WO2016161672A1 - 阵列基板及其制备方法、液晶面板 - Google Patents
阵列基板及其制备方法、液晶面板 Download PDFInfo
- Publication number
- WO2016161672A1 WO2016161672A1 PCT/CN2015/077556 CN2015077556W WO2016161672A1 WO 2016161672 A1 WO2016161672 A1 WO 2016161672A1 CN 2015077556 W CN2015077556 W CN 2015077556W WO 2016161672 A1 WO2016161672 A1 WO 2016161672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass substrate
- source
- drain
- region
- array substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 114
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 57
- 238000002161 passivation Methods 0.000 claims abstract description 48
- 229920002120 photoresistant polymer Polymers 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 238000005530 etching Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000004380 ashing Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 5
- 238000009413 insulation Methods 0.000 abstract 1
- 238000002834 transmittance Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136227—Through-hole connection of the pixel electrode to the active element through an insulation layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133302—Rigid substrates, e.g. inorganic substrates
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
- G02F1/136295—Materials; Compositions; Manufacture processes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/123—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/124—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
Definitions
- the present invention relates to the field of liquid crystal display technologies, and in particular, to an array substrate and a method for fabricating the same, and to a liquid crystal panel including the array substrate.
- Liquid crystal display which is a flat and ultra-thin display device, is an important part of liquid crystal display.
- a commonly used liquid crystal panel includes at least an array substrate and a color filter substrate disposed opposite to each other and a liquid crystal layer between the array substrate and the filter substrate.
- the array substrate typically includes a glass substrate and a plurality of pixel structures formed on the glass substrate.
- FIG. 1 is a schematic structural view of a conventional array substrate, and only one pixel structure is exemplarily shown in the drawing.
- the pixel structure 1 includes a light-transmitting region 1 a and a non-transmissive region 1 b , wherein the non-transmissive region 1 b includes a gate electrode 3 sequentially formed on the glass substrate 2 , a gate insulating layer 4 , and an active region.
- the light-transmitting region 1a includes a gate insulating layer 4, a passivation layer 8, and a pixel electrode 9, which are sequentially formed on the glass substrate 2,
- the pixel electrode 9 extends to the non-transmissive region 1b, and is electrically connected to the source or drain electrodes 7a, 7b through the via 8a.
- the light emitted by the backlight is sequentially absorbed and refracted by the polarizer, the glass substrate, the liquid crystal layer, the color filter, etc., and the final light transmittance is generally about 6%, which increases the transmission of light. Rate is an effective way to increase backlight utilization.
- a gate insulating layer 4 and a passivation layer 9 are further included between the pixel electrode 9 and the glass substrate 2.
- the gate insulating layer 4 and the passivation layer 9 are only for the metal layers of different layers in the non-transmissive region 1b, but for the pixel electrode 9 and the glass substrate 2 in the light-transmitting region 1a, the gate electrode
- the insulating layer 4 and the passivation layer 9 are redundant, and some of the light is lost due to absorption and refraction, thereby reducing the transmittance of light and reducing the utilization of the backlight.
- the present invention firstly provides an array substrate and a preparation method thereof.
- the light transmittance of the light-transmitting region in the pixel structure is improved, and the backlight is improved.
- Source utilization is improved.
- An array substrate comprising a glass substrate and a plurality of pixel structures formed on the glass substrate, the pixel structure comprising a light transmissive area and a non-transmissive area, wherein the non-transparent area comprises sequentially formed in the a gate electrode on the glass substrate, a gate insulating layer, an active layer, a source/drain, and a passivation layer; the light transmissive region includes a pixel electrode directly formed on the glass substrate, the pixel electrode extending to The non-transmissive region is electrically connected to the source or the drain.
- the passivation layer is provided with a via hole, and the pixel electrode is electrically connected to the source or the drain through the via hole.
- an ohmic contact layer is further disposed between the active layer and the source/drain.
- the material of the gate insulating layer is SiN x or SiO x .
- the material of the passivation layer is SiN x or SiO x .
- step S50 preparing a pixel electrode on the glass substrate after the step S40, wherein the pixel electrode is connected to the glass substrate in the transparent region, and the pixel electrode passes through the via and the source Or the drain is electrically connected.
- the step S10 specifically includes:
- the exposed gate metal film is etched away and the remaining photoresist is stripped to form the gate.
- the step S20 specifically includes:
- the photoresist is exposed and developed by using a two-tone mask, and the photoresist corresponding to the source region and the drain region and the photoresist corresponding to the channel region are retained;
- the remaining photoresist is stripped to obtain the gate insulating film, the active layer, the ohmic contact layer, and the source/drain.
- the step S40 specifically includes:
- the present invention also provides a liquid crystal panel comprising an array substrate and a filter substrate disposed opposite to each other and a liquid crystal layer between the array substrate and the filter substrate, wherein the array substrate adopts the array substrate as described above .
- the array substrate and the liquid crystal panel provided by the embodiments of the present invention remove the gate insulating layer and the passivation layer in the transparent region by modifying the pixel structure in the array substrate, so that the transparent region is The pixel electrode is directly prepared on the glass substrate, thereby improving the light transmittance of the light-transmitting region in the pixel structure and improving the utilization ratio of the backlight.
- FIG. 1 is a schematic structural view of a conventional array substrate.
- FIG. 2 is a schematic structural diagram of an array substrate according to an embodiment of the present invention.
- 3a-3h are illustrations of products formed in various steps in a preparation method provided by an embodiment of the present invention.
- FIG. 4 is a schematic structural view of a liquid crystal panel according to an embodiment of the present invention.
- an array substrate provided by the embodiment includes a glass substrate 20 and a plurality of pixel structures 10 formed on the glass substrate 20 (only one pixel structure 10 is exemplarily shown in the drawing)
- the partial structure of the pixel structure 10 includes a light transmitting region 10a and a non-light transmitting region 10b.
- the non-transmissive region 10b includes a gate electrode 30, a gate insulating layer 40, an active layer 50, source/drain electrodes 70a and 70b, and a passivation layer 80 which are sequentially formed on the glass substrate 20.
- the light-transmitting region 10a includes a pixel electrode 90 directly formed on the glass substrate 20, the pixel electrode 90 extending onto the non-transmissive region 10b, and electrically connected to the source/drain electrodes 70a, 70b sexual connection (herein, it should be understood that the pixel electrode 90 is electrically connected to one of the source 70a or the drain 70b). Further, in order to make the source/drain electrodes 70a, 70b have good electrical contact with the active layer 50, an ohmic contact layer 60 is further disposed between the active layer 50 and the source/drain electrodes 70a, 70b. .
- a pass hole 80a is disposed on the passivation layer 80, and the pixel electrode 90 is electrically connected to the source 70a or the drain 70b through the via 80a.
- the material of the gate insulating layer 40 may be selected as SiN x or SiO x
- the material of the passivation layer 80 may be selected as SiN x or SiO x .
- the gate insulating layer and the passivation layer in the light-transmitting region are removed, so that the pixel electrode in the light-transmitting region is directly prepared on the glass substrate, thereby improving light transmission in the light-transmitting region in the pixel structure.
- the rate increases the utilization of the backlight.
- the method for preparing the array substrate comprises the steps of:
- a gate electrode 30 is prepared on the glass substrate 20. Specifically, as shown in FIG. 3a and FIG. 3b, a gate metal film 30a is first formed on the glass substrate 20; then a photoresist is coated on the gate metal film 30a, and photolithography is applied. The photoresist is exposed and developed to retain the photoresist in the gate pattern region; finally, the exposed gate metal film 30a is etched away and the remaining photoresist is stripped to form the gate electrode 30.
- a gate insulating layer film 40a, an active layer film 50a, an ohmic contact layer film 60a, and a source/drain are sequentially formed on the glass substrate 20 on which the gate electrode 30 is formed.
- a thin metal film 70 is coated on the source/drain metal film 70 with a photoresist (not shown) as shown in Fig. 3c.
- the photoresist is exposed and developed by using a two-tone mask, and the photoresist corresponding to the photoresist and the channel region corresponding to the source 70a region and the drain region 70b is left; the exposed source is etched away/
- the drain metal film 70, the ohmic contact layer film 60a, and the active layer film 50a are obtained as shown in Fig. 3d.
- the photoresist corresponding to the channel region is removed by ashing, and the ohmic contact layer film 60a and the source/drain metal film 70 over the channel region are etched, and the remaining photoresist is peeled off.
- the gate insulating layer film 40a, the active layer 50, the ohmic contact layer 60, and the source/drain electrodes 70a, 70b are as shown in FIG. 3e.
- a passivation layer film 80b is prepared on the glass substrate 20 after the step S20, wherein the passivation layer film 80b covers the light transmitting region 10a and the non-light transmitting region 10b of the pixel structure 10, as shown in FIG. 3f. .
- a via hole 80a is formed on the passivation layer film 80b by an etching process to expose a source electrode 70a or a drain electrode 70b for electrically connecting to the pixel electrode 90. Meanwhile, the light transmission is also performed.
- the gate insulating film 40a and the passivation film 80b of the region 10a are etched away, and the transparent region 10a is exposed to the glass substrate 20 to obtain a final gate insulating layer 40 and a passivation layer 80.
- a photoresist is coated on the passivation layer film 80b, and the passivation layer film 80b is exposed in the via hole 80a region and the light transmissive region 10a by exposure and development of the photoresist; Then, the passivation layer film 80b is etched away in the via hole region 80a by an etching process to obtain the via hole 80a; the passivation layer film 80b and the gate are etched away in the light transmitting region 10a.
- a thin insulating film 40a exposing the glass substrate 20, As shown in Figure 3g.
- the gate insulating film and the passivation layer film covering the light-transmitting region are etched away by the MASK process at the step S40, and no additional process is required.
- the process is simple, easy to implement, and finally an array substrate having a higher transmittance is obtained.
- a liquid crystal panel is further provided.
- the liquid crystal panel includes an array substrate 100 and a filter substrate 200 disposed opposite to each other, and a liquid crystal layer between the array substrate 100 and the filter substrate 200. 300, wherein the array substrate 100 adopts the array substrate provided in this embodiment.
- the array substrate and the liquid crystal panel provided by the embodiments of the present invention remove the gate insulating layer and the passivation layer in the transparent region by improving the pixel structure in the array substrate, so that the pixels in the transparent region are
- the electrode is directly prepared on the glass substrate, thereby improving the light transmittance of the light-transmitting region in the pixel structure and improving the utilization of the backlight.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Geometry (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
Abstract
一种阵列基板及其制备方法以及包含该阵列基板的液晶面板,包括玻璃基板(20)以及形成在所述玻璃基板(20)上的多个像素结构(10),所述像素结构(10)包括透光区域(10a)和非透光区域(10b),其中,所述非透光区域(10b)包括依次形成于所述玻璃基板(20)上的栅极(30)、栅极绝缘层(40)、有源层(50)、源极/漏极(70a,70b)和钝化层(80);所述透光区域(10a)包括直接形成在所述玻璃基板(20)上的像素电极(90),所述像素电极(90)延伸至所述非透光区域(10b)上,并且与所述源极(70a)或所述漏极(70b)电性连接。
Description
本发明涉及液晶显示技术领域,尤其涉及一种阵列基板及其制备方法,还涉及包含该阵列基板的液晶面板。
液晶显示器(Liquid Crystal Display,LCD),为平面超薄的显示设备,液晶面板是液晶显示器的重要组成部分。常用的液晶面板至少包括相对设置的阵列基板(array substrate)和滤光基板(color filter substrate)以及位于阵列基板和滤光基板之间的液晶层。
阵列基板通常包括玻璃基板以及形成在所述玻璃基板上的多个像素结构。图1为现有的一种阵列基板的结构示意图,图中仅示例性的示出了其中的一个像素结构。如图1所示的,该像素结构1包括透光区域1a和非透光区域1b,其中非透光区域1b包括依次形成于玻璃基板2上的栅极3、栅极绝缘层4、有源层5、欧姆接触层6、源极/漏极7a、7b和钝化层8;透光区域1a包括依次形成于玻璃基板2上的栅极绝缘层4、钝化层8和像素电极9,像素电极9延伸至非透光区域1b上,通过过孔8a与源极或漏极7a、7b电性连接。
在液晶显示装置中,背光源发出的光要依次经过偏光片、玻璃基板、液晶层、彩色滤光片等等的吸收和折射,最终的透光率一般在6%左右,增加光线的透过率是提高背光源利用率的有效途径。在如上结构的阵列基板中,如图1所示的,在像素结构1的透光区域1a中,像素电极9与玻璃基板2之间还包括栅极绝缘层4和钝化层9。在阵列基板中,栅极绝缘层4和钝化层9只要是为了间隔非透光区域1b中不同层别的金属层,但是对于透光区域1a中的像素电极9与玻璃基板2,栅极绝缘层4和钝化层9却是多余的,还会因吸收和折射导致损失部分光,从而降低了光线的透过率,降低了背光源的利用率。
发明内容
鉴于现有技术存在的不足,本发明首先提供了一种阵列基板及其制备方法,通过对阵列基板中的像素结构进行改进,提高了像素结构中透光区域的光线透过率,提高了背光源的利用率。
为了实现上述目的,本发明采用了如下的技术方案:
一种阵列基板,包括玻璃基板以及形成在所述玻璃基板上的多个像素结构,所述像素结构包括透光区域和非透光区域,其中,所述非透光区域包括依次形成于所述玻璃基板上的栅极、栅极绝缘层、有源层、源极/漏极和钝化层;所述透光区域包括直接形成在所述玻璃基板上的像素电极,所述像素电极延伸至所述非透光区域上,并且与所述源极或所述漏极电性连接。
其中,所述钝化层上设置有一过孔,所述像素电极通过所述过孔与所述源极或所述漏极电性连接。
其中,所述有源层与所述源极/漏极之间还设置有欧姆接触层。
其中,所述栅极绝缘层的材料为SiNx或SiOx。
其中,所述钝化层的材料为SiNx或SiOx。
如上所述的阵列基板的制备方法,包括步骤:
S10、在玻璃基板上制备栅极;
S20、在经过步骤S10之后的玻璃基板上依次制备栅极绝缘层薄膜、有源层、欧姆接触层、以及源极/漏极,其中所述栅极绝缘层薄膜覆盖所述像素结构的透光区域和非透光区域;
S30、在经过步骤S20之后的玻璃基板上制备钝化层薄膜,其中所述钝化层薄膜覆盖所述像素结构的透光区域和非透光区域;
S40、通过刻蚀工艺在所述钝化层薄膜上制备一过孔,同时将覆盖于所述透光区域上的所述栅极绝缘层薄膜和所述钝化层薄膜刻蚀去除,在所述透光区域暴露出所述玻璃基板;
S50、在经过步骤S40之后的玻璃基板上制备像素电极,其中所述像素电极在所述透光区域内连接于所述玻璃基板上,并且所述像素电极通过所述过孔与所述源极或所述漏极电性连接。
其中,所述步骤S10具体包括:
在所述玻璃基板上形成一层栅极金属薄膜;
在所述栅极金属薄膜上涂覆光刻胶,并通过对光刻胶的曝光、显影保留栅极图形区域的光刻胶;
刻蚀掉暴露出的栅极金属薄膜并剥离剩余的光刻胶,形成所述栅极。
其中,所述步骤S20具体包括:
在形成所述栅极的玻璃基板上依次形成栅极绝缘层薄膜、有源层薄膜、欧姆接触层薄膜以及源极/漏极金属薄膜,并在所述源极/漏极金属薄膜上涂覆光刻胶;
采用双色调掩膜板对光刻胶进行曝光显影,保留源极区域和漏极区域对应的光刻胶及沟道区域对应的光刻胶;
刻蚀掉暴露出的源极/漏极金属薄膜、欧姆接触层薄膜和有源层薄膜;
经过灰化处理去掉所述沟道区域对应的光刻胶,并刻蚀沟道区域上方的欧姆接触层薄膜以及源极/漏极金属薄膜;
剥离剩余的光刻胶,获得所述栅极绝缘层薄膜、有源层、欧姆接触层、以及源极/漏极。
其中,所述步骤S40具体包括:
在所述钝化层薄膜上涂覆光刻胶,并通过对光刻胶的曝光、显影,在过孔区域和透光区域暴露出所述钝化层薄膜;
通过刻蚀工艺在所述过孔区域刻蚀去除所述钝化层薄膜,获得所述过孔;在所述透光区域刻蚀去除所述钝化层薄膜和栅极绝缘层薄膜,暴露出所述玻璃基板。
本发明还提供了一种液晶面板,包括相对设置的阵列基板和滤光基板以及位于所述阵列基板和滤光基板之间的液晶层,其中,所述阵列基板采用了如上所述的阵列基板。
相比于现有技术,本发明实施例提供的阵列基板以及液晶面板,通过对阵列基板中的像素结构进行改进,去除了透光区域中的栅极绝缘层和钝化层,使得透光区域中像素电极直接制备于玻璃基板上,从而提高了像素结构中透光区域的光线透过率,提高了背光源的利用率。
图1是现有的一种阵列基板的结构示意图。
图2是本发明实施例提供的阵列基板的结构示意图。
图3a-图3h是本发明实施例提供的制备方法中各步骤形成的产品的图示。
图4是本发明实施例提供的液晶面板的结构示意图。
下面将结合附图以及具体实施例,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
参阅图2,本实施例提供的一种阵列基板,其包括玻璃基板20以及形成在所述玻璃基板20上的多个像素结构10(附图中仅示例性示出了其中的一个像素结构10的局部剖面图),该像素结构10包括透光区域10a和非透光区域10b。其中,所述非透光区域10b包括依次形成于所述玻璃基板20上的栅极30、栅极绝缘层40、有源层50、源极/漏极70a、70b和钝化层80。所述透光区域10a包括直接形成在所述玻璃基板20上的像素电极90,所述像素电极90延伸至所述非透光区域10b上,并且与所述源极/漏极70a、70b电性连接(在此,应当理解为像素电极90与源极70a或漏极70b的其中一个电性连接)。进一步地,为了使源极/漏极70a、70b与有源层50具有良好的电接触,所述有源层50与所述源极/漏极70a、70b之间还设置有欧姆接触层60。
具体地,所述钝化层80上设置有一过孔80a,所述像素电极90通过所述过孔80a与所述源极70a或漏极70b电性连接。
其中,所述栅极绝缘层40的材料可以选择为SiNx或SiOx,所述钝化层80的材料可以选择为SiNx或SiOx。
如上提供的阵列基板中,去除了透光区域中的栅极绝缘层和钝化层,使得透光区域中像素电极直接制备于玻璃基板上,从而提高了像素结构中透光区域的光线透过率,提高了背光源的利用率。
下面参阅附图3a-图3h详细说明如上提供的阵列基板的制备工艺过程。
该阵列基板的制备方法包括步骤:
S10、在玻璃基板20上制备栅极30。具体地,如图3a和图3b所示,首先在所述玻璃基板20上形成一层栅极金属薄膜30a;然后在所述栅极金属薄膜30a上涂覆光刻胶,并通过对光刻胶的曝光、显影保留栅极图形区域的光刻胶;最后刻蚀掉暴露出的栅极金属薄膜30a并剥离剩余的光刻胶,形成所述栅极30。
S20、在经过步骤S10之后的玻璃基板20上依次制备栅极绝缘层薄膜40a、有源层50、欧姆接触层60、以及源极/漏极70a、70b,其中所述栅极绝缘层薄膜40a覆盖所述像素结构10的透光区域10a和非透光区域10b。
具体地,参阅附图3c-图3e,首先,在形成所述栅极30的玻璃基板20上依次形成栅极绝缘层薄膜40a、有源层薄膜50a、欧姆接触层薄膜60a以及源极/漏极金属薄膜70,并在所述源极/漏极金属薄膜70上涂覆光刻胶(图中未示出),如图3c所示。
然后,采用双色调掩膜板对光刻胶进行曝光显影,保留源极70a区域和漏极70b区域对应的光刻胶及沟道区域对应的光刻胶;刻蚀掉暴露出的源极/漏极金属薄膜70、欧姆接触层薄膜60a和有源层薄膜50a,得到如图3d所示的结构。
最后,经过灰化处理去掉所述沟道区域对应的光刻胶,并刻蚀沟道区域上方的欧姆接触层薄膜60a以及源极/漏极金属薄膜70,剥离剩余的光刻胶,获得所述栅极绝缘层薄膜40a、有源层50、欧姆接触层60、以及源极/漏极70a、70b,如图3e所示。
S30、在经过步骤S20之后的玻璃基板20上制备钝化层薄膜80b,其中所述钝化层薄膜80b覆盖所述像素结构10的透光区域10a和非透光区域10b,如图3f所示。
S40、通过刻蚀工艺在所述钝化层薄膜80b上制备一过孔80a,以暴露出用于与像素电极90电性相连的源极70a或漏极70b;同时,还将所述透光区域10a的栅极绝缘层薄膜40a和钝化层薄膜80b刻蚀去除,使所述透光区域10a暴露出所述玻璃基板20,获得最终的栅极绝缘层40和钝化层80。具体地,首先在所述钝化层薄膜80b上涂覆光刻胶,并通过对光刻胶的曝光、显影,在过孔80a区域和透光区域10a暴露出所述钝化层薄膜80b;然后通过刻蚀工艺在所述过孔区80a域刻蚀去除所述钝化层薄膜80b,获得所述过孔80a;在所述透光区域10a刻蚀去除所述钝化层薄膜80b和栅极绝缘层薄膜40a,暴露出所述玻璃基板20,
如图3g所示。
S50、在经过步骤S40之后的玻璃基板20上制备像素电极90,其中所述像素电极90在所述透光区域10a内直接连接于所述玻璃基板20上,并且所述像素电极90通过所述过孔80a与所述源极70a或漏极70b电性连接,如图3h所示。
如上的制备工艺中,在步骤S40时通过一次MASK工艺,在制备过孔的同时将覆盖于所述透光区域的栅极绝缘层薄膜和钝化层薄膜刻蚀去除,不需要额外增加工序,其工艺简单,易于实施,并且最终制备得到了具有更高透过率的阵列基板。
本实施例中还提供了一种液晶面板,如图4所示,该液晶面板包括相对设置的阵列基板100和滤光基板200以及位于所述阵列基板100和滤光基板200之间的液晶层300,其中,所述阵列基板100采用了本实施例中提供的阵列基板。
综上所述,本发明实施例提供的阵列基板以及液晶面板,通过对阵列基板中的像素结构进行改进,去除了透光区域中的栅极绝缘层和钝化层,使得透光区域中像素电极直接制备于玻璃基板上,从而提高了像素结构中透光区域的光线透过率,提高了背光源的利用率。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
Claims (16)
- 一种阵列基板,包括玻璃基板以及形成在所述玻璃基板上的多个像素结构,所述像素结构包括透光区域和非透光区域,其中,所述非透光区域包括依次形成于所述玻璃基板上的栅极、栅极绝缘层、有源层、源极/漏极和钝化层;所述透光区域包括直接形成在所述玻璃基板上的像素电极,所述像素电极延伸至所述非透光区域上,并且与所述源极或所述漏极电性连接。
- 根据权利要求1所述的阵列基板,其中,所述钝化层上设置有一过孔,所述像素电极通过所述过孔与所述源极或所述漏极电性连接。
- 根据权利要求1所述的阵列基板,其中,所述有源层与所述源极/漏极之间还设置有欧姆接触层。
- 根据权利要求1所述的阵列基板,其中,所述栅极绝缘层的材料为SiNx或SiOx。
- 根据权利要求1所述的阵列基板,其中,所述钝化层的材料为SiNx或SiOx。
- 一种阵列基板的制备方法,包括步骤:S10、在玻璃基板上制备栅极;S20、在经过步骤S10之后的玻璃基板上依次制备栅极绝缘层薄膜、有源层、欧姆接触层、以及源极/漏极,其中所述栅极绝缘层薄膜覆盖所述像素结构的透光区域和非透光区域;S30、在经过步骤S20之后的玻璃基板上制备钝化层薄膜,其中所述钝化层薄膜覆盖所述像素结构的透光区域和非透光区域;S40、通过刻蚀工艺在所述钝化层薄膜上制备一过孔,同时将覆盖于所述透光区域上的所述栅极绝缘层薄膜和所述钝化层薄膜刻蚀去除,并且在所述透光区域暴露出所述玻璃基板;S50、在经过步骤S40之后的玻璃基板上制备像素电极,其中所述像素电极在所述透光区域内直接形成在所述玻璃基板上,并且所述像素电极通过所述过孔与所述源极或所述漏极电性连接。
- 根据权利要求6所述的阵列基板制作方法,其中,所述步骤S10具体包括:在所述玻璃基板上形成一层栅极金属薄膜;在所述栅极金属薄膜上涂覆光刻胶,并通过对光刻胶的曝光、显影保留栅极图形区域的光刻胶;刻蚀掉暴露出的栅极金属薄膜并剥离剩余的光刻胶,形成所述栅极。
- 根据权利要求6所述的阵列基板制作方法,其中,所述步骤S20具体包括:在形成所述栅极的玻璃基板上依次形成栅极绝缘层薄膜、有源层薄膜、欧姆接触层薄膜以及源极/漏极金属薄膜,并在所述源极/漏极金属薄膜上涂覆光刻胶;采用双色调掩膜板对光刻胶进行曝光显影,保留源极区域和漏极区域对应的光刻胶及沟道区域对应的光刻胶;刻蚀掉暴露出的源极/漏极金属薄膜、欧姆接触层薄膜和有源层薄膜;经过灰化处理去掉所述沟道区域对应的光刻胶,并刻蚀沟道区域上方的欧姆接触层薄膜以及源极/漏极金属薄膜;剥离剩余的光刻胶,获得所述栅极绝缘层薄膜、有源层、欧姆接触层、以及源极/漏极。
- 根据权利要求6所述的阵列基板制作方法,其中,所述步骤S40具体包括:在所述钝化层薄膜上涂覆光刻胶,并通过对光刻胶的曝光、显影,在过孔区域和透光区域暴露出所述钝化层薄膜;通过刻蚀工艺在所述过孔区域刻蚀去除所述钝化层薄膜,获得所述过孔;同时,在所述透光区域刻蚀去除所述钝化层薄膜和栅极绝缘层薄膜,暴露出所述玻璃基板。
- 根据权利要求6所述的阵列基板制作方法,其中,所述栅极绝缘层薄膜的材料为SiNx或SiOx。
- 根据权利要求6所述的阵列基板制作方法,其中,所述钝化层薄膜的材料为SiNx或SiOx。
- 一种液晶面板,包括相对设置的阵列基板和滤光基板以及位于所述阵列基板和滤光基板之间的液晶层,其中,所述阵列基板包括玻璃基板以及形成在所述玻璃基板上的多个像素结构,所述像素结构包括透光区域和非透光区域,其中,所述非透光区域包括依次形成于所述玻璃基板上的栅极、栅极绝缘层、有源层、源极/漏极和钝化层;所述透光区域包括直接形成在所述玻璃基板上的像素电极,所述像素电极延伸至所述非透光区域上,并且与所述源极或所述漏极电性连接。
- 根据权利要求12所述的液晶面板,其中,所述钝化层上设置有一过孔,所述像素电极通过所述过孔与所述源极或所述漏极电性连接。
- 根据权利要求12所述的液晶面板,其中,所述有源层与所述源极/漏极之间还设置有欧姆接触层。
- 根据权利要求12所述的液晶面板,其中,所述栅极绝缘层的材料为SiNx或SiOx。
- 根据权利要求12所述的液晶面板,其中,所述钝化层的材料为SiNx或SiOx。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/777,876 US9804464B2 (en) | 2015-04-09 | 2015-04-27 | Array substrate and method for preparing the same, liquid crystal panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510166113.3A CN104779256B (zh) | 2015-04-09 | 2015-04-09 | 阵列基板及其制备方法、液晶面板 |
CN201510166113.3 | 2015-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016161672A1 true WO2016161672A1 (zh) | 2016-10-13 |
Family
ID=53620632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077556 WO2016161672A1 (zh) | 2015-04-09 | 2015-04-27 | 阵列基板及其制备方法、液晶面板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9804464B2 (zh) |
CN (1) | CN104779256B (zh) |
WO (1) | WO2016161672A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105093667A (zh) * | 2015-09-25 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种阵列基板及其制作方法、显示装置 |
KR102402599B1 (ko) * | 2015-12-16 | 2022-05-26 | 삼성디스플레이 주식회사 | 트랜지스터 표시판 및 그 제조 방법 |
CN105914212B (zh) * | 2016-05-09 | 2019-02-05 | 京东方科技集团股份有限公司 | 阵列基板及其制作方法、以及显示装置 |
CN107134432B (zh) * | 2017-04-24 | 2020-02-07 | 惠科股份有限公司 | 一种阵列基板制程 |
CN107121820A (zh) * | 2017-07-03 | 2017-09-01 | 厦门天马微电子有限公司 | 一种液晶显示面板和显示装置 |
CN109471307A (zh) * | 2018-09-11 | 2019-03-15 | 惠科股份有限公司 | 一种显示面板及其第一基板的制作方法 |
CN110335871B (zh) * | 2019-06-11 | 2021-11-30 | 惠科股份有限公司 | 阵列基板的制备方法、阵列基板及显示面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020093016A1 (en) * | 2000-12-06 | 2002-07-18 | Byoung-Ho Lim | Thin film transistor array substrate for liquid crystal display and a method for fabricating the same |
CN101807550A (zh) * | 2009-02-18 | 2010-08-18 | 北京京东方光电科技有限公司 | 阵列基板及其制造方法和液晶显示器 |
CN102033375A (zh) * | 2009-09-30 | 2011-04-27 | 乐金显示有限公司 | 液晶显示器及其制造方法 |
CN201867561U (zh) * | 2010-11-09 | 2011-06-15 | 北京京东方光电科技有限公司 | 阵列基板和液晶显示器 |
CN103149760A (zh) * | 2013-02-19 | 2013-06-12 | 合肥京东方光电科技有限公司 | 薄膜晶体管阵列基板、制造方法及显示装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW321731B (zh) * | 1994-07-27 | 1997-12-01 | Hitachi Ltd |
-
2015
- 2015-04-09 CN CN201510166113.3A patent/CN104779256B/zh active Active
- 2015-04-27 US US14/777,876 patent/US9804464B2/en active Active
- 2015-04-27 WO PCT/CN2015/077556 patent/WO2016161672A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020093016A1 (en) * | 2000-12-06 | 2002-07-18 | Byoung-Ho Lim | Thin film transistor array substrate for liquid crystal display and a method for fabricating the same |
CN101807550A (zh) * | 2009-02-18 | 2010-08-18 | 北京京东方光电科技有限公司 | 阵列基板及其制造方法和液晶显示器 |
CN102033375A (zh) * | 2009-09-30 | 2011-04-27 | 乐金显示有限公司 | 液晶显示器及其制造方法 |
CN201867561U (zh) * | 2010-11-09 | 2011-06-15 | 北京京东方光电科技有限公司 | 阵列基板和液晶显示器 |
CN103149760A (zh) * | 2013-02-19 | 2013-06-12 | 合肥京东方光电科技有限公司 | 薄膜晶体管阵列基板、制造方法及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104779256B (zh) | 2018-08-24 |
US9804464B2 (en) | 2017-10-31 |
CN104779256A (zh) | 2015-07-15 |
US20170108722A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016161672A1 (zh) | 阵列基板及其制备方法、液晶面板 | |
WO2016138670A1 (zh) | Ffs型薄膜晶体管阵列基板及其制备方法 | |
KR101322885B1 (ko) | 어레이 기판과 액정 디스플레이 | |
CN105514125B (zh) | 一种阵列基板、其制备方法及显示面板 | |
CN108807470B (zh) | 触控显示屏的制作方法 | |
WO2014205998A1 (zh) | Coa基板及其制造方法、显示装置 | |
JP4246298B2 (ja) | 液晶ディスプレイパネルの製造方法 | |
JP6293905B2 (ja) | Tft−lcdアレイ基板の製造方法、液晶パネル、液晶表示装置。 | |
WO2016150286A1 (zh) | 阵列基板及其制备方法、显示装置 | |
JP6188793B2 (ja) | Tftアレイ基板及びその製造方法、表示装置 | |
JP4488688B2 (ja) | 表示装置用配線基板及びその製造方法 | |
TW200827783A (en) | Method for fabricating color filter layer | |
KR102278989B1 (ko) | 포토마스크 구조 및 어레이 기판 제조 방법 | |
WO2021128462A1 (zh) | Tft 阵列基板及其制作方法 | |
CN106129071B (zh) | 一种阵列基板的制作方法及相应装置 | |
TWI673552B (zh) | 顯示面板及其製作方法 | |
KR20070072823A (ko) | 픽셀 구조체 제조 방법 | |
WO2014127573A1 (zh) | Tft阵列基板的制造方法、tft阵列基板及显示装置 | |
KR20070045751A (ko) | 포토 마스크 | |
JP4558752B2 (ja) | 液晶表示装置の製造方法 | |
US10591786B2 (en) | Mask structure and manufacturing method for array substrate | |
WO2021128508A1 (zh) | Tft阵列基板及其制作方法 | |
WO2015096395A1 (zh) | 一种阵列基板的制作方法、阵列基板和显示装置 | |
WO2015096393A1 (zh) | 阵列基板及其制造方法、显示装置 | |
KR20150051531A (ko) | 액정표시장치의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14777876 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15888227 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15888227 Country of ref document: EP Kind code of ref document: A1 |