WO2016158494A1 - エアサスペンション装置 - Google Patents

エアサスペンション装置 Download PDF

Info

Publication number
WO2016158494A1
WO2016158494A1 PCT/JP2016/058699 JP2016058699W WO2016158494A1 WO 2016158494 A1 WO2016158494 A1 WO 2016158494A1 JP 2016058699 W JP2016058699 W JP 2016058699W WO 2016158494 A1 WO2016158494 A1 WO 2016158494A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
supply
air supply
springs
valve
Prior art date
Application number
PCT/JP2016/058699
Other languages
English (en)
French (fr)
Inventor
猛一 茂原
修之 一丸
隆英 小林
隆介 平尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016158494A1 publication Critical patent/WO2016158494A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/033Spring characteristics, e.g. mechanical springs and mechanical adjusting means characterised by regulating means acting on more than one spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems

Definitions

  • the present invention relates to an air suspension device that is mounted on a vehicle such as a four-wheeled vehicle and is suitably used for adjusting the vehicle height.
  • an air spring provided on each of the left and right front wheels and the left and right rear wheels is used as an on-vehicle air compressor (compressor) serving as a compressed air (compressed air) source.
  • compressor on-vehicle air compressor
  • a configuration is known in which the vehicle height is adjusted appropriately according to the time of loading / unloading of luggage, the time of getting on / off of passengers, or other times by expanding and contracting using compressed air discharged from the vehicle.
  • Such an air suspension device includes an air compressor, four air springs provided corresponding to front, rear, left, and right wheels, respectively, and the air compressor and each air spring.
  • An air supply valve that is provided and driven by a solenoid, and a controller that controls opening and closing of the air supply valve are provided (for example, see Patent Document 1).
  • Patent Document 2 when there are two or more electric motors with respect to the parking system, each electric motor is started at different timings so that the times when the starting currents of the respective electric motors become maximum do not overlap. Is described.
  • the vehicle height adjustment on each wheel side becomes unbalanced as the piping length from the air compressor to each air spring is different. There is a problem of becoming. Further, as the vehicle weight is different between the front wheel side and the rear wheel side (the weight applied to the air spring on the front wheel side is different from the weight applied to the air spring on the rear wheel side), each wheel side (front wheel side and rear wheel side). There is a problem that the vehicle height adjustment on the wheel side becomes unbalanced.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an air suspension device that can stably adjust the vehicle height on each wheel side. .
  • an air suspension device supplies a plurality of air springs interposed between a vehicle body and a wheel of a vehicle and the plurality of air springs.
  • An air supply unit a plurality of pipes respectively extending from the air supply unit toward the plurality of air springs, a plurality of air supply valves respectively provided between the air supply unit and the plurality of air springs, And a control unit that controls opening and closing of the plurality of air supply valves.
  • the said control part is comprised so that the said intake valve with which the length of the said corresponding piping is relatively long may be opened before the said intake valve with which the length of the said corresponding piping is relatively short.
  • An air suspension device includes a plurality of air springs interposed between a vehicle body and a wheel of a vehicle, an air supply unit that supplies air to the plurality of air springs, and the air supply unit.
  • a plurality of pipes respectively extending from the air section toward the plurality of air springs, a plurality of air supply valves provided between the air supply section and the plurality of air springs, and opening and closing of the plurality of air supply valves
  • the controller controls the intake valve corresponding to the wheel having a relatively large vehicle body weight on the front wheel side and the rear wheel side, and the intake valve corresponding to the wheel having a relatively small vehicle body weight.
  • the valve is configured to open before the valve.
  • the vehicle height adjustment on each wheel side can be performed stably. That is, when the vehicle height is adjusted, each air supply valve can be controlled so that each wheel stably reaches the target vehicle height.
  • FIG. 1 is a conceptual diagram of a vehicle equipped with an air suspension device according to a first embodiment of the present invention. It is a conceptual diagram which shows the air suspension apparatus by the 1st Embodiment of this invention. It is a flowchart which shows the control processing of an air suspension apparatus. It is a flowchart which shows the vehicle height adjustment process in FIG.
  • FIG. 6 is a characteristic diagram showing a change in vehicle height with time of each air suspension and a change in time of each air supply valve in the vehicle height adjustment process. It is a whole block diagram which shows the air suspension apparatus by 2nd Embodiment.
  • FIG. 1 to FIG. 5 show a first embodiment of the present invention.
  • a total of four wheels including left and right front wheels 2A and 2B and left and right rear wheels 2C and 2D are provided on the lower side (road surface side) of the vehicle body 1 constituting the vehicle body. It has been.
  • Air suspensions 3A to 3D are provided on the wheels 2A to 2D, respectively. These air suspensions 3A to 3D are provided with air springs 4A to 4D, respectively, interposed between the vehicle body 1 and the wheels 2A to 2D of the vehicle. The air suspensions 3A to 3D adjust the vehicle height of the vehicle body 1 in accordance with the supply and discharge of air.
  • These air springs 4A to 4D correspond to the supply / discharge amount (air amount) when compressed air is supplied or discharged via pipes 14A to 14D and supply / exhaust valves 15A to 15D, which will be described later. It is expanded and contracted up and down. Thereby, the air springs 4A to 4D individually adjust the vehicle height of the vehicle body 1 together with the air suspensions 3A to 3D, and the vehicle height is raised and lowered for each of the wheels 2A to 2D.
  • the in-vehicle compressor unit 5 as an air supply means serves as a compressed air source for supplying compressed air to the air springs 4A to 4D of the air suspensions 3A to 3D.
  • the compressor unit 5 includes an air compressor 6, an electric motor 7, a suction filter 8, a part of the supply / discharge line 9, an air dryer 10, a slow return valve 11, an exhaust valve 12, an exhaust line 13, and supply / exhaust valves 15A to 15D.
  • a compressor constituted by the air compressor 6 and the electric motor 7 can be used as the air supply means.
  • the air compressor 6 is constituted by, for example, a reciprocating compressor or a scroll compressor, and is a main part of the compressor unit 5 mounted on the rear side of the vehicle body 1, for example.
  • the air compressor 6 is driven by an electric motor 7 as a drive source, and compresses the outside air or the air sucked from the suction filter 8 side to generate compressed air (air).
  • the suction filter 8 also functions as a silencer that reduces suction noise.
  • the supply / discharge line 9 is connected to the discharge side of the air compressor 6.
  • One side (base end side) of the supply / discharge pipe 9 is connected to the discharge side of the air compressor 6 as shown in FIG. 2, and the other side (tip side) extends to the outside of the compressor unit 5.
  • Connection points 9A and 9B to which pipes 14A to 14D to be described later are connected are provided on the distal end side of the supply / exhaust pipe line 9.
  • the air dryer 10 constitutes an air drying means provided in the middle of the supply / exhaust conduit 9.
  • the air dryer 10 incorporates, for example, a moisture adsorbent (not shown) or the like, and is disposed between the slow return valve 11 and an exhaust pipe line 13 to be described later.
  • the slow return valve 11 is configured by a parallel circuit of a throttle 11A and a check valve 11B, and the check valve 11B is not opened to reduce the flow rate of the compressed air for the forward flow described later.
  • the check valve 11B closes against the flow in the reverse direction, and the flow rate of the compressed air at this time is throttled by the throttle 11A, so that the air dryer 10 slowly reverses with a small flow rate.
  • the air dryer 10 adsorbs moisture by bringing the compressed air into contact with an internal moisture adsorbent when the high-pressure compressed air generated by the air compressor 6 flows in the forward direction toward the air suspensions 3A to 3D. Then, the dried compressed air is supplied toward the air springs 4A to 4D. On the other hand, when the compressed air (exhaust gas) discharged from the air springs 4A to 4D flows through the air dryer 10 in the reverse direction, the dry air flows back through the air dryer 10, so that the moisture adsorbent in the air dryer 10 Moisture is desorbed by dry air. Thereby, the moisture adsorbent is regenerated and returned to a state where moisture can be adsorbed again.
  • the exhaust valve 12 is connected to the supply / exhaust line 9 via the exhaust line 13.
  • the exhaust valve 12 includes a solenoid (coil) 12A and is formed as, for example, a 2-port 2-position electromagnetic switching valve (a spring-offset type normally closed valve).
  • the exhaust valve 12 is normally closed to block the exhaust pipe 13 from the exhaust port 13A.
  • the solenoid 12A of the exhaust valve 12 is excited by energization from the outside (a controller 18 described later)
  • the valve 12 is opened and the exhaust line 13 communicates with the exhaust port 13A, and the compression in the supply / exhaust line 9 is performed. Air is discharged (released) into the atmosphere.
  • the pipes 14A to 14D extend from the compressor unit 5 toward the air springs 4A to 4D of the air suspensions 3A to 3D, respectively.
  • FIG. 2 the lengths of the pipes 14A to 14D, the positions of the air springs 4A to 4D, and the like are shown in FIG. 1 in order to illustrate the supply / exhaust valves 15A to 15D and the sensors 16A to 16D, 17A to 17D, which will be described later. Does not match.
  • These pipes 14A to 14D are branched from each other at positions of connection points 9A and 9B from the supply / exhaust pipe 9 so as to individually connect the air springs 4A to 4D to the supply / exhaust pipe 9. Yes.
  • the pipes 14A and 14B are connected to the supply / discharge pipe 9 at the position of the connection point 9A, and the pipes 14C and 14D are connected to the supply / discharge pipe 9 at the position of the connection point 9B.
  • the pipe lengths of the pipes 14A to 14D are formed as L1, L2, L3, and L4, respectively.
  • the relationship between the pipe lengths is expressed by the following equation (1). It has become a relationship.
  • the supply / exhaust valves 15A to 15D are provided between the compressor unit 5 and the air suspensions 3A to 3D, that is, the pipes 14A to 14D, respectively.
  • the air supply / exhaust valves 15A to 15D can be provided, for example, closer to the air compressor 6 constituting the air supply means than the air springs 4A to 4D (close to the air compressor 6).
  • the air supply / exhaust valves 15A to 15D are configured as air supply valves.
  • the air supply / exhaust valves 15A to 15D include solenoids 15A1 to 15D1, and are formed as, for example, electromagnetic switching valves with two ports and two positions.
  • the supply / exhaust valves 15A to 15D are formed as spring-offset type normally closed valves.
  • the air supply / exhaust valves 15A to 15D in which the air supply valve and the exhaust valve are integrated will be described.
  • the air supply valve and the exhaust valve may be provided separately.
  • the solenoids 15A1 to 15D1 are electrically connected to the controller 18.
  • the supply / exhaust valves 15A to 15D are energized from the controller 18 to the solenoids 15A1 to 15D1, thereby attracting (moving) a plunger (not shown) against the spring force and opening the valves.
  • compressed air can be supplied to or discharged from the air suspensions 3A to 3D.
  • the supply / exhaust valves 15A to 15D can stop the supply and discharge of compressed air to the air suspensions 3A to 3D by closing the power supply to the solenoids 15A1 to 15D1 by the spring force.
  • the left front wheel height sensor 16A is provided on the air suspension 3A on the left front wheel 2A side
  • the right front vehicle height sensor 16B is provided on the air suspension 3B on the right front wheel 2B side
  • a left rear vehicle height sensor 16C is provided on the air suspension 3C on the left rear wheel 2C side
  • a right rear vehicle height sensor 16D is provided on the air suspension 3D on the right rear wheel 2D side.
  • These vehicle height sensors 16A to 16D are provided on the basis of the length of the air springs 4A to 4D (upper and lower dimensions) in the direction in which the air springs 4A to 4D expand or contract. High (current vehicle height) h1, h2, h3, and h4 are detected, and the detection signals are output to the controller 18 described later.
  • a left front pressure sensor 17A is provided on the air spring 4A on the left front wheel 2A side
  • a right front pressure sensor 17B is provided on the air spring 4B on the right front wheel 2B side
  • the left rear wheel 2C side air spring 4C is provided with a left rear pressure sensor 17C
  • the right rear wheel 2D side air spring 4D is provided with a right rear pressure sensor 17D.
  • the controller 18 is constituted by a microcomputer or the like as control means for controlling opening / closing of the supply / exhaust valves 15A to 15D.
  • the input side of the controller 18 is connected to vehicle height sensors 16A to 16D, pressure sensors 17A to 17D, and the output side of the controller 18 includes the electric motor 7, the exhaust valve 12, and the supply / exhaust valve 15A.
  • the controller 18 has a storage unit 18A composed of, for example, a ROM, a RAM, a non-volatile memory, and the like.
  • a program for air suspension control processing shown in FIG. 3, shown in FIG. A vehicle height adjustment program and the like are stored.
  • the controller 18 controls the driving and stopping of the air compressor 6 (electric motor 7) based on detection signals input from the vehicle height sensors 16A to 16D, pressure sensors 17A to 17D, and the duty of the PWM signal, for example.
  • the current supplied to the solenoids 12A and 15A1 to 15D1 of the exhaust valve 12 and the supply / exhaust valves 15A to 15D is controlled by changing the ratio.
  • the air suspension device according to the present embodiment has the above-described configuration. Next, air suspension control processing including vehicle height adjustment processing by the controller 18 will be described with reference to FIG.
  • the controller 18 executes a vehicle height adjustment determination process shown in FIG. 2 when the vehicle engine is started to start and run. That is, in step 1 in FIG. 2, the controller 18 is initialized, and in the next step 2, it is determined whether or not the control cycle has been reached. The process waits while determining “NO” in step 2, and proceeds to the next step 3 when determining “YES”.
  • step 3 a command signal (current) based on the processing content (calculation result) calculated in the previous control cycle is output to the exhaust valve 12, solenoids 12A and 15A1 to 15D1 of the supply / exhaust valves 15A to 15D, and the electric motor 7. , Drive each actuator.
  • step 4 various signals are output to ports other than the exhaust valve 12 and the supply / exhaust valves 15A to 15D, such as lamps.
  • step 5 the sensor value is input and the detection signal is read from the vehicle height sensors 16A to 16D.
  • step 6 it is determined whether or not the vehicle height adjustment is necessary based on the information read from the vehicle height sensors 16A to 16D.
  • the controller 18 performs a vehicle height adjustment process when, for example, a load change when a person gets on and off or a load change when a load is loaded occurs.
  • step 6 When it is determined as “YES” in step 6, it is necessary to adjust the vehicle height, so that the process proceeds to step 7 and a vehicle height adjustment process described later is performed. On the other hand, when it is determined as “NO” in step 6, it is not necessary to adjust the vehicle height, so that the process proceeds to step 8 to perform control clear processing. Specifically, in order to maintain the current vehicle height, a calculation result for closing the exhaust valve 12 and each of the air supply / exhaust valves 15A to 15D is output. When Steps 7 and 8 are completed, Step 2 and subsequent steps are repeated.
  • the lengths L1, L2, L3, and L4 of the pipes 14A to 14D from the compressor unit 5 to the air springs 4A to 4D are different.
  • the vehicle height adjustment on each of the wheels 2A to 2D becomes unbalanced. That is, when the vehicle height adjustment is performed, if the air supply / exhaust valves 15A to 15D for the air springs 4A to 4D corresponding to the wheels 2A to 2D are simultaneously driven, the pipe lengths L1, L2, L3, and L4 are determined.
  • the supply start timing of compressed air to each of the air springs 4A to 4D is shifted. Thereby, there is a possibility that the vehicle height adjustment on each of the wheels 2A to 2D cannot be stably performed.
  • the controller 18 controls the supply / exhaust valve 15A in order from the longer length L1, L2, L3, L4 of the pipes 14A to 14D from the compressor unit 5 to the air springs 4A to 4D. Control (vehicle height adjustment processing) to open 15D is performed.
  • the vehicle height adjustment processing according to the first embodiment will be described with reference to FIG.
  • the vehicle height adjustment process according to the first embodiment will be described by taking as an example a case where the vehicle height is increased from the current vehicle height h0 to the target vehicle height ht.
  • step 11 the pressures of the wheels 2A to 2B are measured. That is, the internal pressures P1, P2, P3, and P4 of the air springs 4A to 4D applied to the wheels 2A to 2D are measured using the pressure sensors 17A to 17D.
  • the compressor output flow rate Qcmp output from the air compressor 6 of the compressor unit 5 is calculated.
  • the pressure higher than the highest pressure among the internal pressures P1, P2, P3, and P4 of the air springs 4A to 4D obtained in step 11 is set as the discharge pressure Pcmp of the air compressor 6, and the discharge pressure Pcmp and the air
  • the compressor output flow rate Qcmp is calculated from the input voltage v of the compressor 6 (electric motor 7).
  • the compressor output flow rate Qcmp is, for example, a map of the characteristic function f of the air compressor 6 created in advance using the discharge pressure Pcmp and the input voltage v of the air compressor 6 as shown in the following equation (2). Use to calculate.
  • step 13 the flow rates Q1, Q2, Q3, Q4 to the air springs 4A-4D of the wheels 2A-2B via the pipes 14A-14D are calculated.
  • the flow rate Q flowing through the pipe is generally expressed by the following equation (3).
  • K is the flow coefficient
  • s is the specific gravity of the fluid
  • L is the pipe length
  • Pin is the pressure at the pipe inlet (compressor unit 5 side)
  • Pout is the pressure at the pipe outlet (air springs 4A to 4D side)
  • D is the pipe Of the inner diameter.
  • the flow rate Q2 to the air spring 4B is the flow rate Q1 and the pipes 14A and 14B.
  • the following equation (5) is used.
  • the flow rates Q3 and Q4 to the air springs 4C and 4D are also expressed by the following formulas 6 and 7 using the flow rate Q1.
  • the flow rates Q12 and Q22 flowing through the pipes 14A and 14B are expressed by the following formulas 9 and 10 using the compressor output flow rate Qcmp and the pipe lengths L1 and L2 of the pipes 14A and 14B.
  • the flow rates Q13, Q23, and Q33 flowing through the pipes 14A, 14B, and 14C are expressed by the following equations (12) and (13) using the compressor output flow rate Qcmp and the pipe lengths L1, L2, and L3 of the pipes 14A, 14B, and 14C. This is expressed by the following equation (14).
  • the flow rates Q14, Q24, Q34, and Q44 flowing through the pipes 14A, 14B, 14C, and 14D use the compressor output flow rate Qcmp and the pipe lengths L1, L2, L3, and L4 of the pipes 14A, 14B, 14C, and 14D. It is expressed by the following formula 16, formula 17, formula 18 and formula 19.
  • step 14 the air volumes V1input, V2input, V3input, and V4input necessary for the air springs 4A to 4D of the wheels 2A to 2D are calculated when the vehicle height adjustment process is performed.
  • the volume V1input is expressed by the following equation (20).
  • P1 is the internal pressure of the air spring 4A
  • S1 is the cross-sectional area of the air spring 4A
  • ht is the target vehicle height
  • h1 is the current vehicle height of the air suspension 3A
  • Patm is the atmospheric pressure.
  • the air volumes V2input, V3input, and V4input necessary for the air springs 4B, 4C, and 4D are also expressed in the same manner as the above equation (20).
  • the internal pressure P1 the cross-sectional area S1, and the current vehicle height h1
  • the internal pressures P2, P3, and P4 of the air springs 4B, 4C, and 4D the cross-sectional areas S2, S3, and S4, and the current vehicle height h2, h3, and h4 are used. .
  • step 15 when the vehicle height adjustment process is performed, the air supply sequences (air supply times corresponding to the pipe lengths) t1, t2, t3, t4 required for the air springs 4A-4D of the wheels 2A-2D are calculated. calculate.
  • air supply is started in the order of the air springs 4A to 4D, and the air supply times t1 to t4 are calculated so that the air suspensions 3A to 3D reach the target vehicle height ht simultaneously (at the same timing). That is, the air supply times t1 to t4 are expressed by the following equations (21), (22), (23), and (24) using the flow rates Q1 to Q4 and the volumes V1input to V4input obtained in steps 13 and 14, respectively. expressed.
  • the vehicle height adjustment process in the first embodiment will be described using FIG. 5 together with the opening / closing control of the air supply / exhaust valves 15A to 15D.
  • the vehicle heights h1, h2, h3, h4 of the air suspensions 3A to 3D are the same at the current vehicle height h0, and the vehicle heights h1, h2, h3, h4 are raised to the target vehicle height ht as an example. explain.
  • the controller 18 opens the air supply / exhaust valves 15A to 15D in order from the longer piping 14A to 14D from the compressor unit 5 to the air springs 4A to 4D.
  • the controller 18 opens and closes the supply / exhaust valves 15A, 15B (or supply / exhaust valves 15C, 15D) of the front wheels 2A, 2B (or rear wheels 2C, 2D) adjacent to each other in the left and right directions among the wheels 2A-2D. Different timings.
  • the controller 18 varies the opening / closing timings of the supply / exhaust valves 15A, 15B, 15C, 15D of the front wheels 2A, 2B and the rear wheels 2C, 2D adjacent to each other in the front and rear directions among the wheels 2A-2D. That is, in the first embodiment, the opening / closing timings of the supply / exhaust valves 15A, 15B, 15C, 15D of the four wheels (all wheels 2A to 2D) are made different.
  • the controller 18 first opens the air supply / exhaust valve 15A of the pipe 14A having the longest pipe length L1 among the pipes 14A to 14D, and supplies compressed air to the air spring 4A.
  • the flow rate Q1 to the air spring 4A is the flow rate Q11, and the air supply time is t1 (see Equations 4 and 24).
  • the controller 18 opens the air supply / exhaust valve 15B of the pipe 14B having the second longest pipe length L2 among the pipes 14A to 14D, and supplies compressed air to the air spring 4B.
  • the flow rates Q1 and Q2 to the air springs 4A and 4B are flow rates Q12 and Q22, and the air supply time is t2.
  • Formula, Formula 10 and Formula 23 are flow rates Q12 and Q22, and the air supply time is t2.
  • the controller 18 opens the supply / exhaust valve 15C of the pipe 14C having the third longest pipe length L3 among the pipes 14A to 14D, and supplies compressed air to the air spring 4C.
  • the flow rates Q1, Q2, Q3 to the air springs 4A, 4B, 4C become flow rates Q13, Q23, Q33.
  • the time is t3 (see Formula 12 to Formula 14, Formula 22).
  • the controller 18 opens the air supply / exhaust valve 15D of the pipe 14D having the fourth longest pipe length L4 among the pipes 14A to 14D, and supplies compressed air to the air spring 4D.
  • the flow rates Q1, Q2, Q3, Q4 to the air springs 4A, 4B, 4C, 4D are flow rates Q14, Q24, Q34 and Q44, and the air supply time is t4 (see Equations 16 to 19, Equation 21).
  • the controller 18 closes the solenoids 15A1 to 15D1 of the air supply / exhaust valves 15A to 15D and performs vehicle height adjustment processing. Exit. Even when the vehicle height of the vehicle height adjustment process is lowered, the air supply / exhaust valves 15A to 15D can be opened in order from the longer pipes 14A to 14D to discharge the compressed air to the outside.
  • the controller 18 opens the supply / exhaust valves 15A to 15D in order from the longest pipes 14A to 14D from the compressor unit 5 to the air springs 4A to 4D,
  • the vehicle height adjustment process is performed.
  • the flow rates Q1, Q2, Q3, Q4 to the air springs 4A-4D are calculated in consideration of the pipe lengths L1, L2, L3, L4 of the pipes 14A-14D.
  • the vehicle height adjustment process in which the air suspensions 3A to 3D of the wheels 2A to 2D reach the target vehicle height ht simultaneously (at the same timing). It was set as the structure which performs. As a result, the vehicle height can be raised and lowered by the wheels 2A to 2B, and the vehicle body 1 can be lifted and lowered in a form close to horizontal. As a result, an unnecessary inclination of the vehicle body 1 can be suppressed, so that the balance between the luggage and the occupant is not lost and the riding comfort can be improved.
  • the supply / exhaust valves 15A to 15D include solenoids 15A1 to 15D1, and the controller 18 controls the adjacent wheels 2A to 2D (the adjacent front wheels 2A and 2B, the adjacent rear wheels 2C and 2D, the adjacent front wheels 2A and 2B and the rear
  • the opening / closing timings of the supply / exhaust valves 15A, 15B of the wheels 2C, 2D) are made different. As a result, the timing of the starting current supplied to the solenoids 15A1 to 15D1 can be shifted. As a result, since a large current does not flow from the battery or the like to the solenoids 15A1 to 15D1 at the same time and a large voltage drop can be suppressed, the burden on the battery can be reduced.
  • FIG. 6 shows a second embodiment of the present invention.
  • the feature of the second embodiment resides in that the air suspension device is configured as a closed type.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a compressor 21 as an air supply means compresses air and supplies compressed air to the air springs 4A and 4B (4C and 4D) of the air suspensions 3A and 3B (3C and 3D).
  • the compressor 21 also has a function of sending (pulling) the compressed air of the air springs 4A, 4B (4C, 4D) into the tank 22 when exhausting the compressed air from the air springs 4A, 4B (4C, 4D). is doing.
  • the compressor 21 includes an air compressor 21A and an electric motor 21B that drives the air compressor 21A.
  • a suction filter 8 is provided on the suction port 21C side of the compressor 21 to remove dust and the like in the outside air sucked into the air compressor 21A.
  • a replenishment passage 23 to be described later is connected to the discharge port 21 ⁇ / b> D of the compressor 21.
  • the tank 22 stores air compressed by the compressor 21 (compressed air).
  • the discharge port 21 ⁇ / b> D of the compressor 21 and the tank 22 are connected via a supply passage 23, and the compressed air discharged from the compressor 21 is stored in the tank 22 through the supply passage 23.
  • the compressed air stored in the tank 22 is supplied to the air springs 4A and 4B of the air suspensions 3A and 3B through a supply / discharge passage 25 described later.
  • the first check valve (check valve) 24 is located between the tank 22 and the air dryer 10 and is provided in the supply passage 23.
  • the first check valve 24 allows a flow of compressed air from the compressor 21 toward the tank 22 and prevents a reverse flow.
  • the supply / discharge passage 25 connects between the tank 22 and the air springs 4A and 4B of the air suspensions 3A and 3B.
  • the supply / discharge passage 25 constitutes a pipe through which compressed air supplied from the tank 22 to the air suspensions 3A and 3B flows and air discharged from the air suspensions 3A and 3B flows.
  • the supply / discharge passage 25 branches into two branch supply / discharge passages 25A, 25B between a supply / discharge switching valve 26 and air suspensions 3A, 3B, which will be described later, and one branch supply / discharge passage 25A is an air suspension.
  • the other branch supply / discharge passage 25B is connected to the air spring 4B of the air suspension 3B.
  • the supply / exhaust switching valve 26 is provided in the middle of the supply / exhaust passage 25, and the supply / exhaust switching valve 26 is constituted by an electromagnetic valve at a 3-port 2-position.
  • the supply / discharge switching valve 26 selectively switches between a supply position (a) for supplying compressed air to the air suspensions 3A and 3B and a discharge position (b) for discharging the air in the air suspensions 3A and 3B. It is done.
  • the supply / discharge switching valve 26 is controlled by the current supplied by a controller (not shown). For example, when the solenoid 26A is not excited, the spring 26B holds the discharge position (b), and the solenoid 26A is excited. When it is done, it is switched to the supply position (a) against the spring 26B.
  • the supply / exhaust valve 27 is located between the air suspension 3A and the supply / discharge switching valve 26, and is provided in the middle of the branch supply / discharge passage 25A.
  • the air supply / exhaust valve 27 is a 2-port 2-position electromagnetic valve as an air supply valve.
  • the supply / exhaust valve 27 opens the branch supply / exhaust passage 25A to allow air supply / discharge to / from the air spring 4A of the air suspension 3A, and closes the branch supply / discharge passage 25A to close the air spring 4A of the air suspension 3A. Is selectively switched to a closed position (b) for shutting off air supply / exhaust to control the expansion and contraction of the air suspension 3A.
  • the supply / exhaust valve 27 holds the closed position (b) for closing the branch supply / exhaust passage 25B by the spring 27B when the solenoid 27A is not excited by the controller, for example, and when the solenoid 27A is excited, the spring 27B It is switched to the open position (a) that opens the branch supply / discharge passage 25A against 27B.
  • the supply / exhaust valve 28 is located between the air suspension 3B and the supply / discharge switching valve 26 and is provided in the middle of the branch supply / discharge passage 25B.
  • This air supply / exhaust valve 28 is constituted by a 2-port 2-position electromagnetic valve as an air supply valve, similar to the air supply / exhaust valve 27, and closes the open / close position (a) for opening the branch supply / discharge passage 25B and the branch supply / discharge passage 25B. By selectively switching to the closed position (b), the expansion and contraction of the air suspension 3B are controlled.
  • the supply / exhaust valve 28 holds the closed position (b) for closing the branch supply / exhaust passage 25B by the spring 28B, and when the solenoid 28A is excited, the spring 28B It is switched to the open position (a) that opens the branch supply / discharge passage 25B against 28B.
  • the return passage 29 connects between the supply / discharge switching valve 26 and the discharge port 21D of the compressor 21.
  • the return passage 29 is configured so that when the supply / discharge switching valve 26 holds the discharge position (b) and the supply / exhaust valves 27, 28 are switched to the open position (a), the air springs 4A, 4A of the air suspensions 3A, 3B.
  • the air discharged from 4B is returned to the suction side (suction port 21C side) of the compressor 21.
  • the return passage opening / closing valve 30 is provided in the middle of the return passage 29, and the return passage opening / closing valve 30 is composed of a 2-port 2-position electromagnetic valve, and opens and closes the return passage 29.
  • the return passage opening / closing valve 30 has an open position (a) for opening the return passage 29 and a closed position (b) for closing the return passage 29.
  • the solenoid 30A when the solenoid 30A is not excited, the return passage opening / closing valve 30 holds the closed position (b) by the spring 30B, and when the solenoid 30A is excited, the return passage opening / closing valve 30 is opened against the spring 30B ( a).
  • the second check valve 31 is provided on the suction side of the compressor 21.
  • the second check valve 31 is disposed between the suction port 21 ⁇ / b> C of the compressor 21 and the suction filter 8.
  • the second check valve 31 allows the flow of air from the suction filter 8 toward the compressor 21 and blocks the reverse flow.
  • the bypass passage 32 is provided between the supply passage 23 and the return passage 29.
  • one end side of the bypass passage 32 is connected in the middle of the return passage 29 at a connection portion 32A located between the supply / discharge switching valve 26 and the return passage opening / closing valve 30, and the other end side of the bypass passage 32 is A connection portion 32 ⁇ / b> B located between the air dryer 10 and the first check valve 24 is connected in the middle of the supply passage 23.
  • the bypass passage 32 is for releasing the air in the air springs 4A and 4B of the air suspensions 3A and 3B into the atmosphere by bypassing the compressor 21.
  • the third check valve 33 is provided in the middle of the bypass passage 32, and the third check valve 33 allows air flow from the return passage 29 toward the supply passage 23 and prevents reverse flow. is there.
  • the exhaust passage 34 discharges air in the air springs 4A and 4B of the air suspensions 3A and 3B to the atmosphere.
  • one end side of the exhaust passage 34 is connected to the supply passage 23 at a connection portion 34 ⁇ / b> A located between the discharge port 21 ⁇ / b> D of the compressor 21 and the air dryer 10.
  • the other end side of the exhaust passage 34 is opened to the atmosphere via the suction filter 8.
  • the exhaust passage 34 allows the air discharged from the air suspensions 3 ⁇ / b> A and 3 ⁇ / b> B to be released into the atmosphere without being introduced into the tank 22.
  • the exhaust passage opening / closing valve 35 is provided in the middle of the exhaust passage 34, and the exhaust passage opening / closing valve 35 is constituted by a 2-port 2-position electromagnetic valve, and opens and closes the exhaust passage 34.
  • the exhaust passage opening / closing valve 35 has an open position (a) for opening the exhaust passage 34 and a closed position (b) for closing the exhaust passage 34.
  • the solenoid 35A when the solenoid 35A is not excited, the exhaust passage opening / closing valve 35 holds the closed position (b) by the spring 35B, and when the solenoid 35A is excited, the exhaust passage opening / closing valve 35 is opened against the spring 35B. a).
  • the air suspension device has the above-described configuration, and next, vehicle height adjustment processing according to the second embodiment will be described. Also in this case, as in the first embodiment, the controller opens the supply / exhaust valves 27 and 28 in order from the longer branch supply / discharge passages 25A and 25B as piping from the compressor 21 to the air springs 4A and 4B. Car height adjustment processing.
  • the compressed air stored in the tank 22 in advance is supplied to the air springs 4A, 4B of the air suspensions 3A, 3B through the supply / discharge passage 25. It is configured to do.
  • the compressed air can be supplied quickly, and the vehicle height can be raised quickly.
  • the controller 18 opens the supply / exhaust valves 15A to 15D in order from the longest pipes 14A to 14D from the compressor unit 5 to the air springs 4A to 4D. It was set as the structure to do.
  • the embodiment of the present invention is not limited to this, and the controller (control means) is configured to supply and exhaust valves (air supply valves) in order from the heaviest vehicle weight (weight) of the front wheel side and the rear wheel side of the vehicle body. It is good also as a structure which opens.
  • the control means opens the air supply / exhaust valves (air supply valves) in order from the heavier vehicle weight (weight) of the front wheel side and the rear wheel side of the vehicle body. Also in this case, the vehicle height adjustment on each wheel side can be performed stably. The same applies to the second embodiment.
  • the controller controls the air supply / exhaust valve (air supply valve) in order from the rear wheel side of the front wheel side and the rear wheel side of the vehicle body. It is good also as a structure. That is, when the air supply / exhaust valve (air supply valve) is opened in order from the rear wheel side of the front wheel side and the rear wheel side of the vehicle body, the front wheel side of the vehicle body rises earlier than the rear wheel side, and the light of the vehicle The shaft (light) may face upward. Therefore, the control means opens the air supply / exhaust valve (air supply valve) in order from the rear wheel side of the front wheel side and the rear wheel side of the vehicle body.
  • the controller may be configured to open the air supply / exhaust valves in order from the front wheel side and discharge air. The same applies to the second embodiment.
  • the controller 18 is configured to vary the opening / closing timings of the supply / exhaust valves 15A, 15B, 15C, 15D for all four wheels.
  • the embodiment of the present invention is not limited to this, according to the length of the piping of each air spring from the air supply means and / or according to the weight applied to each air spring, the front-rear direction of each wheel, The opening / closing timings of the air supply valves of the adjacent wheels in at least one of the left-right direction and the diagonal direction can be made different. That is, for example, the controller may be configured to vary the opening / closing timings of the air supply valves of the front wheels (or rear wheels D) adjacent in the left and right directions.
  • the air suspension device controls the four air suspensions 3A to 3D so as to correspond to the front, rear, left, and right wheels 2A to 2D, respectively. It was set as the structure which adjusts.
  • the embodiment of the present invention is not limited to this, and the vehicle height may be adjusted by providing the air suspension only on the front wheel, or the vehicle height may be adjusted by providing the air suspension only on the rear wheel.
  • the control means can vary the opening / closing timings of the air supply valves of the front wheels (or rear wheels) adjacent in the left and right directions. The same applies to the second embodiment.
  • the configuration in which the compressor unit 5 is provided on the center side of the vehicle body 1 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the compressor unit may be provided, for example, on the front side or the rear side of the vehicle.
  • the left and right directions may be provided on the left side of the vehicle or on the right side. The same applies to the second embodiment.
  • the controller 18 opens the supply / exhaust valves 15A to 15D in order from the longer pipes 14A to 14D from the compressor unit 5 (air supply means) to the air springs 4A to 4D. did.
  • the embodiment of the present invention is not limited to this, and the controller may be configured to open the air supply / exhaust valve in order from the longest pipe from the air supply / exhaust valve (air supply valve) to the air spring. The same applies to the second embodiment.
  • the air suspension device according to the embodiment of the present invention is applied to a vehicle of a four-wheel automobile has been described as an example.
  • the embodiment of the present invention is not limited thereto. Instead, the present invention may be applied to other vehicles such as a railway vehicle.
  • the supply / exhaust valves 15A to 15D in which the supply valve and the exhaust valve are integrated have been described.
  • the supply valve and the exhaust valve may be provided separately.
  • the supply / exhaust valves 15A to 15D are opened at the time of air supply and exhaust in order from the longer pipes 14A to 14D from the compressor unit 5 to the air springs 4A to 4D.
  • the technology of the present invention may be implemented only when supplying air or only when exhausting.
  • valve block 15 is configured by integrating the air supply / exhaust valves 15A to 15D, but each may be provided.
  • the air supply valve is configured using a solenoid
  • the control means is configured to vary the opening / closing timing of the air supply valve of at least adjacent wheels among the wheels. did.
  • the vehicle height adjustment on each wheel side can be stably performed (for example, the timing to reach the target height is almost simultaneously).
  • the voltage drop amount of the battery voltage due to the inrush current can be reduced.
  • control means is configured to open the air supply valve in order from the heavy side of the front wheel side and the rear wheel side. This also has the same effect as the case described above.
  • control means is configured to open the air supply valve in order from the rear wheel side of the front wheel side and the rear wheel side. In this case, it can suppress that the optical axis (light) of a vehicle faces upwards. Moreover, the voltage drop amount of the battery voltage due to the inrush current can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 車高調整を行う場合に、各車輪側での車高変化が同じタイミングとなるように各給気バルブの制御を行う。 サスペンション装置は、車両の車体と車輪との間に介在される複数のエアばねと、複数のエアばねに対して給気する給気部と、給気部から複数のエアばねに向けてそれぞれ延びる複数の配管と、給気部と複数のエアばねとの間にそれぞれ設けられる複数の給気バルブと、複数の給気バルブの開閉を制御する制御部と、を備えている。制御部は、対応する配管の長さが相対的に長い吸気バルブを、対応する配管の長さが相対的に短い吸気バルブよりも先に開弁させる。

