CN1352624A - 玻璃组合物 - Google Patents

玻璃组合物 Download PDF

Info

Publication number
CN1352624A
CN1352624A CN00807182.9A CN00807182A CN1352624A CN 1352624 A CN1352624 A CN 1352624A CN 00807182 A CN00807182 A CN 00807182A CN 1352624 A CN1352624 A CN 1352624A
Authority
CN
China
Prior art keywords
mole
glass composition
glass
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00807182.9A
Other languages
English (en)
Inventor
J·P·德桑德罗
D·雅各布
M·普拉萨斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN1352624A publication Critical patent/CN1352624A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种由掺杂铒的硼酸盐玻璃组合物组成的适用于光学放大的玻璃组合物,它至少包括30摩尔%B2O3。在约1545nm区域,该族玻璃对光学放大具有适用的带宽(50nm或更大)。一族较好的亚族玻璃含有小于或等于30摩尔%的SiO2。另一族较好的亚族玻璃含有小于或等于5摩尔%的La2O3,并且B2O3与(∑X2O+∑YO)之比大于或等于3.5,较好大于或等于4.5,其中X2O为存在的所有单价金属氧化物,YO为存在的所有二价金属氧化物。

Description

玻璃组合物
本发明涉及一族适用于WDM电信系统的新的玻璃,所述电信系统使用波长在第三电信窗(即接近1.5微米)的光学放大作用。更具体地说,本发明涉及一族掺杂铒的硼酸盐玻璃。
在光纤电信系统中,对于在越来越宽的带宽范围内(尤其在第三电信窗(1525-1560nm)和第四电信窗(1565-1615nm))具有平坦增益特性的放大器材料有日益增加的需求。目前,通常使用未改性的掺杂铒的光纤放大器(EDFA)用于光学放大,其基本材料由石英玻璃组分组成。但是,在1530-1560nm范围内EDFA的增益特性不是平坦的,从而需要使用补偿和/或滤波技术。
在波分复用(WDM)系统中,随着要传输的通信通道数的增加,对宽带宽范围内增益平坦性的要求也日益增加。例如,在设计具有载带32通信通道的系统中,目前的方法是使用掺杂铒的ZBLAN玻璃(ZrF4-BaF2-LaF3-AlF3-NaF),其在宽度接近30nm的区域内增益的波动小于7%。尽管这是良好的性能,但是使用常规石英基光纤结合已知的滤波和/或补偿技术(尽管需要增加泵功率从而提高成本)或者使用其它混合的石英光纤设计也可获得相似的性能。
本发明的目的是提供一种在1.5微米波长区具有特别平坦增益特性的玻璃组合物。
本发明的目的还在于提供一种在1.5微米波长区具有平坦增益特性的玻璃组合物,该带宽比使用石英基光纤并结合滤波技术或者石英/混合活性光纤一般所能获得的平坦增益带宽更宽。
目前,在掺杂铒的ZBLAN玻璃组合物中铒离子的发射光谱比其在石英基玻璃组合物中的发射光谱宽约20nm。本发明人发现在掺杂铒的硼酸盐玻璃中铒发射光谱具有更宽的带宽,并发现这些玻璃适合作于光学放大。
更具体地说,本发明提供一种玻璃组合物,它包括掺杂铒的硼酸盐,其中该玻璃组合物的至少30摩尔%是由B2O3构成的。
按100重量份下列组分计:SiO2        0-30摩尔%   B2O3        30-90摩尔%    Al2O2      0-15摩尔%GeO2        0-50摩尔%   Sb2O3       0-60摩尔%     TeO2        0-50摩尔%∑(X2O)   0-20摩尔%   ∑(YO)        0-20摩尔%     BaO         0-15摩尔%La2O3      0-5摩尔%    Y2O3        0-5摩尔%      Ga2O3      0-5摩尔%Ta2O5      0-5摩尔%    TiO2         0-5摩尔%
本发明玻璃组合物较好包括0.01-10重量份,更好0.01-2.5重量份Er2O3和0-6重量份Yb2O3
在本发明第一个较好的实例中,该玻璃组合物包括等于或小于30摩尔%的二氧化硅。
业已发现本发明第一个较好实例的玻璃组合物在接近50nm的带宽范围内具有平坦增益特性。该性能接近传输64信道的实用的WDM系统的要求。
使用包括完全脱水步骤(其中在干燥条件下熔融玻璃)的方法,或者使用包括采用超纯原料的玻璃纯化方法制备本发明第一个较好实例的玻璃组合物,则可改进该玻璃组合物的量子效率。
在本发明第二个较好实例中,所述玻璃组合物包括小于或等于5摩尔%的La2O3,并且B2O3与(∑X2O+∑YO)之比等于或大于3.5,较好等于或大于4.5,其中X2O表示存在的所有单价金属氧化物,YO表示存在的所有二价金属氧化物。
业已发现本发明第二个实例的玻璃组合物在特别宽的带宽(通常约80nm)范围内具有平坦增益特性。
在本发明第二个较好实例的玻璃组合物中,发现X2O较好包括Li2O,YO较好包括PbO。
当本发明第二个较好实例的玻璃组合物的制造步骤包括脱水步骤时,可改进该玻璃组合物的荧光寿命。在该玻璃组合物含有重阳离子(例如Pb、Te、Sb和Bi)的情况下,这种荧光寿命的改进效果特别明显。
通过向该玻璃组合物中选择性地加入最多5摩尔%这种组分如ZrO2、TiO2、Y2O3、Ta2O5、Gd2O3或La2O3,可改变该玻璃组合物的结构和其它性能。应理解所给出的组分并非穷举。
本发明玻璃组合物可结合已知的滤波技术一起使用,以获得更宽的适用的带宽。在本发明第二个较好实例的玻璃组合物的情况下,使用这种方法可将适用的带宽拓宽至接近100nm,对于石英基EDFA类获得的约32nm的带宽,这是巨大的改进。
由下列以实施例的方式结合附图描述的较好实例,可清楚地理解本发明的其它特征和优点。附图中:
图1是在1.5微米波长区,硼酸盐玻璃、ZBLAN玻璃、氟铝硅酸盐玻璃和硅酸锑玻璃的增益特性比较图;
图2是本发明硼酸盐玻璃的增益波动与ZBLAN玻璃组合物呈现的增益波动的比较图;
