WO2017063247A1 - 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种无硼玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2017063247A1
WO2017063247A1 PCT/CN2015/094387 CN2015094387W WO2017063247A1 WO 2017063247 A1 WO2017063247 A1 WO 2017063247A1 CN 2015094387 W CN2015094387 W CN 2015094387W WO 2017063247 A1 WO2017063247 A1 WO 2017063247A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
glass
weight percentage
ratio
fiber composition
Prior art date
Application number
PCT/CN2015/094387
Other languages
English (en)
French (fr)
Inventor
章林
曹国荣
邢文忠
顾桂江
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to BR112017028001-9A priority Critical patent/BR112017028001B1/pt
Priority to DK15906129.0T priority patent/DK3299348T3/da
Priority to PL15906129T priority patent/PL3299348T3/pl
Priority to JP2017566342A priority patent/JP6603733B2/ja
Priority to ES15906129T priority patent/ES2871147T3/es
Priority to CA2990061A priority patent/CA2990061C/en
Priority to KR1020177036437A priority patent/KR102034945B1/ko
Priority to MX2017016360A priority patent/MX2017016360A/es
Priority to EP15906129.0A priority patent/EP3299348B1/en
Publication of WO2017063247A1 publication Critical patent/WO2017063247A1/zh
Priority to US15/851,759 priority patent/US10287206B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a boron-free glass fiber composition, and more particularly to a high performance boron-free glass fiber composition capable of reinforcing a substrate as an advanced composite material, and glass fibers and composite materials thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high-performance glass fiber was originally used in the defense, military and other fields of defense, military and other fields. With the advancement of technology and economic development, high-performance glass fiber has been widely used in civil and industrial fields such as motors, wind blades, pressure vessels, offshore oil pipelines, sports equipment, and the automotive industry.
  • R glass fiber which has slightly lower mechanical properties than conventional R glass fibers. Its melting and forming properties are significantly better than conventional R glass, but it is matched with the ratio of calcium to calcium. Unreasonable, the crystallization risk of the glass is still large, and too much Li 2 O is introduced, which not only affects the chemical stability of the glass, but also increases the cost of raw materials, and is also disadvantageous for large-scale industrial production.
  • the main components of Gaoqiang 2# glass fiber also include SiO 2 , Al 2 O 3 , MgO, and also introduce some parts of Li 2 O, B 2 O 3 , CeO 2 and Fe 2 O 3 , which also have high strength and Modulus, and its molding temperature is only about 1245 ° C, the liquidus temperature is 1320 ° C, the temperature of both is much lower than S glass fiber, but its molding temperature is lower than the liquidus temperature, but it is not good for glass fiber. Drawing, the drawing temperature must be increased, and a special form of the leaking nozzle is used to prevent the glass from devitrifying during the drawing process, which causes difficulty in temperature control and is difficult to achieve large-scale industrial production.
  • the liquidus temperature of the mainstream E glass is generally lower than 1200 ° C
  • the molding temperature is lower than 1300 ° C
  • the liquidus temperature of the above high performance glass is generally higher than 1300 ° C
  • the molding temperature is higher than 1350 ° C
  • the present invention is directed to solving the problems described above. It is an object of the present invention to provide a boron-free glass fiber composition.
  • a boron-free glass fiber composition comprising the following components, the content of each component being expressed by weight percentage as follows:
  • a ratio of the preferred percentage by weight of C2 K 2 O / Na 2 O is 1.2 - 5.
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the content ranges of CaO, MgO, K 2 O and Li 2 O are reasonably configured by introducing appropriate amounts of K 2 O and Li 2 O, and CaO/MgO and K 2 O/Na are strictly controlled. 2 O ratio range, and the use of K 2 O, Na 2 O and Li 2 O ternary mixed alkali effect, and may also be selectively introduced a small amount of ZrO 2 and HfO 2.
  • the boron-free glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components.
  • the weight percentage of SiO 2 is limited to range from 58 to 60.4%.
  • the present invention specifically controls the silicon oxide content to a low level.
  • the content of SiO 2 may be limited to 58.5-60.4%.
  • Al 2 O 3 is also an oxide forming a glass skeleton. When combined with SiO 2 , it can play a substantial role in the mechanical properties of the glass and plays an important role in preventing phase separation and water resistance of the glass.
  • the content of Al 2 O 3 is limited to a range of 14-16.5%, and if it is low in content, high enough mechanical properties of the glass, especially modulus, cannot be obtained; If it is high, the viscosity of the glass is too high, which makes melting and clarification difficult.
  • the content of Al 2 O 3 may be limited to 14.5-16.5%.