Description

エアサスペンション装置
 本発明は、例えば4輪自動車等の車両に搭載され、車高の調整を行うのに好適に用いられるエアサスペンション装置に関する。
 一般に、車両に搭載されるエアサスペンション装置として、例えば左,右の前輪と左,右の後輪にそれぞれ設けたエアばねを、圧縮エア(圧縮空気)源となる車載の空気圧縮機(コンプレッサ)から吐出される圧縮エアを用いて拡張、縮小させることにより、荷物の積み下ろし時、乗客の乗降時またはその他の時に応じて車高を適宜に調整する構成が知られている。
 このようなエアサスペンション装置は、空気圧縮機と、例えば前,後と左,右の車輪に対応してそれぞれ設けられた4つのエアばねと、前記空気圧縮機と前記各エアばねとの間に設けられ、ソレノイドにより駆動される給気バルブと、前記給気バルブを開閉制御するコントローラとを備えている(例えば、特許文献1参照)。
 一方、特許文献2には、パーキングシステムに関し、2つ以上の電動モータがある場合に、各電動モータの起動電流が最大になる時期が重ならないように、異なるタイミングで各電動モータを始動する構成が記載されている。
特開2010-105584号公報 特開2008-213683号公報
 ところで、空気圧縮機の取付け位置が、例えば車両の中心位置ではない場合、空気圧縮機から各エアばねまでの配管長さが異なることに伴って、各車輪側での車高調整がアンバランスになるという問題がある。また、車重が前輪側と後輪側とで異なる(前輪側のエアばねに加わる重量と後輪側のエアばねに加わる重量とが異なる)ことに伴って、各車輪側(前輪側と後輪側)での車高調整がアンバランスになるという問題がある。
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、各車輪側での車高調整を安定して行うことができるようにしたエアサスペンション装置を提供することにある。
 上述した課題を解決するために、本発明の一実施形態によるエアサスペンション装置は、車両の車体と車輪との間に介在される複数のエアばねと、前記複数のエアばねに対して給気する給気部と、前記給気部から前記複数のエアばねに向けてそれぞれ延びる複数の配管と、前記給気部と前記複数のエアばねとの間にそれぞれ設けられる複数の給気バルブと、前記複数の給気バルブの開閉を制御する制御部と、を備える。前記制御部は、対応する前記配管の長さが相対的に長い前記吸気バルブを、対応する前記配管の長さが相対的に短い前記吸気バルブよりも先に開弁させるように構成される。
 また、本発明の一実施形態によるエアサスペンション装置は、車両の車体と車輪との間に介在される複数のエアばねと、前記複数のエアばねに対して給気する給気部と、前記給気部から前記複数のエアばねに向けてそれぞれ延びる複数の配管と、前記給気部と前記複数のエアばねとの間にそれぞれ設けられる複数の給気バルブと、前記複数の給気バルブの開閉を制御する制御部と、を備える。前記制御部は、前輪側と後輪側とのうちの車体重量が相対的に大きい側の前記車輪に対応する前記吸気バルブを、車体重量が相対的に小さい側の前記車輪に対応する前記吸気バルブよりも先に開弁させるように構成される。
 本発明の実施形態によれば、各車輪側での車高調整を安定して行うことができる。即ち、車高調整をする場合に、各車輪が安定して目標車高に達するように各給気バルブの制御を行うことができる。
本発明の第1の実施の形態によるエアサスペンション装置が搭載された車両の概念図である。 本発明の第1の実施の形態によるエアサスペンション装置を示す概念図である。 エアサスペンション装置の制御処理を示す流れ図である。 図3中の車高調整処理を示す流れ図である。 車高調整処理において、各エアサスペンションの車高の時間変化と各給気バルブの時間変化とを示す特性線図である。 第2の実施の形態によるエアサスペンション装置を示す全体構成図である。
 以下、本発明の実施の形態によるエアサスペンション装置を、4輪自動車等の車両に搭載する場合を例に挙げ、添付図面に従って詳細に説明する。
 まず、図1ないし図5は本発明の第1の実施の形態を示している。図1において、車両のボディを構成する車体1の下側(路面側)には、左,右の前輪2A,2Bと左,右の後輪2C,2Dとからなる合計4個の車輪が設けられている。
 エアサスペンション3A~3Dは、車輪2A~2Dにそれぞれ設けられている。これらのエアサスペンション3A~3Dには、車両の車体1と車輪2A~2Dとの間に介在してエアばね4A~4Dがそれぞれ設けられている。エアサスペンション3A~3Dは、空気の給排に応じて車体1の車高調整を行うものである。
 そして、これらのエアばね4A~4Dは、後述の配管14A~14Dと給排気バルブ15A~15Dとを介して圧縮エアが供給または排出されると、このときの給排量(エア量)に応じて上,下に伸縮される。これにより、エアばね4A~4Dは、エアサスペンション3A~3Dと共に車体1の車高調整を個別に行い、各車輪2A~2D毎に車高が上げ,下げされるものである。
 給気手段としての車載用のコンプレッサユニット5は、エアサスペンション3A~3Dのエアばね4A~4Dに圧縮エアを給気する圧縮エア源をなしている。コンプレッサユニット5は、空気圧縮機6、電動モータ7、吸込フィルタ8、給排管路9の一部、エアドライヤ10、スローリターンバルブ11、排気バルブ12および排気管路13、給排気バルブ15A~15Dが一体になったバルブブロック15を含んで構成されている。この場合、例えば、空気圧縮機6と電動モータ7とにより構成されるコンプレッサを給気手段とすることができる。
 空気圧縮機6は、例えば往復動圧縮機またはスクロール式圧縮機等により構成され、例えば車体1の後部側に搭載されるコンプレッサユニット5の主要部となっている。空気圧縮機6は、駆動源としての電動モータ7により駆動され、吸込フィルタ8側から吸込んだ外気または大気を圧縮して圧縮エア(エア)を発生させる。吸込フィルタ8は、吸込音を低減するサイレンサとしても機能する。
 給排管路9は、空気圧縮機6の吐出側に接続して設けられている。この給排管路9は、その一側(基端側)が図2に示すように空気圧縮機6の吐出側に接続され、その他側(先端側)はコンプレッサユニット5の外部まで延びている。給排管路9の先端側には、後述の配管14A~14Dが接続される接続点9A,9Bが設けられている。
 エアドライヤ10は、給排管路9の途中に介装して設けられた空気乾燥手段を構成している。このエアドライヤ10は、例えば水分吸着剤(図示せず)等を内蔵し、スローリターンバルブ11と後述の排気管路13との間に配設されている。スローリターンバルブ11は、絞り11Aとチェック弁11Bとの並列回路により構成され、後述の順方向流れに対しては、チェック弁11Bが開弁して圧縮エアの流量を絞ることはない。しかし、逆方向の流れに対してはチェック弁11Bが閉弁し、このときの圧縮エアは絞り11Aにより流量が絞られるために、エアドライヤ10内をゆっくりと小流量で逆流するものである。
 エアドライヤ10は、空気圧縮機6で発生した高圧の圧縮エアがエアサスペンション3A~3D側に向けて順方向に流通するときに、この圧縮エアを内部の水分吸着剤に接触させることにより水分を吸着し、乾燥した圧縮エアをエアばね4A~4Dに向けて供給する。一方、エアばね4A~4Dから排出された圧縮エア(排気)がエアドライヤ10内を逆方向に流通するときには、乾燥したエアがエアドライヤ10内を逆流するので、エアドライヤ10内の水分吸着剤は、この乾燥エアにより水分が脱着される。これにより、水分吸着剤は再生され、再び水分を吸着可能な状態に戻される。
 排気バルブ12は、排気管路13を介して給排管路9に接続されている。この排気バルブ12は、ソレノイド(コイル)12Aを備え、例えば2ポート2位置の電磁式切換弁(スプリングオフセット式の常閉弁)として形成されている。排気バルブ12は、常時は閉弁して排気管路13を排気口13Aに対し遮断している。そして、排気バルブ12のソレノイド12Aは、外部(後述のコントローラ18)からの通電により励磁されると、開弁して排気管路13を排気口13Aに連通させ、給排管路9内の圧縮エアを大気中に排出(放出)するものである。
 配管14A~14Dは、コンプレッサユニット5からエアサスペンション3A~3Dのエアばね4A~4Dに向けてそれぞれ延びている。なお、図2では、給排気バルブ15A~15Dおよび後述の各センサ16A~16D,17A~17D等を図示するために、各配管14A~14Dの長さやエアばね4A~4Dの位置等を図1と一致させていない。これらの配管14A~14Dは、エアばね4A~4Dを給排管路9に対して個別に接続するため、給排管路9から接続点9A,9Bの位置で互いに分岐して配設されている。即ち、配管14A,14Bは、接続点9Aの位置で給排管路9に接続され、配管14C,14Dは、接続点9Bの位置で給排管路9に接続されている。ここで、図1に示すように、配管14A~14Dの各配管長さは、L1,L2,L3,L4としてそれぞれ形成され、例えば各配管長さの関係は以下の数1式で表される関係となっている。
Figure JPOXMLDOC01-appb-M000001
 給排気バルブ15A~15Dは、コンプレッサユニット5とエアサスペンション3A~3Dとの間、即ち、配管14A~14Dにそれぞれ設けられている。この場合、給排気バルブ15A~15Dは、例えば、エアばね4A~4Dよりも給気手段を構成する空気圧縮機6に近い側に(空気圧縮機6に近接して)設けることができる。この給排気バルブ15A~15Dは給気バルブとして構成され、排気バルブ12と同様に、ソレノイド15A1~15D1を備え、例えば2ポート2位置の電磁式切換弁として形成されている。具体的には、給排気バルブ15A~15Dは、スプリングオフセット式の常閉弁として形成されている。なお、本実施の形態では、給気バルブと排気バルブとが一体となった給排気バルブ15A~15Dについて説明するが、給気バルブと排気バルブとを別々に設けても良い。
 ここで、ソレノイド15A1~15D1は、コントローラ18に電気的に接続されている。給排気バルブ15A~15Dは、コントローラ18からソレノイド15A1~15D1に給電されることにより、ばね力に抗してプランジャ(図示せず)を吸引(移動)し、開弁する。この開弁状態では、エアサスペンション3A~3Dに対し圧縮エアを供給または排出することができる。一方、給排気バルブ15A~15Dは、ソレノイド15A1~15D1への給電を停止することにより、ばね力により閉弁してエアサスペンション3A~3Dに対する圧縮エアの供給や排出を停止することができる。
 左前輪2A側のエアサスペンション3Aには、左前車高センサ16Aが設けられ、右前輪2B側のエアサスペンション3Bには、右前車高センサ16Bが設けられている。左後輪2C側のエアサスペンション3Cには、左後車高センサ16Cが設けられ、右後輪2D側のエアサスペンション3Dには、右後車高センサ16Dが設けられている。これらの車高センサ16A~16Dは、エアばね4A~4Dが拡張または縮小する方向のエアばね4A~4Dの長さ寸法(上,下方向の寸法)に基づいて、エアサスペンション3A~3Dの車高(現在車高)h1,h2,h3,h4をそれぞれ検出し、その検出信号を後述のコントローラ18に出力する。
 また、左前輪2A側のエアばね4Aには、左前圧力センサ17Aが設けられ、右前輪2B側のエアばね4Bには、右前圧力センサ17Bが設けられている。左後輪2C側のエアばね4Cには、左後圧力センサ17Cが設けられ、右後輪2D側のエアばね4Dには、右後圧力センサ17Dが設けられている。これらの圧力センサ17A~17Dは、エアばね4A~4Dに供給された圧縮エアの空気圧(圧力)を内圧P1,P2,P3,P4としてそれぞれ検出することにより、各空気圧の検出信号をコントローラ18に出力する。
 コントローラ18は、給排気バルブ15A~15Dの開閉を制御する制御手段として、マイクロコンピュータ等により構成されている。図2に示すように、このコントローラ18の入力側は車高センサ16A~16D、圧力センサ17A~17D等に接続され、コントローラ18の出力側は、電動モータ7、排気バルブ12および給排気バルブ15A~15Dのソレノイド12A,15A1~15D1等に接続されている。ここで、コントローラ18は、例えばROM,RAM,不揮発性メモリ等からなる記憶部18Aを有し、この記憶部18A内には、例えば図3に示すエアサスペンション制御処理用のプログラム、図4に示す車高調整処理用のプログラム等が格納されている。
 コントローラ18は、車高センサ16A~16D、圧力センサ17A~17D等から入力される検出信号に基づいて、空気圧縮機6(電動モータ7)の駆動や停止を制御すると共に、例えばPWM信号のデューティ比を変化させることによって排気バルブ12、給排気バルブ15A~15Dのソレノイド12A,15A1~15D1に供給する電流を制御する。
 本実施の形態によるエアサスペンション装置は、上述の如き構成を有するもので、次に、コントローラ18による車高調整処理を含むエアサスペンション制御処理について、図3を参照して説明する。
 まず、コントローラ18は、車両のエンジンを起動して発進、走行操作を行うときに、図2に示す車高調整判定処理を実行する。即ち、図2中のステップ1ではコントローラ18の初期設定を行い、次のステップ2で制御周期に達したか否かを判定する。ステップ2で「NO」と判定する間は待機し、「YES」と判定したときには、次のステップ3に移る。
 ステップ3では、前回の制御周期で演算された処理内容(演算結果)に基づく指令信号(電流)を排気バルブ12、給排気バルブ15A~15Dのソレノイド12A,15A1~15D1や電動モータ7に出力し、それぞれのアクチュエータを駆動する。次のステップ4では、例えばランプ等のように排気バルブ12、給排気バルブ15A~15D以外のポートに対して各種の信号を出力する。
 また、ステップ5ではセンサ値入力を行い、車高センサ16A~16D等から検出信号を読込む。そして、次のステップ6では、車高センサ16A~16D等から読込んだ情報に基づいて車両の車高調整が必要か否か判定する。具体的には、コントローラ18は、例えば人員の乗降時の荷重変化や荷物の積載時の荷重変化が生じた際等に車高調整処理を行う。
 ステップ6で「YES」と判定したときには、車高調整の必要があるので、ステップ7に移行して後述する車高調整処理を行う。一方、ステップ6で「NO」と判定したときには、車高調整の必要がないから、ステップ8に移行して制御クリアの処理を行う。具体的には、現在の車高を維持するために、排気バルブ12、各給排気バルブ15A~15Dを閉弁させる演算結果を出力する。ステップ7,8が終了すると、ステップ2以降を繰り返す。
 ところで、コンプレッサユニット5の取付け位置が、例えば車両の中心位置ではない場合、コンプレッサユニット5から各エアばね4A~4Dまでの各配管14A~14Dの長さL1,L2,L3,L4が異なることに伴って、各車輪2A~2D側での車高調整がアンバランスになるという問題がある。即ち、車高調整を行う際に、各車輪2A~2Dに対応する各エアばね4A~4D用の給排気バルブ15A~15Dを同時に駆動させると、各配管長さL1,L2,L3,L4が異なることに伴って、各エアばね4A~4Dへの圧縮エアの供給開始タイミングがずれる。これにより、各車輪2A~2D側での車高調整を安定して行うことができない可能性がある。
 しかも、給排気バルブ15A~15Dを同時に駆動させる構成の場合、例えば、車高調整をバッテリ電圧の最低動作電圧付近で行うと、バルブ制御時に発生する電圧降下の影響でバッテリ電圧が最低動作電圧を下回り、給排気バルブ15A~15Dの動作が不安定になるおそれがある。そこで、第1の実施の形態では、コントローラ18は、コンプレッサユニット5から各エアばね4A~4Dまでの各配管14A~14Dの長さL1,L2,L3,L4が長いほうから順に給排気バルブ15A~15Dを開とする制御(車高調整処理)を行う。
 以下、図4を用いて第1の実施の形態による車高調整処理について説明する。なお、第1の実施の形態による車高調整処理は、車両の現在車高h0から目標車高htまで車高を上げる場合を例に挙げて説明する。
 ステップ11では、車輪2A~2Bの圧力を測定する。即ち、圧力センサ17A~17Dを用いて、車輪2A~2Dに加わるエアばね4A~4Dの内圧P1,P2,P3,P4を測定する。
 続くステップ12では、コンプレッサユニット5の空気圧縮機6から出力するコンプレッサ出力流量Qcmpを算出する。この場合、例えば、上記ステップ11で求めたエアばね4A~4Dの内圧P1,P2,P3,P4のうち最も高い圧力以上の圧力を空気圧縮機6の吐出圧Pcmpとし、該吐出圧Pcmpと空気圧縮機6(電動モータ7)の入力電圧vとからコンプレッサ出力流量Qcmpを算出する。なお、コンプレッサ出力流量Qcmpは、例えば以下の数2式で示すように、空気圧縮機6の吐出圧Pcmpと入力電圧vとを用いて、予め作成した空気圧縮機6の特性関数fのマップを用いて算出する。
Figure JPOXMLDOC01-appb-M000002
 ステップ13では、配管14A~14Dを介して車輪2A~2Bのエアばね4A~4Dへの流量Q1,Q2,Q3,Q4を算出する。この場合、一般的に配管に流れる流量Qは、以下の数3式で表される。但し、Kは流量係数、sは流体の比重、Lは配管長さ、Pinは配管入口(コンプレッサユニット5側)の圧力、Poutは配管出口(エアばね4A~4D側)の圧力、Dは配管の内径である。
Figure JPOXMLDOC01-appb-M000003
 ここで、コンプレッサ出力流量Qcmpと、空気圧縮機6からエアばね4Aにのみ給気している場合の流量Q11との関係は、以下の数4式で表されるように、等しい値となる。
Figure JPOXMLDOC01-appb-M000004
 各配管14A~14Dの内径Dを同一とし、各エアばね4A~4Dの内圧P1,P2,P3,P4を同一とした場合、エアばね4Bへの流量Q2は、流量Q1と配管14A,14Bの配管長さL1,L2とを用いて、以下の数5式で表される。また同様に、エアばね4C,4Dへの流量Q3,Q4も、流量Q1を用いて、以下の数6式、数7式で表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 また、コンプレッサ出力流量Qcmpと、空気圧縮機6からエアばね4A,4Bにのみ給気している場合の流量Q12,Q22との関係は、以下の数8式で表される。
Figure JPOXMLDOC01-appb-M000008
 従って、配管14A,14Bを流れる流量Q12,Q22は、コンプレッサ出力流量Qcmpと配管14A,14Bの配管長さL1,L2とを用いて以下の数9式、数10式で表される。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 一方、コンプレッサ出力流量Qcmpと、空気圧縮機6からエアばね4A,4B,4Cにのみ給気している場合の流量Q13,Q23,Q33との関係は、以下の数11式で表される。
Figure JPOXMLDOC01-appb-M000011
 従って、配管14A,14B,14Cを流れる流量Q13,Q23,Q33は、コンプレッサ出力流量Qcmpと配管14A,14B,14Cの配管長さL1,L2,L3とを用いて以下の数12式、数13式、数14式で表される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 さらに、コンプレッサ出力流量Qcmpと、空気圧縮機6からエアばね4A,4B,4C,4Dに給気している場合の流量Q14,Q24,Q34,Q44との関係は、以下の数15式で表される。
Figure JPOXMLDOC01-appb-M000015
 従って、配管14A,14B,14C,14Dを流れる流量Q14,Q24,Q34,Q44は、コンプレッサ出力流量Qcmpと配管14A,14B,14C,14Dの配管長さL1,L2,L3,L4とを用いて以下の数16式、数17式、数18式、数19式で表される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 次にステップ14では、車高調整処理を行う場合に、車輪2A~2Dのエアばね4A~4Dに必要な空気の体積V1input,V2input,V3input,V4inputを算出する。ここで、エアばね4Aに対して車高調整処理を行う場合に、体積V1inputは以下の数20式で表される。但し、P1はエアばね4Aの内圧、S1はエアばね4Aの断面積、htは目標車高、h1はエアサスペンション3Aの現在車高、Patmは大気圧である。
Figure JPOXMLDOC01-appb-M000020
 また、エアばね4B,4C,4Dに必要な空気の体積V2input,V3input,V4inputについても上記数20式と同様に表される。この場合、内圧P1、断面積S1、現在車高h1は、エアばね4B,4C,4Dの内圧P2,P3,P4、断面積S2,S3,S4、現在車高h2,h3,h4をそれぞれ用いる。