图3显示本发明第一个较好实例的玻璃组合物的第一个实施例的算得的增益特性;
图4显示本发明第一个较好实例的玻璃组合物的第二个实施例的算得的增益特性;
图5显示本发明第一个较好实例的玻璃组合物的第三个实施例的算得的增益特性;
图6显示本发明第一个较好实例的玻璃组合物的第四个实施例的算得的增益特性;
图7显示ZBLAN玻璃组合物算得的增益特性,用于比较;
图8显示氟磷酸盐玻璃组合物算得的增益特性,用于比较。
业已发现掺杂铒的硼酸盐玻璃尤其适用于接近1.5微米波长的光学放大作用。图1表示在硼酸盐玻璃中铒的发射光谱以及该发射光谱与铒在ZBLAN玻璃以及氟铝硅酸盐和硅酸锑玻璃中的发射光谱的比较情况。由图1可见,在靠近1.5微米波长区,铒在硼酸盐中的发射带宽比在ZBLAN中或者在不同的硅酸盐玻璃组合物中的带宽更宽。更具体地说,铒在硼酸盐玻璃中归一化发射谱的半宽度(FWHM)为100nm,而无硼玻璃的最佳本宽度为60nm。
图2比较了掺杂铒的硼酸盐玻璃组合物的增益波动与掺杂铒的ZBLAN玻璃组合物的增益波动。图2是根据发射和吸收截面计算模拟的增益特性得到的。由图2可见硼酸盐玻璃在64nm范围内呈现相对平的增益特性,而ZBLAN玻璃组合物仅在约30nm范围内呈现相对平的增益特性。尤其是在该64nm带宽范围内未经滤波,硼酸盐玻璃的增益波动低至13%。
当100重量份中B2O3占至少30摩尔%,并且除了该100重量份以外,该组合物还包括0.01-10重量份,较好0.01-2.5重量份Er2O3时,可观察到本发明掺杂铒的硼酸盐玻璃组合物的优良性能。
本发明硼酸盐玻璃组合物还可共掺杂Yb2O3:除了前面提到的100重量份其它组分以外,组合物还包括0-15重量份Yb2O3,更好0-6重量份Yb2O3
根据本发明第一个较好实例,掺杂铒的硼酸盐玻璃具有低的二氧化硅含量(小于30摩尔%)。
本发明第一个较好实例的玻璃的一些组成和性能列于下表1,在该表中将其与两种已知的玻璃组合物进行比较。所示第三比较例是本发明第一个较好实例中的一种玻璃,但它比最优选的组合物含更多PbO。
                                                表1
 实施例1 实施例2 实施例3   实施例4  实施例5   比较例1ZBLAN  比较例2*氟磷酸盐    比较例3
B2O3(重量%)     85     80   70     80     90     38
L2O(重量%)     2
Na2O(重量%)     15     20   30     5     0.5
K2O(重量%)     0.9
BaO(重量%)     20     3     2.7
PbO(重量%)     45
Al2O3(重量%)     3.2     0.8
As2O3(重量%)     0.5
SiO2(重量%)     14.8
Er2O3(重量%)     5     5   5     5     5     0.8     6     3
平坦度δG(1536-1560nm)     5     3     3     14     16
平坦度δG(1524-1570nm)     8     10
平坦度δG(1530-1580nm)     16
量子效率     4.1     5.4     68     17.1
半宽度(nm)(发射信号)     85     80   54     78     103     69     51     52
*在表1中构成比较例2的氟磷酸盐玻璃组合物还包括16.9重量%P2O5、5.8重量%MgF2、18.7重量%CaF2、19.7重量%SrF2、11.3重量%BaF2、19.3重量%AlF3、1.3重量%KHF2和0.6重量%K2TiF6
在本文中将平坦度(δG)定义为在考虑的波长范围内最大增益和最小增益之差除以该波长范围内的最小增益。该量值一般称为F.O.M(灵敏值)。
由下列等式可计算出玻璃组合物的增益特性:
G(dB/cm)≈2.17×Nt×[σ发射(λ)×(1+D)-σ吸收(λ)×(1-D)]
其中,σ发射(λ)=以cm2为单位的发射截面;
      σ吸收(λ)=以cm2为单位的吸收截面;
              Nt=以cm-3为单位的Er离子总浓度;
              D=(N2-N1)/Nt
              在0%反转(inversion)时,D=-1
              在100%反转时,D=+1
              N2=高能级(4I13/2)离子群(根据波长平均)
              N1=基态(I15/2)离子群(根据波长平均)
构成表1实施例1-4的玻璃组合物算得的增益特性分别如图3-图6所示。为了进行比较,将构成表1第一和第二比较例的ZBLAN和氟磷酸盐玻璃的增益特性列于图7和图8。
将图3-6与图7和图8进行比较并由表1的数据可见,本发明第一个较好实例的玻璃组合物在感兴趣的波长区(1530-1560nm)具有平坦增益特性。更具体地说,尽管在该波长范围内对于构成第一和第二比较例的ZBLAN和氟磷酸盐玻璃的F.O.M分别是14和16,但是本发明第一个较好实例的第一、第二和第四实施例的该值为5或更小。同样,当考虑更宽的带宽(即1530-1580nm)时,本发明第一个较好实例的第五实施例的增益特性的F.O.M仅达到16。
本发明第一个较好实例的玻璃组合物具有低量子效率。这部分归因于其高的OH含量,部分归因于其中发生的高非辐射弛豫(硼酸盐具有高光子能量,它偏爱从4I13/2能级非辐射弛豫是众所周知的)。尽管这种低的量子效率,但是仍能发生放大作用。但是,如有必要,可采取行动改进量子效率。可改变非辐射跃迁比例。但是,通过对玻璃完全脱水(例如在干燥条件下熔融玻璃)可减少OH引起的淬灭。另外,使用超高纯原料制备玻璃可减少杂质引起的淬灭。这些措施能够改进这些玻璃组合物的量子效率(在低铒浓度下量子效率最高达50%)。
本发明第二个较好实例提供一种掺杂铒的高氧化硼含量的玻璃,与其中的单价金属氧化物或二价金属氧化物的含量相比,它具有高的B2O3含量。更具体地说,较好B2O3与(∑X2O+∑YO)之比等于或大于3.5,最好等于或大于4.5,其中X2O表示存在的所有单价金属(例如Li、Na、K、Cs、...)氧化物,YO表示存在的所有二价金属(例如Mg、Ca、Ba、Pb、Zn、...)氧化物。较好的是,这些玻璃含有最多5摩尔%La2O3
业已发现在本发明第二个较好实例中,单价金属氧化物由Li2O组成或包括Li2O,而二价金属氧化物较好是PbO。在某些体系中(例如B/Pb、B/Te),可制得无碱金属和碱土金属的玻璃。
通过选择性加入形成玻璃的元素可改进玻璃的耐久性并控制其它性能。一般的形成玻璃的元素是SiO2、GeO2、Al2O3、Sb2O3、和TeO2。加入这种组分对带宽很少或不具有影响,只要考虑涉及玻璃组成的其它标准即可。
通过选择性地加入最多5摩尔%的这种组分如ZrO2、TiO2、Y2O3、Ta2O5、Gd2O3、La2O3,可控制玻璃组合物的结构性能(如折射率和粘度)和/或铒离子在玻璃基质中的分散性。另外,应理解这种例子是非穷举的。
本发明第二个较好实例和一些比较例(CE)玻璃的一些具体的组成和性能列于下表2。某些比较例(带星号)是本发明第二个较好实例的玻璃,但是比最佳组合物含有更多的La2O3或BaO。
                                                                           表2
  1   2   3   4   5   6   7   8   9   10    11   12    13     CE1     CE2   14   CE3*
    B2O3   85.5   85   72   63   54   36   90   90   90   90    85.5   76.5    70.5     65     65   85.5   81
    Li2O   1.9   2   1.6   1.4   1.2   0.8   2   2   2   2    1.9   1.7    1.8     5   1.9   1.8
    Na2O   4.75   5   4   3.5   3   2   5   5   5   5    4.75   4.25    4.5     5   4.75   4.5
    CaO   3   1
    BaO   2.85   3   2.4   2.1   1.8   1.2   3    2.85   2.55    2.7     30   2.85   2.7
    SrO   1
    PbO   1   3     30
    Al2O3   5   5   5   5   5   5    5
    La2O3   5   10
    Sb2O3
    As2O3
    SiO2   5   5   5   5    5   15    15
    GeO2   10   20   30   50
    BaF2
    Na2F2
    Al2F6
    Er2O3(重量%)   5   5   1   1   1   1   5   1   1   1    1   1    1     1     1   1   1
    R   9   8.5   9   9   9   9   9   9   9   9    9   9    7.8     1.86     1.86   8.9   8.9
   半宽度   90   90   87   85   81   75   102   102   102   102    103   103    88     71     52.7   77.7   64.7
                                                                                   表2(续)
  CE4*     15     16     CE5     CE6     CE7    CE8    17    CE9*   18   19     20     21    CE10   CE11*     22
  B2O3   76.5     80     81     70    69.7     75    70    80     80   80   66    94.9   92.55     70   73.5     85
  Li2O   1.7     2     1.8    4.3     4    10   1.8    5.1   7.45     10
  Na2O   4.25     5     4.5     30    13     8.3    20    20   4.5     15
  K2O    13     12.7
  CaO     20
  BaO   2.55     3     2.7     20   2.7   3.7
  SrO   9.9
  PbO   20
  Al2O3     10     10   10
  La2O3   15   12.9
  As2O3
  SiO2   15
  GeO2
  BaF2
  Na2F2
  Al2F6
  Er2O3(重量%)   1     1     1     1    1     1    1    1     1   1   1    1   1     1   1     1
  R   8.8     8     9     2.3    2.3     3    2.3    4     4   4   7.3    18.6   12.4     2.3   5.4     5.7
  半宽度   58.9     86.4     86.4     53    53     64    71.1    78     60.3   86   84.1    108   101     63   56.8     92.3
                                                                           表2(续)
  23   24   25     26     27     28   CE12   CE13     29     30     31    CE14   CE15     32     33    CE16
    B2O3   79   77   75     45     40     35     25     15     90     60     45     30     40     35     25
