WO2021261220A1 - エアサスペンションシステム - Google Patents
エアサスペンションシステム Download PDFInfo
- Publication number
- WO2021261220A1 WO2021261220A1 PCT/JP2021/021375 JP2021021375W WO2021261220A1 WO 2021261220 A1 WO2021261220 A1 WO 2021261220A1 JP 2021021375 W JP2021021375 W JP 2021021375W WO 2021261220 A1 WO2021261220 A1 WO 2021261220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel side
- air
- front wheel
- vehicle height
- rear wheel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/02—Spring characteristics, e.g. mechanical springs and mechanical adjusting means
- B60G17/04—Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
- B60G17/052—Pneumatic spring characteristics
Definitions
- the present disclosure relates to an air suspension system mounted on a vehicle such as a four-wheeled vehicle.
- the air suspension system for adjusting the vehicle height mounted on a vehicle such as a four-wheeled vehicle has a front wheel side air suspension and a rear wheel side air suspension.
- the front wheel side air suspension and the rear wheel side air suspension have an air spring, and the vehicle height is adjusted according to the supply and discharge of air to the air spring (see Patent Documents 1 and 2).
- the capacity and spring constant are different between the air spring of the front wheel side air suspension and the air spring of the rear wheel side air suspension.
- the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side, and the vehicle There is a possibility that the head lamp will turn upward during high adjustment.
- the vehicle height on the rear wheel side and the vehicle height on the front wheel side are adjusted stepwise by alternately supplying air to the front wheel side air suspension and the rear wheel side air suspension.
- air is alternately supplied and discharged to the front wheel side air suspension and the rear wheel side air suspension, there is a problem that a lot of time is spent for adjusting the vehicle height.
- An object of the embodiment of the present invention is to provide an air suspension system capable of adjusting the vehicle height in a short time.
- the front wheel side air suspension and the rear wheel side air suspension which are interposed between the vehicle body and the axle and adjust the vehicle height according to the supply and discharge of air, the front wheel side air suspension and the rear wheel side are described.
- An air supply source for supplying air to the wheel-side air suspension, a first switching valve for switching between a communication state and a cutoff state between the front wheel-side air suspension and the rear wheel-side air suspension and the air supply source, and the above.
- a second switching valve provided between the first switching valve and the front wheel side air suspension and switching between the communication state and the shutoff state between the first switching valve and the front wheel side air suspension, and the first switching valve.
- the air is provided between the branch point for branching the front wheel side air suspension and the rear wheel side air suspension between the second switching valve and / or between the branch point and the third switching valve. It is provided with a resistance portion having a larger flow path resistance than each of the first switching valve, the second switching valve, and the third switching valve.
- the vehicle height can be adjusted in a short time.
- FIGS. 1 to 6 show the first embodiment.
- the air suspension system 1 according to the first embodiment includes a front wheel side air suspension 2, a rear wheel side air suspension 3, a compressor 4, a tank 15, a first switching valve 20, a second switching valve 21, a third switching valve 22, and a flow rate. It is configured to include a regulating valve 23 and the like.
- the air suspension system 1 constitutes an open circuit type air suspension system (open system).
- the left and right front wheel side air suspensions 2 are interposed between the vehicle body and the front axle (neither is shown), and are arranged on the left front wheel (FL) and right front wheel (FR) sides.
- the front wheel side air suspension 2 includes, for example, a cylinder 2A attached to the front axle side, a piston rod (not shown) that expands and contracts from the inside of the cylinder 2A in the axial direction and has a protruding end side attached to the vehicle body side, and this piston. It is composed of an air spring (air chamber) 2B provided so as to be expandable and contractible between the protruding end side of the rod and the cylinder 2A.
- the air spring 2B of the front wheel side air suspension 2 is expanded and contracted in the axial direction by supplying and discharging air through the front wheel side branch pipe 18 described later. At this time, the front wheel side air suspension 2 adjusts the vehicle height on the front wheel side according to the amount of air supplied to and discharged from the air spring 2B by expanding and contracting the piston rod in the axial direction.
- the left and right rear wheel side air suspensions 3 are interposed between the vehicle body and the rear axle (neither is shown), and are arranged on the left rear wheel (RL) and right rear wheel (RR) sides. ..
- the rear wheel side air suspension 3 includes, for example, a cylinder 3A attached to the rear axle side, a piston rod (not shown) that expands and contracts from the inside of the cylinder 3A in the axial direction and has a protruding end side attached to the vehicle body side. It is composed of an air spring (air chamber) 3B provided so as to be expandable and contractible between the protruding end side of the piston rod and the cylinder 3A.
- the air spring 3B of the rear wheel side air suspension 3 is expanded and contracted in the axial direction by supplying and discharging air through the rear wheel side branch pipe 19 described later. At this time, the rear wheel side air suspension 3 adjusts the vehicle height on the rear wheel side according to the amount of air supplied to and discharged from the air spring 3B by expanding and contracting the piston rod in the axial direction.
- the compressor 4 compresses the air sucked from the intake side 4A to generate compressed air, and discharges this compressed air from the discharge side 4B.
- the compressor 4 is composed of, for example, a reciprocating compressor, a scroll compressor, or the like, and is rotationally driven by an electric motor 5.
- One end of an intake pipe line 6 for sucking outside air is connected to the intake side 4A of the compressor 4.
- a filter 7 for removing dust in the air is provided at the other end of the intake pipe line 6.
- one end of the supply / discharge pipe line 8 is connected to the discharge side 4B of the compressor 4.
- the other end of the supply / discharge pipe 8 is connected to the front wheel side branch pipe 18 at the connection point 9.
- the compressed air discharged from the compressor 4 flows toward the tank 15, which will be described later, and the air discharged from the front wheel side air suspension 2 and the rear wheel side air suspension 3 flows when the vehicle height is lowered. do.
- An air dryer 10 and a slow return valve 11 are provided in the middle of the supply / discharge pipe line 8.
- the air dryer 10 is located between the compressor 4 and the connection point 9 and is provided in the supply / exhaust pipe line 8.
- the air dryer 10 contains, for example, a moisture adsorbent (not shown) such as silica gel, and when the compressed air generated by the compressor 4 flows through the supply / exhaust pipe line 8, it adsorbs the moisture contained in the compressed air. Then, dry compressed air is supplied to the tank 15.
- a moisture adsorbent such as silica gel
- the slow return valve 11 is located between the connection point 9 and the air dryer 10 and is provided in the supply / discharge pipe line 8.
- the slow return valve 11 is composed of a parallel circuit of the throttle 11A and the check valve 11B.
- the check valve 11B allows the air flow from the air dryer 10 to the connection point 9 and blocks the air flow from the connection point 9 to the air dryer 10.
- the slow return valve 11 throttles the flow rate of air from the connection point 9 toward the air dryer 10 by the throttle 11A.
- the exhaust pipe line 12 is connected to the supply / exhaust pipe line 8 between the compressor 4 and the air dryer 10.
- the other end of the exhaust pipe line 12 is open to the atmosphere, and the other end of the exhaust pipe line 12 is provided with a silencer 13.
- the exhaust pipeline 12 discharges the air discharged from the front wheel side air suspension 2 and the rear wheel side air suspension 3 into the atmosphere.
- the exhaust pipe line 12 is provided with an exhaust valve 14.
- the exhaust valve 14 is composed of, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
- the exhaust valve 14 normally holds the shutoff position (a) and is switched to the communication position (b) by being supplied with a control signal from the controller 24 described later.
- the exhaust valve 14 is switched to the communication position (b) to release the air (compressed air) in the front wheel side air suspension 2 and the rear wheel side air suspension 3 into the atmosphere via the air dryer 10.
- the tank 15 as an air supply source is connected to the left and right front wheel side air suspensions 2 via the tank pipeline 16 and the front wheel side branch pipeline 18, and also via the tank pipeline 16 and the rear wheel side branch pipeline 19. It is connected to the left and right rear wheel side air suspensions 3.
- the tank 15 stores high-pressure compressed air generated by the compressor 4, and supplies the compressed air to the front wheel side air suspension 2 and the rear wheel side air suspension 3.
- One end of the tank pipeline 16 is connected to the tank 15, and the other end of the tank pipeline 16 is connected to the front wheel side branch pipeline 18 and the rear wheel side branch pipeline 19 at the branch point 17.
- the front wheel side branch pipeline 18 is connected between the tank 15 and the left and right front wheel side air suspensions 2 via the tank pipeline 16.
- One end of the front wheel side branch line 18 is connected to the tank line 16 at the branch point 17, and the other end of the front wheel side branch line 18 branches into a left front branch line 18A and a right front branch line 18B. ..
- the left front branch pipeline 18A is connected to the air spring 2B of the front wheel side air suspension 2 on the left front wheel (FL) side
- the right front branch pipeline 18B is the air spring 2B of the front wheel side air suspension 2 on the right front wheel (FR) side. It is connected to the.
- the front wheel side branch pipe 18 is connected to the supply / discharge pipe 8 at the connection point 9.
- the rear wheel side branch pipeline 19 is connected between the tank 15 and the left and right rear wheel side air suspensions 3 via the tank pipeline 16. One end of the rear wheel side branch line 19 is connected to the tank line 16 at the branch point 17, and the other end of the rear wheel side branch line 19 becomes the left rear branch line 19A and the right rear branch line 19B. It is branched.
- the left rear branch pipeline 19A is connected to the air spring 3B of the rear wheel side air suspension 3 on the left rear wheel (RL) side
- the right rear branch pipeline 19B is the rear wheel side air on the right rear wheel (RR) side. It is connected to the air spring 3B of the suspension 3.
- the air discharged from the tank 15 to the tank pipeline 16 branches into the air flowing through the front wheel side branch pipeline 18 and the air flowing through the rear wheel side branch pipeline 19 at the branch point 17.
- the air branched to the rear wheel side branch pipeline 19 side is supplied to the rear wheel side air suspension 3, and the air branched to the front wheel side branch pipeline 18 side passes through the flow rate adjusting valve 23 described later to the front wheel side air suspension. It is supplied to 2.
- the first switching valve 20 is located between the tank 15 and the branch point 17 and is provided in the tank pipeline 16.
- the first switching valve 20 is composed of, for example, an electromagnetic switching valve having two ports and two positions. Normally, the first switching valve 20 holds the shutoff position (c), and the control signal from the controller 24 is supplied to the communication position (d). ). Therefore, by switching the first switching valve 20 from the cutoff position (c) to the communication position (d), the front wheel side air suspension 2 and the rear wheel side air suspension 3 and the tank 15 are in a communication state from the cutoff state. Can be switched to.
- the two second switching valves 21 are located between the left and right front wheel side air suspensions 2 and the first switching valve 20 and are provided in the front wheel side branch pipeline 18. Specifically, one second switching valve 21 is located between the front wheel side air suspension 2 on the left front wheel (FL) side and the connection point 9, and is provided in the left front branch pipeline 18A, and the other second switching valve 21 is provided. The switching valve 21 is located between the front wheel side air suspension 2 on the right front wheel (FR) side and the connection point 9, and is provided in the right front branch pipeline 18B.
- These two second switching valves 21 are composed of, for example, an electromagnetic switching valve at two ports and two positions, normally hold the shutoff position (e), and are supplied with a control signal from the controller 24. It can be switched to the communication position (f).
- the second switching valve 21 is switched from the shutoff position (e) to the communication position (f), and the first switching valve 20 is switched to the communication position (d), so that the air from the tank 15 is a flow rate adjusting valve. It is supplied to the front wheel side air suspension 2 through 23.
- the two third switching valves 22 are located between the left and right rear wheel side air suspensions 3 and the first switching valve 20 and are provided in the rear wheel side branch pipeline 19. Specifically, one of the third switching valves 22 is located between the rear wheel side air suspension 3 on the left rear wheel (RL) side and the branch point 17 and is provided in the left rear branch pipeline 19A, and the other. The third switching valve 22 is located between the rear wheel side air suspension 3 on the right rear wheel (RR) side and the branch point 17, and is provided in the right rear branch pipeline 19B.
- These two third switching valves 22 are composed of, for example, an electromagnetic switching valve at two ports and two positions, normally hold a shutoff position (g), and are supplied with a control signal from the controller 24. It can be switched to the communication position (h). Therefore, the third switching valve 22 is switched from the shutoff position (g) to the communication position (h), and the first switching valve 20 is switched to the communication position (d), so that the air from the tank 15 is the rear wheel side air. It is supplied to the suspension 3.
- the flow rate adjusting valve 23 as a resistance portion is located between the branch point 17 and the second switching valve 21 and is provided in the front wheel side branch pipeline 18.
- the flow rate adjusting valve 23 is composed of, for example, an electromagnetic switching valve having two ports and two positions, normally holds a large flow rate position (j), and is supplied with a control signal from the controller 24 to have a small throttle. It can be switched to the flow rate position (k). That is, the flow rate adjusting valve 23 has a small flow rate position (k) as an area adjusting portion, and the area of the flow path of the flow rate adjusting valve 23 switched to the small flow rate position (k) is the first switching valve 20. It is set smaller than the area of the flow path of the second switching valve 21 and the third switching valve 22.
- the flow rate adjusting valve 23 when the flow rate adjusting valve 23 is switched to the small flow rate position (k), the flow rate adjusting valve 23 imparts a throttle action to the air flowing through the front wheel side branch pipeline 18, and the first switching valve 20 and the second are second. A flow rate resistance larger than that of the switching valve 21 and the third switching valve 22 is generated.
- the controller 24 is configured by, for example, a microcomputer or the like.
- a pressure detector 25, a plurality of vehicle height sensors 26, and the like are connected to the input side of the controller 24.
- the pressure detector 25 is provided, for example, at the position of the branch point 17, detects the pressure in the tank 15 via the tank pipeline 16, and outputs a detection signal corresponding to the pressure to the controller 24.
- the plurality of vehicle height sensors 26 are provided on the left front wheel (FL) side, the right front wheel (FR) side, the left rear wheel (RL) side, and the right rear wheel (RR) side, respectively, and the left and right front wheel side air suspensions 2 and The vehicle heights of the left and right rear wheel side air suspensions 3 are individually detected, and a detection signal corresponding to the vehicle height is output to the controller 24.
- the controller 24 On the output side of the controller 24, the electric motor 5 of the compressor 4, the exhaust valve 14, the first switching valve 20, the two second switching valves 21, the two third switching valves 22, the flow rate adjusting valve 23, etc. are connected. Has been done.
- the controller 24 has a memory 24A composed of a ROM, a RAM, a non-volatile memory, and the like, and the memory 24A stores a threshold value for raising the vehicle height, a threshold value for lowering the vehicle height, and the like, which will be described later, updatable. ..
- the air suspension system 1 has the above-described configuration, and then supplies air from the tank 15 to the front wheel side air suspension 2 and the rear wheel side air suspension 3 to raise the vehicle height. (Vehicle height raising operation) will be described.
- the capacity and spring constant of the air spring 2B of the front wheel side air suspension 2 and the capacity and spring constant of the air spring 3B of the rear wheel side air suspension 3 depend on the weight distribution between the front wheel side and the rear wheel side of the vehicle. Is set.
- the front wheel side air suspension 2 and the rear wheel side air suspension 3 according to the present embodiment are simultaneously supplied with air to raise the vehicle height, the vehicle height on the front wheel side becomes the vehicle height on the rear wheel side. It has the characteristics of an air spring that rises faster than.
- the controller 24 has a front wheel side air suspension 2 and a rear wheel side air suspension 3 based on the pressure in the tank 15 indicated by the detection signal from the pressure detector 25, the vehicle heights on the front wheel side and the rear wheel side indicated by the vehicle height sensor 26, and the like. Judging the situation of, the vehicle height raising operation is executed according to this situation. Specifically, the controller 24 outputs a control signal to the first switching valve 20, the second switching valve 21, the third switching valve 22, and the flow rate adjusting valve 23. As a result, as shown in FIG. 3, the first switching valve 20, the second switching valve 21, and the third switching valve 22 are switched to the communication positions (d), (f), and (h), respectively. Further, the flow rate adjusting valve 23 is switched to the small flow rate position (k).
- the compressed air stored in the tank 15 is discharged to the tank pipeline 16, and this air is led out to the front wheel side branch pipeline 18 at the branch point 17 and to the rear wheel side branch pipeline 19. Branch into the air to be.
- the air led out to the rear wheel side branch pipe 19 is supplied to the rear wheel side air suspension 3 (air spring 3B) on the left rear wheel (RL) side through the left rear branch pipe 19A, and is also supplied to the right rear branch pipe. It is supplied to the rear wheel side air suspension 3 on the right rear wheel (RR) side through the road 19B.
- the air springs 3B of the left and right rear wheel side air suspensions 3 are expanded, and the vehicle height on the rear wheel side rises according to the amount of air supplied to the air springs 3B.
- the air led out to the front wheel side branch pipeline 18 is supplied to the front wheel side air suspension 2 (air spring 2B) on the left front wheel (FL) side through the left front branch pipeline 18A and through the right front branch pipeline 18B. It is supplied to the front wheel side air suspension 2 on the right front wheel (FR) side.
- the air springs 2B of the left and right front wheel side air suspensions 2 are expanded, and the vehicle height on the front wheel side rises according to the amount of air supplied to the air springs 2B.
- the air flowing through the front wheel side branch pipeline 18 is subjected to a throttle action when passing through the flow rate adjusting valve 23 at the small flow rate position (k).
- the flow rate of the air supplied to the front wheel side air suspension 2 on the left front wheel (FL) side and the right front wheel (FR) side due to the flow path resistance when passing through the flow rate adjusting valve 23 is the rear wheel side air suspension 3. It is less than the flow rate of the air supplied to.
- the solid characteristic line 27 in FIG. 5 shows the change in the vehicle height on the front wheel side
- the broken line characteristic line 28 shows the change in the vehicle height on the rear wheel side.
- the first switching valve 20, the second switching valve 21, and the third switching valve 22 are switched to the communication positions (d), (f), and (h) by the control signal from the controller 24.
- the flow rate adjusting valve 23 is switched to the small flow rate position (k), and the vehicle height raising operation is started.
- the flow rate adjusting valve 23 holds the small flow rate position (k), so that the flow rate of the air supplied to the front wheel side air suspension 2 is transferred to the rear wheel side air suspension 3. It is less than the flow rate of the supplied air. Therefore, the vehicle can maintain a posture in which the vehicle height on the rear wheel side is higher than the vehicle height on the front wheel side, and the headlamp (not shown) does not turn upward during the vehicle height raising operation.
- the difference (pitch angle) between the vehicle height on the front wheel side and the vehicle height on the rear wheel side becomes excessive.
- the maximum value of the difference between the vehicle height on the front wheel side and the vehicle height on the rear wheel side that can be tolerated when raising the vehicle height is stored as a threshold value 29 (characteristic line of the two-dot chain line in FIG. 5). ing. Therefore, when the difference between the vehicle height on the front wheel side and the vehicle height on the rear wheel side reaches the threshold value 29 at the time point t2, the controller 24 stops the output of the control signal to the flow rate adjusting valve 23.
- the flow rate adjusting valve 23 is switched to the large flow rate position (j), and the flow rate of air supplied from the tank 15 to the front wheel side air suspension 2 via the flow rate adjusting valve 23 increases.
