium sulfate) and/or nitrates such as NaNO 3 (sodium nitrate).
  • the above clarifying agent is used in a standard amount, i.e., clarified with 0.003-1.0% by weight of a standard clarifying agent depending on the type and amount of the clarifying agent in the finished glass.
  • the glass will contain no As 2 O 3 and Sb 2 O 3 except for unavoidable impurities, which is used as the main glass.
  • Pharmaceutical packaging materials are particularly advantageous.
  • the inventors have found that the addition of CeO 2 is gradually increased, and the ultraviolet resistance of the glass is improved, but after adding more than 3.0% by weight, the alkali resistance is remarkably lowered; in a certain amount range, the more TiO 2 is added, the glass is resistant to ultraviolet rays and resistance.
  • the alkali performance can be improved, but after a certain amount, the ultraviolet resistance can be improved, and the alkali resistance is inversely lowered.
  • the glass provided by the present invention may contain 2.0-5.0% by weight of TiO 2 , which is advantageous for improving the ultraviolet resistance of the glass while at the same time taking into consideration other properties.
  • the glass provided by the present invention may contain 0.25-2.5 wt% of CeO 2 , which is advantageous for improving the ultraviolet resistance of the glass while at the same time balancing other properties.
  • the glass provided by the present invention preferably contains 0.5 to 1.5% by weight of CeO 2 , which is advantageous for improving the ultraviolet resistance and alkali resistance of the glass while achieving both transmittance.
  • the glass of the present invention contains 2.0 to 5.0% by weight of TiO 2 and 0.25 to 2.5% by weight of CeO 2 , which is advantageous for improving the ultraviolet resistance of the glass while at the same time taking into consideration other properties. Therefore, such TiO 2 and CeO 2 -containing glass is used as a medical packaging material, and the presence of any particulate matter can be visually inspected even when it is placed in a radioactive irradiation environment, and at the same time, discoloration of the glass due to radioactive irradiation can be prevented. When the concentration of TiO 2 and CeO 2 is too high, an intrinsic brownish yellow color which does not meet the demand is generated. Further, if the content is too high, the production cost of the glass is greatly increased.
  • the content of TiO 2 is preferably The content of CeO 2 is preferably from 0.5 to 1.5% by weight, based on 2.0 to 3.5% by weight. In some embodiments, the content of TiO 2 is preferably 2.0 to 3.0% by weight, and the content of CeO 2 is preferably 0.5 to 1.2% by weight.
  • the inventors have found through extensive experiments that only ZnO and/or La 2 O 3 are used .
  • the glass can still not reach the grade 1 alkali resistance, and the addition of Y 2 O 3 can greatly improve the glass. Alkaline resistance.
  • the glass of the invention contains from 0.25 to 3.0% by weight of Y 2 O 3 , preferably in an amount of from 0.5 to 2.0% by weight.
  • Y 2 O 3 is increased to a certain amount, it mainly provides non-bridge oxygen, acts as a break network, destroys the glass network structure, makes the structure loose, and the coefficient of thermal expansion of the glass line sharply increases.
  • the obtained glass is not only one grade in water resistance and acid resistance, but also grade 1 in alkali resistance, which is particularly important for ensuring alkali resistance of the glass in the production process.
  • the glass of the present invention preferably contains 0.5% by weight of Y 2 O 3 to impart good alkali resistance to the glass while facilitating control of the production process and production cost.
  • the glass of the present invention may not contain ZrO 2 , ZnO or/and La 2 O 3 .
  • the glass of the present invention may further contain at least one of ZrO 2 , ZnO, and La 2 O 3 .
  • the inventors have found through research that if the content of ZrO 2 is too large, the forming temperature and the melting temperature of the glass tend to increase, resulting in a large increase in production cost.
  • the glass of the present invention may further contain at least one of 0 to 4.0% by weight of ZrO 2 , 0 to 2.0% by weight of ZnO, and 0 to 2.0% by weight of La 2 O 3 .
  • the glass of the invention may further comprise, optionally, a content of 0-2.0 wt% ZrO 2 , preferably 0-1.0 wt% ZnO and preferably 0-1.0 wt% La 2 O 3 One; according to another embodiment of the present invention, the glass of the present invention may also include a combination of two of ZrO 2 , ZnO, and La 2 O 3 .
  • the glass of the present invention preferably contains at least one of cerium oxide, zirconium oxide, and zinc oxide in an amount of 0 to 1.0% by weight. According to an embodiment of the present invention, the glass of the present invention preferably contains 1.0% by weight of zirconia, which makes the glass have better alkali resistance and is advantageous in controlling the production process and production cost.
  • the wavelength is ⁇ 380 nm.
  • the borosilicate glass provided by the present invention has a composition based on an oxide, calculated by weight percent (wt%), and contains the following components to make the glass have better UV resistance and better. It is chemically resistant to alkali and is easy to produce and control:
  • the borosilicate glass provided by the present invention has a composition based on an oxide, calculated by weight percent (wt%), and contains the following components to make the glass have better UV resistance and better. It is chemically resistant to alkali and is easy to produce and control:
  • the glass thermal expansion coefficient ⁇ 20/300 of the present invention is 4.4 ⁇ 10 -6 /K-5.8 ⁇ 10 -6 /K, which is similar to the thermal expansion characteristics of molybdenum and Kovar alloy, and thus can be Molybdenum, Kovar alloys such as Fe-Co-Ni alloys are smoothly fused to serve as a sealing glass for such metals.
  • the glass has very good UV resistance, good chemical stability, HGB class 1 water resistance, grade 1 acid resistance and grade 1 alkali resistance. Due to its excellent UV resistance, alkali resistance and low coefficient of linear thermal expansion, it is particularly suitable for pharmaceutical packaging materials, as well as equipment and glass instruments in the chemical industry and laboratory.
  • the suitable melting range and working range of the glass of the invention results in a reduction in energy consumption during production.
  • the glass proposed by the present invention is particularly useful as a medical packaging material.
  • the glass proposed by the invention is particularly suitable for use as a container and/or chemical device for chemically etching liquids.
  • the glass proposed by the present invention is particularly suitable for use as a glass-to-metal sealing glass, such as for sealing metal molybdenum, kovar, and the like.
  • the iron compound is not contained means that an iron compound which does not contain additional addition or use, such as Fe 2 O 3 , is not considered to be contained when its content does not exceed 100 ppm (parts per million). When it exceeds 100 ppm, it is considered to contain an iron compound; “inevitable impurities” means that the impurity does not exceed 1 ppm, and when an arsenic compound such as As 2 O 3 does not exceed 0.1 ppm, it is regarded as an unavoidable impurity. When the compound such as Sb 2 O 3 does not exceed 1 ppm, it is regarded as an unavoidable impurity.
