WO2022006948A1 - 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种高模量玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2022006948A1
WO2022006948A1 PCT/CN2020/102359 CN2020102359W WO2022006948A1 WO 2022006948 A1 WO2022006948 A1 WO 2022006948A1 CN 2020102359 W CN2020102359 W CN 2020102359W WO 2022006948 A1 WO2022006948 A1 WO 2022006948A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
fiber composition
range
content
weight
Prior art date
Application number
PCT/CN2020/102359
Other languages
English (en)
French (fr)
Inventor
章林
邢文忠
曹国荣
姚忠华
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to CA3123551A priority Critical patent/CA3123551C/en
Priority to MA55848A priority patent/MA55848B1/fr
Priority to JP2021519821A priority patent/JP7317953B2/ja
Priority to US17/293,300 priority patent/US20220306521A1/en
Priority to BR112022003436A priority patent/BR112022003436A2/pt
Priority to KR1020217019457A priority patent/KR102656005B1/ko
Priority to MX2021003743A priority patent/MX2021003743A/es
Priority to EP20859671.8A priority patent/EP3964488A4/en
Priority to AU2020457486A priority patent/AU2020457486B2/en
Publication of WO2022006948A1 publication Critical patent/WO2022006948A1/zh
Priority to ZA2022/02980A priority patent/ZA202202980B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a high-modulus glass fiber composition, in particular to a high-modulus glass fiber composition that can be used as a reinforcing substrate for advanced composite materials, as well as glass fibers and composite materials thereof.
  • High-modulus glass fiber as a reinforcing substrate for advanced composite materials, was initially mainly used in special fields such as aviation, aerospace, and national defense and military industries.
  • high-modulus glass fibers are widely used in civil industries such as large-scale wind blades, high-pressure containers, optical cable strength cores, and automobile manufacturing.
  • civil industries such as large-scale wind blades, high-pressure containers, optical cable strength cores, and automobile manufacturing.
  • large-scale wind blades Taking the field of wind power as an example, with the rapid development of large-scale wind blades, the proportion of high-modulus glass fibers replacing ordinary glass fibers is increasing.
  • the pursuit of better modulus properties and the realization of large-scale production have become an important development direction for high-modulus glass fibers.
  • S-glass is the earliest high-strength and high-modulus glass. Its composition is mainly composed of MgO-Al 2 O 3 -SiO 2 system. ASTM International defines S-glass as a family of glasses mainly composed of oxides of magnesium, aluminum and silicon. , a typical scheme such as the S-2 glass developed in the United States. The weight percent content of SiO 2 and Al 2 O 3 in S-2 glass is up to 90%, and MgO is about 10%. The glass is not easy to melt and clear, and there are many bubbles. The glass forming temperature is as high as 1571°C, and the liquidus temperature is as high as 1470°C.
  • HS series high-strength glass whose main components also include SiO 2 , Al 2 O 3 , MgO, and high content of Li 2 O, B 2 O 3 and Fe 2 O 3 are introduced at the same time.
  • the molding temperature range is 1310-1330°C, and the liquidus temperature range is 1360-1390°C.
  • the temperature of both is much lower than that of S glass, but its molding temperature is lower than the liquidus temperature, and the ⁇ T value is negative, which is not
  • the drawing temperature must be increased, and special leakage plates and nozzles must be used to prevent the glass from devitrification during the drawing process, which causes difficulties in temperature control and is difficult to achieve large-scale kiln production.
  • the total weight percentage of the two due to the introduction of high content of Li 2 O and B 2 O 3 , the total weight percentage of the two generally exceeds 2% or even 3%, and the mechanical properties and corrosion resistance of the glass are negatively affected to a certain extent.
  • the elastic modulus of the HS series glass is comparable to that of the S glass.
  • Japanese Patent JP8231240 discloses a glass fiber composition, which contains 62-67% SiO 2 , 22-27% Al 2 O 3 , 7-15% MgO, 0.1-1.1% CaO, 0.1-1.1% of B 2 O 3. Compared with S glass, the number of bubbles of this composition is significantly improved, but the molding is still very difficult, and the molding temperature exceeds 1460 °C.
  • the problem of excessive production difficulty is generally present, which is specifically manifested as high glass forming temperature, high liquidus temperature, fast crystallization rate, small glass fiber forming range ⁇ T, great difficulty in melting and clarification, and many bubbles. .
  • Most organizations tend to reduce the difficulty of production by sacrificing part of the glass properties, which results in the inability to greatly improve the modulus properties of the above-mentioned glass fibers.
  • the present invention aims to solve the problems described above.
  • the purpose of the present invention is to provide a high-modulus glass fiber composition, which can significantly increase the modulus of the glass fiber, significantly reduce the glass clarification temperature, improve the clarification effect, optimize the frit properties, and improve the cooling effect of the glass fiber, Reduce glass crystallization rate, suitable for large-scale production of high-modulus glass fibers.
  • a high-modulus glass fiber composition contains the following components, and the content of each component is expressed as follows in weight percentage:
  • the glass fiber composition contains the following components, and the content of each component is expressed as follows in weight percentage:
  • the glass fiber composition contains the following components, and the content of each component is expressed as follows in weight percentage:
  • the total content of the above components is greater than or equal to 98%.
  • the weight percentage content range of Y 2 O 3 is further limited to be 10.1-20%.
  • the weight percentage content range of SiO 2 is further limited to be 44-55.9%.
  • weight percentage content range of Al 2 O 3 is further limited to be 15.8-20.4%.
  • the weight percentage content range of MgO is further limited to be 9-15%.
  • the weight percentage content range of CaO is further limited to be 0.5-5.9%.
  • the range of CaO is 2.1 or more.
  • the ratio by weight of C3 Y 2 O 3 /
  • the range of CaO is greater than or equal to 1.9
  • the glass fiber composition contains the following components, and the content of each component is expressed as follows in weight percentage:
  • the glass fiber composition contains the following components, and the content of each component is expressed as follows in weight percentage:
  • the weight percentage content range of CeO 2 is further limited to be 0-2%.
  • ZrO 2 , ZnO, B 2 O 3 , F 2 and SO 3 with a content range of less than 4% by weight are also included.
  • ZrO 2 in the range of 0-0.9% by weight may also be included.
  • the glass fiber composition contains the following components, and the content of each component is expressed as follows in weight percentage:
  • the total content of the above components is greater than or equal to 99.5%.
  • the glass fiber composition may not contain B 2 O 3 .
  • the glass fiber composition may not contain MnO.
  • the glass refining temperature of the glass fiber composition may be less than or equal to 1460°C.
  • a glass fiber made of the above-mentioned glass fiber composition.
  • a composite material comprising the above-mentioned glass fibers.
  • the high modulus glass fiber composition of the present invention by introducing high content of Y 2 O 3 , reasonably configuring the content and ratio of SiO 2 , Al 2 O 3 , Y 2 O 3 , CaO, MgO, and controlling the alkaline earth metal oxide and The content and proportion of alkali metal oxides, control the content range of Al 2 O 3 +MgO and MgO+Y 2 O 3 , use the special complementation and accumulation effect of yttrium ions in the glass structure and the mixing effect of alkaline earth metals to improve magnesium ions Synergistic effect with calcium ion, yttrium ion and magnesium ion, yttrium ion and calcium ion, yttrium ion and aluminum ion, and further control MgO/CaO, Y 2 O 3 /MgO, Y 2 O 3 /CaO and Al 2
  • the ratio of O 3 /Y 2 O 3 makes the glass packing structure compact, and it is difficult to re
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as follows in weight percentage:
  • SiO 2 is the main skeleton of glass forming oxides. Compared with S glass, in order to improve the glass modulus, the present invention significantly reduces the content of silicon oxide on the basis of high content of yttrium oxide.
  • the weight percent content of SiO 2 is limited to 43-58%.
  • the weight percentage content range of SiO 2 may be limited to 44-57%.
  • the weight percentage content range of SiO 2 may be limited to 44-55.9%.
  • the weight percentage content range of SiO 2 may be limited to 45-54.9%. More preferably, the weight percentage content range of SiO 2 may be limited to 45-54%.
  • Al 2 O 3 is also an oxide that forms the skeleton of the glass, and when combined with SiO 2 can play a substantial role in the mechanical properties of the glass. If its content is too low, it will not be able to obtain sufficiently high mechanical properties; if its content is too high, the risk of glass devitrification will be greatly increased.
  • the weight percentage content of Al 2 O 3 is limited to be 15.5-23%.
  • the weight percent content of Al 2 O 3 can be limited to 15.8-21%.
  • the weight percent content of Al 2 O 3 can be limited to 15.8-20.4%.
  • the weight percent content of Al 2 O 3 can be limited to 16.5-19.8%. More preferably, the weight percent content of Al 2 O 3 can be limited to 17-19.6%.
  • the total content of SiO 2 +Al 2 O 3 may also be limited to 65-78%, preferably, the total content of SiO 2 +Al 2 O 3 may be limited to 65-76%.
  • the total content of SiO 2 +Al 2 O 3 can be limited to 66-74.5%. More preferably, the total content of SiO 2 +Al 2 O 3 may be limited to 66-73%.
  • MgO and CaO mainly play the role of adjusting glass viscosity and glass crystallization.
  • the weight percentage content of MgO is limited to 8-18%.
  • the weight percent content of MgO can be limited to 8-16%.
  • the weight percentage content of MgO can be limited to 9-15%.
  • the weight percentage content of MgO can be limited to 9.4-13.5%. More preferably, the weight percent content of MgO can be limited to 9.4-12%.
  • the weight percent content of CaO is limited to 0.1-7.5%.
  • the weight percent content of CaO can be limited to 0.1-6.5%.
  • the weight percentage content of CaO can be limited to 0.5-5.9%.
  • the weight percent content of CaO can be limited to 0.5-4.9%. More preferably, the weight percent content of CaO can be limited to 1-4.5%.
  • the weight percentage content of Al 2 O 3 +MgO is limited to be greater than or equal to 25%.
  • the weight percentage content range of Al 2 O 3 +MgO may be limited to be greater than or equal to 26%.
  • the weight percent content of Al 2 O 3 +MgO may be limited to 26-35%. More preferably, the weight percentage content range of Al 2 O 3 +MgO can be limited to 26.5-32%.
  • Y 2 O 3 is an important rare earth oxide, and Y 3+ acts as an extra-network ion. It has high coordination number, high field strength, high charge, and strong accumulation ability, which can improve the stability of the glass structure and improve the moldability of the glass. volume and intensity.
  • the weight percent content of Y 2 O 3 is limited to be 7.1-22%.
  • the weight percent content of Y 2 O 3 can be limited to 8.1-22%.
  • the weight percent content of Y 2 O 3 can be limited to 10.1-20%.
  • the weight percent content of Y 2 O 3 can be limited to 11.4-20%.
  • the weight percent content of Y 2 O 3 can be limited to 12.3-20%.
  • the weight percent content of Y 2 O 3 can be limited to 13.1-20%. More preferably, the weight percentage content range of Y 2 O 3 can be limited to 14.6-20%.
  • the weight percentage content of Y 2 O 3 +MgO is limited to be greater than or equal to 16.5%.
  • the weight percentage content range of Y 2 O 3 +MgO can be limited to be greater than or equal to 17.5%.
  • the weight percentage content range of Y 2 O 3 +MgO can be limited to 17.5-34%. More preferably, the weight percentage content range of Y 2 O 3 +MgO can be limited to be 18.1-33%.
  • the present invention introduces a high content of Y 2 O 3 and reasonable control of the ratio between them can effectively prevent the movement and arrangement of other glass ions, achieve the purpose of significantly reducing the crystallization tendency of the glass, and can also effectively adjust the frit properties and improve the cooling effect of the glass.
  • the crystal phase contained after crystallization enhances the competition between crystals.
  • the main crystal phases include cordierite (Mg 2 Al 4 Si 5 O 8 ), anorthite (CaAl 2 Si 2 O 8 ), diopside (CaMgSi 2 ) O 6 ) and its mixed crystals, thereby effectively inhibiting the crystallization tendency of glass.
  • the weight percentage content range of CaO+MgO can also be limited to 9-20%.
  • the weight percentage content range of CaO+MgO can be limited to 9.5-18%.
  • the weight percentage content range of CaO+MgO can be limited to 9.5-17%. More preferably, the weight percentage content range of CaO+MgO can be limited to 10-16%.
  • the weight percent content of Na 2 O is limited to be 0.01-2%.
  • the content range of Na 2 O by weight can be limited to 0.01-1.5%.
  • the weight percent content of Na 2 O can be limited to 0.05-0.9%. More preferably, the content range of Na 2 O by weight can be limited to 0.05-0.45%.
  • the weight percentage content of K 2 O is limited to be 0-1.5%.
  • the weight percent content of K 2 O can be limited to 0-1%. More preferably, the content range of K 2 O by weight can be limited to 0-0.5%.
  • the weight percent content of Li 2 O is limited to be 0-0.9%.
  • the weight percent content of Li 2 O can be limited to 0-0.6%.
  • the content range of Li 2 O by weight can be limited to 0-0.3%.
  • the glass fiber compositions of the invention may be free of Li 2 O.
  • the weight percentage content range of Na 2 O+K 2 O+Li 2 O can also be limited to be 0.01-1.4%.
  • the weight percent content of Na 2 O+K 2 O+Li 2 O can be limited to 0.05-0.9%.
  • the weight percentage content range of Na 2 O+K 2 O can also be limited to 0.01-1.2%.
  • the weight percent content of Na 2 O+K 2 O can be limited to 0.05-0.7%.
  • TiO 2 can reduce the viscosity of glass at high temperature, and titanium ions and yttrium ions have a certain synergistic effect, which can improve the stacking effect of glass and improve the mechanical properties of glass.
  • the weight percentage content of TiO 2 is limited to be 0.01-5%.
  • the weight percentage content of TiO 2 can be limited in the range of 0.01-3%.
  • the weight percentage content of TiO 2 can be limited in the range of 0.05-1.5%. More preferably, the weight percent content of TiO 2 can be limited to 0.05-0.9%.
  • Fe 2 O 3 is beneficial to the melting of glass and can also improve the crystallization properties of glass. However, due to the coloring effect of iron ions, the content should not be too much.
  • the weight percent content of Fe 2 O 3 is limited to be 0.01-1.5%.
  • the weight percent content of Fe 2 O 3 can be limited to 0.01-1%. More preferably, the weight percent content of Fe 2 O 3 can be limited in the range of 0.05-0.8%.
  • the weight percentage content of SrO is limited to be 0-4%.
  • the weight percent content of SrO can be limited to 0-2%.
  • the weight percent content of SrO can be limited to 0-1%. More preferably, the weight percent content of SrO can be limited to 0-0.5%.
  • the glass fiber composition of the present invention may be free of SrO.
  • La 2 O 3 can reduce the viscosity of the glass, improve the mechanical properties of the glass, and has a certain synergistic effect with yttrium ions, which can further reduce the crystallization tendency of the glass.
  • CeO 2 can improve the crystallization tendency and clarifying effect of glass.
  • the weight percentage content of La 2 O 3 +CeO 2 is limited to be 0-5%.
  • the weight percentage content range of La 2 O 3 +CeO 2 can be limited to 0-3%. More preferably, the weight percentage content range of La 2 O 3 +CeO 2 can be limited to 0-1.5%.
  • the weight percentage content range of La 2 O 3 can be limited to 0-3%. Preferably, the weight percentage content range of La 2 O 3 can be limited to 0-1.5%.
  • the glass fiber composition according to the present invention may contain La 2 O 3.
  • the content range of CeO 2 by weight can be limited to 0-2%. Preferably, the content range of CeO 2 by weight can be limited to 0-0.6%.
  • the glass fiber composition according to the present invention may contain CeO 2.
  • the glass fiber composition of the present invention may also contain a small amount of other components, the total content of which is less than or equal to 4% by weight.
  • the glass fiber composition of the present invention may also contain one or more of ZrO 2 , ZnO, B 2 O 3 , F 2 and SO 3 in a content range of less than 4% by weight. Further, one or more of ZrO 2 , ZnO, B 2 O 3 , F 2 and SO 3 may also be included in a content range of less than 2% by weight.
  • the glass fiber composition of the present invention may also contain one or more of Sm 2 O 3 , Sc 2 O 3 , Nd 2 O 3 , Eu 2 O 3 and Gd 2 O 3 in a content range of less than 4% by weight. variety.
  • the glass fiber composition of the present invention may further comprise one or more of Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Tb 2 O 3 and Lu 2 O 3 in a content range of less than 2% by weight. variety.
  • the glass fiber composition of the present invention may also contain one or both of Nb 2 O 5 and Ta 2 O 5 in a content range of less than 2% by weight.
  • the glass fiber composition of the present invention may also contain ZrO 2 in a range of 0-2.4% by weight. Further, it can also contain ZrO 2 in the range of 0-0.9% by weight. Further, it can also contain ZrO 2 in the range of 0-0.3% by weight. In another embodiment, the glass fiber composition according to the present invention may contain ZrO 2.
  • the glass fiber composition of the present invention may also contain B 2 O 3 in a weight percentage range of 0-2%. In another embodiment, the glass fiber composition according to the present invention may contain B 2 O 3.
  • the glass fiber composition of the present invention may also contain F 2 in a weight percentage range of 0-1%. Further, it can also contain F 2 in a weight percentage range of 0-0.5%. Further, the glass fiber composition of the present invention may also contain SO 3 in a content range of 0-0.5% by weight.
  • the total content by weight of other components may be less than or equal to 2%. Further, the total content by weight of other components may be less than or equal to 1%. Further, the total content by weight of other components may be less than or equal to 0.5%.
  • the glass refining temperature of the glass fiber composition may be less than or equal to 1485°C. Further, the glass refining temperature of the glass fiber composition may be less than or equal to 1460°C. Further, the glass refining temperature of the glass fiber composition may be less than or equal to 1445°C.
  • the modulus of the glass fiber may be greater than or equal to 95GPa. Further, the modulus of the glass fiber can be 97-115GPa.
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the weight percent ratio C3 Y 2 O 3 /CaO The range is greater than or equal to 2.9.
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the high-modulus glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the basic idea of the invention is that the glass fiber content of each component in the composition expressed as weight percentages: SiO 2 is 43-58%, Al 2 O 3 is 15.5-23%, MgO is 8-18%, Al 2 O 3 +MgO ⁇ 25%, CaO 0.1-7.5%, Y 2 O 3 7.1-22%, MgO+Y 2 O 3 ⁇ 16.5%, TiO 2 0.01-5%, Fe 2 O 3 0.01-1.5 %, Na 2 O is 0.01-2%, K 2 O is 0-1.5%, Li 2 O is 0-0.9%, SrO of 0-4%, La 2 O 3 + CeO 2 0 to 5%.
  • the composition can significantly increase the modulus of the glass fiber, significantly reduce the glass clarification temperature, improve the clarification effect, optimize the frit properties, improve the cooling effect of the glass fiber, reduce the glass crystallization rate, and is suitable for large-scale production of high-modulus glass fiber.
  • the forming temperature which corresponds to the temperature of the glass melt at a viscosity of 10 3 poise, can characterize the typical glass fiber drawing temperature.
  • the liquidus temperature corresponds to the temperature at which crystal nuclei begin to form when the glass melt is cooled, that is, the upper limit temperature of glass crystallization.
  • the clarification temperature which corresponds to the temperature of the glass melt at a viscosity of 10 2 poise, can characterize the relative difficulty of clarification and defoaming of the glass liquid. Generally speaking, if the clarification temperature is lower, the clarification and foaming efficiency of the glass liquid will be higher at the same temperature.
  • ⁇ T value the difference between the forming temperature and the liquidus temperature, represents the temperature range of wire drawing forming.
  • ⁇ L value the difference between the clarification temperature and the molding temperature, reflects the length of the molten glass, and can characterize the difficulty of cooling the molten glass during the glass fiber drawing process. Generally speaking, if the ⁇ L value is small, the molten glass is easier to cool under the same drawing conditions, which is conducive to the efficient drawing of glass fibers.
  • Elastic modulus which characterizes the ability of glass to resist elastic deformation.
  • the elastic modulus of glass block is tested according to ASTM E1876 standard, which can characterize the modulus of glass fiber.
  • Devitrification area ratio wherein the approximate method for determining the crystallization area ratio is: cut the glass block appropriately according to the size of the porcelain boat groove, put the cut glass strip sample into the porcelain boat, and place it in a gradient furnace after pretreatment. Crystallization was carried out, and after holding for 5 hours, the porcelain boat with the glass sample was taken out from the gradient furnace, and the air was cooled to normal temperature. Then, in the temperature range of 1050-1150°C, the number and size of crystals on the surface of each glass sample were observed from a microscopic angle through an optical microscope, and the relative crystallizing area ratio was calculated based on S glass. The larger the crystallization area ratio, the greater the glass crystallization tendency and the faster the crystallization rate.
  • Bubble content wherein the approximate method for determining the air bubble content is: use a special mold to press the batches of each example into a sample of the same shape, place it on the sample platform of a high-temperature microscope, and then program the temperature to set The temperature was 1500 °C without heat preservation, and the glass samples were cooled to room temperature with the furnace; then, the number of bubbles in each glass sample was observed from a microscopic angle through an optical microscope, and the relative bubble content was calculated based on S glass. The larger the bubble content, the more difficult it is to clarify the glass, which is not conducive to ensuring the quality of the glass liquid. Among them, the number of bubbles is subject to the imaging range of the microscope.
  • each component can be obtained from appropriate raw materials, the various raw materials are mixed in proportion to make each component reach the final expected weight percentage, the mixed batch is melted and clarified, and then the glass liquid is The glass fiber is pulled out through the nozzle on the bushing plate to form the glass fiber, and the glass fiber is drawn and wound on the rotating head of the drawing machine to form the strand cake or yarn group.
  • these glass fibers can be further processed by conventional methods to meet the desired requirements.
  • the comparison of the performance parameters of the examples of the glass fiber composition of the present invention with S glass, conventional R glass and modified R glass is given in the following further by way of a list.
  • the content of the glass fiber composition is expressed in weight percentage. It should be noted that the total content of the components in the examples is slightly less than 100%, and it can be understood that the residual amount is a trace amount of impurities or a small amount of components that cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages: (1) having a much higher elastic modulus; (2) having a much smaller clarification temperature and bubbles The glass of the present invention is easier to clarify and has a better bubble removal effect; (3) it has much lower forming temperature, liquidus temperature and crystallizing area ratio.
  • the glass fiber composition of the present invention has the following advantages: (1) it has a much higher elastic modulus; (2) it has a much smaller refining temperature and bubble content, and the glass of the present invention is easier to clarify , the debubbling effect is better; (3) With a much smaller ⁇ L value, the glass fiber is easier to cool, which is conducive to improving the drawing efficiency of the fiber; (4) It has a much lower molding temperature, liquidus temperature and crystallizing area. Rate.
  • the glass fiber composition of the present invention has the following advantages: (1) it has a much higher elastic modulus; (2) it has a lower refining temperature and bubble content, and the glass of the present invention is easier to clarify, The bubble removal effect is better; (3) With a much smaller ⁇ L value, the glass fiber is easier to cool, which is beneficial to improve the drawing efficiency of the fiber; (4) It has a lower crystallizing area ratio, which shows that the glass of the present invention is crystallized. The rate is small, which is beneficial to reduce the risk of crystallization of the glass.
  • the glass fiber composition of the present invention has achieved breakthrough progress in the aspects of glass modulus, glass clarification, glass fiber cooling and crystallization rate.
  • the quantity is small, the glass fiber cooling effect is good, and the overall technical solution is excellent.
  • Glass fibers having the above-mentioned excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce composite materials with excellent properties, eg, glass fiber reinforced substrates.
  • the high-modulus glass fiber composition provided by the present invention can not only significantly increase the modulus of the glass fiber, but also can significantly reduce the glass clarification temperature, improve the clarification effect, optimize the frit properties, improve the cooling effect of the glass fiber, and reduce the glass crystallization. It is suitable for large-scale production of high-modulus glass fibers.
  • the glass fiber composition of the present invention has achieved breakthrough progress in the aspects of glass modulus, glass clarification, glass fiber cooling and crystallization rate, and the modulus of the glass is greatly improved under the same conditions, The clarification temperature is greatly reduced, the number of bubbles is less, the cooling effect of glass fiber is good, and the overall technical solution is excellent. Therefore, the present invention has good industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

一种高模量玻璃纤维组合物及其玻璃纤维和复合材料,其中,玻璃纤维组合物各组分的含量以重量百分比表示如下:SiO2为43-58%,Al2O3为15.5-23%,MgO为8-18%,Al2O3+MgO≥25%,CaO为0.1-7.5%,Y2O3为7.1-22%,MgO+Y2O3≥16.5%,TiO2为0.01-5%,Fe2O3为0.01-1.5%,Na2O为0.01-2%,K2O为0-1.5%,Li2O为0-0.9%,SrO为0-4%,La2O3+CeO2为0-5%。

Description

一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2020年7月10日提交中国专利局、申请号为202010665076.1、发明名称为“一种高模量玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高模量玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高模量玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
高模量玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、国防军工等特殊领域。随着科技进步及经济发展,高模量玻璃纤维被广泛应用于大型风力叶片、高压容器、光缆加强芯、汽车制造等民用工业领域。以风电领域为例,伴随大型风力叶片的快速发展,高模量玻璃纤维替代普通玻璃纤维的比例越来越高。目前,追求更优异的模量性能并实现规模化生产,成为高模量玻璃纤维的重要发展方向。
S玻璃是最早的高强度高模量玻璃,其成分以MgO-Al 2O 3-SiO 2系统为主体,ASTM国际组织将S玻璃定义为一族主要由镁、铝、硅的氧化物组成的玻璃,典型方案如美国开发的S-2玻璃。S-2玻璃中SiO 2和Al 2O 3的重量百分比含量达90%,MgO约为10%,玻璃不易熔化澄清、气泡多,玻璃成型温度高达1571℃,液相线温度高达1470℃,同时玻璃析晶速率快,使得S-2玻璃纤维的生产难度过大,无法实现大规模池窑生产,甚至难于进行一步法生产,导致S-2玻璃纤维的生产规模小、效率低、价格高,无法实现大规模工业应用。
对标S玻璃,我国开发了HS系列高强度玻璃,其主要成分也包括SiO 2、Al 2O 3、MgO,同时引入高含量的Li 2O、B 2O 3和Fe 2O 3,它的成型温度范围在1310-1330℃,液相线温度范围在1360-1390℃,两者的温度均比S玻璃低得多,但其成型温度比液相线温度低,ΔT值为负,这不利于玻璃纤维的高效拉制,必须提高拉丝温度,采用特殊的漏板、漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模池窑生产。同时,由于引入高含量的Li 2O和B 2O 3,两者的重量百分比总量一般超过2%甚至3%,玻璃机械性能和耐腐蚀性能受到一定的负面影响。而且,HS系列玻璃的弹性模量与S玻璃相当。
日本专利JP8231240公开了一种玻璃纤维组合物,按重量百分比含量计,它含有62-67%的SiO 2,22-27%的Al 2O 3,7-15%的MgO,0.1-1.1%的CaO,0.1-1.1%的B 2O 3。相对于S玻璃,该组合物的气泡数量明显改善,但是成型仍然非常困难,成型温度超过1460℃。
上述现有技术中,普遍存在生产难度过大的问题,具体表现为玻璃的成型温度高,液相线温度高、析晶速率快,玻纤成型范围ΔT小,熔制澄清难度大、气泡多。大部分机构往往以牺牲部分玻璃性能的方式来降低生产难度,这造成上述玻璃纤维的模量性能无法大幅提升。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种高模量玻璃纤维组合物,该组合物能显著提高玻璃纤维的模量,显著降低玻璃澄清温度、改善澄清效果,优化玻璃料性、改善玻璃纤维的冷却效果,降低玻璃析晶速率,适合用于规模化生产高模量玻璃纤维。
根据本发明的一个方面,提供一种高模量玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000001
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000002
Figure PCTCN2020102359-appb-000003
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000004
并且,上述组分的合计含量大于等于98%。
其中,进一步限定重量百分比的比值C1=MgO/CaO的范围为大于等于1.7。
其中,进一步限定重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
其中,进一步限定重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于1.9。
其中,进一步限定重量百分比的比值C4=Al 2O 3/Y 2O 3的范围为1-2.5。
其中,进一步限定Y 2O 3的重量百分比含量范围为10.1-20%。
其中,进一步限定SiO 2的重量百分比含量范围为44-55.9%。
其中,进一步限定Al 2O 3的重量百分比含量范围为15.8-20.4%。
其中,进一步限定MgO的重量百分比含量范围为9-15%。
其中,进一步限定CaO的重量百分比含量范围为0.5-5.9%。
其中,进一步限定重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
其中,进一步限定重量百分比的比值C1=MgO/CaO的范围为大于等于2.0,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.9。
其中,进一步限定重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.1。
其中,进一步限定重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.1。
其中,进一步限定重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于1.9,重量百分比的比值C4=Al 2O 3/Y 2O 3的范围为1-2.1。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000005
Figure PCTCN2020102359-appb-000006
并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000007
并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
其中,进一步限定CeO 2的重量百分比含量范围为0-2%。
其中,还包含重量百分比含量范围小于4%的ZrO 2、ZnO、B 2O 3、F 2和SO 3中的一种或多种。
其中,还可以包含重量百分比含量范围为0-0.9%的ZrO 2
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000008
并且,上述组分的合计含量大于等于99.5%。
其中,所述玻璃纤维组合物中可以不含B 2O 3
其中,所述玻璃纤维组合物中可以不含MnO。
其中,所述玻璃纤维组合物的玻璃澄清温度可以小于等于1460℃。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的第三方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的高模量玻璃纤维组合物,通过引入高含量Y 2O 3,合理配置SiO 2、Al 2O 3、Y 2O 3、CaO、MgO的含量及比例,控制碱土金属氧化物和碱金属氧化物的含量及比例,控制Al 2O 3+MgO和MgO+Y 2O 3的含量范围,利用钇离子在玻璃结构中特殊的补位和积聚作用以及碱土金属混合效应,提升镁离子与钙离子、钇离子与镁离子、钇离子与钙离子、钇离子与铝离子之间的协同效应,并进一步控制MgO/CaO、Y 2O 3/MgO、Y 2O 3/CaO和Al 2O 3/Y 2O 3的比值,使玻璃堆积结构紧密,析晶过程中离子重组排列难度大,从而能显著提高玻璃模量,降低玻 璃析晶速率,同时能显著降低玻璃澄清温度、改善澄清效果,还能优化玻璃料性、改善玻纤的冷却效果。
具体来说,根据本发明的高模量玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000009
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO 2是形成玻璃骨架的主要氧化物。与S玻璃相比,为了提升玻璃模量,本发明在高含量氧化钇的基础上显著降低了氧化硅含量。本发明的玻璃纤维组合物中,限定SiO 2的重量百分比含量范围为43-58%。优选地,SiO 2的重量百分比含量范围可以限定为44-57%。优选地,SiO 2的重量百分比含量范围可以限定为44-55.9%。优选地,SiO 2的重量百分比含量范围可以限定为45-54.9%。更优选地,SiO 2的重量百分比含量范围可以限定为45-54%。
Al 2O 3也是形成玻璃骨架的氧化物,与SiO 2结合时可对玻璃的机械性能起到实质性作用。若其含量太低会无法获得足够高的机械性能;若其含量太高容易大幅增加玻璃析晶风险。本发明的玻璃纤维组合物中,限定Al 2O 3的重量百分比含量范围为15.5-23%。优选地,可以限定Al 2O 3的重量百分比含量范围为15.8-21%。优选地,可以限定Al 2O 3的重量百分比含量范围为15.8-20.4%。优选地,可以限定Al 2O 3的重量百分比含量范围为16.5-19.8%。更优选地, 可以限定Al 2O 3的重量百分比含量范围为17-19.6%。
为了获得足够高的机械性能并降低成型温度。进一步地,还可以限定SiO 2+Al 2O 3合计含量为65-78%,优选地,可以限定SiO 2+Al 2O 3合计含量为65-76%。优选地,可以限定SiO 2+Al 2O 3合计含量为66-74.5%。更优选地,可以限定SiO 2+Al 2O 3合计含量为66-73%。
本发明中,MgO和CaO主要起调节玻璃粘度和玻璃析晶的作用。本发明的玻璃纤维组合物中,限定MgO的重量百分比含量范围为8-18%。优选地,可以限定MgO的重量百分比含量范围为8-16%。优选地,可以限定MgO的重量百分比含量范围为9-15%。优选地,可以限定MgO的重量百分比含量范围为9.4-13.5%。更优选地,可以限定MgO的重量百分比含量范围为9.4-12%。本发明的玻璃纤维组合物中,限定CaO的重量百分比含量范围为0.1-7.5%。优选地,可以限定CaO的重量百分比含量范围为0.1-6.5%。优选地,可以限定CaO的重量百分比含量范围为0.5-5.9%。优选地,可以限定CaO的重量百分比含量范围为0.5-4.9%。更优选地,可以限定CaO的重量百分比含量范围为1-4.5%。
本发明的玻璃纤维组合物中,限定Al 2O 3+MgO的重量百分比含量范围为大于等于25%。优选地,可以限定Al 2O 3+MgO的重量百分比含量范围为大于等于26%。优选地,可以限定Al 2O 3+MgO的重量百分比含量范围为26-35%。更优选地,可以限定Al 2O 3+MgO的重量百分比含量范围为26.5-32%。
Y 2O 3是一种重要稀土氧化物,Y 3+作为网络外离子,它的配位数高、场强高、电荷高,积聚能力强,能提升玻璃结构的稳定性,提高玻璃的模量和强度。本发明的玻璃纤维组合物中,限定Y 2O 3的重量百分比含量范围为7.1-22%。优选地,可以限定Y 2O 3的重量百分比含量范围为8.1-22%。优选地,可以限定Y 2O 3的重量百分比含量范围为10.1-20%。优选地,可以限定Y 2O 3的重量百分比含量范围为11.4-20%。优选地,可以限定Y 2O 3的重量百分比含量范围为12.3-20%。优选地,可以限定Y 2O 3的重量百分比含量范围为13.1-20%。更优选地,可以限定Y 2O 3的重量百分比含量范围为14.6-20%。
本发明的玻璃纤维组合物中,限定Y 2O 3+MgO的重量百分比含量范围为大于等于16.5%。优选地,可以限定Y 2O 3+MgO的重量百分比含量范围为大于等于17.5%。优选地,可以限定Y 2O 3+MgO的重量百分比含量范围为17.5-34%。更优选地,可以限定Y 2O 3+MgO的重量百分比含量范围为18.1-33%。
由于Y 3+的离子半径(0.09nm)与Ca 2+(0.1nm)的离子半径相当,两者的填充替代性好,且明显大于Al 3+(0.0535nm)和Mg 2+(0.072nm)的离子半径;同时,考虑Y 3+和Mg 2+、Ca 2+离子之 间的场强差异,以及Ca 2+和Mg 2+离子之间的混合碱土效应,本发明中引入高含量Y 2O 3并合理控制它们间的比值能有效阻止其他玻璃离子的移动排列,达到显著降低玻璃析晶倾向的目的,而且还能有效调节玻璃料性、改善玻璃的冷却效果。进一步地,合理控制MgO/CaO、Y 2O 3/MgO、Y 2O 3/CaO和Al 2O 3/Y 2O 3的比例,不仅能够获得更优异的结构堆积效果,还能有效控制玻璃析晶后所包含的晶相,增强晶体间的相互竞争,主要晶相包括堇青石(Mg 2Al 4Si 5O 8)钙长石(CaAl 2Si 2O 8)、透辉石(CaMgSi 2O 6)及其混合结晶,从而有效抑制玻璃的析晶倾向。
进一步地,还可以限定C1=MgO/CaO的重量百分比比值范围为大于等于1.7。优选地,可以限定C1=MgO/CaO的重量百分比比值范围为大于等于2.0。优选地,可以限定C1=MgO/CaO的重量百分比比值范围为大于等于2.3。更优选地,可以限定C1=MgO/CaO的重量百分比比值范围为大于等于2.5。
进一步地,还可以限定C2=Y 2O 3/MgO的重量百分比的比值范围为大于等于0.8。优选地,可以限定C2=Y 2O 3/MgO的重量百分比的比值范围为大于等于0.9。优选地,可以限定C2=Y 2O 3/MgO的重量百分比的比值范围为大于等于1.0。更优选地,可以限定C2=Y 2O 3/MgO的重量百分比的比值范围为大于等于1.1。
进一步地,还可以限定C3=Y 2O 3/CaO的重量百分比含量范围为大于等于1.9。优选地,可以限定C3=Y 2O 3/CaO的重量百分比含量范围为大于等于2.1。优选地,可以限定C3=Y 2O 3/CaO的重量百分比含量范围为大于等于2.3。更优选地,可以限定C3=Y 2O 3/CaO的重量百分比含量范围为大于等于2.9。
进一步地,还可以限定C4=Al 2O 3/Y 2O 3的重量百分比含量范围为1-2.5。优选地,可以限定C4=Al 2O 3/Y 2O 3的重量百分比含量范围为1-2.1。优选地,可以限定C4=Al 2O 3/Y 2O 3的重量百分比含量范围为1-2。更优选地,可以限定C4=Al 2O 3/Y 2O 3的重量百分比含量范围为1.2-2。
进一步地,还可以限定CaO+MgO的重量百分比含量范围为9-20%。优选地,可以限定CaO+MgO的重量百分比含量范围为9.5-18%。优选地,可以限定CaO+MgO的重量百分比含量范围为9.5-17%。更优选地,可以限定CaO+MgO的重量百分比含量范围为10-16%。
Na 2O和K 2O均能降低玻璃粘度,是良好的助熔剂。与Na 2O和K 2O相比,Li 2O能显著降低玻璃粘度,改善玻璃熔制性能,且有利于提高玻璃机械性能。但是,由于原料成本过高,且碱金属离子过多会影响玻璃结构的稳定性,对玻璃耐腐蚀性能造成显著的负面影响,故引入量不宜多。本发明的玻璃纤维组合物中,限定Na 2O的重量百分比含量范围为0.01-2%。优选地,可以限定Na 2O的重量百分比含量范围为0.01-1.5%。优选地,可以限定Na 2O的重量 百分比含量范围为0.05-0.9%。更优选地,可以限定Na 2O的重量百分比含量范围为0.05-0.45%。
本发明的玻璃纤维组合物中,限定K 2O的重量百分比含量范围为0-1.5%。优选地,可以限定K 2O的重量百分比含量范围为0-1%。更优选地,可以限定K 2O的重量百分比含量范围为0-0.5%。
本发明的玻璃纤维组合物中,限定Li 2O的重量百分比含量范围为0-0.9%。优选地,可以限定Li 2O的重量百分比含量范围为0-0.6%。更优选地,可以限定Li 2O的重量百分比含量范围为0-0.3%。在另一实施方案中,本发明的玻璃纤维组合物中可以不含Li 2O。
进一步地,还可以限定Na 2O+K 2O+Li 2O的重量百分比含量范围为0.01-1.4%。优选地,可以限定Na 2O+K 2O+Li 2O的重量百分比含量范围为0.05-0.9%。进一步地,还可以限定Na 2O+K 2O的重量百分比含量范围为0.01-1.2%。优选地,可以限定Na 2O+K 2O的重量百分比含量范围为0.05-0.7%。
TiO 2可以降低高温时的玻璃粘度,而且钛离子与钇离子有一定协同作用,可以提升玻璃的堆积效果,改善玻璃的机械性能。本发明的玻璃纤维组合物中,限定TiO 2的重量百分比含量范围为0.01-5%。优选地,可以限定TiO 2的重量百分比含量范围为0.01-3%。优选地,可以限定TiO 2的重量百分比含量范围为0.05-1.5%。更优选地,可以限定TiO 2的重量百分比含量范围为0.05-0.9%。
Fe 2O 3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子具有着色作用,故含量不宜多。本发明的玻璃纤维组合物中,限定Fe 2O 3的重量百分比含量范围为0.01-1.5%。优选地,可以限定Fe 2O 3的重量百分比含量范围为0.01-1%。更优选地,可以限定Fe 2O 3的重量百分比含量范围为0.05-0.8%。
SrO能降低玻璃粘度,且与钙离子、镁离子具有碱土金属离子协同效应,可以进一步降低玻璃析晶倾向。本发明的玻璃纤维组合物中,限定SrO的重量百分比含量范围为0-4%。优选地,可以限定SrO的重量百分比含量范围为0-2%。优选地,可以限定SrO的重量百分比含量范围为0-1%。更优选地,可以限定SrO的重量百分比含量范围为0-0.5%。在另一实施方案中,本发明的玻璃纤维组合物中可以不含SrO。
La 2O 3能降低玻璃粘度、提高玻璃机械性能,且与钇离子具有一定的协同效应,可以进一步降低玻璃的析晶倾向。CeO 2能改善玻璃的析晶倾向和澄清效果。本发明的玻璃纤维组合物中,限定La 2O 3+CeO 2的重量百分比含量范围为0-5%。优选地,可以限定La 2O 3+CeO 2的重量百分比含量范围为0-3%。更优选地,可以限定La 2O 3+CeO 2的重量百分比含量范围为0-1.5%。
进一步地,可以限定La 2O 3的重量百分比含量范围为0-3%。优选地,可以限定La 2O 3的重量百分比含量范围为0-1.5%。在另一实施方案中,本发明的玻璃纤维组合物中可以不含La 2O 3。进一步地,可以限定CeO 2的重量百分比含量范围为0-2%。优选地,可以限定CeO 2的重量百分比含量范围为0-0.6%。在另一实施方案中,本发明的玻璃纤维组合物中可以不含CeO 2
此外,本发明的玻璃纤维组合物中还可以含有少量其他组分,重量百分比的合计含量小于等于4%。
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围小于4%的ZrO 2、ZnO、B 2O 3、F 2和SO 3的一种或多种。进一步地,还可以包含重量百分比含量范围小于2%的ZrO 2、ZnO、B 2O 3、F 2和SO 3的一种或多种。
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围小于4%的Sm 2O 3、Sc 2O 3、Nd 2O 3、Eu 2O 3和Gd 2O 3的一种或多种。
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围小于2%的Ho 2O 3、Er 2O 3、Tm 2O 3、Tb 2O 3和Lu 2O 3的一种或多种。
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围小于2%的Nb 2O 5和Ta 2O 5的一种或两种。
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围0-2.4%的ZrO 2。进一步地,还可以包含重量百分比含量范围0-0.9%的ZrO 2。进一步地,还可以包含重量百分比含量范围0-0.3%的ZrO 2。在另一实施方案中,本发明的玻璃纤维组合物中可以不含ZrO 2
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围为0-2%的B 2O 3。在另一实施方案中,本发明的玻璃纤维组合物中可以不含B 2O 3
进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围为0-1%的F 2。进一步地,还可以包含重量百分比含量范围为0-0.5%的F 2。进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围为0-0.5%的SO 3
进一步地,其他组分的重量百分比的合计含量可以小于等于2%。进一步地,其他组分的重量百分比的合计含量可以小于等于1%。进一步地,其他组分的重量百分比的合计含量可以小于等于0.5%。
进一步地,所述玻璃纤维组合物的玻璃澄清温度可以小于等于1485℃。进一步地,所述玻璃纤维组合物的玻璃澄清温度可以小于等于1460℃。进一步地,所述玻璃纤维组合物的玻 璃澄清温度可以小于等于1445℃。
进一步地,所述玻璃纤维的模量可以大于等于95GPa。进一步地,所述玻璃纤维的模量可以在97-115GPa。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果将通过实施例给出具体实验数据进行说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000010
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
优选示例二
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000011
并且,重量百分比的比值C1=MgO/CaO的范围为大于等于2.0,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.9。
优选示例三
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000012
Figure PCTCN2020102359-appb-000013
优选示例四
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000014
并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7。
优选示例五
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000015
Figure PCTCN2020102359-appb-000016
并且,上述组分的合计含量大于等于98%,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.1。
优选示例六
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000017
并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.9。
优选示例七
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000018
并且,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.9。
优选示例八
根据本发明的高模量玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2020102359-appb-000019
Figure PCTCN2020102359-appb-000020
并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C4=Al 2O 3/Y 2O 3的范围为1-2。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO 2为43-58%,Al 2O 3为15.5-23%,MgO为8-18%,Al 2O 3+MgO≥25%,CaO为0.1-7.5%,Y 2O 3为7.1-22%,MgO+Y 2O 3≥16.5%,TiO 2为0.01-5%,Fe 2O 3为0.01-1.5%,Na 2O为0.01-2%,K 2O为0-1.5%,Li 2O为0-0.9%,SrO为0-4%,La 2O 3+CeO 2为0-5%。该组合物能显著提高玻璃纤维的模量,显著降低玻璃澄清温度、改善澄清效果,优化玻璃料性、改善玻璃纤维的冷却效果,降低玻璃析晶速率,适合用于规模化生产高模量玻璃纤维。
选取本发明的玻璃纤维组合物中SiO 2、Al 2O 3、MgO、CaO、Y 2O 3、TiO 2、Fe 2O 3、Na 2O、K 2O、Li 2O、SrO、La 2O 3、CeO 2、ZrO 2等具体含量值作为实施例,与B1-专利WO2016165506A2的改良R玻璃、B2-传统R玻璃和B3-S玻璃的性能参数进行对比。对比时,选用八个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为10 3泊时的温度,可以表征典型的玻纤拉丝温 度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)澄清温度,对应于玻璃熔体在粘度为10 2泊时的温度,可以表征玻璃液澄清排泡的相对难度。一般来说,若澄清温度较小,相同温度下玻璃液的澄清、排泡效率更高。
(4)ΔT值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(5)ΔL值,澄清温度与成型温度之差,反映玻璃液的料性长短,可以表征玻纤拉丝过程中玻璃液冷却的难易程度。一般来说,若ΔL值较小,相同拉丝条件下玻璃液更易冷却,有利于实现玻纤的高效拉制。
(6)弹性模量,表征玻璃抵抗弹性变形的能力,按ASTM E1876标准测试玻璃块的弹性模量,可以表征玻璃纤维的模量。
(7)析晶面积率,其中测定析晶面积率的大致方法为:将玻璃块按瓷舟槽尺寸进行适当切割,切割后的玻璃条样品放入瓷舟,预处理后置于梯度炉中进行晶化,保温5小时后,将装有玻璃样品的瓷舟从梯度炉拿出,空气冷却至常温。然后,在1050-1150℃温度区域内,通过光学显微镜从微观角度观测各个玻璃样品表面的析晶数量及大小,以S玻璃为基准计算相对析晶面积率。析晶面积率越大,表明玻璃析晶倾向越大、析晶速率越快。
(8)气泡含率,其中测定气泡含率的大致方法为:利用专用的模具将每个实施例配合料压制成一样形状的样品,放置于高温显微镜的样品平台,然后按程序升温至设定温度1500℃,不保温,玻璃样品随炉冷却至常温;然后,通过光学显微镜从微观角度观测各个玻璃样品的气泡数量,以S玻璃为基准计算相对气泡含率。气泡含率越大,表明玻璃的澄清难度越大,不利于保证玻璃液质量。其中,气泡数量按显微镜成像范围为准。
上述八个参数及其测定方法对本领域技术人员来说属于常规知识,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的实施例与S玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的 少量组分。
表1A
Figure PCTCN2020102359-appb-000021
表1B
Figure PCTCN2020102359-appb-000022
表1C
Figure PCTCN2020102359-appb-000023
表1D
Figure PCTCN2020102359-appb-000024
表1E
Figure PCTCN2020102359-appb-000025
由上述表中的具体数值可知,与S玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有小得多的澄清温度和气泡含率,本发明玻璃更易澄清,排泡效果更优;(三)具有低得多的成型温度、液相线温度和析晶面积率。
与传统R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有小得多的澄清温度和气泡含率,本发明玻璃更易澄清,排泡效果更优;(三)具有小得多的ΔL值,玻纤更易冷却,有利于提高纤维的拉丝效率;(四)具有低得多的成型温度、液相线温度和析晶面积率。
与改良R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有较小的澄清温度和气泡含率,本发明玻璃更易澄清,排泡效果更优;(三)具有小得多的ΔL值,玻纤更易冷却,有利于提高纤维的拉丝效率;(四)具有较低的析晶面积率,这表明本发明玻璃的析晶速率较小,有利于降低玻璃的析晶风险。
由此可知,本发明的玻璃纤维组合物在玻璃模量、玻璃澄清、玻纤冷却和析晶速率方面取得了突破性的进展,同等条件下玻璃的模量大幅提升、澄清温度大幅下降、气泡数量较少、玻纤冷却效果好,整体技术方案优异。
由根据本发明的玻璃纤维组合物可制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明提供的高模量玻璃纤维组合物,不仅能显著提高玻璃纤维的模量,还能显著降低 玻璃澄清温度、改善澄清效果,优化玻璃料性、改善玻璃纤维的冷却效果,降低玻璃析晶速率,适合用于规模化生产高模量玻璃纤维。与传统的玻璃纤维组合物相比,本发明的玻璃纤维组合物在玻璃模量、玻璃澄清、玻纤冷却和析晶速率方面取得了突破性的进展,同等条件下玻璃的模量大幅提升、澄清温度大幅下降、气泡数量较少、玻纤冷却效果好,整体技术方案优异。因此,本发明具有良好的工业实用性。

Claims (28)

  1. 一种高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2020102359-appb-100001
  2. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2020102359-appb-100002
    Figure PCTCN2020102359-appb-100003
  3. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2020102359-appb-100004
    并且,上述组分的合计含量大于等于98%。
  4. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7。
  5. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
  6. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于1.9。
  7. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C4=Al 2O 3/Y 2O 3的范围为1-2.5。
  8. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,Y 2O 3的重量百分比含量范围为10.1-20%。
  9. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,SiO 2的重量百分比含量范围为44-55.9%。
  10. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,Al 2O 3的重量百分比含量范围为15.8-20.4%。
  11. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,MgO的重量百分 比含量范围为9-15%。
  12. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,CaO的重量百分比含量范围为0.5-5.9%。
  13. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
  14. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C1=MgO/CaO的范围为大于等于2.0,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.9。
  15. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.1。
  16. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于2.1。
  17. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8,重量百分比的比值C3=Y 2O 3/CaO的范围为大于等于1.9,重量百分比的比值C4=Al 2O 3/Y 2O 3的范围为1-2.1。
  18. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2020102359-appb-100005
    Figure PCTCN2020102359-appb-100006
    并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7。
  19. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2020102359-appb-100007
    并且,重量百分比的比值C1=MgO/CaO的范围为大于等于1.7,重量百分比的比值C2=Y 2O 3/MgO的范围为大于等于0.8。
  20. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,CeO 2的重量百分比含量范围为0-2%。
  21. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,还包含重量百分比含量范围小于4%的ZrO 2、ZnO、B 2O 3、F 2和SO 3中的一种或多种。
  22. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,还包含重量百分比含量范围为0-0.9%的ZrO 2
  23. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2020102359-appb-100008
    Figure PCTCN2020102359-appb-100009
    并且,上述组分的合计含量大于等于99.5%。
  24. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物中不含B 2O 3
  25. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物中不含MnO。
  26. 根据权利要求1所述的高模量玻璃纤维组合物,其特征在于,所述玻璃纤维组合物的玻璃澄清温度小于等于1460℃。
  27. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-26中任一项所述的玻璃纤维组合物制成。
  28. 一种复合材料,其特征在于,所述复合材料包括如权利要求27中所述的玻璃纤维。
PCT/CN2020/102359 2020-07-10 2020-07-16 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料 WO2022006948A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3123551A CA3123551C (en) 2020-07-10 2020-07-16 High-modulus glass fiber composition, glass fiber and composite material thereof
MA55848A MA55848B1 (fr) 2020-07-10 2020-07-16 Composition de fibres de verre à module élevé, fibre de verre de cette dernière, et matériau composite
JP2021519821A JP7317953B2 (ja) 2020-07-10 2020-07-16 高弾性率ガラス繊維組成物、そのガラス繊維及び複合材料
US17/293,300 US20220306521A1 (en) 2020-07-10 2020-07-16 High-modulus glass fiber composition, glass fiber and composite material thereof
BR112022003436A BR112022003436A2 (pt) 2020-07-10 2020-07-16 Composição de fibra de vidro de alto módulo, fibra de vidro, e, material compósito
KR1020217019457A KR102656005B1 (ko) 2020-07-10 2020-07-16 고 모듈러스 유리섬유 조성물 및 그 유리섬유와 복합재료
MX2021003743A MX2021003743A (es) 2020-07-10 2020-07-16 Composicion de fibra de vidrio de alto modulo, fibra de vidrio y material compuesto de la misma.
EP20859671.8A EP3964488A4 (en) 2020-07-10 2020-07-16 COMPOSITION OF HIGH-MODULE GLASS FIBERS, GLASS FIBER THEREOF, AND COMPOSITE MATERIAL
AU2020457486A AU2020457486B2 (en) 2020-07-10 2020-07-16 High modulus glass fiber composition, glass fiber thereof, and composite material
ZA2022/02980A ZA202202980B (en) 2020-07-10 2022-03-11 High modulus glass fiber composition, glass fiber thereof, and composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010665076.1 2020-07-10
CN202010665076.1A CN111747654B (zh) 2020-07-10 2020-07-10 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料

Publications (1)

Publication Number Publication Date
WO2022006948A1 true WO2022006948A1 (zh) 2022-01-13

Family

ID=72711144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102359 WO2022006948A1 (zh) 2020-07-10 2020-07-16 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (3)

Country Link
CN (2) CN111747654B (zh)
TW (1) TWI776565B (zh)
WO (1) WO2022006948A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341001B (zh) * 2020-11-17 2022-09-16 临沂昊泉硅业科技有限公司 一种高硅氧玻璃纤维及其制备方法及防火设备
CN113135667B (zh) * 2021-04-28 2022-09-27 泰山玻璃纤维有限公司 一种高介电常数低介电损耗玻璃纤维
CN113929299B (zh) * 2021-10-21 2023-08-25 泰山玻璃纤维有限公司 高模玻璃组合物、高模玻璃纤维和复合材料
CN117486486A (zh) * 2022-07-20 2024-02-02 荣耀终端有限公司 一种钇铝硅酸盐玻璃、制备方法及电子设备
CN115432932B (zh) * 2022-10-10 2023-07-21 泰山玻璃纤维有限公司 具有超高比模量的玻璃纤维组合物及玻璃纤维

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231240A (ja) 1995-02-28 1996-09-10 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
US20070275843A1 (en) * 2006-05-26 2007-11-29 Albert Lewis Glass fiber for high temperature insulation
CN105392744A (zh) * 2013-07-15 2016-03-09 Ppg工业俄亥俄公司 玻璃组合物、可纤维化玻璃组合物和由其制造的玻璃纤维
WO2016165506A2 (zh) 2016-02-29 2016-10-20 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN111217520A (zh) * 2018-11-26 2020-06-02 Ocv智识资本有限责任公司 具有改进的弹性模量的高性能纤维玻璃组合物
CN111217531A (zh) * 2018-11-26 2020-06-02 Ocv智识资本有限责任公司 具有改进的比模量的高性能纤维玻璃组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035343A (ja) * 1989-05-30 1991-01-11 Central Glass Co Ltd ファイバーガラス組成物
CN108558196A (zh) * 2010-10-18 2018-09-21 Ocv智识资本有限责任公司 高折射指数的玻璃组合物
WO2014062715A1 (en) * 2012-10-16 2014-04-24 Agy Holding Corporation High modulus glass fibers
LT3191421T (lt) * 2014-09-09 2020-08-10 Electric Glass Fiber America, LLC Stiklo kompozicijos, pluoštinio stiklo gamybai skirto stiklo kompozicijos, ir iš jų pagaminti pluoštai
CN108358460A (zh) * 2017-01-26 2018-08-03 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231240A (ja) 1995-02-28 1996-09-10 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
US20070275843A1 (en) * 2006-05-26 2007-11-29 Albert Lewis Glass fiber for high temperature insulation
CN105392744A (zh) * 2013-07-15 2016-03-09 Ppg工业俄亥俄公司 玻璃组合物、可纤维化玻璃组合物和由其制造的玻璃纤维
WO2016165506A2 (zh) 2016-02-29 2016-10-20 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN111217520A (zh) * 2018-11-26 2020-06-02 Ocv智识资本有限责任公司 具有改进的弹性模量的高性能纤维玻璃组合物
CN111217531A (zh) * 2018-11-26 2020-06-02 Ocv智识资本有限责任公司 具有改进的比模量的高性能纤维玻璃组合物

Also Published As

Publication number Publication date
TW202202463A (zh) 2022-01-16
CN114538784A (zh) 2022-05-27
CN111747654A (zh) 2020-10-09
TWI776565B (zh) 2022-09-01
CN111747654B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
TWI776565B (zh) 高模量玻璃纖維組合物及其玻璃纖維和複合材料
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP6499329B2 (ja) 高弾性率ガラス繊維組成物及びそのガラス繊維並びに複合材料
JP6569818B2 (ja) 高弾性率ガラス繊維組成物及びそのガラス繊維並びに複合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
WO2016165532A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
US20190077699A1 (en) High performance glass fiber composition, and glass fiber and composite material thereof
JP2018518449A (ja) 無ホウ素ガラス繊維組成物及びそのガラス繊維と複合材
TWI765723B (zh) 高模量玻璃纖維組合物及其玻璃纖維和複合材料
KR102656005B1 (ko) 고 모듈러스 유리섬유 조성물 및 그 유리섬유와 복합재료
RU2800528C1 (ru) Композиция высокомодульного стекловолокна, стекловолокно и композитный материал на его основе
JP7263507B2 (ja) 高弾性率ガラス繊維組成物、そのガラス繊維及び複合材料
RU2799296C1 (ru) Композиция высокомодульного стекловолокна, стекловолокно и композитный материал на его основе

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020859671

Country of ref document: EP

Effective date: 20210312

ENP Entry into the national phase

Ref document number: 2021519821

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003436

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022003436

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220223

ENP Entry into the national phase

Ref document number: 2020457486

Country of ref document: AU

Date of ref document: 20200716

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 522431743

Country of ref document: SA