    Li2O   5   5   5     2     2     2     2     2     2     2     2     2     2     2     2     2
    Na2O   15   15   15     5     5     5     5     5     5     5     5     5     5     5     5     5
    K2O
    CaO
    BaO     3     3     3     3     3     3     3     3     3     3     3     3     3
    SrO
    Al2O3   1   3   5
    La2O3
    Sb2O3     45     45     45     45     45     30     45     60     90     45     45     45
    SiO2     5     10     20
    GeO2     5     10     20     30
    BaF2
    Na2F2
    Al2F6
    Er2O3(重量%)   1   1   1     1     1     1     1     1     4.5     1     1     1     1     1     1     1
    R   3.95   3.85   3.75     4.5     4     3.5     2.5     1.5     9     6     4.5     3     0     4     3.5     2.5
    半宽度   88.2   81.2   88.2     81     79     77     65     64     103     91     81     78     56     80     78     73
                                                                         表2(续)
   34    35    36    37   38    39  CE17  CE18     40     41    42    43     44   45   CE19   CE20
    B2O3   85.5   84.5   82.5   80.5   45   47.5   25   25    85.5   85.5   85.5   75.5    75.5   75.5   65.5   65.5
    Li2O   1.9   1.9   1.9   1.9   2   1   1    1.9   1.9   1.9    1.9   1.9   1.9   1.9
    Na2O   5   2.5   2.5    4.75   7.6   9.5   4.75    4.75   4.75   4.75   4.75
    CaO    10   20
    BaO   3   1.5    2.85   2.85    2.85   2.85   2.85   2.85
    SrO   1.5   10
    PbO   10
    MgO   5   10   20
    Al2O3    5   5   5   5    5   5   5   5
    Sb2O3   45   45
    GeO2   45   47.5   20   20
    BaF2   2.85   2.85   2.85   2.85
    Na2F2   4.75   4.75   4.75   4.75
    Al2F6   5   6   8   10
    Er2O3(重量%)   1   1   1   1   1   1   1   1    1.2   1   1   1    1   1   1   1
    R   45   44.5   43.4   42.4   4.5   9.5   2.5   2.5    9   9   9   3.9    3.9   3.9   2.2   2.2
   半宽度   89   87   84   82   82   90   75   76    82   80   87   85    80   79   58   68
在表2中,R代表B2O3与(∑X2O+∑YO)之比。
由表2可见,本发明第二个较好实例的较好的玻璃组合物其半宽度为75或更大,显示在感兴趣的波长范围内其具有特别大的带宽。
本发明第二个较好实例的组合物中具体的荧光寿命较低,通常小于1ms。这是因为玻璃中的高水含量。使用普通的玻璃脱水技术(例如使用含卤化合物作为原料、在真空中融化玻璃、使用预锻烧的前体材料等)可改进荧光寿命。本发明第二个较好实例的含有重离子(如Pb/Te/Sb/Bi)的这些玻璃组合物对脱水更敏感,呈现优于1.5ms的荧光寿命。
为了使玻璃脱水,推荐使用含卤(氟、溴、氯...)原料,同样推荐将玻璃在控制的气氛中或在部分真空中熔融。也可使用气体(如BCl3)对熔融的玻璃混合物进行鼓泡。
特别优选的是本发明玻璃组合物可用下列组分表示:
对于100重量份下列组分:SiO2     0-30摩尔%    B2O3        30-90摩尔%   Al2O2   0-15摩尔%GeO2     0-50摩尔%    Sb2O3       0-60摩尔%    TeO2      0-50摩尔%∑(X2O) 0-20摩尔%    ∑(YO)        0-20摩尔%    BaO       0-15摩尔%La2O3   0-5摩尔%     Y2O3        0-5摩尔%     Ga2O3   0-5摩尔%Ta2O5   0-5摩尔%     TiO2         0-5摩尔%
(B2O3/(∑X2O+∑YO)大于或等于3.5,较好大于或等于4.5,其中X2O为存在的所有单价金属氧化物,YO为存在的所有二价金属氧化物),
本发明玻璃组合物包括0.01-10重量份,更好0.01-2.5重量份Er2O3和0-6重量份Yb2O3
尽管参照某些具体的实例对本发明进行了描述,但是本发明不限于这些实例的详细特征。相反,在所附权利要求的范围内可对所述实例进行各种改进和变化。

Claims (13)

1.一种玻璃组合物,它包括掺杂铒的硼酸盐,含有至少30摩尔%B2O3
2.如权利要求1所述的玻璃组合物,它含有少于或等于30摩尔%的SiO2
3.如权利要求2所述的玻璃组合物,其特征在于所述玻璃组合物的制备包括在干燥条件下熔融玻璃的步骤,从而改进形成的组合物的量子效率。
4.如权利要求1所述的玻璃组合物,它含有少于或等于5摩尔%的La2O3
5.如权利要求4所述的玻璃组合物,其特征在于B2O3与(∑X2O+∑YO)之比大于或等于3.5,其中X2O为存在的所有单价金属氧化物,YO为存在的所有二价金属氧化物。
6.如权利要求5所述的玻璃组合物,其特征在于B2O3与(∑X2O+∑YO)之比大于或等于4.5。
7.如前面任何一项权利要求所述的玻璃组合物,按100重量份下列组分计:SiO2    0-30摩尔%  B2O3    30-90摩尔%     Al2O2      0-15摩尔%GeO2    0-50摩尔%  Sb2O3   0-60摩尔%      TeO2        0-50摩尔%∑(X2O) 0-20摩尔%  ∑(YO)   0-20摩尔%      BaO         0-15摩尔%La2O3  0-5摩尔%   Y2O3    0-5摩尔%       Ga2O3      0-5摩尔%Ta2O5  0-5摩尔%   TiO2     0-5摩尔%
它包括0.01-10重量份,更好0.01-2.5重量份Er2O3和0-6重量份Yb2O3
8.如权利要求5、6或7所述的玻璃组合物,其特征在于所述X2O是Li2O。
9.如权利要求5、6、7或8所述的玻璃组合物,其特征在于所述YO是PbO。
10.如权利要求4-9中任何一项所述的玻璃组合物,其特征在于所述玻璃组合物的制备包括脱水步骤,从而改进形成的组合物的荧光寿命。
11.如权利要求10所述的玻璃组合物,它至少包括一种重阳离子,如Pb、Te、Sb和Bi。
12.如权利要求4-11中任何一项所述的玻璃组合物,它包括最多5重量%一种或多种选自ZrO2、TiO2、Y2O3、Ta2O5、Gd2O3和La2O3的金属氧化物。
13.一种光学放大器,它含有权利要求1-12中任何一项所述的玻璃组合物。
CN00807182.9A 1999-05-06 2000-04-28 玻璃组合物 Pending CN1352624A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/05761 1999-05-06
FR9905761A FR2793241B1 (fr) 1999-05-06 1999-05-06 Composition de verre borate dope a l erbium

Publications (1)

Publication Number Publication Date
CN1352624A true CN1352624A (zh) 2002-06-05

Family

ID=9545278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00807182.9A Pending CN1352624A (zh) 1999-05-06 2000-04-28 玻璃组合物

Country Status (8)

Country Link
US (1) US6495482B1 (zh)
EP (1) EP1210300A4 (zh)
JP (1) JP2002544105A (zh)
CN (1) CN1352624A (zh)
AU (1) AU4976400A (zh)
CA (1) CA2370503A1 (zh)
FR (1) FR2793241B1 (zh)
WO (1) WO2000068158A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313403C (zh) * 2003-12-31 2007-05-02 中国科学院西安光学精密机械研究所 光放大用铒镱共掺多组份氧化物玻璃及其制备方法
CN1315746C (zh) * 2003-12-31 2007-05-16 中国科学院西安光学精密机械研究所 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法
CN1318340C (zh) * 2002-11-27 2007-05-30 中国科学院福建物质结构研究所 一种掺杂铒的硼酸铋玻璃及其制备方法
CN1331791C (zh) * 2002-10-22 2007-08-15 中国科学院福建物质结构研究所 具有高发光量子效率的掺钕硼酸盐玻璃及其制备方法
CN103833220A (zh) * 2014-01-21 2014-06-04 江苏奥蓝工程玻璃有限公司 一种耐碱耐热的玻璃材料及其制备方法
CN110526585A (zh) * 2019-09-26 2019-12-03 福建师范大学 一种防伪玻璃陶瓷复合材料的制备方法
CN112062467A (zh) * 2020-06-18 2020-12-11 天津工业大学 一种掺杂稀土离子Er3+锆镁硼酸盐玻璃的制备方法
CN113105119A (zh) * 2021-03-31 2021-07-13 华南理工大学 一种镧锑酸盐玻璃光纤及其制备方法与应用
CN115806383A (zh) * 2023-02-07 2023-03-17 武汉长进光子技术股份有限公司 一种C-band超宽带放大掺铒光纤及其制备方法与应用

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275891C (zh) 2001-09-10 2006-09-20 肖特股份有限公司 具有至少两层玻璃包层的玻璃纤维
DE10257049B4 (de) * 2002-12-06 2012-07-19 Schott Ag Verfahren zur Herstellung von Borosilicatgläsern, Boratgläsern und kristallisierenden borhaltigen Werkstoffen
JP2004250251A (ja) * 2003-02-18 2004-09-09 Sumitomo Electric Ind Ltd 蛍光性ガラス、光増幅用導波路および光増幅モジュール
US7515332B2 (en) * 2004-02-18 2009-04-07 Nippon Sheet Glass Company, Limited Glass composition that emits fluorescence in infrared wavelength region and method of amplifying signal light using the same
US7700870B2 (en) * 2005-05-05 2010-04-20 Guardian Industries Corp. Solar cell using low iron high transmission glass with antimony and corresponding method
KR100705802B1 (ko) * 2005-06-24 2007-04-09 엘지전자 주식회사 실링용 유리 조성물 및 이를 이용한 평판 디스플레이 장치
US20070074757A1 (en) * 2005-10-04 2007-04-05 Gurdian Industries Corp Method of making solar cell/module with porous silica antireflective coating
US7687417B2 (en) * 2005-11-16 2010-03-30 E.I. Du Pont De Nemours And Company Lead free glass(es), thick film paste(s), tape composition(s) and low temperature cofired ceramic devices made therefrom
US8153282B2 (en) * 2005-11-22 2012-04-10 Guardian Industries Corp. Solar cell with antireflective coating with graded layer including mixture of titanium oxide and silicon oxide
US20070113881A1 (en) * 2005-11-22 2007-05-24 Guardian Industries Corp. Method of making solar cell with antireflective coating using combustion chemical vapor deposition (CCVD) and corresponding product
WO2007097344A1 (ja) * 2006-02-21 2007-08-30 Asahi Glass Co., Ltd. 光学ガラス
US8648252B2 (en) * 2006-03-13 2014-02-11 Guardian Industries Corp. Solar cell using low iron high transmission glass and corresponding method
US20080072956A1 (en) * 2006-09-07 2008-03-27 Guardian Industries Corp. Solar cell with antireflective coating comprising metal fluoride and/or silica and method of making same
US7767253B2 (en) * 2007-03-09 2010-08-03 Guardian Industries Corp. Method of making a photovoltaic device with antireflective coating
US8237047B2 (en) * 2007-05-01 2012-08-07 Guardian Industries Corp. Method of making a photovoltaic device or front substrate for use in same with scratch-resistant coating and resulting product
US20080295884A1 (en) * 2007-05-29 2008-12-04 Sharma Pramod K Method of making a photovoltaic device or front substrate with barrier layer for use in same and resulting product
US8055115B2 (en) * 2007-07-05 2011-11-08 Coractive High-Tech Inc. Optically active glass and optical fiber with reduced photodarkening and method for reducing photodarkening
IN2010KN00199A (zh) * 2007-07-16 2015-08-28 Coractive High Tech Inc
US8450594B2 (en) * 2007-07-26 2013-05-28 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product and photovoltaic device comprising same
US8445774B2 (en) * 2007-07-26 2013-05-21 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US20090075092A1 (en) * 2007-09-18 2009-03-19 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US20090101209A1 (en) * 2007-10-19 2009-04-23 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US8319095B2 (en) * 2007-11-27 2012-11-27 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US8114472B2 (en) * 2008-01-08 2012-02-14 Guardian Industries Corp. Method of making a temperable antiglare coating, and resulting products containing the same
US20090181256A1 (en) * 2008-01-14 2009-07-16 Guardian Industries Corp. Methods of making silica-titania coatings, and products containing the same
US8668961B2 (en) * 2008-07-31 2014-03-11 Guardian Industries Corp. Titania coating and method of making same
US20100122728A1 (en) * 2008-11-17 2010-05-20 Fulton Kevin R Photovoltaic device using low iron high transmission glass with antimony and reduced alkali content and corresponding method
US8617641B2 (en) * 2009-11-12 2013-12-31 Guardian Industries Corp. Coated article comprising colloidal silica inclusive anti-reflective coating, and method of making the same
US9272949B2 (en) 2010-07-09 2016-03-01 Guardian Industries Corp. Coated glass substrate with heat treatable ultraviolet blocking characteristics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183645A (ja) * 1984-09-28 1986-04-28 Hoya Corp カラ−コントラスト眼鏡レンズ用ガラス
US5173456A (en) * 1990-12-20 1992-12-22 Schott Glass Technologies, Inc. Phosphate glass useful in high energy lasers
US5140456A (en) * 1991-04-08 1992-08-18 General Instrument Corporation Low noise high power optical fiber amplifier
US5413971A (en) * 1993-09-14 1995-05-09 Mcpherson; Donald M. Laser absorbing filter glass
JP3316660B2 (ja) * 1994-08-17 2002-08-19 日本電信電話株式会社 光増幅器およびレーザ装置
US5747397A (en) * 1996-11-04 1998-05-05 Bay Glass Research Optical glass
JP2002510273A (ja) * 1997-06-23 2002-04-02 コーニング インコーポレイテッド 光導波路物品のための組成物および連続する被覆を備えた線条体の作成方法
JPH11317561A (ja) * 1998-03-03 1999-11-16 Asahi Glass Co Ltd 光増幅ガラス
US6268303B1 (en) * 1998-07-06 2001-07-31 Corning Incorporated Tantalum containing glasses and glass ceramics

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331791C (zh) * 2002-10-22 2007-08-15 中国科学院福建物质结构研究所 具有高发光量子效率的掺钕硼酸盐玻璃及其制备方法
CN1318340C (zh) * 2002-11-27 2007-05-30 中国科学院福建物质结构研究所 一种掺杂铒的硼酸铋玻璃及其制备方法
CN1313403C (zh) * 2003-12-31 2007-05-02 中国科学院西安光学精密机械研究所 光放大用铒镱共掺多组份氧化物玻璃及其制备方法
CN1315746C (zh) * 2003-12-31 2007-05-16 中国科学院西安光学精密机械研究所 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法
CN103833220A (zh) * 2014-01-21 2014-06-04 江苏奥蓝工程玻璃有限公司 一种耐碱耐热的玻璃材料及其制备方法
CN103833220B (zh) * 2014-01-21 2015-12-02 江苏奥蓝工程玻璃有限公司 一种耐碱耐热的玻璃材料及其制备方法
CN110526585A (zh) * 2019-09-26 2019-12-03 福建师范大学 一种防伪玻璃陶瓷复合材料的制备方法
CN110526585B (zh) * 2019-09-26 2021-10-19 福建师范大学 一种防伪玻璃陶瓷复合材料的制备方法
CN112062467A (zh) * 2020-06-18 2020-12-11 天津工业大学 一种掺杂稀土离子Er3+锆镁硼酸盐玻璃的制备方法
CN113105119A (zh) * 2021-03-31 2021-07-13 华南理工大学 一种镧锑酸盐玻璃光纤及其制备方法与应用
CN113105119B (zh) * 2021-03-31 2022-01-18 华南理工大学 一种镧锑酸盐玻璃光纤及其制备方法与应用
CN115806383A (zh) * 2023-02-07 2023-03-17 武汉长进光子技术股份有限公司 一种C-band超宽带放大掺铒光纤及其制备方法与应用

Also Published As

Publication number Publication date
EP1210300A1 (en) 2002-06-05
WO2000068158A9 (en) 2002-06-06
US6495482B1 (en) 2002-12-17
AU4976400A (en) 2000-11-21
EP1210300A4 (en) 2004-11-10
FR2793241B1 (fr) 2002-03-08
WO2000068158A1 (en) 2000-11-16
CA2370503A1 (en) 2000-11-16
FR2793241A1 (fr) 2000-11-10
JP2002544105A (ja) 2002-12-24

Similar Documents

Publication Publication Date Title
CN1352624A (zh) 玻璃组合物
CN1381082A (zh) 光放大光纤和使用该光纤的光放大器
US7637124B2 (en) Bismuth containing fluorophosphate glass and method for making thereof
US6410467B1 (en) Antimony oxide glass with optical activity
US6515795B1 (en) Borosilicate cladding glasses for germanate core thulium-doped amplifiers
WO2001056944A2 (en) Antimony oxide glass with optical activity
CN1233581C (zh) 光放大玻璃和光波导
CN1361753A (zh) 光放大用的硼酸盐或硅铝酸盐玻璃组合物
US4820662A (en) Silicophosphate laser glass
US6077799A (en) SPCVD silicate glasses
US6757474B2 (en) Emission silicate waveguide compositions for enhanced L-band and S-band emission
CN1321924C (zh) Yb3+/Ce3+/Er3+共掺的氧氯碲酸盐玻璃及其制备方法
CN1313403C (zh) 光放大用铒镱共掺多组份氧化物玻璃及其制备方法
CN1926073A (zh) 用于光学放大器纤维的玻璃
EP0589198B1 (en) Rare earth-doped, stabilized cadmium halide glasses
CN1634784A (zh) 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法
CN1335826A (zh) 含P的硫化GeAs玻璃
CN1610650A (zh) 用于延伸l波段和s波段放大的硅酸盐波导组合物
US6444599B1 (en) Rare earth element-halide environments in oxyhalide glasses
CN1243500A (zh) 玻璃组合物和由它制作的光学器件
CN112062467B (zh) 一种掺杂稀土离子Er3+锆镁硼酸盐玻璃的制备方法
JP2004277252A (ja) 光増幅ガラスおよび光導波路
JP2746716B2 (ja) 希土類ドープ多成分ガラスファイバ
JP2001516958A5 (zh)
US20030147620A1 (en) Germanuim-free silicate waveguide compositoins for enhanced L-band and S-band emission

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication