CN1315746C - 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法 - Google Patents

铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法 Download PDF

Info

Publication number
CN1315746C
CN1315746C CNB2003101247554A CN200310124755A CN1315746C CN 1315746 C CN1315746 C CN 1315746C CN B2003101247554 A CNB2003101247554 A CN B2003101247554A CN 200310124755 A CN200310124755 A CN 200310124755A CN 1315746 C CN1315746 C CN 1315746C
Authority
CN
China
Prior art keywords
glass
mol
erbium
component oxide
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101247554A
Other languages
English (en)
Other versions
CN1634784A (zh
Inventor
邹快盛
陆敏
李玮楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CNB2003101247554A priority Critical patent/CN1315746C/zh
Publication of CN1634784A publication Critical patent/CN1634784A/zh
Application granted granted Critical
Publication of CN1315746C publication Critical patent/CN1315746C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法。芯玻璃组成包括SiO2、Al2O3、Li2O、Yb2O3、Er2O3、B2O3等。制备单模光纤的方法是:取掺铒玻璃坯料,制成圆棒,拉制成细圆棒,形成芯玻璃;取非掺铒玻璃坯料,制成圆棒,用激光打孔,形成包层玻璃;把细圆棒置入包层玻璃的孔中,形成掺铒光纤预制棒;将预制棒放入拉丝炉中,拉制成单模光纤。本发明解决了背景技术增益谱不够平坦,增益带宽窄,制备工艺复杂等问题。其铒镱共掺多组份氧化物光学玻璃光纤能提供高达60nm的传输带宽和更为平坦的增益谱,具有更高的玻璃转变温度,更好的化学和热稳定性,可完全满足当前光通讯传输网络增长的需求。

Description

铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法
技术领域
本发明涉及一种光放大用铒镱共掺多组份氧化物玻璃单模光纤及其制备方法,且本发明还涉及第三光通讯窗口光纤放大器或光纤激光器用的掺铒光纤及其制备方法。
背景技术
掺铒光纤放大器(EDFA)被广泛应用于光通讯领域1550nm波段光信号的放大,其中光放大介质为掺杂有铒离子的光纤。然而,随着不断发展的通讯服务需求的增加,因特网信息传输容量的迅速增加,光纤骨干网和光城域网的信息传输容量急剧膨胀,当前的波分复用(WDM)通讯系统难以适应这种需求,密集波分复用(DWDM)通讯系统应运而生,目前实际系统中由于采用的EDFA多为石英基质掺铒光纤放大器,其增益谱形状非常尖锐,且所能获得的净增益带宽(1530~1565nm)窄到只有35nm左右,严重制约了密集波分复用(DWDM)通讯系统传输系统的信道数。
如果掺铒光纤放大器EDFA在更宽的波长范围内能实现更为平坦的增益,则可拓宽可用的信号波长,可望增大传输容量。为达到此目的,人们把不同增益波长范围的光放大器级联起来,但是,这种结构非常复杂,而且在各增益中心波长的边缘无法实现光信号的放大。因此,人们一直致力于研究宽带平坦增益光放大器用光纤材料,当前使用最好的光放大器材料为由ZBLAN(ZrF3-BaF2-LaF3-AlF3-NaF)玻璃制成的光纤,但其价格昂贵且制备工艺复杂,其玻璃转变温度比碲酸盐玻璃、铋酸盐玻璃还要低,热稳定性差。
发明内容
本发明解决了背景技术中增益谱不够平坦,增益带宽窄,无法满足当前光通讯传输网络增长的需求,玻璃转变温度低,热稳定性差,制备工艺复杂的技术问题。
本发明的技术解决方案是:
一种铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特殊之处在于:该铒镱共掺多组份氧化物玻璃单模光纤芯玻璃的摩尔百分比组成为
  SiO2  20~80
  B2O3  0~40
  Al2O3  3~20
 Li2O  1~20
 Na2O  0~20
 K2O  0~20
 CaO  0~10
 BaO  0~10
 ZnO  0~10
 MgO  0~10
 Er2O3  0.01~10
 Yb2O3  0.1~25
 ZrO2  0~5
 Bi2O3  0~10
 La2O3  0~10
 Y2O3  0~10
上述SiO2和B2O3的总含量以20~85mol%为佳。
上述Li2O、Na2O和K2O的总含量以5~25mol%为佳。
上述Bi2O3、La2O3和Y2O3的总含量以0~20%为佳。
上述铒镱共掺多组份氧化物玻璃单模光纤芯玻璃的较佳组成可为
 SiO2(mol%)  65.00
 B2O3(mol%)  10.00
 Al2O3(mol%)  5.00
 Li2O(mol%)  2.00
 Na2O(mol%)  9.00
 Er2O3(mol%)  0.50
 Yb2O3(mol%)  5.30
 其它(mol%)  3.20
所述的其它组分可包括Ta2O3,GeO2等。
上述铒镱共掺多组份氧化物玻璃单模光纤芯玻璃的较佳组成可为
 SiO2(mol%)  62.00
 B2O3(mol%)  9.00
 Al2O3(mol%)  4.00
 Li2O(mol%)  6.70
 K2O(mol%)  9.00
 Er2O3(mol%)  0.40
 Yb2O3(mol%)  4.20
 其它(mol%)  4.70
所述的其它组分可包括Ta2O3,GeO2等。
一种根据上述铒镱共掺多组份氧化物玻璃单模光纤芯玻璃制备单模光纤的方法,其特殊之处在于:该制备方法包括
1).按铒镱共掺多组份氧化物组成取原料,经熔化、熔制,得玻璃坯料;将玻璃坯料成型抛光成圆棒4;
2).将圆棒4拉制成直径为0.1~3mm的细圆棒6,形成铒镱共掺多组份氧化物玻璃单模光纤10的掺铒光纤预制棒8的芯玻璃;
3).取非掺铒多组份氧化物玻璃坯料,成型抛光成直径为2~60mm的圆棒5;
4).在圆棒5的中心用激光进行打孔,孔的内径与细圆棒6的直径相匹配、能使细圆棒6置入,形成掺铒光纤预制棒8的包层玻璃7;
5).把细圆棒6置入包层玻璃7的中心孔中,形成掺铒光纤预制棒8;
6).把掺铒光纤预制棒8放入拉丝炉9中,在650~830℃的温度区间内,拉制成铒镱共掺多组份氧化物玻璃单模光纤10。
上述将圆棒4拉制成细圆棒6,其直径以1mm为佳。
上述用非掺铒多组份氧化物玻璃坯料成型抛光成的圆棒5,直径以20mm为宜。
本发明具有以下优点:
本发明中的铒镱共掺多组份氧化物光学玻璃光纤能提供高达60nm的传输带宽和更为平坦的增益谱,具有更高的玻璃转变温度,且具有良好的化学稳定性和热稳定性,制备工艺简单,可完全满足当前光通讯发展的需求。
附图说明
图1的a部为本发明的掺铒光纤横截面结构图;b部为本发明的光纤沿径向的折射率分布图;
图2为本发明芯料玻璃的吸收光谱图;
图3为本发明掺铒光纤具有宽且增益平坦的发射谱示意图;
图4为本发明中光纤拉制示意图。
附图标号说明:  1-芯料,  2-皮料,  3-塑料包层,  n1-纤芯的折射率,n2-皮料的折射率;4、5-圆棒,6-细圆棒,7-包层玻璃,8-掺铒光纤预制棒,9-拉丝炉,10-单模光纤。
具体实施方式
本发明从玻璃组分及玻璃成纤条件出发,根据宽带及平坦增益的单模光纤条件,其光纤芯料及皮料玻璃组分以摩尔百分数表示如下:
  SiO2  20~80
  B2O3  0~40(SiO2+B2O3=20~85%)
  Al2O3  3~20
  Li2O  1~20
  Na2O  0~20
  K2O  0~20(Li2O+Na2O+K2O=5~25%)
  CaO  0~10
  BaO  0~10
  ZnO  0~10
  MgO  0~10
  Er2O3  0.01~10
  Yb2O3  0.1~25
  ZrO2  0~5
  Bi2O3  0~10
  La2O3  0~10
  Y2O3  0~10(Bi2O3+La2O3+Y2O3=0~20%)
上述配方中还可以加入其它的,如Ta2O3,GeO2等组分,但上述组分的总含量以不少于98mol%为宜。
SiO2和B2O3作为玻璃网络生成体,其总含量为20~85mol%。SiO2和B2O3的含量低于20mol%,会使玻璃析晶,降低玻璃的化学稳定性,超过85mol%会提高玻璃的高温熔制粘度,使玻璃的熔制困难,同时还会影响其它组分加入到玻璃中。B2O3的含量超过15mol%,会降低玻璃的化学稳定性。
Li2O的加入可以提高Er3+的溶解率,使光信号达到一定增益所需的介质长度很短,这对于实现光放大器的小型化极为有利。但Li2O的含量不能超过20mol%,否则会使玻璃易于失透,缩小玻璃的形成范围。
Na2O和K2O的加入有利于扩大玻璃的形成区,便于玻璃在较低的温度下进行熔制。
Li2O、Na2O和K2O的总含量为5~25mol%,低于5mol%会使玻璃的熔制温度偏高,增加玻璃熔制的难度,超过25mol%会降低玻璃的化学稳定性。
二价金属氧化物CaO、BaO、ZnO和MgO的加入用于调整玻璃的折射率及热性质,提高玻璃的化学稳定性和机械加工性能。
加入Al2O3可以改变Er3+周围的配位场结构,使Er3+在1.5μm发射谱的宽度增加。因此本玻璃中必须含有足够高含量的Al2O3,但含量不能超过20mol%,否则会增加玻璃的粘度,使玻璃熔制和成型困难。
Yb2O3作为敏化剂,增强Er3+在980nm波段的吸收,使Er3+能充分吸收泵浦光的能量,提高Er3+在1.55μm波段的发光效率,但Yb2O3的含量不能超过25mol%,否则会使玻璃易于失透。
适当加入ZrO2可以有效地提高玻璃的化学稳定性,扩大玻璃的形成范围,但不能超过5mol%,否则会使玻璃易于析晶,对拉纤不利。
适当加入La2O3、Y2O3和/或Bi2O3作可以改善玻璃的熔制性能,扩大玻璃的形成范围,但不能超过20mol%,否则会使玻璃易于析晶;同时有利于增大带宽。
本发明玻璃的摩尔百分比组成实施例及效果参数如下:
           例一            例二            例三            例四          例五
  组成(mol%)   芯玻璃   包层玻璃   芯玻璃   包层玻璃 芯玻璃   包层玻璃 芯玻璃     包层玻璃     芯玻璃     包层玻璃
  SiO2   65.00   65.00   62.00   62.00     55.00   55.00     60.00     60.00     70.00     70.00
  B2O3   10.00   10.00   9.00   9.00     8.00   8.00     7.00     7.00     7.00     7.00
  Al2O3   5.00   5.00   4.00   4.00     5.00   5.00     4.00     4.00     4.00     4.00
  Li2O   2   4.00   6.70   4.70     14.00   6.00     8.00     6.00     8.00     6.00
  Na2O   9.00   4.00   0.00   6.00     2.00   6.00     3.00     4.00     6.00     5.00
  K2O   0.00   2.00   9.00   5.00     0.00   4.00     6.00     7.00     0.00     3.00
  其它   3.20   4.00   4.70   5.60     9.20   10.60     2.70     4.50     1.60     2.70
  Er2O3   0.50   0.00   0.40   0.00     0.80   0.00     0.60     0.00     0.30     0.00
  Yb2O3   5.30   5.00   4.20   3.70     6.00   5.40     8.70     7.50     3.10     2.30
  折射率   1.5875   1.5773   1.5802   1.5656     1.6178   1.5989     1.6223     1.6053     1.5825     1.5575
  转变点(℃) 528 530 520 524 510 512 530 533 570 572
  软化点(℃) 603 605 595 601 570 575 590 596 650 655
  折射率差Δn 0.0102 0.0146 0.0189 0.0170 0.0250
  数值孔径 0.18 0.21 0.25 0.23 0.28
  芯径(μm) 6.6 5.5 4.8 5 4.2
  包层直径(μm) 130 125 115 120 100
  归一化参数V 2.4035 2.3890 2.3988 2.3738 2.3851
本发明中掺铒光纤包括芯料和皮料及包层玻璃两层结构,图1的a部分为掺铒光纤横截面结构图,其中1为芯料,2为皮料,3为塑料包层;图1的b部分为该光纤沿径向的折射率分布图,n1为纤芯的折射率,n2为皮料的折射率。
本发明掺铒光纤的制备方法采用管棒法拉制。芯玻璃料为本发明中的掺饵玻璃棒,芯料玻璃的吸收光谱如图2所示。皮料是与芯料折射率相匹配的非掺铒玻璃管,且为了保证光纤中无应力,包层玻璃料的热力学性能,包括膨胀系数、玻璃的转变温度、软化温度等,应与芯玻璃料相匹配,其差异以不超过3%为宜。图4为本发明中光纤拉制示意图,其拉制方法如下:
第一步:按铒镱共掺多组份氧化物组成取原料,经熔化、熔制,获得玻璃坯料;将玻璃坯料成型抛光成圆棒4;
第二步:将圆棒4拉制成直径为0.1~3mm的细圆棒6,以1mm为佳,形成铒镱共掺多组份氧化物玻璃单模光纤10,即掺铒光纤预制棒8的芯玻璃。
第三步:取非掺铒多组份氧化物玻璃坯料,成型抛光成直径为2~60mm的圆棒5,以20mm为佳;
第四步:在圆棒5的中心用激光进行打孔,孔的直径与细圆棒6的直径相匹配,使细圆棒6刚好能置入该孔中,形成掺铒光纤预制棒8的包层玻璃7。采用激光打孔可确保孔径的均匀性及孔内表面的光洁度。
第五步:把细圆棒6置入包层玻璃7的中心孔中,形成掺铒光纤预制棒8;
第六步:把掺铒光纤预制棒8放入拉丝炉9中,在650~830℃的温度区间内,拉制成铒镱共掺多组份氧化物玻璃单模光纤10。
本发明中的掺铒光纤具有相当宽且增益平坦的发射谱,如图3所示。
根据单模光纤条件,当光信号波长λ0确定时,归一化频率V参量必须小于2.405,归一化频率V参数、芯料与皮料之间的折射率差Δn值、纤芯的直径a值之间的关系如下:
V = 2 π λ 0 a n 1 2 Δn

Claims (9)

1.一种铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特征在于:该铒镱共掺多组份氧化物玻璃单模光纤芯玻璃的摩尔百分比组成为
SiO2    62~70
B2O3    7~10
Al2O3   3~20
Li2O    1~20
Na2O    0~20
K2O     0~20
CaO     0~10
BaO     0~10
ZnO     0~10
MgO     0~10
Er2O3   0.01~10
Yb2O3   0.1~25
ZrO2    0~5
Bi2O3   0~10
La2O3   0~10
Y2O3    0~10。
2.根据权利要求1所述的铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特征在于:所述的SiO2和B2O3的总含量为71~77mol%。
3.根据权利要求1或2所述的铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特征在于:所述的Li2O、Na2O和K2O的总含量为5~25mol%。
4.根据权利要求3所述的铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特征在于:所述的Bi2O3、La2O3和Y2O3的总含量为0~20%。
5.根据权利要求4所述的铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特征在于:所述的铒镱共掺多组份氧化物玻璃的组成包括
SiO2(mol%)    65.00
B2O3(mol%)    10.00
Al2O3(mol%)   5.00
Li2O(mol%)    2.00
Na2O(mol%)    9.00
Er2O3(mol%)   0.50
Yb2O3(mol%)   5.30
其它(mol%)    3.20
所述的其它组分包括Ta2O3、GeO2
6.根据权利要求4所述的铒镱共掺多组份氧化物玻璃单模光纤芯玻璃,其特征在于:所述的铒镱共掺多组份氧化物玻璃的组成包括
SiO2(mol%)    62.00
B2O3(mol%)    9.00
Al2O3(mol%)   4.00
Li2O(mol%)    6.70
K2O(mol%)     9.00
Er2O3(mol%)   0.40
Yb2O3(mol%)   4.20
其它(mol%)    4.70
所述的其它组分包括Ta2O3,GeO2
7.一种根据权利要求1所述的铒镱共掺多组份氧化物玻璃单模光纤芯玻璃制备单模光纤的方法,其特征在于:该制备方法包括
1).按铒镱共掺多组份氧化物组成取原料,经熔化、熔制,得玻璃坯料;将玻璃坯料成型抛光成圆棒(4);
2).将圆棒(4)拉制成直径为0.1~3mm的细圆棒(6),形成铒镱共掺多组份氧化物玻璃单模光纤(10)的掺铒光纤预制棒(8)的芯玻璃;
3).取非掺铒多组份氧化物玻璃坯料,成型抛光成直径为2~60mm的圆棒(5);
4).在圆棒(5)的中心用激光进行打孔,孔的内径与细圆棒(6)的直径相匹配、能使细圆棒(6)置入,形成掺铒光纤预制棒(8)的包层玻璃(7);
5).把细圆棒(6)置入包层玻璃(7)的中心孔中,形成掺铒光纤预制棒(8);
6).把掺铒光纤预制棒(8)放入拉丝炉(9)中,在650~830℃的温度区间内,拉制成铒镱共掺多组份氧化物玻璃单模光纤(10)。
8.根据权利要求7所述的铒镱共掺多组份氧化物玻璃单模光纤的制备方法,其特征在于:所述的将圆棒(4)拉制成细圆棒(6),该细圆棒(6)的直径为1mm。
9.根据权利要求7或8所述的铒镱共掺多组份氧化物玻璃单模光纤的制备方法,其特征在于:所述的用非掺铒多组份氧化物玻璃坯料成型抛光成的圆棒(5),直径为20mm。
CNB2003101247554A 2003-12-31 2003-12-31 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法 Expired - Fee Related CN1315746C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101247554A CN1315746C (zh) 2003-12-31 2003-12-31 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101247554A CN1315746C (zh) 2003-12-31 2003-12-31 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法

Publications (2)

Publication Number Publication Date
CN1634784A CN1634784A (zh) 2005-07-06
CN1315746C true CN1315746C (zh) 2007-05-16

Family

ID=34845062

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101247554A Expired - Fee Related CN1315746C (zh) 2003-12-31 2003-12-31 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法

Country Status (1)

Country Link
CN (1) CN1315746C (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582003C (zh) * 2007-05-25 2010-01-20 中国科学院上海硅酸盐研究所 Yb2SiO5粉体的溶胶凝胶制备方法
CN100452572C (zh) * 2007-06-22 2009-01-14 中国科学院上海光学精密机械研究所 基于铒镱共掺双包层光纤的中红外高功率激光光源
CN104789076A (zh) * 2015-04-15 2015-07-22 苏州创佳电子材料有限公司 多功能抗眩光透明涂层材料及其制备方法和应用
CN110191865A (zh) * 2016-12-29 2019-08-30 广东东阳光药业有限公司 高耐化学性的硼硅酸盐玻璃及其应用
CN107473579A (zh) * 2017-09-30 2017-12-15 徐传龙 一种铒镱共掺激光预制棒及其制备方法
CN109354402B (zh) * 2018-10-15 2021-06-18 南京豪祺新材料有限公司 一种镱铒共掺磷酸盐玻璃及其制备方法与用途
CN110040969A (zh) * 2019-04-10 2019-07-23 长春理工大学 一种柔性光纤传像束用内包层玻璃及其制备方法
CN111253074A (zh) * 2020-01-21 2020-06-09 华南师范大学 一种铒镱共掺的石英基质上转换发光光纤及其制备方法
CN112851129B (zh) * 2021-02-06 2021-08-31 威海长和光导科技有限公司 一种近红外波段宽带发射稀土掺杂铋酸盐光纤玻璃及其制备方法
CN113800774B (zh) * 2021-09-10 2022-10-21 华南理工大学 一种用作增益介质的掺铒玻璃光纤及其在光纤激光器中的应用
CN117492131A (zh) * 2023-11-02 2024-02-02 创昇光电科技(苏州)有限公司 一种高氧化铝含量的耐高温光纤和光纤光栅

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352624A (zh) * 1999-05-06 2002-06-05 康宁股份有限公司 玻璃组合物
CN1380265A (zh) * 2000-12-28 2002-11-20 彭波 光纤或光导波路用玻璃、及其光纤和光放大器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352624A (zh) * 1999-05-06 2002-06-05 康宁股份有限公司 玻璃组合物
CN1380265A (zh) * 2000-12-28 2002-11-20 彭波 光纤或光导波路用玻璃、及其光纤和光放大器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
光纤及其制造技术的最新进展 张显友,陈伟,周宏,光纤与电缆及其应用技术,第3期 2001 *
光纤的制造、性能与应用 胡先志,光纤光缆技术专题 2001 *
铒镱共掺杂玻璃样品的荧光谱特性 饶文雄,宋昌烈,李成仁,李淑凤,高景生,张庆瑜,光电子·激光,第14卷第4期 2003 *

Also Published As

Publication number Publication date
CN1634784A (zh) 2005-07-06

Similar Documents

Publication Publication Date Title
US6128430A (en) Composition for optical waveguide article and method for making continuous clad filament
EP1708971B1 (en) Double clad optical fiber with rare earth metal doped glass core
US7203407B2 (en) Rare earth doped single polarization double clad optical fiber and a method for making such fiber
US7382957B2 (en) Rare earth doped double clad optical fiber with plurality of air holes and stress rods
US8509588B2 (en) Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
EP1395523B1 (en) Optical waveguide article including a fluorine-containing zone
CN1315746C (zh) 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法
KR101394218B1 (ko) 형광 효율이 우수한 이득매질용 광학유리 및 이를 이용한 광섬유
US6515795B1 (en) Borosilicate cladding glasses for germanate core thulium-doped amplifiers
US7280728B2 (en) Rare earth doped single polarization double clad optical fiber with plurality of air holes
JPH012025A (ja) 燐酸塩レ−ザ−ガラス単一モ−ドファイバ−
CN101414025A (zh) 发射波长处于1.5~2.2μm的锗酸盐玻璃光纤
JP2003014949A (ja) 多成分酸化ガラスを用いた光デバイス
WO2001099241A2 (en) RARE EARTH ELEMENT-DOPED Bi-Sb-Al-Si GLASS AND ITS USE IN OPTICAL AMPLIFIERS
CN1634785A (zh) 光放大用铒镱共掺多组份氧化物玻璃及其制备方法
JP2004244280A (ja) テルライトガラスおよびテルライトガラスを用いた光増幅器
Wang et al. All-glass high NA Yb-doped double-clad laser fibres made by outside-vapour deposition
JP2004277252A (ja) 光増幅ガラスおよび光導波路
JP4686844B2 (ja) 光増幅ガラス
JP2746716B2 (ja) 希土類ドープ多成分ガラスファイバ
JP2005145759A (ja) 光増幅ガラス製造方法および光導波路
CN116169546A (zh) 超大芯径的玻璃光纤以及制作方法
CA2472053A1 (en) Germanium-free silicate waveguide compositions for enhanced l-band and s-band emission and method for its manufacture
CN117466539A (zh) 一种扩展l波段掺铒硅酸盐增益光纤及其制备方法与在光纤放大器的应用
Wang et al. Recent specialty fiber research at Corning towards high-power and high-brightness fiber lasers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070516

Termination date: 20101231