- the front wheel side air suspension 2 and the rear wheel side air suspension 3 have an air spring characteristic in which the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side. Is larger than the ascending speed of the vehicle height on the rear wheel side, and at the time point t3, the vehicle height on the front wheel side and the vehicle height on the rear wheel side coincide with each other.
- the controller 24 outputs a control signal to the flow rate adjusting valve 23 at the time point t3, and switches the flow rate adjusting valve 23 to the small flow rate position (k).
- the flow rate of air supplied to the front wheel side air suspension 2 decreases, but the front wheel side air suspension 2 has an air spring characteristic that the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side. ing. Therefore, between the time point t3 and the time point t4, the ascending speed of the vehicle height on the front wheel side and the ascending speed of the vehicle height on the rear wheel side are almost the same, and the front wheel side keeps the posture of the vehicle almost horizontal. The vehicle height and the vehicle height on the rear wheel side reach the target vehicle height H at the same time at time t4.
- the controller 24 stops supplying the control signal to the second switching valve 21 and the third switching valve 22. ..
- the second switching valve 21 and the third switching valve 22 are switched to the shutoff positions (e) and (g), and the vehicle height on the front wheel side and the vehicle height on the rear wheel side are maintained at the target vehicle height H. Then, the vehicle height raising operation is completed.
- the controller 24 switches the flow rate adjusting valve 23 to the large flow rate position (j) and at the same time. , Operate the electric motor 5.
- compressed air is generated by the compressor 4, and after being dried by the air dryer 10, the compressed air is filled in the tank 15 through the supply / exhaust pipe line 8, the front wheel side branch pipe line 18, the tank pipe line 16, and the like.
- the controller 24 switches the first switching valve 20 to the shutoff position (c) and stops the electric motor 5.
- the solid characteristic line 30 in FIG. 5 shows the change in the vehicle height on the front wheel side according to the conventional technique
- the broken line characteristic line 31 shows the change in the vehicle height on the rear wheel side according to the conventional technique.
- the vehicle height on the front wheel side rises with a delay, and reaches the target vehicle height H at the time point t6. Therefore, at the time point t4 when the vehicle height on the front wheel side and the vehicle height on the rear wheel side reach the target vehicle height H by the vehicle height raising operation by the air suspension system 1, the vehicle height and the rear on the front wheel side are obtained by the vehicle height raising operation by the conventional technique.
- the time ⁇ t is shorter than the time t6 when the vehicle height on the wheel side reaches the target vehicle height H.
- the vehicle height is raised while maintaining the posture in which the head lamp does not face upward, so that the vehicle height on the rear wheel side and the vehicle height on the front wheel side are alternately increased.
- the vehicle height on the front wheel side and the vehicle height on the rear wheel side are raised at the same time, so that the vehicle height raising operation is performed while maintaining the posture in which the headlamps do not face upward. It can be carried out.
- the time required for the vehicle height on the front wheel side and the vehicle height on the rear wheel side to reach the target vehicle height H can be shortened by ⁇ t as compared with the conventional technique, and the vehicle height is raised.
- the operation can be performed in a short time.
- the controller 24 sets the flow rate adjusting valve 23 at the large flow rate position (j) and the small flow rate position (k) depending on whether or not the difference between the vehicle height on the front wheel side and the vehicle height on the rear wheel side is equal to or greater than the threshold value. ) And switch to.
- the flow rate of the air supplied from the tank 15 to the front wheel side air suspension 2 can be appropriately adjusted, and the vehicle height raising operation can be smoothly performed while the vehicle maintains a substantially horizontal posture.
- the controller 24 When performing the vehicle height lowering operation, the controller 24 outputs a control signal to the exhaust valve 14, the second switching valve 21, the third switching valve 22, and the flow rate adjusting valve 23, and the control signal to the first switching valve 20. Stops the output of. As a result, as shown in FIG. 4, the exhaust valve 14, the second switching valve 21, and the third switching valve 22 are switched to the communication positions (b), (f), and (h), respectively, and the first switching valve 20 is switched. Is switched to the cutoff position (c). Further, the flow rate adjusting valve 23 is switched to the small flow rate position (k).
- the air filled in the front wheel side air suspension 2 is led out to the exhaust pipe line 12 through the front wheel side branch pipe line 18, the supply / exhaust pipe line 8, the slow return valve 11, and the air dryer 10, and is silenced from the exhaust pipe line 12. It is released into the air through the vessel 13.
- the air springs 2B of the left and right front wheel side air suspensions 2 contract, and the vehicle height on the front wheel side drops according to the amount of air discharged from the air springs 2B.
- the air filled in the rear wheel side air suspension 3 is exhausted through the rear wheel side branch pipe line 19, the front wheel side branch pipe line 18, the flow rate adjusting valve 23, the supply / discharge pipe line 8, the slow return valve 11, and the air dryer 10. It is led out to the pipeline 12 and is discharged from the exhaust pipeline 12 into the atmosphere through the silencer 13. As a result, the air springs 3B of the left and right rear wheel side air suspensions 3 contract, and the vehicle height on the rear wheel side drops according to the amount of air discharged from the air springs 3B.
- the air flowing through the front wheel side branch pipeline 18 is subjected to a throttle action when passing through the flow rate adjusting valve 23 at the small flow rate position (k).
- the flow rate of the air discharged from the rear wheel side air suspension 3 on the left rear wheel (RL) side and the right rear wheel (RR) side is the front wheel side air. It is less than the flow rate of the air discharged from the suspension 2.
- the solid characteristic line 27'in FIG. 6 indicates the change in the vehicle height on the front wheel side
- the broken line characteristic line 28' indicates the change in the vehicle height on the rear wheel side.
- the flow rate adjusting valve 23 holds the small flow rate position (k), so that the flow rate of the air discharged from the rear wheel side air suspension 3 is from the front wheel side air suspension 2. It is less than the flow rate of the discharged air. Therefore, the vehicle can maintain a posture in which the vehicle height on the rear wheel side is higher than the vehicle height on the front wheel side and the headlamp does not face upward during the vehicle height lowering operation.
- the difference (pitch angle) between the vehicle height on the front wheel side and the vehicle height on the rear wheel side becomes excessive.
- the maximum value of the difference between the vehicle height on the front wheel side and the vehicle height on the rear wheel side that can be tolerated when the vehicle height is lowered is stored as a threshold value 29'(characteristic line of the two-dot chain line in FIG. 6). Has been done. Therefore, when the difference between the vehicle height on the front wheel side and the vehicle height on the rear wheel side reaches the threshold value 29'at the time point t12, the controller 24 stops the output of the control signal to the flow rate adjusting valve 23.
- the flow rate adjusting valve 23 is switched to the large flow rate position (j), and the flow rate of the air discharged from the rear wheel side air suspension 3 increases. Therefore, the flow rate of the air discharged from the front wheel side air suspension 2 decreases by the amount that the pressure on the downstream side (connection point 9) of the front wheel side branch pipe 18 increases on the downstream side (connection point 9) of the flow rate adjusting valve 23. As a result, the descending speed of the vehicle height on the front wheel side becomes small, and at the time point t13, the vehicle height on the front wheel side and the vehicle height on the rear wheel side coincide with each other.
- the controller 24 outputs a control signal to the flow rate adjusting valve 23 at the time point t13, and switches the flow rate adjusting valve 23 to the small flow rate position (k).
- the flow rate of the air discharged from the rear wheel side air suspension 3 is reduced, and the pressure increase on the downstream side (connection point 9) of the front wheel side branch pipeline 18 on the downstream side of the flow rate adjusting valve 23 is suppressed. Therefore, the flow rate of the air discharged from the front wheel side air suspension 2 increases, and the descending speed of the vehicle height on the front wheel side increases.
- the flow rate of the air discharged from the rear wheel side air suspension 3 decreases, the lowering speed of the vehicle height on the rear wheel side becomes smaller.
- the controller 24 switches the flow rate adjusting valve 23 to the large flow rate position (j).
- the flow rate of the air discharged from the front wheel side air suspension 2 decreases by the amount that the pressure on the downstream side of the front wheel side branch pipeline 18 increases on the downstream side of the flow rate adjusting valve 23.
- the descending speed of the vehicle height on the front wheel side becomes small, and the vehicle height on the front wheel side and the vehicle height on the rear wheel side reach the target vehicle height H'at the time point t15.
- the controller 24 stops supplying control signals to the second switching valve 21 and the third switching valve 22. do.
- the second switching valve 21 and the third switching valve 22 are switched to the shutoff positions (e) and (g), and the vehicle height on the front wheel side and the vehicle height on the rear wheel side are maintained at the target vehicle height H'. In this state, the vehicle height lowering operation ends.
- the solid characteristic line 30'in FIG. 6 indicates the change in the vehicle height on the front wheel side according to the conventional technique
- the broken line characteristic line 31' indicates the change in the vehicle height on the rear wheel side according to the conventional technique.
- the time point t15 when the vehicle height on the front wheel side and the vehicle height on the rear wheel side reach the target vehicle height H'by the vehicle height lowering operation by the air suspension system 1 is set to the vehicle height on the front wheel side by the vehicle height lowering operation by the conventional technique.
- the time ⁇ t ′ is shorter than the time point t17 when the vehicle height on the rear wheel side reaches the target vehicle height H ′.
- the vehicle height is lowered while maintaining the posture in which the head lamp does not face upward, so that the vehicle height on the front wheel side and the vehicle height on the rear wheel side are alternately increased.
- the air suspension system 1 by simultaneously lowering the vehicle height on the front wheel side and the vehicle height on the rear wheel side, it is possible to perform the vehicle height lowering operation while maintaining the posture in which the head lamp does not face upward. ..
- the time required for the vehicle height on the front wheel side and the vehicle height on the rear wheel side to reach the target vehicle height H' can be shortened by ⁇ t'as compared with the conventional technique.
- the height lowering operation can be performed in a short time.