  • CaO is particularly effective in reducing the high temperature viscosity of glass and controlling the crystallization and material properties of glass. It is effective, but its content is too high, which increases the crystallization tendency of the glass, which may cause crystals such as anorthite and wollastonite to precipitate from the glass.
  • the content of CaO is limited to a range of 14.1 to 16.5% by weight.
  • the content of CaO may be limited to 14.1-16.1%.
  • the role of MgO in glass is similar to that of CaO, but the field strength of Mg 2+ is higher, which plays an important role in increasing the modulus of the glass.
  • the disadvantage is that when the MgO content is too high, the crystallization tendency and the crystallization rate of the glass are increased, and there is a risk that crystals such as diopside are precipitated from the glass, and this tendency is more intense than that of CaO.
  • the weight percentage of MgO is defined to range from 6 to 8.2%.
  • the content of MgO may be limited to 6-8%.
  • the high-performance glass mainly composed of MgO-CaO-Al 2 O 3 -SiO 2 system
  • the crystal phase contained in the glass after crystallization is mainly composed of diopside (CaMgSi 2 O 6 ) and anorthite (CaAl 2 ). Si 2 O 8 ) or wollastonite (CaSiO 3 ).
  • the crystallization upper limit temperature (liquidus temperature) and the degree of crystallization of the glass are lowered.
  • both K 2 O and Na 2 O reduce the viscosity of the glass and are good fluxing agents.
  • the inventors have found that replacing K 2 O with Na 2 O in the case of a constant total amount of alkali metal oxide can reduce the crystallization tendency of the glass and improve the fiber forming property; can significantly reduce the surface tension of the glass liquid, and effectively improve The clarifying effect of the glass; it can also help to increase the mechanical strength of the glass.
  • the content of Na 2 O + K 2 O is limited to a content of less than 1.15%, and the content by weight of K 2 O is in a range of more than 0.5%, and the ratio C2 of the weight percentage may be further defined.
  • Li 2 O Compared with Na 2 O and K 2 O, Li 2 O not only can significantly reduce the viscosity of the glass, thereby improving the glass melting performance, and is obviously helpful for improving the mechanical properties of the glass. At the same time, a small amount of Li 2 O can provide considerable free oxygen, which is beneficial to the formation of tetrahedral coordination of more aluminum ions, enhance the network structure of the glass system, and further reduce the crystallization ability of the glass. However, the content of Li 2 O should not be too high, too much Li + will exhibit a significant net-breaking effect, which will destroy the stability of the glass structure, and will accelerate the crystallization tendency of the glass.
  • the content of Li 2 O is limited to a content ranging from 0.01 to 0.4% by weight.
  • the inventors have found that even if the content of Li 2 O is controlled to a lower range such as 0.01% or more and less than 0.1%, the technical effect is excellent.
  • TiO 2 not only reduces the viscosity of the glass at high temperatures, but also has a certain fluxing effect. However, since the titanium ion has a certain coloring effect, especially when the TiO 2 content exceeds 1.5%, the coloring effect becomes particularly remarkable, and the appearance of the glass fiber product is affected to some extent. Accordingly, in the glass fiber composition of the present invention, the content of TiO 2 is limited to a content of less than 1.5% by weight.
  • Fe 2 O 3 is advantageous for the melting of glass and also for improving the crystallization properties of glass. However, since iron ions and ferrous ions have a coloring effect, the amount of introduction is not preferable. Thus, in the glass fiber composition of the present invention, the weight percentage of Fe 2 O 3 is limited to less than 1%.
  • a small amount of ZrO 2 and HfO 2 may be selectively introduced into the glass fiber composition of the present invention to further improve the mechanical properties and thermal stability of the glass.
  • the amount of introduction is not particularly high. Therefore, in the glass fiber composition of the present invention, the total content of ZrO 2 and HfO 2 is defined to be in the range of 0.01 to 2% by weight.
  • the glass fiber composition of the present invention is also allowed to contain a small amount of impurities, and the content by weight is generally not more than 1%.
  • the boron-free glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the boron-free glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the boron-free glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the boron-free glass fiber composite house of the invention and the glass fiber and the composite material thereof overcome the traditional high-performance glass liquidus temperature and the crystallization rate are fast on the basis of having a lower molding temperature, and the glass liquid
  • the surface tension is too large, it is difficult to clarify, and it is difficult to carry out large-scale and high-efficiency production, which significantly reduces the liquidus temperature and surface tension of high-performance glass.
  • the degree of crystallization and the bubble ratio of the glass are lowered, and the glass fiber has more excellent mechanical strength.
  • the basic idea of the present invention is that the content of each component of the glass fiber composition is expressed by weight percentage: SiO 2 is 58-60.4%, Al 2 O 3 is 14-16.5%, CaO is 14.1-16.5%, and MgO is 6. -8.2%, Li 2 O is 0.01-0.5%, Na 2 O+K 2 O is less than 1.15%, K 2 O is more than 0.5%, TiO 2 is less than 1.5%, Fe 2 O 3 is less than 1%, weight
  • the specific content values of SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Fe 2 O 3 , Li 2 O, and TiO 2 in the glass fiber composition of the present invention are selected as an example, and a conventional
  • the performance parameters of E glass, conventional R glass and modified R glass are compared. In performance comparison, six performance parameters are selected:
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • the temperature of the crystallization peak which corresponds to the temperature of the strongest peak of glass crystallization during the DTA test.
  • the higher the temperature the more energy is required to grow the crystal nucleus, and the crystallization tendency of the glass is smaller.
  • the strength of the monofilament, the tensile strength of the glass fiber strand unit can withstand the fineness.
  • the number of bubbles wherein the approximate method of measuring the number of bubbles is: using a special mold to press each sample batch into a sample of the same shape, placed in a sample platform of a high temperature microscope, and then programmed to a set space temperature. At 1500 ° C, the glass samples were cooled to room temperature with the furnace; then, the number of bubbles of each glass sample was observed from a microscopic angle by a polarizing microscope. Among them, the number of bubbles is based on the imaging range of the microscope.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid Through the drain plate The leaking nozzle is pulled out to form a glass fiber, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a bob.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • the values of the six parameters measured in the first embodiment are:
  • the values of the six parameters measured in the second embodiment are:
  • the values of the six parameters determined in the third embodiment are:
  • the values of the six parameters determined in the fourth embodiment are:
  • the values of the six parameters determined in the fifth embodiment are:
  • the values of the six parameters determined in the sixth embodiment are:
  • the values of the six parameters determined in the seventh embodiment are:
  • the values of the six parameters determined in the eighth embodiment are:
  • the values of the six parameters determined in the tenth embodiment are:
  • the content of the glass fiber composition is expressed by weight percentage, as shown in Table 1 and Table 2. It should be noted that the total content of the components of the examples is slightly less than 100%, and it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages as compared with the conventional R glass and the modified R glass: (1) having a much lower liquidus temperature, which is advantageous for lowering the glass. The risk of crystallization is increased, and the drawing efficiency of the fiber is improved; (2) having a higher crystallization peak temperature, which indicates that the formation and growth of the nucleus in the crystallization process requires more energy, that is, under the same conditions. The crystallization of the invention glass is less risky. (3) The number of bubbles is significantly reduced, which indicates that the clarification effect of the glass is better. At the same time, the glass fibers obtained by the present invention also have higher monofilament strength than the modified R glass.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the boron-free glass fiber composite house of the invention and the glass fiber and composite material thereof overcome the high temperature and crystallization rate of the traditional high-performance glass liquidus on the basis of having a lower molding temperature.
  • the surface tension of the glass liquid is too large, it is difficult to clarify, and it is difficult to carry out large-scale and high-efficiency production, which significantly reduces the liquidus temperature and surface tension of the high-performance glass, and reduces the crystallization degree and bubbles of the glass under the same conditions. Rate, while glass fiber has more excellent mechanical strength.
  • the glass fiber composition of the invention Compared with the current mainstream modified R glass, the glass fiber composition of the invention has made a breakthrough in crystallization property, monofilament strength and heat resistance, and the risk of crystallization of glass is greatly reduced under the same conditions, monofilament The strength and softening point temperature are significantly improved, and the overall technical solution is more cost-effective, making it easy to achieve large-scale industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种无硼玻璃纤维组合物及其玻璃纤维和复合材料。该玻璃纤维组合物含有的各组分的含量以重量百分比表示如下:SiO2为58-60.4%,Al2O3为14-16.5%,CaO为14.1-16.5%,MgO为6-8.2%,Li2O为0.01-0.5%,Na2O+K2O为小于1.15%,K2O为大于0.5%,TiO2为小于1.5%,Fe2O3为小于1%,重量百分比的比值C1=CaO/MgO的范围为大于2且小于等于2.4。该组合物能显著降低玻璃的表面张力,提高玻璃纤维的机械强度和耐化学稳定性,有效抑制玻璃的析晶倾向、降低玻璃的液相线温度,特别适合用于生产低气泡率的高性能玻璃纤维。

Description

一种无硼玻璃纤维组合物及其玻璃纤维和复合材料 技术领域
本发明涉及一种无硼玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高性能无硼玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高性能玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高性能玻璃纤维在民用、工业领域如电机、风力叶片、压力容器、海上石油管道、体育器材、汽车行业得到了广泛应用。
自从美国欧文斯科宁公司(简称OC公司)开发出S-2玻璃纤维后,各国竞相开发生产各种成分的高性能玻璃纤维,如法国圣戈班公司开发的R玻璃纤维、美国OC公司开发的HiPer-tex玻璃纤维、中国南京玻璃纤维研究设计院开发的高强2#玻璃纤维等。最初的高性能玻璃成分以MgO-Al2O3-SiO2系统为主体,典型方案如美国OC公司的S-2玻璃,不过它的生产难度过大,成型温度高达1571℃左右,液相线温度达到1470℃,难于实现大规模工业化生产。OC公司主动放弃了生产S-2玻璃纤维,将其专利权转让给了美国AGY公司,后者一直致力于小规模生产S型玻璃纤维及其改进产品。
随后,为了降低玻璃的熔化温度及成型温度使其能更好地满足规模化池窑生产的要求,国外各大公司陆续开发了以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,典型方案如法国圣戈班公司的R玻璃和美国OC公司的HiPer-tex玻璃,这是一种以牺牲部分玻璃性能换取生产规模的折衷策略,不过由于设计方案过于保守,尤其是将Al2O3含量保持在20%以上,优选25%,造成生产难度依然很高,虽然实现了小规模的池窑化生产,但生产效率低下、产品性价比不高。因此,OC公司也放弃了生产HiPer-tex玻璃纤维,将其专利权转让给了欧洲3B公司。2007年前后,由于OC公司和圣戈班公司的玻纤业务合并成立OCV公司,R玻璃纤维的核心技术也相应转让给了OCV公司。传统R玻璃的钙镁比例太低,造成成型困难、析晶风险高,同时玻璃液的表面张力大、澄清难度较高,成型温度达到1410℃,液相线温度达到1330℃,这都造成玻璃纤维拉制上的困难,同样难于实现大规模工业化生产。
此外,PPG工业公司公布了另一种R玻璃纤维,这种玻璃纤维的机械性能略低于传统R 玻璃纤维,熔化和成型性能明显优于传统R玻璃,但由于硅钙比例与钙镁比例搭配不合理,该玻璃的析晶风险依然较大,同时引入了过多的Li2O,不仅影响玻璃的化学稳定性,而且提高了原料成本,也不利于大规模工业化生产。
高强2#玻璃纤维的主要成分也包括SiO2、Al2O3、MgO,同时还引入了部分Li2O、B2O3、CeO2和Fe2O3,它也具有较高的强度及模量,且其成型温度只有1245℃左右,液相线温度为1320℃,两者的温度均比S玻璃纤维低得多,但其成型温度比液相线温度低却不利于玻璃纤维的良好拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模工业化生产。
综上所述,我们发现,现阶段的各类高性能玻璃纤维在实际生产中均存在普遍的问题,即玻璃的液相线温度偏高、析晶风险较大,成型温度偏高、表面张力偏大、澄清难度较高。目前,主流E玻璃的液相线温度一般低于1200℃,成型温度低于1300℃,而上述高性能玻璃的液相线温度普遍高于1300℃,成型温度高于1350℃,这些因素极易造成在生产过程中发生玻璃析晶现象、玻璃液粘度不均及澄清不良等现象,从而大大降低玻璃纤维的生产效率、产品质量以及耐火材料、铂金漏板的使用寿命。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种无硼玻璃纤维组合物。
根据本发明的一个方面,提供一种无硼玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2015094387-appb-000001
并且,重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.4。
同时,进一步限定重量百分比的比值C2=K2O/Na2O的范围为C2大于1且小于等于6。
其中,可优选重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.3。
其中,可优选重量百分比的比值C2=K2O/Na2O的范围为1.2-5。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的另一个方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的无硼玻璃纤维组合物,通过引入适量K2O和Li2O,合理配置CaO、MgO、K2O和Li2O的含量范围,严格控制CaO/MgO和K2O/Na2O的比值范围,以及利用K2O、Na2O和Li2O三元混合碱效应,并且还可以选择性地引入少量ZrO2和HfO2
具体来说,根据本发明的无硼玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2015094387-appb-000002
并且,重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.4。
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。在本发明的玻璃纤维组合物中,限定SiO2的重量百分比含量范围为58-60.4%。在保证机械性能的基础上,为了不增加玻璃的澄清难度,本发明中特意将氧化硅含量控制在不高的水平。优选地,SiO2的含量范围可以限定为58.5-60.4%。
Al2O3也是形成玻璃骨架的氧化物,与SiO2结合时可对玻璃的机械性能起到实质性的作用,并且在阻止玻璃分相和抗水性方面起着重要作用。在本发明的玻璃纤维组合物中,限定Al2O3的重量百分比含量范围为14-16.5%,若其含量较低会无法获得足够高的玻璃机械性能,尤其是模量;若其含量太高则会使玻璃的粘度过高导致熔化、澄清困难。优选地,Al2O3的含量范围可以限定为14.5-16.5%。
CaO作为重要的网络外体氧化物,在降低玻璃的高温粘度、控制玻璃析晶和料性方面特别 有效,但其含量过高会增大玻璃的析晶倾向,造成从玻璃中析出钙长石、硅灰石等晶体的危险。在本发明的玻璃纤维组合物中,限定CaO的重量百分比含量范围为14.1-16.5%。优选地,CaO的含量范围可以限定为14.1-16.1%。
MgO在玻璃中的作用与CaO大体类似,但Mg2+的场强更高,对提高玻璃的模量起重要的作用。不利之处在于MgO含量过高时也会增大玻璃的析晶倾向和析晶速率,存在从玻璃中析出透辉石等晶体的危险,并且这种倾向比CaO还剧烈。在本发明的玻璃纤维组合物中,限定MgO的重量百分比含量范围为6-8.2%。优选地,MgO的含量范围可以限定为6-8%。
另外,以MgO-CaO-Al2O3-SiO2系统为主体的高性能玻璃,其玻璃析晶后所包含的晶相主要包括透辉石(CaMgSi2O6)、钙长石(CaAl2Si2O8)或者硅灰石(CaSiO3)。为了有效抑制这三种晶相的析晶趋势,降低玻璃的析晶上限温度(液相线温度)和析晶程度。在本发明的玻璃纤维组合物中,限定重量百分比的比值C1=CaO/MgO范围为C1大于2且小于等于2.4。通过控制Ca2+/Mg2+离子的摩尔比范围大致为1.42-1.72,在保证玻璃析晶过程中Ca2+离子供给充足的基础上,利用Mg2+离子场强较大的特点,借助Mg2+离子和Ca2+离子在玻璃中对阴离子团的争夺作用,造成透辉石和钙长石在析晶过程中势均力敌的局面,从而降低两种晶相的析晶速率和晶粒完整度,达到同时抑制两种晶相析晶倾向并降低液相线温度的目的。显然,当CaO/MgO太低时,Mg2+离子太多,透辉石析晶会变得强势;当CaO/MgO太高时,Ca2+离子太多,钙长石析晶会变得强势,甚至会产生硅灰石析晶,大大破坏竞争析晶的平衡局面。优选地,C1=CaO/MgO的比值范围可以限定为C1大于2且小于等于2.3。更优选地,C1=CaO/MgO的比值范围可以限定为C1大于2且小于等于2.14。相对于传统高性能玻璃,这种技术效果是意想不到的。此外,由于Ca-O的氧化物键能较大,同时对玻璃结构的积聚作用显著,因此当CaO含量较高时,所得玻璃的机械强度更加优异。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。发明人发现,在碱金属氧化物总量不变的情况下,用K2O替代Na2O,能降低玻璃的析晶倾向,改善纤维成型性能;能显著降低玻璃液的表面张力,有效改善玻璃的澄清效果;还能有利于提高玻璃的机械强度。在本发明的玻璃纤维组合物中,限定Na2O+K2O的重量百分比含量范围为小于1.15%,K2O的重量百分比含量范围为大于0.5%,还可以进一步限定重量百分比的比值C2=K2O/Na2O范围为C2大于1小于等于6。优选地,C2=K2O/Na2O的比值范围可以限定为1.2-5。
同Na2O和K2O相比,Li2O不仅能显著地降低玻璃粘度,从而改善玻璃熔制性能,并且对提高玻璃的力学性能有明显帮助。同时,少量Li2O就能提供可观的游离氧,有利于更多的铝离子形成四面体配位,增强玻璃体系的网络结构,可进一步降低玻璃的析晶能力。但是Li2O的含量也不宜过高,太多的Li+会表现出显著的断网作用,会破坏玻璃结构的稳定性,反而会加 速玻璃的析晶倾向。因此,在本发明的玻璃纤维组合物中,限定Li2O的重量百分比含量范围为0.01-0.4%。发明人发现,即使将Li2O的含量控制在较低范围如大于等于0.01%且小于0.1%时,其技术效果依然优异。
TiO2不仅可以降低高温时的玻璃粘度,还具有一定的助熔作用。但由于钛离子具有一定的着色作用,尤其是当TiO2含量超过1.5%后,这种着色作用变得特别显著,一定程度上会影响玻纤制品的外观。因此,本发明的玻璃纤维组合物中,限定TiO2的重量百分比含量范围为小于1.5%。
Fe2O3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的重量百分比含量范围为小于1%。
此外,本发明的玻璃纤维组合物中还可以选择性地引入少量ZrO2和HfO2,以进一步提高玻璃的机械性能和热稳定性。考虑到它们会增大玻璃的粘度,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定ZrO2和HfO2的重量百分比总含量范围为0.01-2%。
此外,本发明的玻璃纤维组合物中还允许含有少量杂质,重量百分比含量一般不超过1%。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果在后面会通过实施例给出具体实验数据来说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一
根据本发明的无硼玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2015094387-appb-000003
并且,重量百分比的比值C1=CaO/MgO的范围为大于2且小于等于2.3,重量百分比的比值C2=K2O/Na2O的范围为大于1且小于等于6。
优选示例二
根据本发明的无硼玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2015094387-appb-000004
并且,重量百分比的比值C1=CaO/MgO的范围为大于2且小于等于2.14,重量百分比的比值C2=K2O/Na2O的范围为1.2-5。
优选示例三
根据本发明的无硼玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2015094387-appb-000005
并且,重量百分比的比值C1=CaO/MgO的范围为大于2且小于等于2.14,重量百分比的比值C2=K2O/Na2O的范围为1.2-5。
本发明的一种无硼玻璃纤维组合屋及其玻璃纤维和复合材料,在拥有较低成型温度的基础上,克服了传统高性能玻璃液相线温度偏高、析晶速率偏快,玻璃液表面张力偏大、不易澄清,难于进行大规模高效率生产的问题,显著降低了高性能玻璃的液相线温度和表面张力, 同等条件下降低了玻璃的析晶程度和气泡率,同时玻璃纤维具有更优异的机械强度。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO2为58-60.4%,Al2O3为14-16.5%,CaO为14.1-16.5%,MgO为6-8.2%,Li2O为0.01-0.5%,Na2O+K2O为小于1.15%,K2O为大于0.5%,TiO2为小于1.5%,Fe2O3为小于1%,重量百分比的比值C1=CaO/MgO的范围为大于2且小于等于2.4。此外,还可以进一步规定重量百分比的比值C2=K2O/Na2O的范围为大于1且小于等于6。
选取本发明的玻璃纤维组合物中SiO2、Al2O3、CaO、MgO、Na2O、K2O、Fe2O3、Li2O、TiO2的具体含量值作为实施例,与传统E玻璃、传统R玻璃和改良R玻璃的性能参数进行对比。在性能对比时,选用六个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(4)析晶峰温度,DTA测试过程中对应于玻璃析晶最强峰的温度。一般情况下,该温度越高,表明晶核长大所需能量越多,玻璃的析晶倾向越小。
(5)单丝强度,玻璃纤维原丝单位细度能承受的拉伸力。
(6)气泡数量,其中测定气泡数量的大致方法为:利用专用的模具将每个实施例配合料压制成一样形状的样品,放置于高温显微镜的样品平台,然后按程序升温至设定空间温度1500℃,不保温,玻璃样品随炉冷却至常温;然后,通过偏光显微镜从微观角度观察各个玻璃样品的气泡数量。其中,气泡数量按显微镜成像范围为准。
上述六个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上 的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面给出根据本发明的玻璃纤维组合物的具体实施例。
Figure PCTCN2015094387-appb-000006
并且,重量百分比的比值C1=CaO/MgO为2.13,重量百分比的比值C2=K2O/Na2O为1.49。在实施例一中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000007
实施例二
Figure PCTCN2015094387-appb-000008
并且,重量百分比的比值C1=CaO/MgO为2.14,重量百分比的比值C2=K2O/Na2O为3.41。在实施例二中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000009
Figure PCTCN2015094387-appb-000010
实施例三
Figure PCTCN2015094387-appb-000011
并且,重量百分比的比值C1=CaO/MgO为2.20,重量百分比的比值C2=K2O/Na2O为4.05。在实施例三中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000012
实施例四
Figure PCTCN2015094387-appb-000013
Figure PCTCN2015094387-appb-000014
其中,重量百分比的比值C1=CaO/MgO为2.01,重量百分比的比值C2=K2O/Na2O为5。在实施例四中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000015
实施例五
Figure PCTCN2015094387-appb-000016
其中,重量百分比的比值C1=CaO/MgO为2.01,重量百分比的比值C2=K2O/Na2O为5。在实施例五中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000017
实施例六
Figure PCTCN2015094387-appb-000018
Figure PCTCN2015094387-appb-000019
其中,重量百分比的比值C1=CaO/MgO为2.4,重量百分比的比值C2=K2O/Na2O为2.22。在实施例六中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000020
实施例七
Figure PCTCN2015094387-appb-000021
其中,重量百分比的比值C1=CaO/MgO为2.01,重量百分比的比值C2=K2O/Na2O为6。在实施例七中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000022
实施例八
Figure PCTCN2015094387-appb-000023
其中,重量百分比的比值C1=CaO/MgO为2.3,重量百分比的比值C2=K2O/Na2O为1.2。在实施例八中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000024
实验例九
Figure PCTCN2015094387-appb-000025
其中,重量百分比的比值C1=CaO/MgO为2.4,重量百分比的比值C2=K2O/Na2O为1.11。在实施例九中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000026
Figure PCTCN2015094387-appb-000027
实验例十
Figure PCTCN2015094387-appb-000028
其中,重量百分比的比值C1=CaO/MgO为2.4,重量百分比的比值C2=K2O/Na2O为1.11。在实施例十中测定的六个参数的数值分别是:
Figure PCTCN2015094387-appb-000029
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的上述实施例以及其他实施例与传统E玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示,具体如表1和表2所示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1
Figure PCTCN2015094387-appb-000030
Figure PCTCN2015094387-appb-000031
表2
Figure PCTCN2015094387-appb-000032
Figure PCTCN2015094387-appb-000033
由上述表中的具体数值可知,与传统R玻璃和改良R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有低得多的液相线温度,这有利于降低玻璃的析晶风险、提高纤维的拉丝效率;(二)具有较高的析晶峰温度,这表明玻璃在析晶过程中晶核的形成和长大需要更多的能量,也就是说同等条件下本发明玻璃的析晶风险更小。(三)气泡数量显著降低,这表明玻璃的澄清效果更优。同时,与改良R玻璃相比,本发明所得的玻璃纤维还拥有更高的单丝强度。
由根据本发明的玻璃纤维组合物可制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
综上所述,本发明的一种无硼玻璃纤维组合屋及其玻璃纤维和复合材料,在拥有较低成型温度的基础上,克服了传统高性能玻璃液相线温度偏高、析晶速率偏快,玻璃液表面张力偏大、不易澄清,难于进行大规模高效率生产的问题,显著降低了高性能玻璃的液相线温度和表面张力,同等条件下降低了玻璃的析晶程度和气泡率,同时玻璃纤维具有更优异的机械强度。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
与目前主流的改良R玻璃相比,本发明的玻璃纤维组合物在析晶性能、单丝强度和耐热性能方面取得了突破性的进展,同等条件下玻璃的析晶风险大幅下降、单丝强度和软化点温度明显提高,而且整体技术方案的性价比更高,易于实现大规模工业化生产。

Claims (10)

  1. 一种无硼玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2015094387-appb-100001
    并且,重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.4。
  2. 根据权利要求1所述的无硼玻璃纤维组合物,其特征在于,重量百分比的比值C2=K2O/Na2O的范围为C2大于1且小于等于6。
  3. 根据权利要求1所述的无硼玻璃纤维组合物,其特征在于,重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.3。
  4. 根据权利要求1所述的无硼玻璃纤维组合物,其特征在于,重量百分比的比值C2=K2O/Na2O的范围为1.2-5。
  5. 根据权利要求1所述的无硼玻璃纤维组合物,其特征在于,各组分的含量以重量百分比表示如下:
    Figure PCTCN2015094387-appb-100002
    Figure PCTCN2015094387-appb-100003
    并且,重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.3,重量百分比的比值C2=K2O/Na2O的范围为C2大于1且小于等于6。
  6. 根据权利要求1所述的无硼玻璃纤维组合物,其特征在于,各组分的含量以重量百分比表示如下:
    Figure PCTCN2015094387-appb-100004
    并且,重量百分比的比值C1=CaO/MgO的范围为C1大于2且小于等于2.14,重量百分比的比值C2=K2O/Na2O的范围为1.2-5。
  7. 根据权利要求1或6所述的无硼玻璃纤维组合物,其特征在于,Li2O的含量以重量百分比表示为大于等于0.01%且小于0.1%。
  8. 根据权利要求1或6所述的无硼玻璃纤维组合物,其特征在于,所述无硼玻璃纤维组合物还含有ZrO2和HfO2,ZrO2和HfO2的总含量以重量百分比表示为0.01-2%。
  9. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-8中任一项所述的玻璃纤维组合物制成。
  10. 一种复合材料,其特征在于,所述复合材料包括如权利要求9所述的玻璃纤维。
PCT/CN2015/094387 2015-10-15 2015-11-12 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料 WO2017063247A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112017028001-9A BR112017028001B1 (pt) 2015-10-15 2015-11-12 Composição de fibra de vidro isenta de boro, fibra de vidro e material compósito das mesmas
DK15906129.0T DK3299348T3 (da) 2015-10-15 2015-11-12 Borfri glasfibersammensætning og glasfiber og kompositmateriale deraf
PL15906129T PL3299348T3 (pl) 2015-10-15 2015-11-12 Wolna od boru kompozycja włókna szklanego oraz włókno szklane i materiał kompozytowy z niego
JP2017566342A JP6603733B2 (ja) 2015-10-15 2015-11-12 無ホウ素ガラス繊維組成物及びそのガラス繊維と複合材
ES15906129T ES2871147T3 (es) 2015-10-15 2015-11-12 Composición de fibra de vidrio sin boro, y fibra de vidrio y material compuesto de la misma
CA2990061A CA2990061C (en) 2015-10-15 2015-11-12 Boron-free glass fiber composition, glass fiber and composite material therefrom
KR1020177036437A KR102034945B1 (ko) 2015-10-15 2015-11-12 무붕소유리섬유 조성물 및 그 유리섬유와 복합재료
MX2017016360A MX2017016360A (es) 2015-10-15 2015-11-12 Composiciones de fibra de vidrio libres de boro, fibra de vidrio y material compuesto de la misma.
EP15906129.0A EP3299348B1 (en) 2015-10-15 2015-11-12 Boron-free glass fiber composition, and glass fiber and composite material thereof
US15/851,759 US10287206B2 (en) 2015-10-15 2017-12-22 Boron-free glass fiber composition, glass fiber prepared from the same, and composite material comprising the glass fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510664578.1A CN106587644B (zh) 2015-10-15 2015-10-15 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料
CN201510664578.1 2015-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/851,759 Continuation-In-Part US10287206B2 (en) 2015-10-15 2017-12-22 Boron-free glass fiber composition, glass fiber prepared from the same, and composite material comprising the glass fiber

Publications (1)

Publication Number Publication Date
WO2017063247A1 true WO2017063247A1 (zh) 2017-04-20

Family

ID=58516989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094387 WO2017063247A1 (zh) 2015-10-15 2015-11-12 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (12)

Country Link
US (1) US10287206B2 (zh)
EP (1) EP3299348B1 (zh)
JP (1) JP6603733B2 (zh)
KR (1) KR102034945B1 (zh)
CN (1) CN106587644B (zh)
BR (1) BR112017028001B1 (zh)
CA (1) CA2990061C (zh)
DK (1) DK3299348T3 (zh)
ES (1) ES2871147T3 (zh)
MX (1) MX2017016360A (zh)
PL (1) PL3299348T3 (zh)
WO (1) WO2017063247A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020006064A (es) 2017-12-19 2020-08-24 Ocv Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento.
CN109678350B (zh) * 2018-06-22 2022-03-04 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
MX2021005461A (es) 2018-11-26 2021-06-18 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo de elasticidad mejorado.
US11524918B2 (en) 2018-11-26 2022-12-13 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
CN110606665B (zh) * 2019-09-25 2020-11-17 巨石集团有限公司 一种电子级玻璃纤维组合物及其玻璃纤维和电子布
CN112624620B (zh) * 2021-01-06 2022-04-05 泰山玻璃纤维有限公司 一种低热膨胀系数玻璃纤维
CN112811824A (zh) * 2021-03-12 2021-05-18 山东墨匠新材料科技有限公司 一种高耐碱性玻璃纤维组合物
CN114455844A (zh) * 2021-12-27 2022-05-10 重庆再升科技股份有限公司 一种玻璃微纤维棉及滤纸

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838110A (zh) * 2010-05-19 2010-09-22 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
CN104743888A (zh) * 2014-09-22 2015-07-01 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE50727B1 (en) * 1980-02-27 1986-06-25 Pilkington Brothers Ltd Alkali resistant glass fibres and cementitious products reinforced with such glass fibres
CA1290572C (en) * 1984-12-24 1991-10-15 Richard P. Beaver Porous hollow silica-rich fibers and method of producing same
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US9656903B2 (en) * 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
CN101597140B (zh) * 2009-07-02 2011-01-05 重庆国际复合材料有限公司 一种高强度高模量玻璃纤维
EP2630094B1 (en) * 2010-10-18 2020-07-01 OCV Intellectual Capital, LLC Glass composition for producing high strength and high modulus fibers
KR20190133065A (ko) * 2011-09-09 2019-11-29 피피지 인더스트리즈 오하이오 인코포레이티드 유리 조성물 및 이로부터 제조된 섬유

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838110A (zh) * 2010-05-19 2010-09-22 巨石集团有限公司 一种适用于池窑生产的制备高性能玻璃纤维用组合物
CN104743888A (zh) * 2014-09-22 2015-07-01 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299348A4 *

Also Published As

Publication number Publication date
CA2990061C (en) 2019-06-25
EP3299348A1 (en) 2018-03-28
CN106587644B (zh) 2019-06-18
CA2990061A1 (en) 2017-04-20
EP3299348A4 (en) 2019-01-16
BR112017028001B1 (pt) 2022-03-03
US20180118611A1 (en) 2018-05-03
JP6603733B2 (ja) 2019-11-06
US10287206B2 (en) 2019-05-14
BR112017028001A2 (zh) 2018-08-28
MX2017016360A (es) 2018-04-24
CN106587644A (zh) 2017-04-26
DK3299348T3 (da) 2021-04-06
PL3299348T3 (pl) 2021-08-23
KR20180011787A (ko) 2018-02-02
EP3299348B1 (en) 2021-03-10
KR102034945B1 (ko) 2019-10-21
ES2871147T3 (es) 2021-10-28
JP2018518449A (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2017063247A1 (zh) 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105693100B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2017190405A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045222A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165507A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165506A2 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN107531552B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
WO2016165531A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016169408A1 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016045221A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2015131684A2 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
AU2020239741A1 (en) Glass fiber composition, and glass fiber and composite material thereof
TWI392658B (zh) Glass fiber composition
WO2022006947A1 (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/016360

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177036437

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2990061

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017566342

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017028001

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017028001

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222