  • wt% means weight percent
  • mg denotes milligram
  • [mu] g means microgram
  • nm represents nanometer
  • T g represents the transition temperature
  • Tf of the expansion represents a softening temperature
  • dm 2 represents square decimeter
  • °C represents Celsius
  • T% represents ultraviolet-visible transmittance
  • dPa ⁇ s represents decibels per second
  • ppm represents one in a million, and the symbol " ⁇ " means summation.
  • H test method According to YBB00362004-2015, take a certain amount of glass granules of the specified size, put them in a prescribed container, add a certain amount of water, and heat under the specified conditions, by titrating the leaching solution to each gram.
  • the glass particles consumed a volume of hydrochloric acid titration solution (0.01 mol/L) to measure the degree of water etch of the glass particles and to classify.
  • the maximum value of the high chemical resistant glass belonging to the HGB class 1 water resistant is 0.10 mL.
  • the maximum value of the glass which is HGB class 2 water resistant is 0.20 mL.
  • the maximum water resistance of the glass belonging to the HGB3 grade is 0.85 mL.
  • the maximum weight loss of the grade 1 alkali resistant glass is 75 mg/dm 2 .
  • the maximum weight loss of the grade 2 alkali resistant glass is 175 mg/dm 2 . More than 175 mg/dm 2 is a grade 3 alkali resistance.
  • Test method for acid resistance S: According to YBB00342004-2015, a glass test sample of about 100 cm 2 was etched in a boiling 6 ⁇ 0.2 mol/L hydrochloric acid solution for 6 hours to measure the mass loss per unit area. Each example in the table gives weight loss in mg/dm 2 .
  • the maximum weight loss of the grade 1 acid-resistant glass is 0.7 mg/dm 2 .
  • the maximum weight loss of the grade 2 acid resistant glass is 1.5 mg/dm 2 . More than 1.5 mg/dm 2 is grade 3 acid resistant.
  • UV-visible transmittance (T%) test method first use the micro-controlled inner circular cutting machine (Northwest Machinery Co., Ltd. J5085-1/ZF) to cut the glass block into a 1.5 ⁇ 0.1mm thick glass piece, and then polish it with precision grinding. Machine (Shenyang Kejing Automation Equipment Co., Ltd. UNIPOL-802) polished the two sides of the glass into a mirror surface, the thickness of the glass piece was 1 ⁇ 0.05mm, and finally measured the transmittance with an Agilent cary 60 UV-visible spectrophotometer.
  • Machine Shenyang Kejing Automation Equipment Co., Ltd. UNIPOL-802
  • V A Processing temperature
  • Tables 1 - 4 give the composition of different glasses (weight percent, wt%, based on oxides) and important performance parameters of these glasses, including linear thermal expansion coefficient ⁇ (20; 300) (unit: 10 -6 /K) , glass transition temperature T g (unit: °C), expansion softening temperature Tf (unit: °C), water resistance H (unit: mL), acid resistance S (unit: mg / dm 2 ), alkali resistance L (unit : mg/dm 2 ); processing temperature V A (unit: ° C); wherein, Example 1 - Example 3 was used as a control group.
  • Table 5 shows the ultraviolet-visible transmittance T (%) of different compositions (weight fraction, wt%, oxide-based) glass.
  • Table 1 Composition of glass (wt%, based on oxide) and main properties, where n.d. indicates not determined
  • Table 2 Composition of glass (wt%, based on oxide) and main properties, where n.d. indicates not determined
  • Table 3 Composition of glass (wt%, based on oxide) and main properties, where n.d. indicates not determined
  • Table 4 Composition of the glass (based on oxides, wt%) and main properties, where n.d. indicates not determined
  • Table 5 UV-visible transmittance T (%) of different compositions (wt%, oxide-based) glass.
  • the comparison group A1-A25 can not reach the alkali resistance level 1 at the same time by simply or conventionally adding or not adding cerium oxide, and at the wavelength ⁇ 380 nm, it is transparent.
  • the performance of the over-rate T% ⁇ 10% cannot meet the requirements of better water resistance, acid resistance, alkali resistance and ultraviolet resistance; and the glass provided by the present invention (optimized group A26-A34, embodiment 4) is adjusted
  • the composition and its content can reach water resistance level 1, acid resistance level 1, alkali resistance level 1, and when the wavelength is ⁇ 380nm, the transmittance T% ⁇ 10% is better anti-ultraviolet performance, satisfying both alkali resistance and resistance. UV requirements, but also good water and acid resistance.
  • the glass of the invention has high chemical stability. Specifically, when the water resistance is measured according to YBB00362004-2015 at 98 ° C, the volume of the hydrochloric acid titration solution (0.01 mol/L) per gram of glass particles is used to measure the water immersion of the glass particles. The degree of etch and classification, the glass of the optimized group A26-A34 has a water resistance value of at most 0.03 mL, indicating that the glass of the present invention exhibits excellent performance in water resistance and belongs to water resistant grade 1.
  • the mass loss per unit surface area of the glass test article of the optimized group A26-A34 was less than 0.70 mg/dm 2 , indicating that the acid resistance of the glass of the present invention also belonged to the first grade.
  • the mass loss per unit surface area of the glass test article of the optimized group A26-A34 was less than 75 mg/dm 2 , indicating that the glass of the present invention is excellent in alkali resistance and belongs to the alkali-resistant grade 1.
  • the glass-test sample of the optimized group A26-A34 had an ultraviolet-visible transmittance T% of less than 10%.
  • the glass provided by the present invention belongs to the first stage in each of the three chemical resistances, and at the same time has better ultraviolet resistance.
  • the glass of the invention has high chemical resistance and good ultraviolet resistance, and is very suitable for use in medical packaging materials as well as equipment in the chemical industry production and laboratory research fields as well as containers for chemically etching liquids.
  • the viscosity of the glass in the cooling zone is characterized by the glass transition temperature Tg, which corresponds to a viscosity of approximately 10 13.4 dPa ⁇ s.
  • Tg glass transition temperature
  • the suitable transition temperature of the glass of the invention is advantageous for reducing the energy consumption in the production process and facilitating the production of glass.
  • the present invention provides glass having a processing temperature lower than 1400 deg.] C (V A), or that the present invention provides a glass having a processing temperature lower than 1300 °C (V A), favor the production of glass.
  • Linear thermal expansion coefficient of the glass of the present invention is ⁇ 20/300 of 4.4 ⁇ 10 -6 /K ⁇ 5.8 ⁇ 10 -6 / K , and the molybdenum, similar to the linear thermal expansion characteristics of Kovar, molybdenum can be melted, kovar Alloys, as sealing glasses for such metals, are also particularly suitable for use in molten glass/metal seals used in chemically corrosive environments due to their chemical resistance.
  • One skilled in the art can vary the linear thermal expansion coefficient by the alkali metal oxide content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Glass Compositions (AREA)

Abstract

一种硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO2 2.0-5.0 wt%,CeO2 0.25-2.5 wt%和Y2O3 0.25-3.0 wt%,且不含有铁化合物,如三氧化二铁;该玻璃具有较好的抗紫外线性能,耐碱性能和较好的光透过率,特别适合用于医药包装材料领域。

Description

抗紫外线耐碱硼硅酸盐玻璃及其应用 技术领域
本发明涉及一种抗紫外线耐碱硼硅酸盐玻璃及其应用。
背景技术
近年来医药市场上碱性较强的药物(如PH≥10)越来越多,使用不符合耐碱性要求的玻璃容器,容易出现玻璃脱片的现象;对于一些对紫外线敏感的药物,紫外线照射易影响药物性能的稳定,因此,需要具有明显改进的耐碱又可抗紫外线的包装材料。
硼硅酸盐玻璃因其高化学稳定性、高抗热冲击性和低线热膨胀系数等优良性质,特别广泛应用于医药包装行业。
硼硅酸盐玻璃用作药物初级包装材料如安瓿瓶或西林瓶时,需要玻璃对酸性和碱性介质具有非常高的耐蚀性以及耐水性。迄今为止,已知的工业医药安瓿玻璃具有HGB 1级耐水性(H,根据YBB00362004-2015,玻璃颗粒在98℃耐水性测定法和分级法,对应“DIN ISO 719”)、1级耐酸性(S,根据YBB00342004-2015,玻璃耐沸腾盐酸浸蚀性测定法和分级法,对应“DIN 12116”)和2级耐碱性(L,根据YBB00352004-2015,玻璃耐沸腾混合碱水溶液浸蚀性测定法和分级法,对应“DIN ISO 695”),现有技术的代表是透明玻璃Fiolax TM。但实际经验表明,要想保证终产品在生产工艺中的耐碱性,就要求在实验室中开发出失重小于75mg/dm 2,即在1级耐碱性范围内的玻璃,达到这个要求的同时又不能损害其它重要的玻璃性能,例如保持HGB 1级耐水性和1级耐酸性等。
为了使玻璃具有抗紫外线的性能,现有技术通常采用棕色、茶色或琥珀色的中性硼硅玻璃,这些玻璃的化学稳定性、机械强度和抗冲击性能较好,紫外线截止率高,但这些玻璃往往含有铁的化合物,如三氧化二铁,其耐碱性能一般,不能满足既抗紫外线又耐碱的要求。
虽然已有专利文献描述了具有高耐化学性的玻璃,但所述玻璃还需进一步改进,特别是需要同时提高其耐碱性和抗紫外线性能。
发明内容
为此,本发明提供一种硼硅酸盐玻璃,根据YBB00352004-2015测试,其失重小于75mg/dm 2,达到1级耐碱性(L),同时保持HGB1级耐水性(H)和1级耐酸性(S),且其具有较好的抗紫外线性能,波长≤380nm时,紫外-可见光透过率T%<10%。此外,本发明提供的玻璃线热膨胀系数为4.4×10 -6/K-5.8×10 -6/K,具有高耐热冲击性和良好的加工性能,并且,本发明提供的玻璃,其具有低于1300℃的加工温度(V A)和合适的或相对较低的转变温度(Tg),有利于玻璃的生产。
发明人发现,在玻璃中加入Fe 2O 3(三氧化二铁)有助于玻璃抗紫外线性能的提高,但其不利于耐碱性 能的提高,加入三氧化二铁,使玻璃的耐碱性显著降低;而在玻璃中单独加入适量的TiO 2(二氧化钛)或CeO 2(二氧化铈),都能够提高玻璃的抗紫外线性能,但难以满足在波长≤380nm时,透过率T%<10%的要求;在不使用铁化合物情况下(如Fe 2O 3),使用适量的TiO 2和适量的CeO 2,可使玻璃抗紫外线性能提高和可满足在波长≤380nm时,透过率T%<10%的要求,在使用适量的TiO 2和适量的CeO 2使玻璃具有较好的抗紫外线性能和具有较好的透过率同时,使用适量的Y 2O 3(氧化钇),可以使玻璃在具有较好的抗紫外线性能和透过率时也具有较好的耐碱性能,达到1级耐碱,但若TiO 2,CeO 2和/或Y 2O 3的使用量不能满足一定的范围要求,则获得的玻璃难以同时满足较好的抗紫外线性能,较好的透过率和较好的耐碱性要求。
根据本发明的实施例,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.25-2.5wt%和Y 2O 30.25-3.0wt%,且不含有铁化合物,如三氧化二铁。
根据本发明的实施例,在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.25-2.5wt%,Y 2O 30.25-3.0wt%;且SiO 2(二氧化硅),TiO 2和CeO 2三者的总量不低于72.0wt%;不含有铁化合物如三氧化二铁;所提供的玻璃能够具有相对较好的抗紫外线性能,和或耐碱性,或/或较好的光透过率。
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.25-2.5wt%,Y 2O 30.25-3.0wt%,SiO 265.0-75.0wt%,B 2O 3(三氧化二硼)6.0-12.0wt%,Al 2O 3(三氧化二铝)3.5-6.5wt%;且Na 2O(氧化钠),K 2O(氧化钾)和Li 2O(氧化锂)的三者总量为5.5-9.5wt%;CaO(氧化钙),MgO(氧化镁)和BaO(氧化钡)三者的总量为1.0-5.5wt%;且不含有铁化合物如三氧化二铁;所提供的玻璃能够具有相对较好的抗紫外线性能,和或耐碱性,或/或较好的光透过率。
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.25-2.5wt%,Y 2O 30.25-3.0wt%,SiO 265.0-75.0wt%,B 2O 36.0-12.0wt%,Al 2O 33.5-6.5wt%;SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%;Na 2O,K 2O和Li 2O三者的总量为5.5-9.5wt%;CaO,MgO和BaO三者的总量为1.0-5.5wt%;且不含有铁化合物如三氧化二铁;所提供的玻璃能够具有相对较好的抗紫外线性能,和或耐碱性,或/或较好的光透过率。
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.5-1.5wt%,Y 2O 30.25-3.0wt%,且不含有铁化合物如三氧化二铁;所提供的玻璃能够具有相对较好的抗紫外线性能,和或耐碱性,或/或较好的光透过率。
在一些实施方式中,根据本发明的实施例,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.5-1.5wt%,Y 2O 30.25-3.0wt%;SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%;且不含有铁化合物,如三氧化二铁。所提供硼硅酸盐玻璃能够具有 较好的抗紫外线性能,较好的耐碱性能,在光波长不超过380nm情况下,透过率T<10%。
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.5-1.5wt%,Y 2O 30.25-3.0wt%,SiO 265.0-75.0wt%,B 2O 36.0-12.0wt%,Al 2O 33.5-6.5wt%;且Na 2O,K 2O和Li 2O的总量为5.5-9.5wt%;CaO,MgO和BaO的总量为1.0-5.5wt%;且不含有铁化合物,如三氧化二铁;所提供的玻璃能够具有相对较好的抗紫外线性能,和或耐碱性,或/或较好的光透过率。
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有以下组分:TiO 22.0-5.0wt%,CeO 20.5-1.5wt%,Y 2O 30.25-3.0wt%,SiO 265.0-75.0wt%,B 2O 36.0-12.0wt%,Al 2O 33.5-6.5wt%,且SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%;且Na 2O,K 2O和Li 2O三者的总量为5.5-9.5wt%;CaO,MgO和BaO三者的总量为1.0-5.5wt%;且不含有铁化合物如三氧化二铁;所提供的玻璃能够具有相对较好的抗紫外线性能,和或耐碱性,或/或较好的光透过率。
根据本发明的实施例,在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有或具有以下组分:
Figure PCTCN2018111039-appb-000001
其中∑(Na 2O+K 2O+Li 2O)5.5-9.5wt%,
CaO   0.5-3.5wt%,
MgO   0-1.0wt%,
BaO   0-2.0wt%,
其中∑(CaO+MgO+BaO)1.0-5.5wt%,
Figure PCTCN2018111039-appb-000002
根据本发明的实施例,在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量分数(wt%)计,含有或具有以下组分:
Figure PCTCN2018111039-appb-000003
其中∑(Na 2O+K 2O+Li 2O)5.5-9.5wt%,
CaO   0.5-3.5wt%,
MgO   0-1.0wt%,
BaO   0-2.0wt%,
其中∑(CaO+MgO+BaO)1.0-5.5wt%,
Figure PCTCN2018111039-appb-000004
La 2O 3  0-2.0wt%,其中,∑(SiO 2+TiO 2+CeO 2)≥72.0wt%。
根据本发明的实施例,本发明的玻璃中,适量的TiO 2和CeO 2,使玻璃的紫外线透过率急剧下降,可达到在波长≤380nm时,透过率T%<10%;而在满足紫外线透过率的玻璃中,添加适量的氧化钇,可以使玻璃的耐碱性得到较大的提高,实现玻璃1级耐碱,且满足玻璃HGB1级耐水和1级耐酸,具有适宜线热膨胀系数,同时有利于玻璃的生产制造;而不加入三氧化二铁,有利于耐碱性的提高。在一些实施方式中,本发明提供的硼硅酸盐玻璃中,添加适量的氧化钇、氧化锆、氧化镧和/或氧化锌等,可以使玻璃的耐碱性得到较大的提高,实现玻璃1级耐碱,且满足玻璃HGB1级耐水和1级耐酸,具有适宜线热膨胀系数,同时有利于玻璃的生产制造。
根据本发明的实施例,本发明的玻璃中SiO 2的含量为65.0-75.0wt%,优选为68.5-72.5wt%。SiO 2的含量在该范围内,在形成玻璃基本骨架的前提下能保证玻璃性能。更高的含量将使玻璃的粘度增大,熔制温度升高。而如果SiO 2含量进一步降低,那么玻璃的耐酸性将会变差。
根据本发明的实施例,本发明的玻璃中B 2O 3的含量为6.0-12.0wt%,优选为8.0-10.0wt%。B 2O 3的适 量引入在降低线热膨胀系数、加工温度和熔制温度,提高化学稳定性方面都起着至关重要的作用。
一方面,B 2O 3将玻璃中的碱金属离子更牢固地束缚在玻璃结构中,当测定玻璃的耐水性时释放的碱金属离子减少,B 2O 3的含量降低将显著地降低耐水性。另一方面,本发明的发明人通过大量的实验研究发现,随着B 2O 3的含量的增加,玻璃的粘度逐渐减小,线热膨胀系数逐渐降低。但当B 2O 3的含量大于12.0wt%时,玻璃可能出现分相,导致玻璃内部应力不均匀、易开裂。B 2O 3的含量进一步增加,硼挥发越严重,这不仅会加剧耐火材料的侵蚀,造成能源的浪费,而且会导致玻璃化学成分的波动。此外,更高含量的B 2O 3对玻璃的耐酸性也会产生不利影响。因此B 2O 3的含量不宜过低,也不宜过高,优选在上述范围内适宜。
根据本发明的实施例,本发明的玻璃中Al 2O 3的含量为3.5-6.5wt%,优选为4.1-5.9wt%。Al 2O 3同B 2O 3一样,将碱金属氧化物尤其是Na 2O牢固地固定在玻璃结构中,因此含量过高会导致熔制温度和加工温度升高。此外,Al 2O 3在对抗结晶方面有积极作用,降低Al 2O 3含量,可能会相应增加结晶趋势。
根据本发明的实施例,本发明的玻璃中,金属氧化物的含量控制在限定的范围内是十分重要的,碱金属氧化物Na 2O,K 2O和Li 2O总量含量为5.5-9.5wt%,优选为6.0-8.0wt%。
根据本发明的实施例,本发明的玻璃中将各个碱金属氧化物的含量控制在限定的范围内是十分重要的,可以通过将各个碱金属氧化物的含量优化组合,使玻璃性能得到相应改进。由此,本发明所述玻璃含有4.5-8.5wt%的Na 2O,优选至少为5.5-7.0wt%的Na 2O,0-2.5wt%的K 2O,优选为0-1.0wt%的K 2O,0-1.0wt%的Li 2O,优选为0-0.5wt%的Li 2O,碱金属氧化物总量含量为5.5-9.5wt%,优选为6.0-8.0wt%。
上述碱金属氧化物在各自上限范围内调节玻璃性能,例如三者配合在调节玻璃线热膨胀系数方面发挥了重要作用,Na 2O和Li 2O降低玻璃熔制温度和加工温度,K 2O和/或Li 2O在降低玻璃结晶中发挥有利作用,他们之间维持一个平衡的比率是重要的。当超过各自的上限时,玻璃具有过高的线热膨胀系数,且不利于降低成本,而碱金属氧化物含量过低则导致线热膨胀系数太低。因此当碱金属氧化物含量限定在上述范围内时,能获得线热膨胀系数及加工温度都满足要求的硼硅酸盐玻璃。
根据本发明的实施例,本发明的玻璃还包括含量为1.0-5.5wt%,优选1.5-3.0wt%的碱土金属氧化物。具体地,CaO(氧化钙)的含量为0.5-3.5wt%,优选为1.0-1.8wt%;MgO(氧化镁)的含量为0-1.0wt%,优选为0-0.8wt%;BaO(氧化钡)的含量为0-2.0wt%,优选为0.4-1.0wt%。上述碱土金属氧化物改变“玻璃的料性长度”也即是玻璃的加工温度范围;此外碱土金属氧化物通过不同的网络修饰作用降低玻璃的高温粘度,提高化学稳定性,降低析晶趋势,使玻璃的粘度特性及其它性能与特定生产和加工过程相匹配。此外,CaO改善耐酸性,但若CaO含量过多,则使SiO 2和B 2O 3的含量降低,从而会使玻璃的网络结构松散而不利于玻璃的耐碱性提高;BaO降低加工温度的同时又不会对耐水性产生不利影响。碱土金属氧化含量过高将导致线热膨胀系数增大,而含量过低将会过分损害玻璃的性能。优选碱土金属氧化物的总含量至多为3.0wt%。
根据本发明的实施例,本发明的玻璃还含有0-1.0wt%的NaCl(氯化钠),优选含有0.05-1.0wt%的NaCl, 氯化钠主要用作澄清剂以澄清所述玻璃。本领域技术人员还可以使用其它标准澄清剂,例如CaF 2(氟化钙)和/或硫酸盐如Na 2SO 4(硫酸钠)和/或硝酸盐如NaNO 3(硝酸钠)。上述澄清剂采用标准量,即根据在成品玻璃中的澄清剂的类型和用量,以0.003-1.0wt%的标准澄清剂进行澄清。因为没有使用As 2O 3(三氧化二砷)和Sb 2O 3(三氧化二锑),玻璃中除了不可避免的杂质外,将不含As 2O 3和Sb 2O 3,这对玻璃用作主要的医药包装材料特别有利。
发明人发现,添加CeO 2逐渐增多,玻璃的抗紫外线性能提高,但添加超过3.0wt%后,使耐碱性显著降低;在一定量范围内,添加TiO 2越多,玻璃抗紫外线性能和耐碱性能都能够提高,但超过一定量后,抗紫外线性能可提高,而耐碱性能相反降低。根据本发明的实施例,本发明提供的玻璃,可含有2.0-5.0wt%的TiO 2,有利于提高玻璃的抗紫外线性能,同时可兼顾其它性能。根据本发明的实施例,在一些实施方式中,本发明提供的玻璃,可含有0.25-2.5wt%的CeO 2,有利于提高玻璃的抗紫外线性能,同时可兼顾其它性能。根据本发明的实施例,在一些实施方式中,本发明提供的玻璃,优选含有0.5-1.5wt%的CeO 2,有利于提高玻璃的抗紫外线性能和耐碱性能,同时兼顾透过率。
根据本发明的实施例,本发明的玻璃含有2.0-5.0wt%的TiO 2和0.25-2.5wt%的CeO 2,有利于提高玻璃的抗紫外线性能,同时可兼顾其它性能。因此,使用这种含TiO 2和CeO 2的玻璃作为医药包装材料,即使将其置于放射性辐照环境时仍能通过肉眼检查任何颗粒物的存在,且同时能阻止玻璃因放射性辐照而变色。而TiO 2和CeO 2浓度过高时会产生不符合需求的固有的棕黄色,更进一步地,其含量过高会极大地增加玻璃的生产成本,因此,本发明中,TiO 2的含量优选为2.0-3.5wt%,CeO 2的含量优选为0.5-1.5wt%。在一些实施方式中,TiO 2的含量优选为2.0-3.0wt%,CeO 2的含量优选为0.5-1.2wt%。
发明人通过大量的实验发现,只使用ZnO和/或La 2O 3,加入达到5.0wt%时,仍然不能使玻璃达到1级耐碱性能,而Y 2O 3的加入可极大地改善玻璃的耐碱性。根据本发明的实施例,本发明的玻璃含有0.25-3.0wt%的Y 2O 3,优选含量为0.5-2.0wt%。当Y 2O 3增加到一定量时,其主要提供非桥氧,起断网作用,破坏玻璃网络结构,使结构变得疏松,玻璃线热膨胀系数急剧增大。而Y 2O 3含量在上述范围时,所得玻璃不仅耐水性和耐酸性属于1级,耐碱性也属于1级,这对生产工艺中保证玻璃的耐碱性尤为重要。根据本发明的一实施例,本发明的玻璃优选含有0.5wt%的Y 2O 3,使玻璃具有较好的耐碱性能,同时有利于控制生产过程和生产成本。
根据本发明的实施例,本发明的玻璃可以不含有ZrO 2、ZnO或/和La 2O 3。根据本发明的实施例,本发明的玻璃还可以进一步的含有ZrO 2、ZnO和La 2O 3的至少之一。发明人通过研究发现,若ZrO 2含量过多,则易使玻璃的成形温度和熔制温度升高,导致生产成本大大提高。根据本发明的实施例,本发明的玻璃可进一步的含有0-4.0wt%的ZrO 2、0-2.0wt%的ZnO和0-2.0wt%的La 2O 3的至少之一。根据本发明的一实施例,本发明的玻璃可进一步的包括优选含量为0-2.0wt%ZrO 2、优选0-1.0wt%的ZnO和优选0-1.0wt%的La 2O 3的任选之一;根据本发明的另一实施例,本发明的玻璃也可以包括ZrO 2、ZnO和La 2O 3的任选之 二的组合。当玻璃中含有ZrO 2、ZnO和La 2O 3中的多种氧化物时,各氧化物含量相互之间不受影响,Y 2O 3与上述含量氧化物组合形成的玻璃,不仅不破坏其它生产性能参数,在具有较好的抗紫外线性能同时,其耐水性、耐酸性和耐碱性能同时达到1级;此外,ZrO 2、ZnO、La 2O 3相对Y 2O 3而言原料廉价易得,可进一步降低生产成本。根据本发明的一实施例,本发明的玻璃优选含有重量百分比为0-1.0wt%的氧化镧、氧化锆、氧化锌的至少之一。根据本发明的一实施例,本发明的玻璃优选含有1.0wt%的氧化锆,使玻璃具有较好的耐碱性能,同时有利于控制生产过程和生产成本。
根据本发明的实施例,在一些实施方式中,为了使获得的玻璃同时具有1级耐酸性,1级耐水性,1级耐碱性,较好的抗紫外线性能,在波长≤380nm时,透过率T%<10%的性能,本发明提供的玻璃,其组成以氧化物为基准,按照重量百分数(wt%)计算,含有TiO 22.0-5.0wt%,0.5-1.5wt%的CeO 2,Y 2O 30.25-3.0wt%,∑(SiO 2+TiO 2+CeO 2)≥72.0wt%。
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量百分数(wt%)计算,含有以下组分,使玻璃具有较好的抗紫外线性能和较好的耐碱性等化学性能,且易于生产和控制:
Figure PCTCN2018111039-appb-000005
在一些实施方式中,本发明提供的硼硅酸盐玻璃,其组成以氧化物为基准,按照重量百分数(wt%)计 算,含有以下组分,使玻璃具有较好的抗紫外线性能和较好的耐碱性等化学性能,且易于生产和控制:
Figure PCTCN2018111039-appb-000006
根据本发明的实施例,本发明的玻璃的线热膨胀系数α 20/300为4.4×10 -6/K-5.8×10 -6/K,与钼、可伐合金的热膨胀特性相似,因此可以与钼、可伐合金如Fe-Co-Ni合金顺利熔合而作为此类金属的封接玻璃。另外,该玻璃具有非常好的抗紫外线性能,较好的化学稳定性,HGB 1级耐水,1级耐酸和1级耐碱。由于其优良的抗紫外线性能、耐碱性能和较低的线热膨胀系数,使其特别适用于医药包装材料,以及化学工业生产及实验室领域中的设备和玻璃仪器。
根据本发明的实施例,本发明的玻璃所得合适的熔化范围和工作范围使得生产过程中的能耗降低。
在本发明的另一方面,本发明提出的玻璃特别适用于作为医药包装材料。
在本发明的另一方面,本发明提出的玻璃特别适用于作为化学侵蚀液体的容器和/或化学装置。
在本发明的另一方面,本发明提出的玻璃特别适用于作为玻璃-金属的封接玻璃,例如对金属钼、可伐合金等进行封接。
本发明中,“不含有铁化合物”是指不含有额外添加或使用的铁化合物,如Fe 2O 3,在其含量不超过100ppm(百万分之一)时,其存在视为不含有,超过100ppm时,视为含有铁化合物;“不可避免的杂质”是指 所述杂质不超过1ppm,如当砷化合物如As 2O 3不超过0.1ppm时,其视为不可避免的杂质,当锑化合物如Sb 2O 3不超过1ppm时,其视为不可避免的杂质。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在表格中示出。下面通过参考表格描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
除非另外说明,本发明所使用的所有科技术语具有与本发明所属领域技术人员的通常理解相同的含义。本发明涉及的所有专利和公开出版物通过引用方式整体并入本发明。术语“包含”或“包括”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。在本发明中,无论是否使用“大约”或“约”等字眼,所有在此公开了的数字均为近似值,每一个数字的数值有可能会出现1%以下的差异,如0.1%、0.5%或1%的差异,或者本领域人员认为的合理的差异。
实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
下面所描述的实施例,除非另有说明,所有的温度定为摄氏度。所使用的试剂均可以从市场上购得或者可以通过本发明所描述的方法制备而得。
下面简写词的使用贯穿本发明:wt%表示重量百分数;mg表示毫克;μg表示微克;mm表示毫米;nm表示纳米;T g表示转变温度;Tf表示膨胀软化温度;dm 2表示平方分米;℃表示摄氏度;T%表示紫外-可见光透过率;dPa·s表示分帕·秒;ppm表示百万分之一,符号“∑”表示求和。
各性能参数测试方法:
耐水性(H)的测试方法:根据YBB00362004-2015,取一定量规定尺寸的玻璃颗粒,放在规定的容器内,加入定量的水,并在规定的条件下加热,通过滴定浸出液,以每克玻璃颗粒耗用盐酸滴定液(0.01mol/L)的体积来测量玻璃颗粒受水浸蚀的程度并分级。属于HGB1级耐水的高耐化学性玻璃的最大值为0.10mL。属于HGB 2级耐水的玻璃的最大值为0.20mL。属于HGB3级耐水的玻璃最大值为0.85mL。
耐碱性(L)的测试方法:根据YBB00352004-2015,将总表面积为10cm 2-15cm 2的玻璃供试品,用等体积的0.5mol/L碳酸钠和1.0mol/L氢氧化钠沸腾混合溶液浸蚀3小时。测定该玻璃供试品单位表面积损失的质量。表中的每个例子给出了以mg/dm 2为单位的失重。属于1级耐碱的玻璃的最大失重为75mg/dm 2。属于2级耐碱的玻璃的最大失重为175mg/dm 2。大于175mg/dm 2为3级耐碱。
耐酸性(S)的测试方法:根据YBB00342004-2015,将约为100cm 2的玻璃供试品,在沸腾的6±0.2mol/L盐酸溶液中浸蚀6小时,测定单位面积损失的质量。表中的每个例子给出了以mg/dm 2为单位的失重。属于1级耐酸玻璃的最大失重为0.7mg/dm 2。属于2级耐酸的玻璃的最大失重为1.5mg/dm 2。大于1.5mg/dm 2为3级耐酸。
线热膨胀系数(α)的测试方法:参照YBB00202003-2015,先用微控内圆切割机(西北机器有限公司 J5085-1/ZF)把玻璃块切割成长×宽×高=25×6×6(误差±0.1mm)的玻璃条,再用热膨胀仪(耐驰DIL 402PC)测玻璃条的α (20;300)[10 -6/K]、玻璃化转变温度Tg和膨胀软化温度Tf。
紫外-可见光透过率(T%)测试方法:先用微控内圆切割机(西北机器有限公司J5085-1/ZF)把玻璃块切割成厚1.5±0.1mm玻璃片,再用精密研磨抛光机(沈阳科晶自动化设备有限公司UNIPOL-802)打磨玻璃片两面成镜面,玻璃片厚1±0.05mm,最后用安捷伦cary 60紫外-可见分光光度计测透过率。
加工温度(V A):用Orton RSV-1600旋转高温粘度计,需要淬火玻璃样品≥600g,对应的粘度是10 -4dPa·S。
表1-表4给出了不同玻璃的组成(重量百分比,wt%,基于氧化物)和这些玻璃的重要性能参数,包括线热膨胀系数α(20;300)(单位:10 -6/K),玻璃化转变温度T g(单位:℃),膨胀软化温度Tf(单位:℃),耐水性H(单位:mL),耐酸性S(单位:mg/dm 2),耐碱性L(单位:mg/dm 2);加工温度V A(单位:℃);其中,实施例1-实施例3作为对照组。
表5给出了不同组成(重量分数,wt%,基于氧化物)玻璃的紫外-可见光透过率T(%)。
实施例1
表1:玻璃的组成(wt%,基于氧化物)和主要性质,其中n.d.表示未测定
Figure PCTCN2018111039-appb-000007
Figure PCTCN2018111039-appb-000008
实施例2
表2:玻璃的组成(wt%,基于氧化物)和主要性质,其中n.d.表示未测定
Figure PCTCN2018111039-appb-000009
实施例3
表3:玻璃的组成(wt%,基于氧化物)和主要性质,其中n.d.表示未测定
Figure PCTCN2018111039-appb-000010
实施例4
表4:玻璃的组成(基于氧化物,wt%)和主要性质,其中n.d.表示未测定
Figure PCTCN2018111039-appb-000011
Figure PCTCN2018111039-appb-000012
实施例5
将实施例1-4各组所得玻璃检测紫外-可见光透过率,结果如表5所示。
表5:不同组成(wt%,基于氧化物)玻璃的紫外-可见光透过率T(%)。
Figure PCTCN2018111039-appb-000013
Figure PCTCN2018111039-appb-000014
根据编号为A1-A25的对比组玻璃的性能参数测试结果可知,对比组A1-A25,通过简单或常规添加或者不添加氧化钇,不能同时达到耐碱1级,且在波长≤380nm时,透过率T%<10%的性能,不能满足有较好耐水性、耐酸性,既耐碱又抗紫外线的要求;而本发明提供的玻璃(优化组A26-A34,实施例4),通过调整组分及其含量,可以达到耐水1级,耐酸1级,耐碱1级,且在波长≤380nm时,透过率T%<10%即较好抗紫外线的性能,满足既耐碱又抗紫外线的要求,同时还具有较好的耐水性和耐酸性性能。
本发明玻璃具有高的化学稳定性,具体地,根据YBB00362004-2015 98℃下测定耐水性时,以每克玻璃颗粒耗用盐酸滴定液(0.01mol/L)的体积来测量玻璃颗粒受水浸蚀的程度并分级,优化组A26-A34的玻璃的耐水性值至多为0.03mL,表明本发明玻璃在耐水性方面表现出非常优秀的性能,属于耐水1级。
根据YBB00342004-2015测定耐酸性时,优化组A26-A34的玻璃供试品单位表面积损失的质量均小于 0.70mg/dm 2,表明本发明玻璃的耐酸性也是属于1级。
根据YBB00352004-2015测定耐碱性时,优化组A26-A34的玻璃供试品单位表面积损失的质量均小于75mg/dm 2,表明本发明玻璃在耐碱性方面非常优异,属于耐碱1级。
根据各组的紫外-可见光透过率检测结果可知,优化组A26-A34的玻璃供试品的紫外-可见光透过率T%低于10%。
由此,本发明所提供的玻璃在三种化学耐性的每一方面都属于1级,且同时具有较好的抗紫外线性能。本发明所述玻璃既具有高耐化学性又具有较好的抗紫外线性能,非常适合用于医药包装材料以及化学工业生产以及实验室研究领域中的设备以及化学侵蚀液体的容器等。
在冷却区中的玻璃粘度的特征在于玻璃的转变温度Tg,该温度对应的粘度大约为10 13.4dPa·s。本发明玻璃的合适的转变温度有利于降低生产过程中的能耗,有利于玻璃的生产。本发明提供的玻璃,其具有低于1400℃的加工温度(V A),或者说,本发明提供的玻璃,其具有低于1300℃的加工温度(V A),有利于玻璃的生产。
本发明的玻璃的的线热膨胀系数α 20/300为4.4×10 -6/K~5.8×10 -6/K,与钼、可伐合金的线热膨胀特性相似,因此可以熔于钼、可伐合金而作为此类金属的封接玻璃,由于它们自身的耐化学性,也特别适合应用在化学腐蚀环境中所使用的的熔融玻璃/金属密封。本领域技术人员可通过碱金属氧化物含量来改变线热膨胀系数。
本发明的方法已经通过较佳实施例进行了描述,相关人员明显能在本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明内。

Claims (19)

  1. 一种硼硅酸盐玻璃,其特征在于,其组成以氧化物为基准,含有以下组分:TiO 2 2.0-5.0wt%,CeO 2 0.25-2.5wt%,Y 2O 3 0.25-3.0wt%,且不含有铁化合物。
  2. 根据权利要求1所述的硼硅酸盐玻璃,其中,SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%。
  3. 根据权利要求1所述的硼硅酸盐玻璃,还含有以下组分:SiO 2 65.0-75.0wt%,B 2O 3 6.0-12.0wt%,Al 2O 3 3.5-6.5wt%;且Na 2O,K 2O和Li 2O三者的总量为5.5-9.5wt%;CaO,MgO和BaO三者的总量为1.0-5.5wt%。
  4. 根据权利要求1所述的硼硅酸盐玻璃,其中Na 2O,K 2O和Li 2O三者的总量为5.5-9.5wt%;CaO,MgO和BaO三者的总量为1.0-5.5wt%;且SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%。
  5. 根据权利要求1所述的硼硅酸盐玻璃,其中,CeO 2为0.5-1.5wt%。
  6. 根据权利要求1所述的硼硅酸盐玻璃,其中,CeO 2为0.5-1.5wt%,且SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%。
  7. 根据权利要求1所述的硼硅酸盐玻璃,其中,CeO 2为0.5-1.5wt%,SiO 2 65.0-75.0wt%,B 2O 3 6.0-12.0wt%,Al 2O 3 3.5-6.5wt%;且Na 2O,K 2O和Li 2O的总量为5.5-9.5wt%;CaO,MgO和BaO的总量为1.0-5.5wt%。
  8. 根据权利要求1所述的硼硅酸盐玻璃,其中,CeO 2为0.5-1.5wt%,SiO 2 65.0-75.0wt%,B 2O 3 6.0-12.0wt%,Al 2O 3 3.5-6.5wt%;且SiO 2,TiO 2和CeO 2三者的总量不低于72.0wt%;Na 2O,K 2O和Li 2O三者的总量为5.5-9.5wt%;CaO,MgO和BaO三者的总量为1.0-5.5wt%。
  9. 根据权利要求1所述的硼硅酸盐玻璃,其特征在于,其组成以氧化物为基准,含有或具有以下组分:
    Figure PCTCN2018111039-appb-100001
    Figure PCTCN2018111039-appb-100002
  10. 根据权利要求9所述的硼硅酸盐玻璃,其中,∑(SiO 2+TiO 2+CeO 2)≥72.0wt%。
  11. 根据权利要求1所述的硼硅酸盐玻璃,其组成以氧化物为基准,含有或具有以下组分:
    Figure PCTCN2018111039-appb-100003
  12. 根据权利要求1所述的硼硅酸盐玻璃,其组成以氧化物为基准,含有或具有以下组分:
    Figure PCTCN2018111039-appb-100004
    Figure PCTCN2018111039-appb-100005
  13. 根据权利要求1-12任一所述的硼硅酸盐玻璃,还包括0-1.0wt%的ZrO 2、ZnO和La 2O 3的至少之一。
  14. 根据权利要求1-13任一项所述的硼硅酸盐玻璃,其特征在于除了不可避免的杂质外不含As 2O 3和Sb 2O 3
  15. 根据权利要求1-14任一所述的硼硅酸盐玻璃,其特征在于:波长≤380nm时,所述玻璃的紫外-可见光透过率T%<10%和根据YBB00352004-2015具有1级耐碱性。
  16. 根据权利要求1-14任一所述的硼硅酸盐玻璃,其特征在于:波长≤380nm时,所述玻璃的紫外-可见光透过率T%<10%,所述玻璃根据YBB00352004-2015具有1级耐碱性,根据YBB00362004-2015具有1级耐水性和根据YBB00342004-2015具有1级耐酸性。
  17. 根据权利要求1-14任一项所述硼硅酸盐玻璃作为医药包装材料的应用。
  18. 根据权利要求1-14任一项所述硼硅酸盐玻璃作为化学侵蚀液体的容器和化学装置的应用。
  19. 根据权利要求1-14任一项所述硼硅酸盐玻璃作为合金封接玻璃的应用。
PCT/CN2018/111039 2017-10-24 2018-10-19 抗紫外线耐碱硼硅酸盐玻璃及其应用 WO2019080776A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18870441.5A EP3702334A4 (en) 2017-10-24 2018-10-19 UV-RESISTANT AND ALKALIS-RESISTANT BOROSILICATE GLASS AND APPROPRIATE USE
CN202111483737.XA CN114292022A (zh) 2017-10-24 2018-10-19 抗紫外线耐碱硼硅酸盐玻璃及其应用
CN201880067289.5A CN111372900A (zh) 2017-10-24 2018-10-19 抗紫外线耐碱硼硅酸盐玻璃及其应用
US16/755,600 US11299419B2 (en) 2017-10-24 2018-10-19 UV-resistant and alkaline-resistant borosilicate glass and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710998365.1 2017-10-24
CN201710998365 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019080776A1 true WO2019080776A1 (zh) 2019-05-02

Family

ID=66247746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111039 WO2019080776A1 (zh) 2017-10-24 2018-10-19 抗紫外线耐碱硼硅酸盐玻璃及其应用

Country Status (4)

Country Link
US (1) US11299419B2 (zh)
EP (1) EP3702334A4 (zh)
CN (2) CN111372900A (zh)
WO (1) WO2019080776A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977972B (zh) * 2020-09-01 2022-11-08 湖南旗滨医药材料科技有限公司 硼硅酸盐玻璃及其制备方法
CN115340296B (zh) * 2022-06-27 2023-12-22 成都市金鼓药用包装有限公司 一种高锆低硼中性玻璃及其制备方法、制备装置及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495140A (zh) * 2002-08-24 2004-05-12 Ф�ز������쳧 硼硅酸盐玻璃及其应用
WO2007094373A1 (ja) * 2006-02-14 2007-08-23 Nippon Sheet Glass Company, Limited ガラス組成物
CN101591140A (zh) * 2008-04-30 2009-12-02 肖特公开股份有限公司 具有紫外线隔离性能的、用于药物包装的硼硅酸盐玻璃
CN104118989A (zh) * 2013-04-26 2014-10-29 肖特股份有限公司 优选用于医药领域的具有改良的抗水解性的硼硅玻璃
CN105036553A (zh) * 2015-08-04 2015-11-11 沧州四星玻璃股份有限公司 一种药用中性硼硅玻璃管及其制备方法
CN105263875A (zh) * 2013-06-06 2016-01-20 日本电气硝子株式会社 药物容器用玻璃
CN106746638A (zh) * 2016-12-08 2017-05-31 姚均甫 一种应用锂辉石的医药玻璃

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842942C2 (de) 1998-09-18 2001-05-23 Schott Glas Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendung
DE10035801B4 (de) 2000-07-22 2008-04-03 Schott Ag Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendungen
JP4795651B2 (ja) * 2003-06-06 2011-10-19 ショット アクチエンゲゼルシャフト 特に蛍光ランプへ用いる高耐薬品性紫外線吸収ガラス、製造方法、及び使用方法
JP4756856B2 (ja) 2004-12-15 2011-08-24 AvanStrate株式会社 ガラス組成物およびその製造方法
US9399000B2 (en) * 2006-06-20 2016-07-26 Momentive Performance Materials, Inc. Fused quartz tubing for pharmaceutical packaging
KR20120089638A (ko) * 2009-08-21 2012-08-13 모멘티브 퍼포먼스 머티리얼즈 인크. 제약 포장용 융합된 석영 배관
CN104261676B (zh) 2014-09-04 2017-02-15 东莞市长安东阳光铝业研发有限公司 一种中性硼硅玻璃及其应用
CN104556689B (zh) 2015-01-05 2017-03-29 武汉理工大学 一种新型高膨胀光学玻璃及其制备方法
US9716190B2 (en) * 2015-03-23 2017-07-25 Sii Semiconductor Corporation Optical sensor device and method of manufacturing optical sensor device
CN106082639B (zh) * 2016-06-07 2018-09-14 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495140A (zh) * 2002-08-24 2004-05-12 Ф�ز������쳧 硼硅酸盐玻璃及其应用
WO2007094373A1 (ja) * 2006-02-14 2007-08-23 Nippon Sheet Glass Company, Limited ガラス組成物
CN101591140A (zh) * 2008-04-30 2009-12-02 肖特公开股份有限公司 具有紫外线隔离性能的、用于药物包装的硼硅酸盐玻璃
CN104118989A (zh) * 2013-04-26 2014-10-29 肖特股份有限公司 优选用于医药领域的具有改良的抗水解性的硼硅玻璃
CN105263875A (zh) * 2013-06-06 2016-01-20 日本电气硝子株式会社 药物容器用玻璃
CN105036553A (zh) * 2015-08-04 2015-11-11 沧州四星玻璃股份有限公司 一种药用中性硼硅玻璃管及其制备方法
CN106746638A (zh) * 2016-12-08 2017-05-31 姚均甫 一种应用锂辉石的医药玻璃

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702334A4 *

Also Published As

Publication number Publication date
US20210188697A1 (en) 2021-06-24
CN114292022A (zh) 2022-04-08
EP3702334A1 (en) 2020-09-02
CN111372900A (zh) 2020-07-03
US11299419B2 (en) 2022-04-12
EP3702334A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2018121491A1 (zh) 高耐化学性的硼硅酸盐玻璃及其应用
EP2414298B1 (en) Low iron high transmission glass with boron oxide for improved optics, durability and refining
JP4454266B2 (ja) ホウケイ酸ガラスおよびその使用
EP2874959B1 (en) Ion exchangeable li-containing glass compositions for 3-d forming
CA2360850A1 (en) Glass with high proportion of zirconium-oxide and its uses
TWI404693B (zh) Glass composition for substrate
CN103130415B (zh) 一种应用锂辉石的医药玻璃
CA2361147A1 (en) Glass with high proportion of zirconium-oxide and its uses
JPWO2014122934A1 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
JP7500446B2 (ja) 高アルミナ低ソーダガラス組成物
TW201609588A (zh) 高透過玻璃
WO2019080776A1 (zh) 抗紫外线耐碱硼硅酸盐玻璃及其应用
WO2014069177A1 (ja) 医薬用ガラス及び医薬用ガラス管
WO2020153294A1 (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
EP0869925A1 (en) Brown glass which absorbs ultraviolet radiation
JP2007217192A (ja) ガラス物品、およびその製造方法
CN106746638A (zh) 一种应用锂辉石的医药玻璃
JP2017048091A (ja) 医薬容器用ホウケイ酸ガラス
CN112321152A (zh) 硼硅酸盐玻璃及其制备方法
JP7495668B2 (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
WO2021220801A1 (ja) 医薬品容器用ガラス、医薬品容器用ガラス管及び医薬品容器
TW201434781A (zh) 觸控保護玻璃之組成
JP6596059B2 (ja) 緑青色系ソーダライムシリカ系ガラス及びその製造方法,並びに緑青色系ガラス容器
JP2007217200A (ja) ガラス物品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018870441

Country of ref document: EP

Effective date: 20200525