 そして、ステップ15では、車高調整処理を行う場合に、車輪2A~2Dのエアばね4A~4Dに必要な給気シーケンス(配管長さに応じた給気時間)t1,t2,t3,t4を算出する。この場合、エアばね4A~4Dの順に給気を開始し、エアサスペンション3A~3Dが目標車高htに同時に(同じタイミングで)達するように給気時間t1~t4を算出する。即ち、給気時間t1~t4は、上記ステップ13,14で求めた流量Q1~Q4と体積V1input~V4inputとを用いて、以下の数21式、数22式、数23式、数24式で表される。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 次に、第1の実施の形態における車高調整処理を、給排気バルブ15A~15Dの開閉制御と併せて図5を用いて説明する。この場合、各エアサスペンション3A~3Dの車高h1,h2,h3,h4はそれぞれ現在車高h0で同一とし、車高h1,h2,h3,h4を目標車高htにまで上げる場合を例に説明する。
 まず、コントローラ18は、コンプレッサユニット5からエアばね4A~4Dまでの配管14A~14Dが長いほうから順に給排気バルブ15A~15Dを開とする。この場合、コントローラ18は、車輪2A~2Dのうち左,右方向に隣り合う前輪2A,2B(または後輪2C,2D)の給排気バルブ15A,15B(または給排気バルブ15C,15D)の開閉タイミングを異ならせる。また、コントローラ18は、車輪2A~2Dのうち前,後方向に隣り合う前輪2A,2Bと後輪2C,2Dの給排気バルブ15A,15B,15C,15Dの開閉タイミングを異ならせる。即ち、第1の実施の形態では、4輪(全ての車輪2A~2D)の給排気バルブ15A,15B,15C,15Dについて、それぞれ開閉タイミングを異ならせる。
 具体的には、コントローラ18は、最初に各配管14A~14Dのうち最も長い配管長さL1を有する配管14Aの給排気バルブ15Aを開け、エアばね4Aに対して圧縮エアを給気する。この場合、空気圧縮機6からエアばね4Aにのみ給気しているので、エアばね4Aへの流量Q1は流量Q11となり、給気時間はt1となる(数4式、数24式参照)。
 次に、コントローラ18は、配管14A~14Dのうち2番目に長い配管長さL2を有する配管14Bの給排気バルブ15Bを開け、エアばね4Bに対して圧縮エアを給気する。この場合、空気圧縮機6からエアばね4A,4Bにのみ給気しているので、エアばね4A,4Bへの流量Q1,Q2は流量Q12,Q22となり、給気時間はt2となる(数9式、数10式、数23式参照)。
 次に、コントローラ18は、配管14A~14Dのうち3番目に長い配管長さL3を有する配管14Cの給排気バルブ15Cを開け、エアばね4Cに対して圧縮エアを給気する。この場合、空気圧縮機6からエアばね4A,4B,4Cにのみ給気しているので、エアばね4A,4B,4Cへの流量Q1,Q2,Q3は流量Q13,Q23,Q33となり、給気時間はt3となる(数12式~数14式、数22式参照)。
 そして、コントローラ18は、配管14A~14Dのうち4番目に長い配管長さL4を有する配管14Dの給排気バルブ15Dを開け、エアばね4Dに対して圧縮エアを給気する。この場合、空気圧縮機6からエアばね4A,4B,4C,4Dに給気しているので、エアばね4A,4B,4C,4Dへの流量Q1,Q2,Q3,Q4は流量Q14,Q24,Q34,Q44となり、給気時間はt4となる(数16式~数19式、数21式参照)。
 最後に、コントローラ18は、エアサスペンション3A~3Dの車高h1,h2,h3,h4がそれぞれ目標車高htに達したら、給排気バルブ15A~15Dのソレノイド15A1~15D1を閉めて車高調整処理を終了する。なお、車高調整処理の車高を下げる場合においても、配管14A~14Dが長いほうから順に給排気バルブ15A~15Dを開とし、圧縮エアを外部に排出することができる。
 かくして、第1の実施の形態のエアサスペンション装置によれば、コントローラ18は、コンプレッサユニット5からエアばね4A~4Dまでの配管14A~14Dが長いほうから順に給排気バルブ15A~15Dを開けて、車高調整処理を行う構成としている。また、その場合に、配管14A~14Dの配管長さL1,L2,L3,L4を考慮して、エアばね4A~4Dへの流量Q1,Q2,Q3,Q4を算出している。これにより、車高調整を行う場合に、予め算出した制御シーケンスに基づき制御を行うので、路面入力などによる影響を低減でき、車体1の不要な傾き(ハンチング等)を抑えることができる。
 また、配管14A~14Dの配管長さL1,L2,L3,L4を考慮して、車輪2A~2Dのエアサスペンション3A~3Dが目標車高htに同時に(同じタイミングで)到達する車高調整処理を行う構成とした。これにより、車高の上昇,下降を車輪2A~2Bで揃えることができ、車体1を水平に近い形で昇降させることができる。この結果、車体1の不要な傾きを抑えることができるので、荷物や乗員のバランスが崩れることがなく乗り心地を向上させることができる。
 また、給排気バルブ15A~15Dはソレノイド15A1~15D1を備え、コントローラ18は、隣合う車輪2A~2D(隣り合う前輪2A,2B、隣合う後輪2C,2D、隣合う前輪2A,2Bと後輪2C,2D)の給排気バルブ15A,15Bの開閉タイミングを異ならせる構成とした。これにより、ソレノイド15A1~15D1に供給する起動電流のタイミングをずらすことができる。この結果、バッテリ等からソレノイド15A1~15D1に同時に大電流が流れることがなく、大きな電圧降下が起こることを抑制できるので、バッテリへの負担を軽減することができる。
 次に、図6は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、エアサスペンション装置をクローズドタイプにより構成したことにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 図6において、給気手段としてのコンプレッサ21は、空気を圧縮してエアサスペンション3A,3B(3C,3D)のエアばね4A,4B(4C,4D)に圧縮エアを供給するものである。また、コンプレッサ21は、エアばね4A,4B(4C,4D)から圧縮エアを排気するときに、エアばね4A,4B(4C,4D)の圧縮エアをタンク22内に送り込む(引っ張る)機能も有している。ここで、コンプレッサ21は、空気圧縮機21Aと、該空気圧縮機21Aを駆動する電動モータ21Bとにより構成されている。コンプレッサ21の吸込ポート21C側には、空気圧縮機21Aに吸込まれる外気中の粉塵等を除去する吸込フィルタ8が設けられている。一方、コンプレッサ21の吐出ポート21Dには、後述の補給通路23が接続されている。
 タンク22は、コンプレッサ21により圧縮された空気(圧縮エア)を蓄えるものである。コンプレッサ21の吐出ポート21Dとタンク22とは補給通路23を介して接続され、コンプレッサ21から吐出した圧縮エアは、補給通路23を通じてタンク22内に蓄えられる。そして、タンク22内に蓄えられた圧縮エアは、後述の給排通路25を通じてエアサスペンション3A,3Bのエアばね4A,4Bに供給される。
 第1のチェック弁(逆止弁)24は、タンク22とエアドライヤ10との間に位置して補給通路23の途中に設けられている。この第1のチェック弁24は、コンプレッサ21からタンク22へと向かう圧縮エアの流れを許し、逆向きの流れを阻止している。
 給排通路25は、タンク22とエアサスペンション3A,3Bのエアばね4A,4Bとの間を接続するものである。給排通路25は、タンク22からエアサスペンション3A,3Bに供給される圧縮エアが流通すると共に、エアサスペンション3A,3Bから排出される空気が流通する配管を構成するものである。ここで、給排通路25は、後述する給排切換弁26とエアサスペンション3A,3Bとの間で2つの分岐給排通路25A,25Bに分岐し、一方の分岐給排通路25Aは、エアサスペンション3Aのエアばね4Aに接続され、他方の分岐給排通路25Bは、エアサスペンション3Bのエアばね4Bに接続されている。
 給排切換弁26は、給排通路25の途中に設けられ、該給排切換弁26は、3ポート2位置の電磁弁により構成されている。ここで、給排切換弁26は、エアサスペンション3A,3Bに圧縮エアを供給する供給位置(a)と、エアサスペンション3A,3B内の空気を排出する排出位置(b)とに選択的に切換えられる。そして、給排切換弁26は、コントローラ(図示せず)により供給される電流が制御され、例えばソレノイド26Aが励磁されていないときには、ばね26Bによって排出位置(b)を保持し、ソレノイド26Aが励磁されたときには、ばね26Bに抗して供給位置(a)に切換えられる。
 給排気バルブ27は、エアサスペンション3Aと給排切換弁26との間に位置して分岐給排通路25Aの途中に設けられている。この給排気バルブ27は、給気バルブとして、2ポート2位置の電磁弁により構成されている。給排気バルブ27は、分岐給排通路25Aを開いてエアサスペンション3Aのエアばね4Aに対する空気の給排を許す開位置(a)と、分岐給排通路25Aを閉じてエアサスペンション3Aのエアばね4Aに対する空気の給排を遮断する閉位置(b)とに選択的に切換えられ、エアサスペンション3Aの伸長と縮小とを制御するものである。ここで、給排気バルブ27は、コントローラにより、例えばソレノイド27Aが励磁されていないときには、ばね27Bによって分岐給排通路25Bを閉じる閉位置(b)を保持し、ソレノイド27Aが励磁されたときには、ばね27Bに抗して分岐給排通路25Aを開く開位置(a)に切換えられる。
 給排気バルブ28は、エアサスペンション3Bと給排切換弁26との間に位置して分岐給排通路25Bの途中に設けられている。この給排気バルブ28は、給気バルブとして、給排気バルブ27と同様に2ポート2位置の電磁弁により構成され、分岐給排通路25Bを開く開位置(a)と分岐給排通路25Bを閉じる閉位置(b)とに選択的に切換えられることにより、エアサスペンション3Bの伸長と縮小とを制御するものである。ここで、給排気バルブ28は、コントローラにより、例えばソレノイド28Aが励磁されていないときには、ばね28Bによって分岐給排通路25Bを閉じる閉位置(b)を保持し、ソレノイド28Aが励磁されたときには、ばね28Bに抗して分岐給排通路25Bを開く開位置(a)に切換えられる。
 戻り通路29は、給排切換弁26とコンプレッサ21の吐出ポート21Dとの間を接続するものである。この戻り通路29は、給排切換弁26が排出位置(b)を保持すると共に給排気バルブ27,28が開位置(a)に切換ったときに、エアサスペンション3A,3Bのエアばね4A,4Bから排出された空気を、コンプレッサ21の吸込側(吸込ポート21C側)に戻すものである。
 戻り通路開閉弁30は、戻り通路29の途中に設けられ、該戻り通路開閉弁30は、2ポート2位置の電磁弁により構成され、戻り通路29を開,閉するものである。ここで、戻り通路開閉弁30は、戻り通路29を開く開位置(a)と、戻り通路29を閉じる閉位置(b)とを有している。この戻り通路開閉弁30は、コントローラにより、例えばソレノイド30Aが励磁されていないときには、ばね30Bによって閉位置(b)を保持し、ソレノイド30Aが励磁されたときには、ばね30Bに抗して開位置(a)に切換えられる。
 第2のチェック弁31は、コンプレッサ21の吸込み側に設けられている。この第2のチェック弁31は、コンプレッサ21の吸込ポート21Cと吸込フィルタ8との間に配置されている。この第2のチェック弁31は、吸込フィルタ8からコンプレッサ21に向かう空気の流れを許し、逆向きの流れを阻止するものである。
 バイパス通路32は、補給通路23と戻り通路29との間に設けられている。ここで、バイパス通路32の一端側は、給排切換弁26と戻り通路開閉弁30との間に位置する接続部位32Aで戻り通路29の途中に接続され、バイパス通路32の他端側は、エアドライヤ10と第1のチェック弁24との間に位置する接続部位32Bで補給通路23の途中に接続されている。そして、バイパス通路32は、エアサスペンション3A,3Bのエアばね4A,4B内の空気を、コンプレッサ21をバイパスさせて大気中に放出するためのものである。
 第3のチェック弁33は、バイパス通路32の途中に設けられ、該第3のチェック弁33は、戻り通路29から補給通路23に向かう空気の流れを許し、逆向きの流れを阻止するものである。
 排気通路34は、エアサスペンション3A,3Bのエアばね4A,4B内の空気を大気中に放出するものである。ここで、排気通路34の一端側は、コンプレッサ21の吐出ポート21Dとエアドライヤ10との間に位置する接続部位34Aで補給通路23に接続されている。また、排気通路34の他端側は、吸込フィルタ8を介して大気に開放されている。そして、排気通路34は、エアサスペンション3A,3Bから排出された空気を、タンク22に導入することなく大気中に放出させるものである。
 排気通路開閉弁35は、排気通路34の途中に設けられ、該排気通路開閉弁35は、2ポート2位置の電磁弁により構成され、排気通路34を開,閉する。ここで、排気通路開閉弁35は、排気通路34を開く開位置(a)と、排気通路34を閉じる閉位置(b)とを有している。この排気通路開閉弁35は、コントローラにより、例えばソレノイド35Aが励磁されていないときには、ばね35Bによって閉位置(b)を保持し、ソレノイド35Aが励磁されたときには、ばね35Bに抗して開位置(a)に切換えられる。
 第2の実施の形態によるエアサスペンション装置は、上述の如き構成を有するもので、次に、第2の実施の形態による車高調整処理を説明する。この場合も、第1の実施の形態と同様に、コントローラは、コンプレッサ21からエアばね4A,4Bまでの配管としての分岐給排通路25A,25Bが長いほうから順に給排気バルブ27,28開けて、車高調整処理を行う。
 かくして、第2の実施の形態によれば、第1の実施の形態とほぼ同様の作用効果を得ることができる。第2の実施の形態では、エアサスペンション3A,3Bにより車高を上げるときには、予めタンク22内に蓄えられた圧縮エアを、給排通路25を通じてエアサスペンション3A,3Bのエアばね4A,4Bに供給する構成としている。これにより、例えばコンプレッサ21によって圧縮した空気を直接的にエアサスペンション3A,3Bに供給する場合に比較して、迅速に圧縮エアを供給することができ、車高を素早く上昇させることができる。
 なお、前記第1の実施の形態では、コントローラ18は、車高調整処理において、コンプレッサユニット5からエアばね4A~4Dまでの配管14A~14Dが長いほうから順に給排気バルブ15A~15Dを開とする構成とした。しかし、本発明の実施形態はこれに限らず、コントローラ(制御手段)は、車体の前輪側と後輪側とのうち、車重(重量)が重たいほうから順に給排気バルブ(給気バルブ)を開とする構成としてもよい。即ち、車重が前輪側と後輪側とで異なる(前輪側のエアばねに加わる重量と後輪側のエアばねに加わる重量とが異なる)ことに伴って、各車輪側(前輪側と後輪側)での車高調整がアンバランスになるという問題がある。そこで、制御手段は、車体の前輪側と後輪側とのうち、車重(重量)が重たいほうから順に給排気バルブ(給気バルブ)を開とする。この場合も、各車輪側での車高調整を安定して行うことができる。このことは、第2の実施の形態でも同様である。
 さらに、車高調整処理の車高を上げる場合において、コントローラ(制御手段)は、車体の前輪側と後輪側とのうち、後輪側から順に給排気バルブ(給気バルブ)を開とする構成としてもよい。即ち、車体の前輪側と後輪側とのうち、後輪側から順に給排気バルブ(給気バルブ)を開とすると、車体の前輪側が後輪側に対して早めに上昇し、車両の光軸(ライト)が上方に向くおそれがある。そこで、制御手段は、車体の前輪側と後輪側とのうち、後輪側から順に給排気バルブ(給気バルブ)を開とする。これにより、車体の前輪側が後輪側に対して上昇するのを避けることができるので、車両の光軸(ライト)が上方に向くことを抑制できる。このとき、車高を下げる場合においては、コントローラは、前輪側から順に給排気バルブを開とし、空気を排出する構成とすればよい。このことは、第2の実施の形態でも同様である。
 また、前記第1の実施の形態では、コントローラ18は、4輪全ての給排気バルブ15A,15B,15C,15Dの開閉タイミングを異ならせる構成とした。しかし、本発明の実施形態はこれに限らず、給気手段から各エアばねの配管の長さに応じて、および/または、各エアばねに加わる重量に応じて、各車輪のうち前後方向、左右方向、対角方向の少なくとも何れかの方向に隣り合う車輪の給気バルブの開閉タイミングを異ならせることができる。即ち、コントローラは、例えば、左,右方向に隣り合う前輪(または後輪D)の給気バルブの開閉タイミングを異ならせる構成としてもよい。また、前,後方向に隣り合う車輪の給気バルブの開閉タイミングを異ならせる構成としてもよい。さらに、対角方向の車輪の給気バルブの開閉タイミングを異ならせる構成としてもよい。このことは、第2の実施の形態でも同様である。
 また、前記第1の実施の形態では、エアサスペンション装置は、前,後と左,右の車輪2A~2Dにそれぞれ対応するように4つ設けられたエアサスペンション3A~3Dを制御して車高を調整する構成とした。しかし、本発明の実施形態はこれに限らず、エアサスペンションを前輪のみに設けて車高を調整してもよいし、エアサスペンションを後輪のみに設けて車高を調整する構成としてもよい。この場合、制御手段は、左,右方向に隣り合う前輪(または後輪)の給気バルブの開閉タイミングを異ならせることができる。このことは、第2の実施の形態でも同様である。
 また、前記第1の形態では、図1に示すように、コンプレッサユニット5を車体1の中央側に設ける構成を例に挙げて説明した。しかし、本発明の実施形態はこれに限らず、コンプレッサユニットを例えば車両の前側に設けてもよいし、後側に設けてもよい。また、左,右方向についても同様に、車両の左側に設けてもよいし、右側に設けてもよい。このことは、第2の実施の形態でも同様である。
 また、前記第1の形態では、コントローラ18は、コンプレッサユニット5(給気手段)からエアばね4A~4Dまでの配管14A~14Dが長いほうから順に給排気バルブ15A~15Dを開とする構成とした。しかし、本発明の実施形態はこれに限らず、コントローラは、給排気バルブ(給気バルブ)からエアばねまでの配管が長いほうから順に給排気バルブを開とする構成としてもよい。このことは、第2の実施の形態でも同様である。
 また、前記第1、第2の形態では、本発明の実施形態のエアサスペンション装置を4輪自動車の車両に適用した場合を例に挙げて説明したが、本発明の実施形態は、これに限らず、例えば鉄道車両等のような他の車両に適用してもよい。
 また、本実施の形態では、給気バルブと排気バルブとが一体となった給排気バルブ15A~15Dについて説明したが、給気バルブと排気バルブとを別々に設けても良い。
 また、コンプレッサユニット5からエアばね4A~4Dまでの配管14A~14Dが長いほうから順に給気時、排気時ともに給排気バルブ15A~15Dを開とする構成とした。しかし、給気時のみ、排気時のみ、本発明技術を実施してもよい。
 また、本実施の形態では、給排気バルブ15A~15Dを一体にして、バルブブロック15を構成したが、それぞれ設けても良い。
 次に、本発明の他の実施形態について記載する。本発明の他の実施形態によれば、前記給気バルブはソレノイドを用いて構成され、前記制御手段は、前記各車輪のうち少なくとも隣り合う車輪の前記給気バルブの開閉タイミングを異ならせる構成とした。これにより、各車輪側での車高調整を安定して行うこと(例えば、目標高さに到達するタイミングをほぼ同時する)ことができる。また、突入電流によるバッテリ電圧の電圧降下量を低減できる。
 また、本発明の他の実施形態によれば、前記制御手段は、前輪側と後輪側とのうち、車重が重たい側から順に前記給気バルブを開とする構成とした。これによっても、前述の場合と同様の効果を奏する。
 さらに、本発明の他の実施形態によれば、前記制御手段は、前輪側と後輪側とのうち、後輪側から順に前記給気バルブを開とする構成とした。この場合は、車両の光軸(ライト)が上方に向くことを抑制できる。また、突入電流によるバッテリ電圧の電圧降下量を低減できる。
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2015年3月31日出願の日本特許出願番号2015-073564号に基づく優先権を主張する。2015年3月31日出願の日本特許出願番号2015-073564号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
 1 車体、 2A,2B 前輪(車輪)、 2C,2D 後輪(車輪)、 4A~4D エアばね、 5 コンプレッサユニット(給気手段)、 14A~14D,25,25A,25B 配管、 15A~15D,27,28 給排気バルブ(給気バルブ)、 15A1~15D1,27A,28A ソレノイド、 18 コントローラ(制御手段)、 21 コンプレッサ(給気手段)

Claims (4)

  1.  エアサスペンション装置であって、
     車両の車体と車輪との間に介在される複数のエアばねと、
     前記複数のエアばねに対して給気する給気部と、
     前記給気部から前記複数のエアばねに向けてそれぞれ延びる複数の配管と、
     前記給気部と前記複数のエアばねとの間にそれぞれ設けられる複数の給気バルブと、
     前記複数の給気バルブの開閉を制御する制御部と、
     を備え、
     前記制御部は、対応する前記配管の長さが相対的に長い前記吸気バルブを、対応する前記配管の長さが相対的に短い前記吸気バルブよりも先に開弁させるように構成された
     エアサスペンション装置。
  2.  請求項1に記載のエアサスペンション装置であって、
     前記複数の給気バルブはソレノイドを備え、
     前記制御部は、前記車輪の各々のうち少なくとも隣り合う車輪に対応する前記給気バルブを互いに異なるタイミングで開閉させる
     エアサスペンション装置。
  3.  エアサスペンション装置であって、
     車両の車体と車輪との間に介在される複数のエアばねと、
     前記複数のエアばねに対して給気する給気部と、
     前記給気部から前記複数のエアばねに向けてそれぞれ延びる複数の配管と、
     前記給気部と前記複数のエアばねとの間にそれぞれ設けられる複数の給気バルブと、
     前記複数の給気バルブの開閉を制御する制御部と、
     を備え、
     前記制御部は、前輪側と後輪側とのうちの車体重量が相対的に大きい側の前記車輪に対応する前記吸気バルブを、車体重量が相対的に小さい側の前記車輪に対応する前記吸気バルブよりも先に開弁させるように構成された
     エアサスペンション装置。
  4.  エアサスペンション装置であって、
     車両の車体と車輪との間に介在される複数のエアばねと、
     前記複数のエアばねに対して給気する給気部と、
     前記給気部から前記複数のエアばねに向けてそれぞれ延びる複数の配管と、
     前記給気部と前記複数のエアばねとの間にそれぞれ設けられる複数の給気バルブと、
     前記複数の給気バルブの開閉を制御する制御部と、
     を備え、
     前記制御部は、後輪に対応する前記吸気バルブを、前輪に対応する前記吸気バルブよりも先に開弁させるように構成された
     エアサスペンション装置。
PCT/JP2016/058699 2015-03-31 2016-03-18 エアサスペンション装置 WO2016158494A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073564A JP2018086861A (ja) 2015-03-31 2015-03-31 エアサスペンション装置
JP2015-073564 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158494A1 true WO2016158494A1 (ja) 2016-10-06

Family

ID=57004289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058699 WO2016158494A1 (ja) 2015-03-31 2016-03-18 エアサスペンション装置

Country Status (2)

Country Link
JP (1) JP2018086861A (ja)
WO (1) WO2016158494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107116985A (zh) * 2017-05-03 2017-09-01 北京航天发射技术研究所 一种用于多轴重型车辆的大行程悬架系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130715A (ja) * 1983-01-07 1984-07-27 Honda Motor Co Ltd 車高調整装置の制御方法
JPH03104723A (ja) * 1989-09-18 1991-05-01 Toyota Motor Corp サスペンション制御装置
JPH03271012A (ja) * 1990-03-19 1991-12-03 Nissan Motor Co Ltd 能動型サスペンション
JPH06115338A (ja) * 1992-10-07 1994-04-26 Toyota Motor Corp エアサスペンション装置
JP2008213683A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 車両パーキングシステム
JP2010105584A (ja) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd 車高制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130715A (ja) * 1983-01-07 1984-07-27 Honda Motor Co Ltd 車高調整装置の制御方法
JPH03104723A (ja) * 1989-09-18 1991-05-01 Toyota Motor Corp サスペンション制御装置
JPH03271012A (ja) * 1990-03-19 1991-12-03 Nissan Motor Co Ltd 能動型サスペンション
JPH06115338A (ja) * 1992-10-07 1994-04-26 Toyota Motor Corp エアサスペンション装置
JP2008213683A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 車両パーキングシステム
JP2010105584A (ja) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd 車高制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107116985A (zh) * 2017-05-03 2017-09-01 北京航天发射技术研究所 一种用于多轴重型车辆的大行程悬架系统
CN107116985B (zh) * 2017-05-03 2020-03-20 北京航天发射技术研究所 一种用于多轴重型车辆的大行程悬架系统

Also Published As

Publication number Publication date
JP2018086861A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
CN104080630B (zh) 压缩空气供应设备、气动系统和运行压缩空气供应设备或气动系统的方法
US6698778B2 (en) Air suspension having a closed compressed-air system
WO2016076210A1 (ja) エアサスペンション装置
KR102472771B1 (ko) 에어 서스펜션 장치
WO2018139576A1 (ja) サスペンションシステム
JP6231863B2 (ja) エアサスペンションシステム
CN106574645A (zh) 用于乘用车空气悬挂系统的气动线路
WO2017169772A1 (ja) エアサスペンションシステム
KR102502815B1 (ko) 에어 서스펜션 시스템
JP6782771B2 (ja) 車載圧縮装置
WO2016158494A1 (ja) エアサスペンション装置
JP2009160956A (ja) サスペンション装置
JP2020044979A (ja) エアサスペンション装置
JP2015054643A (ja) エアサスペンション装置
JP7126550B2 (ja) サスペンション装置
JP2022127406A (ja) エアサスペンション装置およびその制御装置
JP2020066291A (ja) サスペンションシステム
JP6367130B2 (ja) 車高調整装置
JP7300402B2 (ja) エアサスペンション装置およびそのエアドライヤの再生方法
WO2020066515A1 (ja) エアサスペンション装置
JPS6231643B2 (ja)
JP2019038500A (ja) サスペンションシステム
WO2021261220A1 (ja) エアサスペンションシステム
JPS6337723B2 (ja)
JP2021183438A (ja) サスペンション制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP