WO2018121491A1 - 高耐化学性的硼硅酸盐玻璃及其应用 - Google Patents

高耐化学性的硼硅酸盐玻璃及其应用 Download PDF

Info

Publication number
WO2018121491A1
WO2018121491A1 PCT/CN2017/118437 CN2017118437W WO2018121491A1 WO 2018121491 A1 WO2018121491 A1 WO 2018121491A1 CN 2017118437 W CN2017118437 W CN 2017118437W WO 2018121491 A1 WO2018121491 A1 WO 2018121491A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
weight
borosilicate glass
oxide
resistance
Prior art date
Application number
PCT/CN2017/118437
Other languages
English (en)
French (fr)
Inventor
洪伟强
周争上
江永
朱连英
贺新前
韩洪星
Original Assignee
广东东阳光药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东东阳光药业有限公司 filed Critical 广东东阳光药业有限公司
Priority to CN202111400716.7A priority Critical patent/CN114180828A/zh
Priority to CN201780076709.1A priority patent/CN110191865A/zh
Priority to EP17886211.6A priority patent/EP3543219B1/en
Priority to US16/473,246 priority patent/US11319242B2/en
Publication of WO2018121491A1 publication Critical patent/WO2018121491A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/001Alkali-resistant fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/001Alkali-resistant fibres
    • C03C13/002Alkali-resistant fibres containing zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • C04B14/44Treatment for enhancing alkali resistance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Definitions

  • the present invention relates to a highly chemical resistant borosilicate glass and its use.
  • alkaline drugs such as PH ⁇ 10
  • the use of glass containers that do not meet the requirements of alkali resistance is prone to the phenomenon of glass detachment. This drug is injected into the human body for a long time. Can cause serious reactions such as sepsis. Therefore, the pharmaceutical industry has placed a higher demand on the main packaging materials, providing an alkali-resistant packaging material with significantly improved.
  • borosilicate glass Due to its high chemical stability, high thermal shock resistance and low linear thermal expansion coefficient, borosilicate glass is especially suitable for pharmaceutical packaging industry such as injection ampoules and vials, chemical industry production. And the instruments and equipment used in the test, or alloy sealing.
  • borosilicate glass When borosilicate glass is used as a primary packaging material for drugs such as ampoules or vials, it is required that the glass has very high corrosion resistance and water resistance to acidic and alkaline media. Moreover, the low coefficient of thermal expansion is advantageous because it ensures good thermal stability. In addition, the physico-chemical properties of the glass during further processing are important because it has an impact on the properties of the final product and its application.
  • known industrial pharmaceutical ampoules have HGB class 1 water resistance (H, according to YBB00362004-2015), grade 1 acid resistance (S, according to YBB00342004-2015) and grade 2 alkali resistance (L, according to YBB00352004-2015 ), representative of the prior art transparent glass Fiolax TM.
  • the borosilicate glass disclosed in DE 3 722 130 A1 has high chemical stability, and since these glasses have no K 2 O, although they belong to HGB class 1 water resistant glass, they are still relatively crystallizable.
  • the glasses described in DE 198 42 942 A1 and DE 195 36 708 C1 have very high chemical stability, up to HGB class 1 water resistance, class 1 acid resistance, class 1 alkali resistance. However, due to the high ZrO 2 content in these glasses, the glass is also relatively easy to crystallize.
  • the present invention aims to solve at least one of the technical problems in the related art at least to some extent.
  • the present invention provides a borosilicate glass, which has a weight loss of less than 75 mg/dm 2 according to YBB00352004-2015, and achieves grade 1 alkali resistance (L) while maintaining HGB class 1 water resistance (H) and grade 1 Acid resistance (S).
  • the thermal expansion coefficient of the glass of the present invention provides a line of 4.6 ⁇ 10 -6 /K-5.2 ⁇ 10 -6 / K , having high heat resistance and good processability.
  • the borosilicate glass of the invention contains from 0.25 to 4.0% by weight of Y 2 O 3 (yttria), preferably in an amount of from 0.5 to 3.5% by weight, particularly preferably 0.5-3.0% by weight.
  • Y 2 O 3 yttria
  • the inventors have found through a large number of experiments that the addition of Y 2 O 3 can greatly improve the alkali resistance of the glass.
  • the content of Y 2 O 3 is 3.0% by weight, according to the test method of YBB00352004-2015, the weight loss of the glass is about 40.0.
  • the alkali resistance is greatly improved, but when the content of Y 2 O 3 continues to increase to 4% by weight or more than 4.0% by weight, the glass is phase-divided, and uneven coloration occurs, and is no longer significantly
  • the alkali resistance of the glass is improved, and the conversion temperature (Tg) and the expansion softening temperature (Tf) are also remarkably improved.
  • Y 2 O 3 when Y 2 O 3 is increased to a certain amount, it mainly provides non-bridge oxygen, acts as a break network, destroys the glass network structure, makes the structure loose, and the coefficient of thermal expansion of the glass line sharply increases.
  • a boiling-resistant glass base is mixed 85.25mg / dm 2 (> 75mg / dm 2), alkali metal 2 level.
  • the alkali resistance belongs to the first stage, which is particularly important for ensuring the alkali resistance of the glass in the production process.
  • the present invention provides a borosilicate glass based on an oxide having a composition comprising the following components:
  • the borosilicate glass of the invention has a SiO 2 content of from 70 to 77% by weight, preferably from 70 to 76% by weight, particularly preferably from 71 to 7.5% by weight.
  • the content of SiO 2 is within this range, and the glass properties can be ensured under the premise that the basic skeleton of the glass is formed. A higher content will increase the viscosity of the glass and increase the melting temperature. On the other hand, if the SiO 2 content is further lowered, the acid resistance of the glass will be destroyed.
  • the content of B 2 O 3 in the borosilicate glass of the invention is from 9.0 to 12.0% by weight, preferably from 9.0 to 11.5% by weight, particularly preferably from 9.5 to 11.00% by weight.
  • the content of B 2 O 3 plays a crucial role in reducing the linear thermal expansion coefficient, processing temperature and melting temperature, and improving chemical stability.
  • B 2 O 3 binds the alkali metal ions in the glass more firmly to the glass structure, and the alkali metal ions released when measuring the water resistance of the glass are reduced, and the decrease in the content of B 2 O 3 will significantly reduce the water resistance.
  • the inventors of the present invention have found through a large number of experimental studies that as the content of B 2 O 3 increases, the viscosity of the glass gradually decreases, and the linear thermal expansion coefficient gradually decreases. However, when the content is more than 12.0% by weight, the glass may be phase-separated, resulting in uneven internal stress and easy cracking of the glass.
  • the content of B 2 O 3 is further increased, and the more serious the boron is volatilized, which not only aggravates the erosion of the refractory material, causes waste of energy, but also causes fluctuations in the chemical composition of the glass.
  • higher levels of B 2 O 3 can also adversely affect the acid resistance of the glass. Therefore, the content of B 2 O 3 should not be too low or too high, and is preferably within the above range.
  • the content of Al 2 O 3 in the borosilicate glass of the invention is from 3.0 to 7.0% by weight, preferably from 3.5 to 6.5% by weight, particularly preferably from 3.8 to 6.5% by weight.
  • Al 2 O 3 like B 2 O 3 , firmly fixes an alkali metal oxide, especially Na 2 O, in the glass structure, so an excessively high content causes an increase in the melting temperature and the processing temperature.
  • Al 2 O 3 has a positive effect on the crystallization resistance, and lowering the Al 2 O 3 content may increase the crystallization tendency accordingly.
  • the glass according to the invention contains 5.0 to 8.0% by weight of Na 2 O, preferably at least 5.5% by weight of Na 2 O, 0 to 2.0% by weight of K 2 O, preferably 0 to 1.0% by weight of K 2 O, 0-1.0% by weight of Li 2 O, preferably 0-0.5% by weight of Li 2 O; the total amount of alkali metal oxides is from 5.0 to 9.0% by weight, preferably from 6.5 to 8.0% by weight.
  • the above alkali metal oxides adjust the glass properties within respective upper limits, for example, the three functions play an important role in adjusting the thermal expansion coefficient of the glass line, and Na 2 O and Li 2 O lower the glass melting temperature and processing temperature, K 2 O and / Or Li 2 O plays a beneficial role in reducing glass crystallization, and it is important to maintain a balanced ratio between them.
  • the glass has an excessive coefficient of thermal expansion of the line and is disadvantageous for cost reduction, while an excessively low content of the alkali metal oxide results in a coefficient of thermal expansion of the line being too low. Therefore, when the content of the alkali metal oxide is limited to the above range, borosilicate glass having a linear thermal expansion coefficient and a processing temperature satisfying the requirements can be obtained.
  • the borosilicate glass of the invention further comprises an alkaline earth metal oxide in an amount of from 0 to 5.0% by weight, preferably from 0 to 4.0% by weight.
  • the content of CaO is 0 to 3.0% by weight, preferably 0 to 2.0% by weight, particularly preferably 0 to 1.5%
  • the content of MgO is 0 to 1.0% by weight, preferably 0 to 0.5% by weight
  • the content of BaO It is 0 to 2.0% by weight, preferably 0.5 to 1.5% by weight.
  • the above alkaline earth metal oxide changes the "material length of the glass", that is, the processing temperature range of the glass; in addition, the alkaline earth metal oxide reduces the high temperature viscosity of the glass through different network modification, improves the chemical stability, and reduces the crystallization tendency.
  • the viscosity characteristics and other properties of the glass match the specific production and processing.
  • CaO improves acid resistance
  • BaO lowers the processing temperature without adversely affecting water resistance. Excessive oxidation of alkaline earth metals will result in an increase in the coefficient of thermal expansion of the wire, while too low a content will excessively impair the performance of the glass.
  • the total content of the alkaline earth metal oxide is at most 5.0%.
  • the borosilicate glass of the present invention may contain up to 1.0% by weight of CeO 2 , a low concentration of CeO 2 is used as a clarifying agent, and a higher concentration of CeO 2 can prevent the glass from being irradiated by radioactive radiation. Change color as usual.
  • CeO 2 containing a pharmaceutical packaging material still check the presence of any particulate matter by visual even when placed radioactive radiation environment.
  • CeO 2 concentration is too high, an intrinsic brownish yellow color which does not meet the demand is generated. Further, if the CeO 2 content is too high, the production cost of the glass is greatly increased. Therefore, in the present invention, CeO 2 is introduced as a clarifying agent, CeO.
  • the content of 2 is preferably between 0 and 0.5% by weight.
  • the borosilicate glass of the present invention further contains 0-1% by weight of NaCl, which is mainly used as a fining agent to clarify the glass.
  • NaCl which is mainly used as a fining agent to clarify the glass.
  • those skilled in the art can also use other standard fining agents such as CaF 2 and/or sulfates such as Na 2 SO 4 and/or nitrates such as NaNO 3 .
  • the above clarifying agent is used in a standard amount, i.e., clarified from 0.003 to 1.0% by weight of a standard clarifying agent depending on the type and amount of the clarifying agent in the finished glass.
  • the glass in addition to unavoidable impurities, the glass will be free of As 2 O 3 (arsenic trioxide) and Sb 2 O 3 (antimony trioxide), which is particularly advantageous for use of glass as a main medical packaging material. .
  • As 2 O 3 arsenic trioxide
  • Sb 2 O 3 antimony trioxide
  • the borosilicate glass of the invention preferably contains Y 2 O 3 in an amount of from 0.5 to 3.5% by weight, particularly preferably from 0.5 to 3.0% by weight of Y 2 O 3 .
  • the inventors have found through extensive experiments that the addition of Y 2 O 3 can greatly improve the chemical stability of the glass, especially the alkali resistance of the glass.
  • the content of Y 2 O 3 is 3.0% by weight, according to YBB00352004-2015 In the test method, the weight loss of the glass is about 40.0 mg/dm 2 , and the alkali resistance is greatly improved, but when the content of Y 2 O 3 continues to increase to 4% by weight or more than 4.0% by weight, the glass is phase-separated and appears.
  • the alkali resistance of the obtained glass belongs to the first grade, and the water resistance and acid resistance also belong to the first grade, which is particularly important for ensuring the alkali resistance of the glass in the production process.
  • the glass of the present invention may further contain 0 to 4.0% by weight of at least one of La 2 O 3 (yttria), ZrO 2 (zirconia), and ZnO (zinc oxide).
  • the glass of the present invention may further contain at least one of 0 to 3.0 % by weight of La 2 O 3 (yttria), ZrO 2 (zirconia), and ZnO (zinc oxide).
  • La 2 O 3 (yttria), ZrO 2 (zirconia) and ZnO may be further included in an amount of 0 to 4.0% by weight, preferably 0 to 3.0 % by weight.
  • any one of (zinc oxide); according to another embodiment of the present invention, a combination of two of La 2 O 3 (yttria), ZrO 2 (zirconia), and ZnO (zinc oxide) may also be included
  • the content of each oxide is independently 0 to 4.0% by weight, preferably the content is independently 0 to 3.0% by weight; according to still another embodiment of the present invention, La 2 O 3 (yttria) and ZrO 2 may be simultaneously included.
  • the content of each oxide is independently 0 to 4.0% by weight, preferably 0 to 3.0 % by weight, that is, when the glass contains La 2 O 3 (yttrium oxide) , a plurality of oxides in ZrO 2 (zirconia) and ZnO (zinc oxide), the respective oxide contents are not affected by each other, and the glass formed by combining Y 2 O 3 (yttria) with the above-mentioned content oxide , not only damage to other performance parameters, but also the water resistance, acid resistance and alkali performance while achieving grade 1; Furthermore, La 2 O 3 (lanthanum oxide), ZrO 2 ( Zirconium) or ZnO (zinc oxide) relative to Y 2 O 3 (yttrium oxide) in terms of cheap raw materials, production cost can be further reduced.
  • the present invention provides a glass comprising, based on an oxide, a composition comprising: SiO 2 70-76% by weight, B 2 O 3 9.0-11.5% by weight, Al 2 O 3 3.5-6.5 wt%, Na 2 O 5.0-7.0 wt%, K 2 O 0-1.0 wt%, Li 2 O 0-1.0 wt%, wherein ⁇ (Na 2 O+K 2 O+Li 2 O 6.5-8.0% by weight, CaO 0-2.0% by weight, MgO 0-1.0% by weight, BaO 0-1.5% by weight, wherein ⁇ (CaO+MgO+BaO) 0-5.0% by weight, CeO 2 0-0.5% by weight , Y 2 O 3 0.5-3.5% by weight.
  • a composition comprising: SiO 2 70-76% by weight, B 2 O 3 9.0-11.5% by weight, Al 2 O 3 3.5-6.5 wt%, Na 2 O 5.0-7.0 wt%, K 2 O 0-1.0 wt%,
  • the present invention provides a glass based on an oxide comprising the following components: SiO 2 71-75.5 wt%, B 2 O 3 9.1-11.0 wt%, Al 2 O 3 3.8-6.5 wt%, Na 2 O 5.5-7.0 wt%, K 2 O 0-1.0 wt%, Li 2 O 0-0.5 wt%, wherein ⁇ (Na 2 O+K 2 O+Li 2 O ) 6.0-8.0% by weight, CaO 0-1.5% by weight, MgO 0-0.5% by weight, BaO 0.5-1.5% by weight, wherein lanthanum (CaO+MgO+BaO) 0-4.0% by weight, CeO 2 0-1.0% by weight , NaCl 0-1.0% by weight, Y 2 O 3 0.5-3.0% by weight.
  • the glass thermal expansion coefficient ⁇ 20/300 of the present invention is 4.6 ⁇ 10 -6 /K-5.2 ⁇ 10 -6 /K, which is similar to the thermal expansion characteristics of molybdenum and Kovar alloy, and thus can be Molybdenum, Kovar alloys such as Fe-Co-Ni alloys are smoothly fused to serve as a sealing glass for such metals.
  • the glass has very good chemical stability, HGB class 1 water resistance, grade 1 acid resistance and grade 1 alkali resistance. Due to its high chemical stability, especially excellent alkali resistance and low linear thermal expansion coefficient, it is particularly suitable for medical packaging materials, as well as equipment and glass instruments in the chemical industry production and laboratory fields.
  • the suitable melting range and working range of the glass of the invention results in a reduction in energy consumption during production.
  • the glass proposed by the present invention is particularly useful as a medical packaging material.
  • the glass proposed by the invention is particularly suitable for use as a container and/or chemical device for chemically etching liquids.
  • the glass proposed by the present invention is particularly suitable for use as a glass-to-metal sealing glass, such as for sealing metal molybdenum, kovar, and the like.
  • the glass proposed by the present invention is particularly useful for forming glass fibers for reinforcing concrete.
  • the weight percentage (% by weight) of each component is calculated based on the oxide.
  • Mg milligrams
  • ⁇ g micrograms
  • Tg transition temperature
  • Tf expansion softening temperature
  • dm 2 square decimeter
  • cm 2 square centimeter
  • °C Celsius
  • SiO 2 silica
  • B 2 O 3 boron oxide
  • Al 2 O 3 alumina
  • Na 2 O sodium oxide
  • K 2 O potassium oxide
  • Li 2 O lithium oxide
  • CaO calcium oxide
  • MgO Magnesium oxide
  • BaO cerium oxide
  • CeO 2 cerium oxide
  • NaCl sodium chloride
  • Y 2 O 3 cerium oxide
  • La 2 O 3 cerium oxide
  • ZrO 2 zirconia
  • ZnO zinc oxide.
  • Chemical resistance is determined by the following method:
  • H water resistance
  • YBB00362004-2015 take a certain amount of glass granules of the specified size, put them in a prescribed container, add a certain amount of water, and heat under the specified conditions, by titrating the leaching solution to each gram.
  • the glass particles consumed a volume of hydrochloric acid titration solution (0.01 mol/L) to measure the degree of water etch of the glass particles and to classify.
  • the maximum value of the high chemical resistant glass belonging to the HGB class 1 water resistant is 0.10 mL.
  • the maximum value of the water-resistant glass belonging to the HGB class 2 is 0.20 mL.
  • the maximum water resistance of the glass belonging to the HGB3 grade is 0.85 mL.
  • the glass sample with a total surface area of 10cm 2 -15cm 2 is etched with an equal volume of 0.5mol/L sodium carbonate and 1.0mol/L sodium hydroxide boiling mixture solution. 3 hours.
  • the mass of the surface area loss of the glass test article was measured.
  • Each example in the table gives weight loss in mg/dm 2 .
  • the maximum weight loss of the grade 1 alkali resistant glass is 75 mg/dm 2 .
  • the maximum weight loss of the grade 2 alkali resistant glass is 175 mg/dm 2 . More than 175 mg/dm 2 is a grade 3 alkali resistance.
  • a glass test sample of about 100 cm 2 was etched for 6 hours in a boiling 6 ⁇ 0.2 mol/L hydrochloric acid solution to measure the mass loss per unit area.
  • Each example in the table gives weight loss in mg/dm 2 .
  • the maximum weight loss of the grade 1 acid-resistant glass is 0.7 mg/dm 2 .
  • the maximum weight loss of the grade 2 acid resistant glass is 1.5 mg/dm 2 . More than 1.5 mg/dm 2 is grade 3 acid resistant.
  • V A Processing temperature
  • Tables 1 - 3 give the composition (weight percent, weight % or wt%, based on oxide) of the different glasses of the embodiments of the invention and important performance parameters of these glasses, including: linear thermal expansion coefficient ⁇ (20; 300 ) (Unit: 10 -6 /K), glass transition temperature T g (unit: °C), expansion softening temperature Tf (unit: °C), water resistance H (unit mL), acid resistance S (unit: mg/dm) 2 ), alkali resistance L (unit: mg/dm 2 ); processing temperature V A (unit: ° C); wherein nd means not determined.
  • Table 1 Composition of glass (weight percent, wt% or wt%, based on oxide) and main properties
  • Table 2 Composition of glass (weight percent, wt% or wt%, based on oxide) and main properties
  • Table 3 Composition of glass (weight percent, wt% or wt%, based on oxide) and main properties
  • the glass of the invention has high chemical stability. Specifically, when the water resistance is measured according to YBB00362004-2015 at 98 ° C, the volume of the hydrochloric acid titration solution (0.01 mol/L) per gram of glass particles is used to measure the water immersion of the glass particles. The degree of etch and grading, the value of which is at most 0.03 ml, indicates that the glass of the present invention exhibits excellent performance in water resistance and belongs to water resistant grade 1.
  • the mass loss per unit surface area of the glass test article was less than 75 mg/dm 2 , indicating that the glass of the present invention is excellent in alkali resistance and belongs to alkali-resistant grade 1.
  • the glass of the present invention is 1-1-1 glass, that is, they belong to level 1 in every aspect of the three chemical resistances.
  • the highly chemical resistant glass of the present invention is well suited for use in medical packaging materials as well as in chemical industry production and laboratory research as well as chemically erosible liquid containers.
  • the viscosity of the glass in the cooling zone is characterized by the glass transition temperature Tg, which corresponds to a viscosity of approximately 10 13.4 dPa ⁇ s.
  • Tg glass transition temperature
  • the suitable transition temperature obtained by the glass of the invention is advantageous in reducing the energy consumption in the production process.
  • Linear thermal expansion coefficient of the glass of the present invention is ⁇ 20/300 of 4.6 ⁇ 10 -6 /K ⁇ 5.2 ⁇ 10 -6 / K , and the molybdenum, similar to the linear thermal expansion characteristics of Kovar, molybdenum can be melted, kovar Alloys, as sealing glasses for such metals, are also particularly suitable for use in molten glass/metal seals used in chemically corrosive environments due to their chemical resistance.
  • One skilled in the art can vary the linear thermal expansion coefficient by the alkali metal oxide content.
  • the glass of the present invention is easily converted into glass fibers. Due to the good chemical resistance of the glass, which leads to an increase in its long-term durability, these glass fibers are extremely suitable for reinforcing concrete parts, which can be used as short fibers and filaments (production of concrete/glass fiber composite).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种硼硅酸盐玻璃及其应用。该硼硅酸盐玻璃以氧化物为基准,含有0.25-4.0重量%的Y2O3,其具有高化学稳定性和适宜的线热膨胀系数,适合用于医药包装材料领域。

Description

高耐化学性的硼硅酸盐玻璃及其应用 技术领域
本发明涉及一种高耐化学性的硼硅酸盐玻璃及其应用。
背景技术
近年来医药市场上碱性较强的药物(如PH≥10)越来越多,使用不符合耐碱性要求的玻璃容器,容易出现玻璃脱片的现象,这种药物长期注射于人体内,会造成严重反应如败血症等。因此,医药工业对主要包装材料提出一个更高要求,提供具有明显改进的耐碱性包装材料。
硼硅酸盐玻璃因其高化学稳定性、高抗热冲击性和低线热膨胀系数等优良性质,使得硼硅酸盐玻璃特别应用于医药包装行业如注射剂的安瓿瓶和西林瓶,化学工业生产和试验中使用的仪器和设备,或合金封接等。
硼硅酸盐玻璃用作药物初级包装材料如安瓿瓶或西林瓶时,需要玻璃对酸性和碱性介质具有非常高的耐蚀性以及耐水性。而且,低线热膨胀系数是有利的,因为这确保了良好的热稳定性。此外,玻璃在进一步加工过程中的物理-化学性能很重要,因为这对最终产品的性能及其应用有影响。迄今为止,已知的工业医药安瓿玻璃具有HGB 1级耐水性(H,根据YBB00362004-2015)、1级耐酸性(S,根据YBB00342004-2015)和2级耐碱性(L,根据YBB00352004-2015),现有技术的代表是透明玻璃Fiolax TM。但实际经验表明,要想保证在生产工艺中的耐碱性,就要求在实验室中开发出失重小于75mg/dm 2,即在1级耐碱性范围内的玻璃,达到这个要求的同时又不能损害其它重要的玻璃性能,例如保持HGB 1级耐水性和1级耐酸性等。
虽然已有专利文献描述了具有高耐化学性的玻璃,但所述玻璃还需进一步改进,特别是需要提高其耐碱性和/或具有适宜的线热膨胀系数。
DE42306074C1中提到了具有高的抗化学腐蚀性的硅酸盐玻璃,它们具有低的碱金属含量和Al 2O 3含量,并可同钨熔合在一起,但它们具有最大为4.5×10 -6/K的线热膨胀系数。
DE3722130A1中公开描述的硼硅酸盐玻璃具有高化学稳定性,由于这些玻璃中没有K 2O,虽然它们属于HGB 1级耐水玻璃,但它们仍相对易结晶。
在DE198 42 942 A1和DE195 36 708 C1中所描述的玻璃具有非常高的化学稳定性,达到HGB1级耐水、1级耐酸、1级耐碱。但是由于这些玻璃中ZrO 2含量高,同样使得玻璃相对易于结晶。
发明内容
本发明旨在至少在一定程度上解决以上相关技术中的技术问题之一。
为此,本发明提供一种硼硅酸盐玻璃,根据YBB00352004-2015测试,其失重小于75mg/dm 2,达到1级耐碱性(L),同时保持HGB1级耐水性(H)和1级耐酸性(S)。此外,本发明提供的玻璃线热膨胀系数为4.6×10 -6/K-5.2×10 -6/K,具有高耐热性和良好的加工性能。
根据本发明的实施例,本发明的硼硅酸盐玻璃,以氧化物为基准,其含有0.25-4.0重量%的Y 2O 3(氧化钇),优选含量为0.5-3.5重量%,特别优选0.5-3.0重量%。发明人通过大量的实验发现,Y 2O 3的加入可极大地改善玻璃的耐碱性,当Y 2O 3的含量为3.0重量%时,根据YBB00352004-2015测试方法,玻璃的失重约为40.0mg/dm 2,耐碱性得到极大提高,但当Y 2O 3的含量继续增加至4重量%或超过4.0重量%时,玻璃产生分相,并出现不均匀着色,且不再显著地改善玻璃的耐碱性,同时转化温度(Tg)和膨胀软化温度(Tf)也显著提高。此外,当Y 2O 3增加到一定量时,其主要提供非桥氧,起断网作用,破坏玻璃网络结构,使结构变得疏松,玻璃线热膨胀系数急剧增大。而当所加入的Y 2O 3的含量小于0.25%时,玻璃耐沸腾混合碱为85.25mg/dm 2(>75mg/dm 2),属2级耐碱。而Y 2O 3含量在上述范围时,耐碱性属于1级,这对生产工艺中保证玻璃的耐碱性尤为重要。
在一些实施方式中,根据本发明的实施例,本发明提供的硼硅酸盐玻璃,以氧化物为基准,其组成含有以下组分:
SiO 2 70-77重量%,B 2O 3 9.0-12.0重量%,Al 2O 3 3.0-7.0重量%,Na 2O 5.0-8.0重量%,K 2O 0-2.0重量%,Li 2O 0-1.0重量%,其中∑(Na 2O+K 2O+Li 2O)5.0-9.0重量%,CaO 0-3.0重量%,MgO 0-1.0重量%,BaO 0-2.0重量%,其中∑(CaO+MgO+BaO)0-5.0重量%,CeO 2 0-1.0重量%,NaCl 0-1.0重量%,Y 2O 3 0.25-4.0重量%。
根据本发明的实施例,本发明的硼硅酸盐玻璃中SiO 2的含量为70-77重量%,优选为70-76重量%,特别优选为71-75.5重量%。SiO 2的含量在该范围内,在形成玻璃基本骨架的前提下能保证玻璃性能。更高的含量将使玻璃的粘度增大,熔制温度升高。而如果SiO 2含量进一步降低,那么玻璃的耐酸性将会受到破坏。
根据本发明的实施例,本发明的硼硅酸盐玻璃中B 2O 3的含量为9.0-12.0重量%,优选为9.0-11.5%重量%,特别优选为9.5-11.0重量%。B 2O 3的含量在降低线热膨胀系数、加工温度和熔制温度,提高化学稳定性方面都起着至关重要的作用。
一方面,B 2O 3将玻璃中的碱金属离子更牢固地束缚在玻璃结构中,当测定玻璃的耐水性时释放的碱金属离子减少,B 2O 3的含量降低将显著地降低耐水性。另一方面,本发明的发明人通过大量的实验研究发现,随着B 2O 3的含量的增加,玻璃的粘度逐渐减小,线热膨胀系数逐渐降低。但当含量大于12.0重量%时, 玻璃可能出现分相,导致玻璃内部应力不均匀、易开裂。B 2O 3的含量进一步增加,硼挥发越严重,这不仅会加剧耐火材料的侵蚀,造成能源的浪费,而且会导致玻璃化学成分的波动。此外,更高含量的B 2O 3对玻璃的耐酸性也会产生不利影响。因此B 2O 3的含量不宜过低,也不过高,优选在上述范围内适宜。
根据本发明的实施例,本发明的硼硅酸盐玻璃中Al 2O 3的含量为3.0-7.0重量%,优选为3.5-6.5重量%,特别优选为3.8-6.5重量%。Al 2O 3同B 2O 3一样,将碱金属氧化物尤其是Na 2O牢固地固定在玻璃结构中,因此含量过高会导致熔制温度和加工温度升高。此外,Al 2O 3在对抗结晶方面有积极作用,降低Al 2O 3含量,可能会相应增加结晶趋势。
根据本发明的实施例,本发明的玻璃中将各个碱金属氧化物的含量控制在限定的范围内是十分重要的,可以通过将各个碱金属氧化物的含量优化组合,使玻璃性能得到相应改进。由此,本发明所述玻璃含有5.0-8.0重量%的Na 2O,优选至少为5.5重量%的Na 2O,0-2.0重量%的K 2O,优选为0-1.0重量%的K 2O,0-1.0重量%的Li 2O,优选为0-0.5重量%的Li 2O;碱金属氧化物总量含量为5.0-9.0重量%,优选为6.5-8.0重量%。
上述碱金属氧化物在各自上限范围内调节玻璃性能,例如三者配合在调节玻璃线热膨胀系数方面发挥重要作用,Na 2O和Li 2O降低玻璃熔制温度和加工温度,K 2O和/或Li 2O在降低玻璃结晶中发挥有利作用,他们之间维持一个平衡的比率是重要的。当超过各自的上限时,玻璃具有过高的线热膨胀系数,且不利于降低成本,而碱金属氧化物含量过低则导致线热膨胀系数太低。因此当碱金属氧化物含量限定在上述范围内时,能获得具备满足要求的线热膨胀系数及加工温度的硼硅酸盐玻璃。
根据本发明的实施例,本发明的硼硅酸盐玻璃还包括含量为0-5.0重量%,优选0-4.0重量%的碱土金属氧化物。具体地,CaO的含量为0-3.0重量%,优选为0-2.0重量%,特别优选为0-1.5%;MgO的含量为0-1.0重量%,优选为0-0.5重量%;BaO的含量为0-2.0重量%,优选为0.5-1.5重量%。上述碱土金属氧化物改变“玻璃的料性长度”也即是玻璃的加工温度范围;此外碱土金属氧化物通过不同的网络修饰作用降低玻璃的高温粘度,提高化学稳定性,降低析晶趋势,使玻璃的粘度特性及其它性能与特定生产和加工过程相匹配。此外,CaO改善耐酸性,BaO降低加工温度的同时又不会对耐水性产生不利影响。碱土金属氧化含量过高将导致线热膨胀系数增大,而含量过低将会过分损害玻璃的性能。优选碱土金属氧化物的总含量至多为5.0%。
根据本发明的实施例,本发明的硼硅酸盐玻璃可含有最高为1.0重量%的CeO 2,低浓度的CeO 2被用作澄清剂,而较高浓度的CeO 2能阻止玻璃因放射性辐照而变色。因此,使用这种含CeO 2的玻璃作为医药包装材料,即使将其置于放射性辐照环境时仍能通过肉眼检查任何颗粒物的存在。而CeO 2浓度过高时会产生不符合需求的固有的棕黄色,更进一步地,CeO 2含量过高会极大地增加玻璃的生产成本,因此, 本发明中,CeO 2作为澄清剂引入,CeO 2的含量优选为0-0.5重量%之间。
根据本发明的实施例,本发明的硼硅酸盐玻璃还含有0-1重量%的NaCl,氯化钠主要用作澄清剂以澄清所述玻璃。除了上述的CeO 2和NaCl,本领域技术人员还可以使用其它标准澄清剂,例如CaF 2和/或硫酸盐如Na 2SO 4和/或硝酸盐如NaNO 3。上述澄清剂采用标准量,即根据在成品玻璃中的澄清剂的类型和用量,以0.003-1.0重量%的标准澄清剂进行澄清。根据本发明的实施例,玻璃中除了不可避免的杂质外,将不含As 2O 3(三氧化二砷)和Sb 2O 3(三氧化二锑),这对玻璃用作主要的医药包装材料特别有利。
根据本发明的实施例,本发明的硼硅酸盐玻璃优选含有含量为0.5-3.5重量%的Y 2O 3,特别优选含有0.5-3.0重量%的Y 2O 3。发明人通过大量的实验发现,Y 2O 3的加入可极大地提高玻璃的化学稳定性,尤其是改善玻璃的耐碱性,当Y 2O 3的含量为3.0重量%时,根据YBB00352004-2015测试方法,玻璃的失重约为40.0mg/dm 2,耐碱性得到极大提高,但当Y 2O 3的含量继续增加至4重量%或超过4.0重量%时,玻璃产生分相,并出现不均匀着色,且不再显著地改善玻璃的耐碱性,同时转化温度(Tg)和膨胀软化温度(Tf)也显著提高。此外,当Y 2O 3增加到一定量时,其主要提供非桥氧,起断网作用,破坏玻璃网络结构,使结构变得疏松,玻璃线热膨胀系数急剧增大。而当所加入的Y 2O 3的含量小于0.25%时,玻璃耐沸腾混合碱为85.25mg/dm 2(>75mg/dm 2),属2级耐碱。而Y 2O 3含量在上述范围时,所得玻璃耐碱性属于1级,耐水性和耐酸性也属于1级,这对生产工艺中保证玻璃的耐碱性尤为重要。
根据本发明的实施例,本发明的玻璃可以进一步的含有0-4.0重量%的La 2O 3(氧化镧)、ZrO 2(氧化锆)和ZnO(氧化锌)的至少之一。根据本发明的实施例,本发明的玻璃可以进一步的含有0-3.0重量%La 2O 3(氧化镧)、ZrO 2(氧化锆)和ZnO(氧化锌)的至少之一。换句话说,根据本发明的一实施例,可进一步的包括含量为0-4.0重量%,优选含量为0-3.0重量%的La 2O 3(氧化镧)、ZrO 2(氧化锆)和ZnO(氧化锌)的任选之一;根据本发明的另一实施例,也可以包括La 2O 3(氧化镧)、ZrO 2(氧化锆)和ZnO(氧化锌)的任选之二的组合,各氧化物的含量独立地为0-4.0重量%,优选含量独立地为0-3.0重量%;根据本发明的又一实施例,还可以同时包括La 2O 3(氧化镧)、ZrO 2(氧化锆)和ZnO(氧化锌),各氧化物的含量独立地为0-4.0重量%,优选含量为0-3.0重量%,也即是说,当玻璃中含有La 2O 3(氧化镧)、ZrO 2(氧化锆)和ZnO(氧化锌)中的多种氧化物时,各氧化物含量相互之间不受影响,Y 2O 3(氧化钇)与上述含量氧化物组合形成的玻璃,不仅不破坏其它生产性能参数,而且耐水性、耐酸性和耐碱性能同时达到1级;此外,La 2O 3(氧化镧)、ZrO 2(氧化锆)或ZnO(氧化锌)相对Y 2O 3(氧化钇)而言原料廉价易得,可进一步降低生产成本。
在一些实施方式中,根据本发明的实施例,本发明提供的玻璃,以氧化物为基准,其含有以下组分:SiO 2 70-76重量%,B 2O 3 9.0-11.5重量%,Al 2O 3 3.5-6.5重量%,Na 2O 5.0-7.0重量%,K 2O 0-1.0重量%,Li 2O 0-1.0重量%,其中∑(Na 2O+K 2O+Li 2O)6.5-8.0重量%,CaO 0-2.0重量%,MgO 0-1.0重 量%,BaO 0-1.5重量%,其中∑(CaO+MgO+BaO)0-5.0重量%,CeO 2 0-0.5重量%,Y 2O 3 0.5-3.5重量%。
在一些实施方式中,根据本发明的实施例,本发明提供的玻璃,以氧化物为基准,其含有以下组分:SiO 2 71-75.5重量%,B 2O 3 9.1-11.0重量%,Al 2O 3 3.8-6.5重量%,Na 2O 5.5-7.0重量%,K 2O 0-1.0重量%,Li 2O 0-0.5重量%,其中∑(Na 2O+K 2O+Li 2O)6.0-8.0重量%,CaO 0-1.5重量%,MgO 0-0.5重量%,BaO 0.5-1.5重量%,其中∑(CaO+MgO+BaO)0-4.0重量%,CeO 2 0-1.0重量%,NaCl 0-1.0重量%,Y 2O 3 0.5-3.0重量%。
根据本发明的实施例,本发明的玻璃的线热膨胀系数α 20/300为4.6×10 -6/K-5.2×10 -6/K,与钼、可伐合金的热膨胀特性相似,因此可以与钼、可伐合金如Fe-Co-Ni合金顺利熔合而作为此类金属的封接玻璃。另外,该玻璃具有非常好的化学稳定性,HGB 1级耐水,1级耐酸和1级耐碱。由于其高的化学稳定性尤其是优良的耐碱性能和较低的线热膨胀系数,使其特别适用于医药包装材料,以及化学工业生产及实验室领域中的设备和玻璃仪器。
根据本发明的实施例,本发明的玻璃所得合适的熔化范围和工作范围使得生产过程中的能耗降低。
在本发明的另一方面,本发明提出的玻璃特别适用于作为医药包装材料。
在本发明的另一方面,本发明提出的玻璃特别适用于作为化学侵蚀液体的容器和/或化学装置。
在本发明的另一方面,本发明提出的玻璃特别适用于作为玻璃-金属的封接玻璃,例如对金属钼、可伐合金等进行封接。
在本发明的另一方面,本发明提出的玻璃特别适用于形成玻璃纤维用以加强混凝土。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在表格中示出。下面通过参考表格描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
除非另外说明,本发明所使用的所有科技术语具有与本发明所属领域技术人员的通常理解相同的含义。本发明涉及的所有专利和公开出版物通过引用方式整体并入本发明。术语“包含”或“包括”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。在本发明中,无论是否使用“大约”或“约”等字眼,所有在此公开了的数字均为近似值。每一个数字的数值有可能会出现10%以下的差异或者本领域人员认为的合理的差异,如1%、2%、3%、4%或5%的差异。
实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
下面所描述的实施例,除非另有说明,所有的温度定为摄氏度。所使用的试剂均可以从市场上购得或 者可以通过本发明所描述的方法制备而得。
下面简写词的使用贯穿本发明:
本发明中,各组分重量百分比(重量%)是以以氧化物为基准计算。
mg表示毫克,μg表示微克,T g表示转变温度,Tf表示膨胀软化温度,dm 2表示平方分米,cm 2表示平方厘米,℃表示摄氏度;
SiO 2:二氧化硅,B 2O 3:氧化硼,Al 2O 3:氧化铝,Na 2O:氧化钠,K 2O:氧化钾,Li 2O:氧化锂,CaO:氧化钙,MgO:氧化镁,BaO:氧化钡,CeO 2:二氧化铈,NaCl:氯化钠,Y 2O 3:氧化钇,La 2O 3:氧化镧,ZrO 2:氧化锆,ZnO:氧化锌。
耐化学性通过以下方法测定:
根据YBB00362004-2015的耐水性(H)的测试方法:取一定量规定尺寸的玻璃颗粒,放在规定的容器内,加入定量的水,并在规定的条件下加热,通过滴定浸出液,以每克玻璃颗粒耗用盐酸滴定液(0.01mol/L)的体积来测量玻璃颗粒受水浸蚀的程度并分级。属于HGB1级耐水的高耐化学性玻璃的最大值为0.10mL。属于HGB2级耐水的玻璃的最大值为0.20mL。属于HGB3级耐水的玻璃最大值为0.85mL。
根据YBB00352004-2015的耐碱性的测试方法:将总表面积为10cm 2-15cm 2的玻璃供试品,用等体积的0.5mol/L碳酸钠和1.0mol/L氢氧化钠沸腾混合溶液浸蚀3小时。测定该玻璃供试品单位表面积损失的质量。表中的每个例子给出了以mg/dm 2为单位的失重。属于1级耐碱的玻璃的最大失重为75mg/dm 2。属于2级耐碱的玻璃的最大失重为175mg/dm 2。大于175mg/dm 2为3级耐碱。
根据YBB00342004-2015的耐酸性的测试方法:将约为100cm 2的玻璃供试品,在沸腾的6±0.2mol/L盐酸溶液中浸蚀6小时,测定单位面积损失的质量。表中的每个例子给出了以mg/dm 2为单位的失重。属于1级耐酸玻璃的最大失重为0.7mg/dm 2。属于2级耐酸的玻璃的最大失重为1.5mg/dm 2。大于1.5mg/dm 2为3级耐酸。
线热膨胀系数(α)的测试方法:参照YBB00202003-2015,先用微控内圆切割机(西北机器有限公司J5085-1/ZF)把玻璃块切割成长×宽×高=25×6×6(误差±0.1mm)的玻璃条,再用热膨胀仪(耐驰DIL 402PC)测玻璃条的α (20;300)[10 -6/K]、玻璃化转变温度Tg和膨胀软化温度Tf。
加工温度(V A):用Orton RSV-1600旋转高温粘度计,需要淬火玻璃样≥转高温粘,对应的粘度是10 -4dPa·S。
表1-表3给出了本发明所述实施例不同玻璃的组成(重量百分比,重量%或wt%,基于氧化物)和这些玻璃的重要性能参数,包括:线热膨胀系数α(20;300)(单位:10 -6/K),玻璃化转变温度T g(单位:℃),膨胀软化温度Tf(单位:℃),耐水性H(单位mL),耐酸性S(单位:mg/dm 2),耐碱性L(单位:mg/dm 2); 加工温度V A(单位:℃);其中n.d.表示未测定。
表1:玻璃的组成(重量百分比,重量%或wt%,基于氧化物)和主要性质
Figure PCTCN2017118437-appb-000001
表2:玻璃的组成(重量百分比,重量%或wt%,基于氧化物)和主要性质
Figure PCTCN2017118437-appb-000002
Figure PCTCN2017118437-appb-000003
表3:玻璃的组成(重量百分比,重量%或wt%,基于氧化物)和主要性质
Figure PCTCN2017118437-appb-000004
Figure PCTCN2017118437-appb-000005
根据本发明实施例表1-表3所示实施方案清楚可知:
本发明玻璃具有高的化学稳定性,具体地,根据YBB00362004-2015 98℃下测定耐水性时,以每克玻璃颗粒耗用盐酸滴定液(0.01mol/L)的体积来测量玻璃颗粒受水浸蚀的程度并分级,其值至多为0.03ml,表明本发明玻璃在耐水性方面表现出非常优秀的性能,属于耐水1级。
根据YBB00352004-2015测定耐碱性时,玻璃供试品单位表面积损失的质量均小于75mg/dm 2,表明本发明玻璃在耐碱性方面非常优异,属于耐碱1级。
根据YBB00342004-2015测定耐酸性时,玻璃供试品单位表面积损失的质量均小于0.70mg/dm 2,表明本发明玻璃的耐酸性也是属于1级。因而本发明所述玻璃即为1-1-1玻璃,也即是说,它们在3种化学耐性的每一方面都属于1级。
由此,本发明所述高耐化学性玻璃非常适合用于医药包装材料以及化学工业生产以及实验室研究领域中的设备以及化学侵蚀液体的容器。
在冷却区中的玻璃粘度的特征在于玻璃的转变温度Tg,该温度对应的粘度大约为10 13.4dPa·s。本发明玻璃所得合适的转变温度有利于降低生产过程中的能耗。
本发明的玻璃的的线热膨胀系数α 20/300为4.6×10 -6/K~5.2×10 -6/K,与钼、可伐合金的线热膨胀特性相似,因此可以熔于钼、可伐合金而作为此类金属的封接玻璃,由于它们自身的耐化学性,也特别适合应用在化学腐蚀环境中所使用的的熔融玻璃/金属密封。本领域技术人员可通过碱金属氧化物含量来改变线热膨胀系数。
本发明的玻璃易于被转化为玻璃纤维。由于该玻璃具有良好的化学耐性,导致其长期耐久性的提高,所以这些玻璃纤维极适合用来增强混凝土部件,其能够作为短纤维和长丝(生产混凝土/玻璃纤维复合材料)使用。
本发明的方法已经通过较佳实施例进行了描述,相关人员明显能在本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。本领域技术人员可以借鉴本文 内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明内。

Claims (13)

  1. 一种硼硅酸盐玻璃,其特征在于,以氧化物为基准,其含有0.25-4.0重量%的Y 2O 3
  2. 权利要求1所述的硼硅酸盐玻璃,其特征在于,以氧化物为基准,其组成含有以下组分:
    Figure PCTCN2017118437-appb-100001
  3. 根据权利要求1所述的硼硅酸盐玻璃,其特征在于,以氧化物为基准,其组成含有以下组分:
    Figure PCTCN2017118437-appb-100002
  4. 根据权利要求1所述的硼硅酸盐玻璃,其特征在于,以氧化物为基准,其组成含有以下组分:
    Figure PCTCN2017118437-appb-100003
  5. 根据权利要求1-4任一所述的硼硅酸盐玻璃,其特征在于它还包括重量百分比为0-4.0重量%的氧化镧、氧化锆和氧化锌的至少之一。
  6. 根据权利要求1-4任一所述的硼硅酸盐玻璃,其特征在于它还包括重量百分比为0-3.0重量%的氧化镧、氧化锆和氧化锌的至少之一。
  7. 根据权利要求1所述的硼硅酸盐玻璃,其特征在于:所述玻璃线热膨胀系数α 20/300为4.6×10 -6/K-5.2×10 -6/K,根据YBB00362004-2015具有HGB1级耐水性,根据YBB00342004-2015具有1级耐酸性,和/或根据YBB00352004-2015具有1级耐碱性。
  8. 根据权利要求1-7任一项所述的硼硅酸盐玻璃,其特征在于除了不可避免的杂质外不含As 2O 3和/或Sb 2O 3
  9. 根据权利要求1-8任一项所述硼硅酸盐玻璃作为医药包装材料的应用。
  10. 根据权利要求1-8任一项所述硼硅酸盐玻璃作为化学侵蚀液体的容器或化学装置的应用。
  11. 根据权利要求1-8任一项所述硼硅酸盐玻璃作为合金封接玻璃的应用。
  12. 根据权利要求1-8任一项所述硼硅酸盐玻璃加工形成玻璃纤维的应用。
  13. 根据权利要求12所述的应用,其特征在于所述玻璃纤维是为了加强混凝土的玻璃纤维。
PCT/CN2017/118437 2016-12-29 2017-12-26 高耐化学性的硼硅酸盐玻璃及其应用 WO2018121491A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202111400716.7A CN114180828A (zh) 2016-12-29 2017-12-26 高耐化学性的硼硅酸盐玻璃及其应用
CN201780076709.1A CN110191865A (zh) 2016-12-29 2017-12-26 高耐化学性的硼硅酸盐玻璃及其应用
EP17886211.6A EP3543219B1 (en) 2016-12-29 2017-12-26 Borosilicate glass with high chemical resistance and application thereof
US16/473,246 US11319242B2 (en) 2016-12-29 2017-12-26 Borosilicate glass with high chemical resistance and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611241380 2016-12-29
CN201611241380.3 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018121491A1 true WO2018121491A1 (zh) 2018-07-05

Family

ID=62710850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118437 WO2018121491A1 (zh) 2016-12-29 2017-12-26 高耐化学性的硼硅酸盐玻璃及其应用

Country Status (4)

Country Link
US (1) US11319242B2 (zh)
EP (1) EP3543219B1 (zh)
CN (2) CN110191865A (zh)
WO (1) WO2018121491A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624605A (zh) * 2021-01-08 2021-04-09 河北光兴半导体技术有限公司 一种中硼硅玻璃澄清剂
CN112624607A (zh) * 2021-01-05 2021-04-09 河北光兴半导体技术有限公司 复合澄清剂、中性硼硅药用玻璃用组合物及其制备的玻璃和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102636660B1 (ko) * 2019-03-15 2024-02-15 코닝 인코포레이티드 화학적으로 내구성이 있는 알루미노실리케이트 유리 조성물 및 이로부터 형성된 유리 물품
CN110723905A (zh) * 2019-11-05 2020-01-24 江苏华鸥玻璃有限公司 一种棕色高强度试剂瓶玻璃料及其制备方法
CN113896416A (zh) * 2020-06-22 2022-01-07 广东东阳光药业有限公司 一种玻璃及其制备方法
CN111807700B (zh) * 2020-07-31 2023-12-12 山东晶峰玻璃科技有限公司 一种用于白酒瓶的玻璃组合物
CN115231821B (zh) * 2022-06-22 2023-06-09 湖南洪康新材料科技有限公司 用于制备中性硼硅玻璃的组合物、中性硼硅玻璃及其制备方法和应用
CN115159842B (zh) * 2022-06-30 2023-11-21 凯盛君恒(蚌埠)有限公司 一种抗碱性强低析晶低节瘤的拉管用中硼硅玻璃

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3722130A1 (de) 1987-07-02 1989-01-12 Schott Glaswerke Borosilikatglas
DE4230607C1 (de) 1992-09-12 1994-01-05 Schott Glaswerke Chemisch und thermisch hochbelastbares, mit Wolfram verschmelzbares Borosilikatglas und dessen Verwendung
DE19536708C1 (de) 1995-09-30 1996-10-31 Jenaer Glaswerk Gmbh Zirkon- und lithiumoxidhaltiges Borosilicatglas hoher chemischer Beständigkeit und geringer Viskosität und dessen Verwendung
DE19842942A1 (de) 1998-09-18 2000-04-13 Schott Glas Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendung
US20070270300A1 (en) * 2004-12-15 2007-11-22 Nippon Sheet Glass Company, Limited Glass Composition and Method for Production Thereof, and Glass Substrate for Information Display Device and Information Display Device Using the Same
CN104261676A (zh) * 2014-09-04 2015-01-07 东莞市长安东阳光铝业研发有限公司 一种中性硼硅玻璃及其应用
CN104556689A (zh) * 2015-01-05 2015-04-29 武汉理工大学 一种新型高膨胀光学玻璃及其制备方法
CN105263875A (zh) * 2013-06-06 2016-01-20 日本电气硝子株式会社 药物容器用玻璃

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115403B (en) * 1982-02-20 1985-11-27 Zeiss Stiftung Optical and opthalmic glass
JPH03197355A (ja) * 1989-12-25 1991-08-28 Mitsubishi Electric Corp セラミツク基板用組成物
EP0456351A3 (en) * 1990-04-10 1992-04-01 Isuzu Glass Co., Ltd. Glass compositions
DE10035801B4 (de) 2000-07-22 2008-04-03 Schott Ag Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendungen
CN1313403C (zh) * 2003-12-31 2007-05-02 中国科学院西安光学精密机械研究所 光放大用铒镱共掺多组份氧化物玻璃及其制备方法
CN1315746C (zh) * 2003-12-31 2007-05-16 中国科学院西安光学精密机械研究所 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法
JP5545590B2 (ja) * 2008-04-28 2014-07-09 日本電気硝子株式会社 ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
EP2467338A4 (en) * 2009-08-21 2015-07-01 Momentive Performance Mat Inc QUARTZ GLASS TUBES FOR PHARMACEUTICAL PACKAGING
CN104736494A (zh) * 2012-10-25 2015-06-24 日本电气硝子株式会社 玻璃纤维用玻璃组合物、玻璃纤维和玻璃纤维的制造方法
DE102013207634A1 (de) 2013-04-26 2014-10-30 Schott Ag Borosilikatglas mit verbesserter hydrolytischer Beständigkeit zur bevorzugten Verwendung im Pharmabereich
US9944551B2 (en) * 2015-05-07 2018-04-17 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
KR102076440B1 (ko) * 2016-04-28 2020-02-11 니혼 이타가라스 가부시키가이샤 유리 조성물, 유리 섬유, 유리 클로스 및 유리 섬유의 제조 방법
JP6972548B2 (ja) * 2016-12-28 2021-11-24 日本電気硝子株式会社 ガラス繊維用組成物及びガラス繊維、ガラス繊維を含有するガラス繊維含有複合材料、並びにガラス繊維の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3722130A1 (de) 1987-07-02 1989-01-12 Schott Glaswerke Borosilikatglas
DE4230607C1 (de) 1992-09-12 1994-01-05 Schott Glaswerke Chemisch und thermisch hochbelastbares, mit Wolfram verschmelzbares Borosilikatglas und dessen Verwendung
DE19536708C1 (de) 1995-09-30 1996-10-31 Jenaer Glaswerk Gmbh Zirkon- und lithiumoxidhaltiges Borosilicatglas hoher chemischer Beständigkeit und geringer Viskosität und dessen Verwendung
DE19842942A1 (de) 1998-09-18 2000-04-13 Schott Glas Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendung
US20070270300A1 (en) * 2004-12-15 2007-11-22 Nippon Sheet Glass Company, Limited Glass Composition and Method for Production Thereof, and Glass Substrate for Information Display Device and Information Display Device Using the Same
CN105263875A (zh) * 2013-06-06 2016-01-20 日本电气硝子株式会社 药物容器用玻璃
CN104261676A (zh) * 2014-09-04 2015-01-07 东莞市长安东阳光铝业研发有限公司 一种中性硼硅玻璃及其应用
CN104556689A (zh) * 2015-01-05 2015-04-29 武汉理工大学 一种新型高膨胀光学玻璃及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624607A (zh) * 2021-01-05 2021-04-09 河北光兴半导体技术有限公司 复合澄清剂、中性硼硅药用玻璃用组合物及其制备的玻璃和应用
CN112624605A (zh) * 2021-01-08 2021-04-09 河北光兴半导体技术有限公司 一种中硼硅玻璃澄清剂

Also Published As

Publication number Publication date
EP3543219B1 (en) 2023-11-15
US11319242B2 (en) 2022-05-03
US20190322569A1 (en) 2019-10-24
EP3543219A4 (en) 2020-08-12
CN114180828A (zh) 2022-03-15
EP3543219A1 (en) 2019-09-25
CN110191865A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2018121491A1 (zh) 高耐化学性的硼硅酸盐玻璃及其应用
US11807575B2 (en) Glass for medicine container and glass tube for medicine container
JP6694167B2 (ja) 医薬容器用ホウケイ酸ガラス
CN104986954B (zh) 锆质铝硅酸盐玻璃及其制备方法
CN103130415B (zh) 一种应用锂辉石的医药玻璃
CA2360850A1 (en) Glass with high proportion of zirconium-oxide and its uses
CN112694254A (zh) 一种中硼硅玻璃组合物、中硼硅玻璃及其制备方法和应用
JPH1059741A (ja) 無アルカリガラス及びその製造方法
CN102781864A (zh) Las系结晶玻璃的制造方法
JPH10114538A (ja) 無アルカリガラス及びその製造方法
US11299419B2 (en) UV-resistant and alkaline-resistant borosilicate glass and use thereof
WO2020153294A1 (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
WO2014069177A1 (ja) 医薬用ガラス及び医薬用ガラス管
JPWO2017115728A1 (ja) 医薬品容器用アルミノホウケイ酸ガラスの製造方法
CN106746638A (zh) 一种应用锂辉石的医药玻璃
TWI647188B (zh) 矽酸鹽玻璃的製造方法及矽酸鹽玻璃
JP2017048091A (ja) 医薬容器用ホウケイ酸ガラス
TWI609849B (zh) 觸控保護玻璃之組成
WO2021220801A1 (ja) 医薬品容器用ガラス、医薬品容器用ガラス管及び医薬品容器
JP7495668B2 (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
JP6653073B2 (ja) 医薬容器用ホウケイ酸ガラス
WO2024143155A1 (ja) ガラス管及び医薬品容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886211

Country of ref document: EP

Effective date: 20190617