- the controller 24 switches the flow rate adjusting valve 23 between the large flow rate position (j) and the small flow rate position (k), and appropriately adjusts the flow rate of the air discharged from the rear wheel side air suspension 3 to the vehicle.
- the vehicle height can be lowered smoothly while maintaining a nearly horizontal posture.
- FIGS. 7 to 10 show a second embodiment of the present invention.
- the feature of this embodiment is that a fixed diaphragm is used as a resistance portion.
- the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the air suspension system 41 according to the second embodiment is provided with a fixed throttle 42 as a resistance portion between the branch point 17 and the second switching valve 21 in the front wheel side branch pipeline 18. .. That is, the fixed throttle 42 is applied to the present embodiment in place of the flow rate adjusting valve 23 according to the first embodiment.
- the fixed throttle 42 constitutes an area adjusting unit that reduces the area of the air flow path, and the area of the flow path of the fixed throttle 42 is the flow of the first switching valve 20, the second switching valve 21, and the third switching valve 22. It is set (fixed) to a certain area smaller than the area of the road.
- the air flowing through the front wheel side branch pipeline 18 is always subjected to the throttle action by the fixed throttle 42, and the first switching valve 20, the second switching valve 21, and the second switching valve 21 are always applied. 3 A flow path resistance larger than that of the switching valve 22 is generated.
- the air suspension system 41 according to the second embodiment is provided with the fixed throttle 42 as described above, and the vehicle height raising operation and the vehicle height lowering operation will be described below.
- the vehicle height on the front wheel side is higher than the vehicle height on the rear wheel side. It also has the characteristics of an air spring that rises quickly.
- the first switching valve 20, the second switching valve 21, and the third switching valve 22 are switched to the communication positions (d), (f), and (h), respectively.
- air is discharged from the tank 15 to the tank pipeline 16, and the air branches into the front wheel side branch pipeline 18 side and the rear wheel side branch pipeline 19 side at the branch point 17.
- the air led out to the rear wheel side branch pipeline 19 is supplied to the rear wheel side air suspension 3 on the left rear wheel (RL) side through the left rear branch pipeline 19A, and at the right rear through the right rear branch pipeline 19B. It is supplied to the rear wheel side air suspension 3 on the wheel (RR) side.
- the vehicle height on the rear wheel side rises according to the amount of air supplied to the left and right rear wheel side air suspensions 3 (air springs 3B).
- the air led out to the front wheel side branch line 18 is supplied to the front wheel side air suspension 2 on the left front wheel (FL) side through the fixed throttle 42 and the left front branch line 18A, and is right through the right front branch line 18B. It is supplied to the front wheel side air suspension 2 on the front wheel (FR) side.
- the vehicle height on the front wheel side rises according to the amount of air supplied to the left and right front wheel side air suspensions 2 (air spring 2B).
- the air flowing through the front wheel side branch pipe 18 is subjected to a throttle action when passing through the fixed throttle 42. Therefore, the flow rate of the air supplied to the front wheel side air suspension 2 is smaller than the flow rate of the air supplied to the rear wheel side air suspension 3 due to the flow path resistance when passing through the fixed throttle 42.
- the solid characteristic line 43 in FIG. 8 shows the change in the vehicle height on the front wheel side
- the broken line characteristic line 44 shows the change in the vehicle height on the rear wheel side.
- the first switching valve 20, the second switching valve 21, and the third switching valve 22 are switched to the communication positions (d), (f), and (h), and the vehicle height raising operation is started.
- Ru the front wheel side air suspension 2 and the rear wheel side air suspension 3 are air springs in which the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side when the same amount of air is supplied to both. It has characteristics.
- the flow rate of the air supplied to the front wheel side air suspension 2 is smaller than the flow rate of the air supplied to the rear wheel side air suspension 3 due to the flow path resistance when passing through the fixed throttle 42. Therefore, when the area of the flow path of the front wheel side branch pipeline 18 is appropriately adjusted (decreased) by the fixed throttle 42, the vehicle height on the front wheel side and the vehicle height on the rear wheel side are after the time point t21. , Ascend with almost the same, and reach the target vehicle height H at the same time at time t22. Therefore, the vehicle can perform the vehicle height raising operation while maintaining a substantially horizontal posture (a posture in which the headlamp does not face upward).
- the solid characteristic line 45 in FIG. 8 shows the change in the vehicle height on the front wheel side according to the conventional technique
- the broken line characteristic line 46 shows the change in the vehicle height on the rear wheel side according to the conventional technique.
- the exhaust valve 14, the second switching valve 21, and the third switching valve 22 are switched to the communication positions (b), (f), and (h), respectively, and the first switching valve is used. 20 is switched to the cutoff position (c).
- the air filled in the front wheel side air suspension 2 is discharged into the atmosphere through the front wheel side branch pipe line 18, the supply / exhaust pipe line 8, the slow return valve 11, the air dryer 10, and the exhaust pipe line 12.
- the vehicle height on the front wheel side is lowered according to the amount of air discharged from the left and right front wheel side air suspensions 2 (air spring 2B).
- the air filled in the rear wheel side air suspension 3 is the rear wheel side branch pipe line 19, the front wheel side branch pipe line 18, the fixed throttle 42, the supply / discharge pipe line 8, the slow return valve 11, It is released into the atmosphere through the air dryer 10 and the exhaust pipe line 12.
- the vehicle height on the rear wheel side is lowered according to the amount of air discharged from the left and right rear wheel side air suspensions 3 (air spring 3B).
- the flow rate of the air discharged from the rear wheel side air suspension 3 is smaller than the flow rate of the air discharged from the front wheel side air suspension 2 due to the flow path resistance when passing through the fixed throttle 42. Therefore, the vehicle height on the front wheel side descends to the target vehicle height earlier than the vehicle height on the rear wheel side, and the vehicle can perform the vehicle height lowering operation while maintaining the posture in which the headlamp does not face upward. ..
- the solid characteristic line 47 in FIG. 9 indicates the pressure in the front wheel side branch line 18 of the air suspension system 41
- the broken line characteristic line 48 indicates the pressure in the rear wheel side branch line 19 of the air suspension system 41. Is shown.
- the characteristic line 49 of the short broken line shows the pressure in the front wheel side branch line 18 and the rear wheel side branch line 19 of the comparative example.
- the solid characteristic line 50 in FIG. 10 indicates the mass (air mass) of the air discharged from the tank 15 of the air suspension system 41
- the long broken line characteristic line 51 is the front wheel side air suspension of the air suspension system 41.
- the air mass supplied to 2 is shown, and the characteristic line 52 of the broken line shows the air mass supplied to the rear wheel side air suspension 3.
- the characteristic line 53 of the two-dot chain line in FIG. 10 indicates the air mass supplied to the front wheel side air suspension 2 of the comparative example
- the characteristic line 54 of the one-dot chain line indicates the rear wheel side air suspension 3 of the comparative example.
- the air mass to be supplied is shown
- the characteristic line 55 of the short broken line shows the air mass discharged from the tank 15 of the comparative example.
- the pressure in the front wheel side branch pipe 18 (characteristic line 47) is higher than the pressure in the rear wheel side branch pipe 19 (characteristic line 48). Will also be low. Therefore, the air mass supplied to the front wheel side air suspension 2 indicated by the characteristic line 51 is smaller than the air mass supplied to the rear wheel side air suspension 3 indicated by the characteristic line 52.
- the air spring 2B of the front wheel side air suspension 2 has an air spring characteristic that the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side.
- the air mass supplied to the front wheel side air suspension 2 and the rear wheel side air suspension 3 reaches the mass corresponding to the target vehicle height, respectively, and the vehicle height on the front wheel side and the vehicle height on the rear wheel side.
- the target vehicle height is reached.
- the front wheel side branch line 18 and the rear wheel shown by the characteristic line 49 are supplied.
- the pressure in the side branch pipeline 19 rises.
- the air spring 2B of the front wheel side air suspension 2 has an air spring characteristic in which the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side. Therefore, as shown by the characteristic line 53, the mass of air supplied to the front wheel side air suspension 2 reaches the mass corresponding to the target vehicle height at the time point t33, and the vehicle height on the front wheel side reaches the target vehicle height.
- the second switching valve 21 when the second switching valve 21 is switched to the shutoff position (e), the pressure in the front wheel side branch pipe 18 and the rear wheel side branch pipe 19 increases as shown by the characteristic line 49.
- the characteristic line 54 the air mass supplied to the rear wheel side air suspension 3 tends to increase from the time point t33.
- the pressure in the front wheel side branch pipe 18 and the rear wheel side branch pipe 19 increases, the pressure difference from the pressure in the tank 15 becomes smaller. Therefore, as shown by the characteristic line 55, the mass of air discharged from the tank 15 decreases after the time point t33, and it becomes impossible to efficiently supply air to the rear wheel side air suspension 3.
- the air mass supplied to the rear wheel side air suspension 3 becomes the mass corresponding to the target vehicle height, and the rear wheel side The vehicle height reaches the target vehicle height. Therefore, at the time t32 when the vehicle height on the front wheel side and the vehicle height on the rear wheel side reach the target vehicle height due to the vehicle height raising operation by the air suspension system 41, the vehicle height and the rear wheel on the front wheel side and the rear wheel are obtained by the vehicle height raising operation according to the comparative example.
- the time ⁇ t is shorter than the time t34 when the vehicle height on the side reaches the target vehicle height.
- the front wheel side air suspension is provided by providing the fixed throttle 42 in the front wheel side branch pipeline 18 connecting the branch point 17 and the second switching valve 21.
- the air mass supplied to 2 can be made smaller than the air mass supplied to the rear wheel side air suspension 3.
- the air spring 2B of the front wheel side air suspension 2 has an air spring characteristic that the vehicle height on the front wheel side rises faster than the vehicle height on the rear wheel side, the vehicle height on the front wheel side and the rear wheel side It is possible to reach the target vehicle height at the same time as the vehicle height on the wheel side.
- the vehicle height on the front wheel side and the vehicle height on the rear wheel side at the same time with the throttle amount set appropriately by the fixed diaphragm 42, the vehicle height is raised while maintaining the posture in which the headlamp does not turn upward.
- the operation can be performed in a short time.
- FIGS. 11 and 12 show a third embodiment of the present invention.
- the feature of this embodiment is that the closed circuit type air suspension system is provided with a flow rate adjusting valve as a resistance portion.
- the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the air suspension system 61 includes a front wheel side air suspension 2, a rear wheel side air suspension 3, a tank 15, a first switching valve 20, a second switching valve 21, a third switching valve 22, and a flow rate adjusting valve 23. , The compressor 62 and the like are included.
- the air suspension system 61 constitutes a closed circuit type air suspension system (closed system).
- the compressor 62 as an air supply source is driven by the electric motor 62A to compress the air sucked from the tank 15 to generate compressed air, and the compressed air is used as the front wheel side air suspension 2 and the rear wheel side air suspension. Supply to 3. Further, the compressor 62 compresses the air discharged from the front wheel side air suspension 2 and the rear wheel side air suspension 3, and supplies the compressed air to the tank 15.
- One end of the exhaust pipe line 63 is connected to the intake side 62B of the compressor 62, and the other end of the exhaust pipe line 63 is connected to the front wheel side branch line 18 at the connection point 64.
- the exhaust pipe line 63 guides the air discharged from the front wheel side air suspension 2 and the rear wheel side air suspension 3 to the compressor 62 during the vehicle height lowering operation.
- the supply / discharge pipeline 65 guides the air discharged from the compressor 62 during the vehicle height raising operation to the front wheel side air suspension 2 and the rear wheel side air suspension 3, and also guides the front wheel side air suspension 2 and the rear wheel side air during the vehicle height lowering operation.
- the air discharged from the suspension 3 is guided to the tank 15.
- the tank 15 is connected to the exhaust pipe line 63 via the tank line line 66. That is, one end of the tank line 66 is connected to the tank 15, and the other end of the tank line 66 is connected to the exhaust line 63 at the connection point 67.
- the tank line 66 is connected to the supply / discharge line 65 via the return line 68. That is, one end of the return line 68 is connected to the tank line 66 at the connection point 69, and the other end of the return line 68 is connected to the supply / discharge line 65 at the connection point 70.
- the return pipe line 68 guides the air discharged from the compressor 62 to the tank 15 during the vehicle height lowering operation.
- An air dryer 10 and a slow return valve 11 are provided between the compressor 62 and the connection point 70 in the supply / discharge pipe line 65.
- An exhaust valve 71 is provided between the connection point 64 and the connection point 67 in the exhaust pipe line 63.
- the exhaust valve 71 is composed of, for example, an electromagnetic switching valve having two ports and two positions, and is switched to a communication position or a shutoff position by a control signal from a controller (not shown).
- An on-off valve 72 is provided between the connection point 67 and the connection point 69 in the tank pipeline 66, and an on-off valve 73 is provided between the connection point 69 and the connection point 70 in the return pipeline 68. Has been done.
- the on-off valve 72 and the on-off valve 73 are composed of, for example, an electromagnetic switching valve having two ports and two positions, and are switched to a communication position or a shutoff position by a control signal from a controller (not shown).
- the flow rate adjusting valve 23 as a resistance portion is located between the branch point 17 and the second switching valve 21 and is provided in the front wheel side branch pipeline 18.
- the flow rate adjusting valve 23 is composed of, for example, an electromagnetic switching valve having two ports and two positions, and is switched to a large flow rate position (j) or a small flow rate position (k) by a control signal from a controller (not shown).
- the air suspension system 61 has the above-described configuration, and when the vehicle height is raised, as shown in FIG. 11, the first switching valve 20, the second switching valve 21, and the third switching valve are used.
- the 22 is switched to the communication position (d), (f), and (h), respectively, and the on-off valve 72 is switched to the communication position.
- the exhaust valve 71 and the on-off valve 73 are each switched to a shutoff position.
- the flow rate adjusting valve 23 is switched to the small flow rate position (k).
- the air in the tank 15 is introduced into the compressor 62 through the tank pipe line 66 and the exhaust pipe line 63.
- the compressor 62 compresses the introduced air to generate compressed air, and discharges the compressed air to the supply / discharge pipe line 65.
- the air discharged to the supply / discharge pipe 65 is branched into the air led out to the front wheel side branch pipe 18 at the branch point 17 and the air led out to the rear wheel side branch pipe 19.
- the air led out to the rear wheel side branch line 19 is the rear wheel side air suspension 3 on the left rear wheel (RL) side and the right rear wheel (RR) side through the left rear branch line 19A and the right rear branch line 19B. Is supplied to. As a result, the vehicle height on the rear wheel side rises according to the amount of air supplied to the air suspension 3 on the rear wheel side.
- the air led out to the front wheel side branch line 18 is the front wheel side air suspension on the left front wheel (FL) side and the right front wheel (FR) side through the flow rate adjusting valve 23, the left front branch line 18A and the right front branch line 18B. It is supplied to 2. As a result, the vehicle height on the front wheel side rises according to the amount of air supplied to the front wheel side air suspension 2.
- the air flowing through the front wheel side branch pipeline 18 is subjected to a throttle action when passing through the flow rate adjusting valve 23 at the small flow rate position (k). Therefore, the flow rate of the air supplied to the front wheel side air suspension 2 on the left front wheel (FL) side and the right front wheel (FR) side due to the flow path resistance when passing through the flow rate adjusting valve 23 is the rear wheel side air suspension 3. It is less than the flow rate of the air supplied to. Therefore, since the vehicle height on the front wheel side is lower than the vehicle height on the rear wheel side, it is possible to maintain a posture in which the headlamp does not face upward, so that the vehicle height on the front wheel side and the vehicle height on the rear wheel side can be simultaneously adjusted. It can be raised and the vehicle height can be raised in a short time.
- the first switching valve 20 is switched to the shutoff position (c), and the second switching valve 21 and the third switching valve 22 are in communication positions (f), respectively. ), (H). Further, the exhaust valve 71 and the on-off valve 73 are each switched to the communication position, and the on-off valve 72 is switched to the shut-off position. Further, the flow rate adjusting valve 23 is switched to the small flow rate position (k).
- the air filled in the front wheel side air suspension 2 is introduced into the compressor 62 through the front wheel side branch pipe line 18 and the exhaust pipe line 63.
- the compressor 62 compresses the introduced air to generate compressed air, and discharges the compressed air to the supply / discharge pipe line 65.
- This compressed air is supplied from the supply / discharge pipe 65 to the tank 15 through the return pipe 68 and the tank pipe 66. As a result, the vehicle height on the front wheel side is lowered according to the amount of air discharged from the air suspension 2 on the front wheel side.
- the air filled in the rear wheel side air suspension 3 is introduced into the compressor 62 through the rear wheel side branch line 19, the front wheel side branch line 18, the flow rate adjusting valve 23, and the exhaust line 63.
- the compressed air generated by the compressor 62 is supplied to the tank 15.
- the vehicle height on the rear wheel side is lowered according to the amount of air discharged from the air suspension 3 on the rear wheel side.
- the flow rate of the air discharged from the rear wheel side air suspension 3 is discharged from the front wheel side air suspension 2 due to the flow path resistance when passing through the flow rate adjusting valve 23 at the small flow rate position (k). It decreases below the flow rate of air.
- the vehicle height on the front wheel side is lower than the vehicle height on the rear wheel side, it is possible to maintain a posture in which the headlamps do not face upward, so that the vehicle height on the front wheel side and the vehicle height on the rear wheel side can be simultaneously adjusted. It can be lowered and the vehicle height can be lowered in a short time.
- FIG. 13 shows a fourth embodiment of the present invention.
- the feature of this embodiment is that the closed circuit type air suspension system is provided with a fixed throttle as a resistance portion.
- the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the air suspension system 81 includes a front wheel side air suspension 2, a rear wheel side air suspension 3, a tank 15, a first switching valve 20, a second switching valve 21, a third switching valve 22, a compressor 82, and a fixed one. It is configured to include a diaphragm 94 and the like.
- the air suspension system 81 constitutes a closed circuit type air suspension system (closed system).
- the compressor 82 as an air supply source is driven by the electric motor 82A to compress the air sucked from the tank 15 to generate compressed air, and the compressed air is used as the front wheel side air suspension 2 and the rear wheel side air suspension. Supply to 3. Further, the compressor 82 compresses the air discharged from the front wheel side air suspension 2 and the rear wheel side air suspension 3, and supplies the compressed air to the tank 15.
- One end of the exhaust pipe line 83 is connected to the intake side 82B of the compressor 82, and the other end of the exhaust pipe line 83 is connected to the front wheel side branch line 18 at the connection point 84.
- One end of the supply / discharge pipe line 85 is connected to the discharge side 82C of the compressor 82, and the other end of the supply / discharge pipe line 85 is connected to the rear wheel side branch line 19 at the branch point 17.
- the tank 15 is connected to the exhaust pipe line 83 via the tank line line 86. That is, one end of the tank line 86 is connected to the tank 15, and the other end of the tank line 86 is connected to the exhaust line 83 at the connection point 87.
- the tank line 86 is connected to the supply / discharge line 85 via the return line 88. That is, one end of the return line 88 is connected to the tank line 86 at the connection point 89, and the other end of the return line 88 is connected to the supply / discharge line 85 at the connection point 90.
- An air dryer 10 and a slow return valve 11 are provided between the compressor 82 and the connection point 90 in the supply / discharge pipe line 85.
- An exhaust valve 91 is provided between the connection point 84 and the connection point 87 in the exhaust pipe line 83.
- An on-off valve 92 is provided between the connection point 87 and the connection point 89 in the tank pipeline 86.
- An on-off valve 93 is provided between the connection point 89 and the connection point 90 in the return line 88.
- the exhaust valve 91, the on-off valve 92, and the on-off valve 93 are composed of, for example, an electromagnetic switching valve having two ports and two positions, and are switched to a communication position or a shutoff position by a control signal from a controller (not shown).
- the fixed throttle 94 as a resistance portion is provided between the branch point 17 and the second switching valve 21 in the front wheel side branch line 18.
- the fixed throttle 94 constitutes an area adjusting unit that reduces the area of the air flow path, and the area of the flow path of the fixed throttle 94 is the flow of the first switching valve 20, the second switching valve 21, and the third switching valve 22.
- the area is set smaller than the area of the road. Therefore, during the vehicle height raising operation or the vehicle height lowering operation, the air flowing through the front wheel side branch pipeline 18 is always subjected to the throttle action by the fixed throttle 94, and the first switching valve 20, the second switching valve 21, and the second switching valve 21 are always applied. 3 A flow path resistance larger than that of the switching valve 22 is generated.
- the air suspension system 81 has the above-described configuration, and when the vehicle height is raised, the first switching valve 20, the second switching valve 21, and the third switching valve 22 are in communication positions (respectively). d), (f), and (h) are switched, and the on-off valve 92 is switched to the communication position. Further, the exhaust valve 91 and the on-off valve 93 are each switched to a shutoff position. As a result, the air in the tank 15 is introduced into the compressor 82 through the tank pipeline 86 and the exhaust pipeline 83, and the compressed air compressed by the compressor 82 is discharged to the supply / exhaust pipeline 85.
- the air discharged to the supply / discharge pipe 85 is branched into the air led out to the front wheel side branch pipe 18 at the branch point 17 and the air led out to the rear wheel side branch pipe 19.
- the air led out to the rear wheel side branch line 19 is the rear wheel side air suspension 3 on the left rear wheel (RL) side and the right rear wheel (RR) side through the left rear branch line 19A and the right rear branch line 19B. Is supplied to. As a result, the vehicle height on the rear wheel side rises according to the amount of air supplied to the air suspension 3 on the rear wheel side.
- the air led out to the front wheel side branch line 18 passes through the fixed throttle 94, the left front branch line 18A and the right front branch line 18B, and the front wheel side air suspension 2 on the left front wheel (FL) side and the right front wheel (FR) side. Is supplied to. As a result, the vehicle height on the front wheel side rises according to the amount of air supplied to the front wheel side air suspension 2.
- the flow rate of the air supplied to the front wheel side air suspension 2 through the front wheel side branch pipeline 18 is the flow rate of the air supplied to the rear wheel side air suspension 3 due to the flow path resistance when passing through the fixed throttle 94. Less than. Therefore, since the vehicle height on the front wheel side is lower than the vehicle height on the rear wheel side, it is possible to maintain a posture in which the headlamp does not face upward, so that the vehicle height on the front wheel side and the vehicle height on the rear wheel side can be simultaneously adjusted. It can be raised and the vehicle height can be raised in a short time.
- the first switching valve 20 is switched to the shutoff position (c), and the second switching valve 21 and the third switching valve 22 are switched to the communication positions (f) and (h), respectively. Be done. Further, the exhaust valve 91 and the on-off valve 93 are switched to the communication positions, and the on-off valve 92 is switched to the shut-off position.
- the air filled in the front wheel side air suspension 2 is introduced into the compressor 82 through the front wheel side branch pipe line 18 and the exhaust pipe line 83.
- the compressed air compressed by the compressor 82 is supplied from the supply / discharge pipe 85 to the tank 15 through the return pipe 88 and the tank pipe 86.
- the vehicle height on the front wheel side is lowered according to the amount of air discharged from the air suspension 2 on the front wheel side.
- the air filled in the rear wheel side air suspension 3 is introduced into the compressor 82 through the rear wheel side branch pipe line 19, the front wheel side branch pipe line 18, the fixed throttle 94, and the exhaust pipe line 83.
- the compressed air compressed by the compressor 82 is supplied from the supply / discharge pipe 85 to the tank 15 through the return pipe 88 and the tank pipe 86.
- the vehicle height on the rear wheel side is lowered according to the amount of air discharged from the air suspension 3 on the rear wheel side.
- the flow rate of the air discharged from the rear wheel side air suspension 3 through the front wheel side branch pipeline 18 is the flow rate of the air discharged from the front wheel side air suspension 2 due to the flow path resistance when passing through the fixed throttle 94. Less than. Therefore, since the vehicle height on the front wheel side is lower than the vehicle height on the rear wheel side, it is possible to maintain a posture in which the headlamps do not face upward, so that the vehicle height on the front wheel side and the vehicle height on the rear wheel side can be simultaneously adjusted. It can be lowered and the vehicle height can be lowered in a short time.
- FIG. 14 shows a fifth embodiment of the present invention.
- the feature of this embodiment is between the branch point and the second switching valve that branch the air from the tank into the front wheel side air suspension and the rear wheel side air suspension, and between the branch point and the third switching valve.
- Each has a fixed diaphragm as a resistance part.
- the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the air suspension system 101 includes a front wheel side air suspension 2, a rear wheel side air suspension 3, a compressor 4, a tank 15, a first switching valve 20, a second switching valve 21, a third switching valve 22, and a front wheel. It includes a side fixed throttle 107, a front wheel side check valve 109, a rear wheel side fixed throttle 110, a rear wheel side check valve 112, and the like.
- the supply / discharge pipe line 102 is connected to the discharge side 4B of the compressor 4.
- the other end of the supply / discharge pipe 102 is connected to the front wheel side branch pipe 104 and the rear wheel side branch pipe 105 at the branch point 103.
- the front wheel side branch line 104 branches into a left front branch line 104A and a right front branch line 104B, and the left front branch line 104A and the right front branch line 104B are the left front wheel (FL) side and the right front wheel (FL), respectively. It is connected to the front wheel side air suspension 2 (air spring 2B) on the FR) side.
- the rear wheel side branch line 105 branches into a left rear branch line 105A and a right rear branch line 105B, and the left rear branch line 105A and the right rear branch line 105B are the left rear wheel (RL), respectively.
- Side and the rear wheel side air suspension 3 (air spring 3B) on the right rear wheel (RR) side that is, the branch point 103 makes the air from the tank 15 flow into the front wheel side air suspension 2 through the front wheel side branch pipeline 104 and the air flowing through the rear wheel side branch pipeline 105 to the rear wheel side air suspension 3. It is branched.
- the tank pipeline 106 is connected to the tank 15. The other end of the tank line 106 is connected to the supply / discharge line 102 between the branch point 103 and the slow return valve 11.
- the tank pipeline 106 is provided with a first switching valve 20. Further, a second switching valve 21 is provided in each of the left front branch line 104A and the right front branch line 104B of the front wheel side branch line 104.
- a third switching valve 22 is provided in each of the left rear branch pipeline 105A and the right rear branch pipeline 105B of the rear wheel side branch pipeline 105.
- a front wheel side fixed throttle 107 is provided as a resistance portion between the portion of the front wheel side branch line 104 that branches into the left front branch line 104A and the right front branch line 104B and the branch point 103.
- the front wheel side fixed throttle 107 constitutes an area adjusting portion that reduces the area of the air flow path, and the area of the front wheel side fixed throttle 107 is such that the first switching valve 20, the second switching valve 21, and the third switching valve 20 are used.
- the area is set to be smaller than the area of the flow path of the valve 22.
- One end of the front wheel side bypass line 108 is connected to the right front branch line 104B, and the other end of the front wheel side bypass line 108 is connected to the rear wheel side branch line 105.
- the front wheel side bypass line 108 bypasses the front wheel side fixed throttle 107 and connects the right front branch line 104B and the rear wheel side branch line 105.
- the front wheel side bypass pipeline 108 is provided with a front wheel side check valve 109.
- the front wheel side check valve 109 allows the flow of air from the left and right front wheel side air suspensions 2 toward the rear wheel side branch pipeline 105, and blocks the flow in the opposite direction.
- a rear wheel side fixed throttle 110 is provided as a resistance portion between the portion of the rear wheel side branch line 105 that branches into the left rear branch line 105A and the right rear branch line 105B and the branch point 103. ing.
- the rear wheel side fixed throttle 110 constitutes an area adjusting portion for reducing the area of the air flow path, and the area of the rear wheel side fixed throttle 110 is the first switching valve 20, the second switching valve 21, and the second. 3
- the area is set to be smaller than the area of the flow path of the switching valve 22 and different from the area of the flow path of the front wheel side fixed throttle 107.
- the rear wheel side bypass pipeline 111 bypasses the rear wheel side fixed throttle 110 and connects the right rear branch pipeline 105B and the rear wheel side branch pipeline 105.
- the rear wheel side bypass pipeline 111 is provided with a rear wheel side check valve 112.
- the rear wheel side check valve 112 allows the flow of air from the rear wheel side branch pipeline 105 toward the left and right rear wheel side air suspensions 3 and blocks the flow in the opposite direction.
- the air suspension system 101 has the above-described configuration, and the first switching valve 20, the second switching valve 21, and the third switching valve 22 are in communication positions (respectively) during the vehicle height raising operation. It can be switched between d), (f), and (h). As a result, the air in the tank 15 flows from the tank pipeline 106 to the supply / discharge pipeline 102, and branches to the front wheel side branch pipeline 104 side and the rear wheel side branch pipeline 105 side at the branch point 103.
- the air led out to the rear wheel side branch pipe 105 passes through the rear wheel side bypass pipe 111, the rear wheel side check valve 112, and the left rear branch pipe 105A, and the left rear wheel (RL) side rear wheel side air suspension 3 And is supplied to the rear wheel side air suspension 3 on the right rear wheel (RR) side through the right rear branch pipeline 105B.
- the vehicle height on the rear wheel side rises according to the amount of air supplied to the left and right rear wheel side air suspensions 3 (air springs 3B).
- the air led out to the front wheel side branch pipeline 104 passes through the front wheel side fixed throttle 107, is supplied to the front wheel side air suspension 2 on the left front wheel (FL) side through the left front branch pipeline 104A, and is supplied to the front wheel side air suspension 2 on the left front wheel (FL) side. It is supplied to the front wheel side air suspension 2 on the right front wheel (FR) side through the pipeline 104B.
- the vehicle height on the front wheel side rises according to the amount of air supplied to the left and right front wheel side air suspensions 2 (air spring 2B).
- the flow rate of the air supplied to the front wheel side air suspension 2 is smaller than the flow rate of the air supplied to the rear wheel side air suspension 3 due to the flow path resistance when passing through the front wheel side fixed throttle 107. Therefore, during the vehicle height raising operation, the vehicle height on the rear wheel side rises to the target vehicle height faster than the vehicle height on the front wheel side. The vehicle height on the rear wheel side can be raised at the same time, and the vehicle height raising operation can be performed in a short time.
- the first switching valve 20 is switched to the shutoff position (c), and the exhaust valve 14, the second switching valve 21, and the third switching valve 22 are in the communication positions (b), respectively. It can be switched between f) and (h).
- the air filled in the front wheel side air suspension 2 is the left front branch line 104A, the right front branch line 104B, the front wheel side bypass line 108, the front wheel side check valve 109, the rear wheel side branch line 105, and the supply / discharge. It is discharged into the atmosphere through the pipeline 102, the slow return valve 11, the air dryer 10, and the exhaust pipeline 12.
- the vehicle height on the front wheel side is lowered according to the amount of air discharged from the left and right front wheel side air suspensions 2 (air spring 2B).
- the air filled in the rear wheel side air suspension 3 is the left rear branch pipeline 105A, the right rear branch pipeline 105B, the rear wheel side fixed throttle 110, the rear wheel side branch pipeline 105, and the supply. It is discharged into the atmosphere through the exhaust pipe line 102, the slow return valve 11, the air dryer 10, and the exhaust pipe line 12. As a result, the vehicle height on the rear wheel side is lowered according to the amount of air discharged from the left and right rear wheel side air suspensions 3 (air spring 3B).
- the flow rate of the air discharged from the rear wheel side air suspension 3 is smaller than the flow rate of the air discharged from the front wheel side air suspension 2 due to the flow path resistance when passing through the rear wheel side fixed throttle 110. ..
- the vehicle height on the front wheel side drops to the target vehicle height earlier than the vehicle height on the rear wheel side.
- the vehicle height on the rear wheel side can be lowered at the same time, and the vehicle height lowering operation can be performed in a short time.
- FIG. 15 shows a sixth embodiment of the present invention.
- the feature of this embodiment is that a flow rate adjusting valve as a resistance portion is provided between the branch point for branching the air from the tank into the front wheel side air suspension and the rear wheel side air suspension and the third switching valve. be.
- the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- the air suspension system 121 includes a front wheel side air suspension 2', a rear wheel side air suspension 3', a compressor 4, a tank 15, a first switching valve 20, a second switching valve 21, and a third switching valve 22. , The flow rate adjusting valve 23 and the like are included.
- the front wheel side air suspension 2'and the rear wheel side air suspension 3'used in the present embodiment have the vehicle height on the rear wheel side on the front wheel side when air is supplied to both of them at the same time to raise the vehicle height. It has the characteristics of an air spring that rises faster than the vehicle height.
- the front wheel side air suspension 2'used in this embodiment is composed of a cylinder 2A'and an air spring 2B', and the rear wheel side air suspension 3'is composed of a cylinder 3A'and an air spring 3B'. ing.
- One end of the supply / discharge pipe line 122 is connected to the discharge side 4B of the compressor 4.
- the other end of the supply / discharge pipe line 122 is connected to the rear wheel side branch pipe line 124 at the connection point 123.
- the rear wheel side branch line 124 branches into a left rear branch line 124A and a right rear branch line 124B, and the left rear branch line 124A and the right rear branch line 124B are the left rear wheel (RL), respectively.
- a third switching valve 22 is provided in each of the left rear branch line 124A and the right rear branch line 124B.
- the tank pipeline 125 is provided with a first switching valve 20.
- the front wheel side branch line 127 branches into a left front branch line 127A and a right front branch line 127B, and the left front branch line 127A and the right front branch line 127B are the left front wheel (FL) side and the right front wheel (FL), respectively. It is connected to the front wheel side air suspension 2'(air spring 2B') on the FR) side.
- a second switching valve 21 is provided in each of the left front branch line 127A and the right front branch line 127B.
- the flow rate adjusting valve 23 as a resistance portion is located between the branch point 126 and the third switching valve 22 and is provided in the rear wheel side branch line 124.
- the flow rate adjusting valve 23 is switched between a large flow rate position (j) and a small flow rate position (k) having a throttle by being supplied with a control signal from the controller 24. That is, the flow rate adjusting valve 23 has a small flow rate position (k) as an area adjusting portion, and the area of the flow path of the flow rate adjusting valve 23 switched to the small flow rate position (k) is the first switching valve 20. It is set smaller than the area of the flow path of the second switching valve 21 and the third switching valve 22.
- the air suspension system 121 has the above-described configuration, and the first switching valve 20, the second switching valve 21, and the third switching valve 22 are in communication positions (respectively) during the vehicle height raising operation. It can be switched between d), (f), and (h). Further, the flow rate adjusting valve 23 is switched to the small flow rate position (k). As a result, the air discharged from the tank 15 to the tank pipeline 125 is branched into the air led out to the front wheel side branch pipeline 127 at the branch point 126 and the air led out to the rear wheel side branch pipeline 124.
- the air led out to the front wheel side branch line 127 is supplied to the front wheel side air suspension 2'on the left front wheel (FL) side and the right front wheel (FR) side through the left front branch line 127A and the right front branch line 127B.
- the vehicle height on the front wheel side rises according to the amount of air supplied to the front wheel side air suspension 2'.
- the air led out to the rear wheel side branch line 124 passes through the flow rate adjusting valve 23, passes through the left rear branch line 124A and the right rear branch line 124B, and passes through the left rear wheel (RL) side and the right rear wheel (RL) side and right rear wheel ( It is supplied to the rear wheel side air suspension 3'on the RR) side.
- the vehicle height on the rear wheel side rises according to the amount of air supplied to the air suspension 3'on the rear wheel side.
- the flow rate of the air supplied to the rear wheel side air suspension 3' is smaller than the flow rate of the air supplied to the front wheel side air suspension 2'due to the flow path resistance when passing through the flow rate adjusting valve 23. ..
- the vehicle height on the rear wheel side is on the front wheel side. Even if it has the air spring characteristic that rises faster than the vehicle height, by limiting the speed at which the vehicle height on the rear wheel side rises, the vehicle height is raised while the vehicle maintains an almost horizontal posture. The operation can be performed in a short time.
- the present invention is not limited to this, and for example, an electromagnetic proportional valve whose valve opening degree is adjusted according to the current value of the control signal supplied from the controller may be used.
- the resistance portion may be configured by, for example, extending the length of the pipeline or providing a bent portion in the pipeline.
- the front wheel side air suspension and the rear wheel side air suspension which are interposed between the vehicle body and the axle and adjust the vehicle height according to the supply and discharge of air, the front wheel side air suspension and the rear wheel.
- An air supply source that supplies air to the side air suspension, a first switching valve that switches between a communication state and a cutoff state between the front wheel side air suspension and the rear wheel side air suspension and the air supply source, and the first switching valve.
- a second switching valve provided between the 1 switching valve and the front wheel side air suspension and switching between the communication state and the shutoff state between the first switching valve and the front wheel side air suspension, and the first switching valve.
- a third switching valve provided between the rear wheel side air suspension and the rear wheel side air suspension to switch between a communication state and a cutoff state between the first switching valve and the rear wheel side air suspension, and a third switching valve from the air supply source.
- a branch point for branching air into the front wheel side air suspension and the rear wheel side air suspension is provided between the second switching valve and / or between the branch point and the third switching valve. It is provided with a resistance portion having a larger flow path resistance than each of the first switching valve, the second switching valve, and the third switching valve.
- the front wheel side air suspension and the rear wheel side air suspension are provided by providing a resistance portion between the branch point and the second switching valve and / or between the branch point and the third switching valve.
- the flow rate of air supplied to the front wheel side air suspension or the rear wheel side air suspension is reduced during the vehicle height raising operation, and from the front wheel side air suspension or the rear wheel side air suspension during the vehicle height lowering operation.
- the flow rate of the discharged air can be reduced.
- the resistance portion has an area adjusting portion for adjusting the area of the air flow path, and the area adjusting portion is a situation of the front wheel side air suspension and / or the rear wheel side air suspension.
- the area of the flow path can be adjusted according to the above.
- the area of the flow path can be adjusted according to the vehicle height on the front wheel side, the vehicle height on the rear wheel side, the air suspension on the front wheel side, the spring pressure of the air suspension on the rear wheel side, and the like.
- the vehicle can perform the vehicle height raising operation or the vehicle height lowering operation while maintaining the posture in which the head lamp does not face upward.
- the resistance portion has an area adjusting portion for adjusting the area of the air flow path, and the area adjusting portion includes the first switching valve, the second switching valve, and the third switching.
- the area of the flow path is set smaller than that of each flow path of the valve.
- the air supply source is a tank in which high-pressure air is stored.
- the vehicle height can be raised by supplying the air stored in the tank to the front wheel side air suspension and the rear wheel side air suspension.
- the air supply source is a compressor that compresses and discharges air.
- the vehicle height can be raised by supplying the air discharged from the compressor to the front wheel side air suspension and the rear wheel side air suspension.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
エアサスペンションシステム(1)は、前輪側エアサスペンション(2)とタンク(15)との間に設けられた第2切替弁(21)と、後輪側エアサスペンション(3)とタンク(15)との間に設けられた第3切替弁(22)と、タンク(15)からの空気を前輪側エアサスペンション(2)と後輪側エアサスペンション(3)とに分岐させる分岐点(17)とを備え、分岐点(17)と第2切替弁(21)との間には流量調整弁(23)を設ける。流量調整弁(23)は、車高上げ時にタンク(15)から前輪側エアサスペンション(2)に供給される空気の流量を制限すると共に、車高下げ時に後輪側エアサスペンション(3)から排出される空気の流量を制限する。
Description
本開示は、例えば4輪自動車等の車両に搭載されるエアサスペンションシステムに関する。
4輪自動車等の車両に搭載される車高調整用のエアサスペンションシステムは、前輪側エアサスペンションと後輪側エアサスペンションとを有している。前輪側エアサスペンションおよび後輪側エアサスペンションは空気ばねを有し、この空気ばねに対する空気の給排に応じて車高調整が行われる(特許文献1、2参照)。一般に、車両の前輪側と後輪側とでは重量の配分が異なるため、前輪側エアサスペンションの空気ばねと、後輪側エアサスペンションの空気ばねとでは容量やばね定数が異なる。このため、例えば車高を上げるために前輪側エアサスペンションと後輪側エアサスペンションとに同時に空気を供給した場合には、前輪側の車高が後輪側の車高よりも早く上昇し、車高調整時にヘッドランプが上向きとなってしまう可能性がある。
これに対し、従来技術では、前輪側エアサスペンションと後輪側エアサスペンションとに対して交互に空気を供給することにより、後輪側の車高と前輪側の車高とを段階的に調整し、ヘッドランプが上向きとならない姿勢を保つようにしている。しかし、前輪側エアサスペンションと後輪側エアサスペンションとに対して交互に空気を給排した場合には、車高調整に多くの時間が費やされるという問題がある。
本発明の一実施形態の目的は、車高調整を短時間で行うことができるようにしたエアサスペンションシステムを提供することにある。
本発明の一実施形態は、車体と車軸との間に介装され空気の給排に応じて車高調整を行う前輪側エアサスペンションおよび後輪側エアサスペンションと、前記前輪側エアサスペンションおよび前記後輪側エアサスペンションに空気を供給する空気供給源と、前記前輪側エアサスペンションおよび前記後輪側エアサスペンションと前記空気供給源との間を連通状態と遮断状態とに切り替える第1切替弁と、前記第1切替弁と前記前輪側エアサスペンションとの間に設けられ、前記第1切替弁と前記前輪側エアサスペンションとの間を連通状態と遮断状態とに切り替える第2切替弁と、前記第1切替弁と前記後輪側エアサスペンションとの間に設けられ、前記第1切替弁と前記後輪側エアサスペンションとの間を連通状態と遮断状態とに切り替える第3切替弁と、前記空気供給源からの空気を前記前輪側エアサスペンションと前記後輪側エアサスペンションとに分岐させる分岐点と前記第2切替弁との間、および/または前記分岐点と前記第3切替弁との間に設けられ、前記第1切替弁、前記第2切替弁、前記第3切替弁のそれぞれよりも流路抵抗が大きな抵抗部とを備える。
本発明の一実施形態によれば、車高調整を短時間で行うことができる。
以下、本発明の実施形態によるエアサスペンションシステムを、4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。
図1ないし図6は第1の実施形態を示している。第1の実施形態によるエアサスペンションシステム1は、前輪側エアサスペンション2、後輪側エアサスペンション3、コンプレッサ4、タンク15、第1切替弁20、第2切替弁21、第3切替弁22、流量調整弁23等を含んで構成されている。エアサスペンションシステム1は、開回路式のエアサスペンションシステム(オープンシステム)を構成している。
左右の前輪側エアサスペンション2は、車両の車体と前車軸(いずれも図示せず)との間に介装され、左前輪(FL)および右前輪(FR)側に配置されている。前輪側エアサスペンション2は、例えば前記前車軸側に取付けられるシリンダ2Aと、シリンダ2A内から軸方向へと伸縮可能に突出し突出端側が車体側に取付けられるピストンロッド(図示せず)と、このピストンロッドの突出端側とシリンダ2Aとの間に伸縮可能に設けられた空気ばね(エア室)2Bとにより構成されている。前輪側エアサスペンション2の空気ばね2Bは、後述の前輪側分岐管路18を通じて空気が給排されることにより軸方向に拡縮される。このとき、前輪側エアサスペンション2は、ピストンロッドが軸方向に伸縮することにより、空気ばね2Bに対する空気の給排量に応じて前輪側の車高調整を行う。
左右の後輪側エアサスペンション3は、車両の車体と後車軸(いずれも図示せず)との間に介装され、左後輪(RL)および右後輪(RR)側に配置されている。後輪側エアサスペンション3は、例えば前記後車軸側に取付けられるシリンダ3Aと、シリンダ3A内から軸方向へと伸縮可能に突出し突出端側が車体側に取付けられるピストンロッド(図示せず)と、このピストンロッドの突出端側とシリンダ3Aとの間に伸縮可能に設けられた空気ばね(エア室)3Bとにより構成されている。後輪側エアサスペンション3の空気ばね3Bは、後述の後輪側分岐管路19を通じて空気が給排されることにより軸方向に拡縮される。このとき、後輪側エアサスペンション3は、ピストンロッドが軸方向に伸縮することにより、空気ばね3Bに対する空気の給排量に応じて後輪側の車高調整を行う。
コンプレッサ4は、吸気側4Aから吸込んだ空気を圧縮して圧縮空気を生成し、この圧縮空気を吐出側4Bから吐出する。コンプレッサ4は、例えば往復動式圧縮機またはスクロール式圧縮機等により構成され、電動モータ5により回転駆動される。コンプレッサ4の吸気側4Aには、外気を吸い込む吸気管路6の一端が接続されている。吸気管路6の他端には、空気中の塵埃を除去するフィルタ7が設けられている。
一方、コンプレッサ4の吐出側4Bには、給排管路8の一端が接続されている。給排管路8の他端は、接続点9において前輪側分岐管路18に接続されている。給排管路8は、コンプレッサ4から吐出された圧縮空気が後述のタンク15に向けて流通すると共に、車高下げ時に前輪側エアサスペンション2および後輪側エアサスペンション3から排出された空気が流通する。給排管路8の途中部位には、エアドライヤ10とスローリターン弁11とが設けられている。
エアドライヤ10は、コンプレッサ4と接続点9との間に位置して給排管路8に設けられている。エアドライヤ10は、例えばシリカゲル等の水分吸着剤(図示せず)等を内蔵し、コンプレッサ4で生成された圧縮空気が給排管路8を流通するときに、この圧縮空気に含まれる水分を吸着し、乾燥した圧縮空気をタンク15に供給する。一方、前輪側エアサスペンション2および後輪側エアサスペンション3から給排管路8に排出された空気が、エアドライヤ10を流通するときには、乾燥した空気によってエアドライヤ10内の水分吸着剤が再生される。
スローリターン弁11は、接続点9とエアドライヤ10との間に位置して給排管路8に設けられている。スローリターン弁11は、絞り11Aとチェック弁11Bとの並列回路により構成されている。チェック弁11Bは、エアドライヤ10から接続点9に向かう空気の流れを許容し、接続点9からエアドライヤ10に向かう空気の流れを阻止する。スローリターン弁11は、絞り11Aによって接続点9からエアドライヤ10に向かう空気の流量を絞る。これにより、前輪側エアサスペンション2および後輪側エアサスペンション3から排出された乾燥した空気が、エアドライヤ10内をゆっくり流通し、エアドライヤ10内の水分吸着剤の再生が促進される。
排気管路12の一端は、コンプレッサ4とエアドライヤ10との間で給排管路8に接続されている。排気管路12の他端は大気中に開口し、排気管路12の他端には消音器13が設けられている。排気管路12は、前輪側エアサスペンション2および後輪側エアサスペンション3から排出された空気を大気中に放出する。排気管路12には、排気弁14が設けられている。排気弁14は、例えば2ポート2位置の電磁式切替弁(ソレノイドバルブ)により構成されている。排気弁14は、通常時は遮断位置(a)を保持し、後述するコントローラ24からの制御信号が供給されることにより、連通位置(b)に切り替えられる。排気弁14は、連通位置(b)に切り替えられることにより、前輪側エアサスペンション2および後輪側エアサスペンション3内の空気(圧縮空気)を、エアドライヤ10を介して大気中に放出させる。
空気供給源としてのタンク15は、タンク管路16および前輪側分岐管路18を介して左右の前輪側エアサスペンション2に接続されると共に、タンク管路16および後輪側分岐管路19を介して左右の後輪側エアサスペンション3に接続されている。タンク15は、コンプレッサ4によって生成された高圧の圧縮空気を貯留し、この圧縮空気を前輪側エアサスペンション2および後輪側エアサスペンション3に供給する。タンク15には、タンク管路16の一端が接続され、タンク管路16の他端は、分岐点17において前輪側分岐管路18と後輪側分岐管路19とに接続されている。
前輪側分岐管路18は、タンク管路16を介してタンク15と左右の前輪側エアサスペンション2との間を接続している。前輪側分岐管路18の一端は、分岐点17においてタンク管路16に接続され、前輪側分岐管路18の他端は、左前分岐管路18Aと右前分岐管路18Bとに分岐している。左前分岐管路18Aは、左前輪(FL)側の前輪側エアサスペンション2の空気ばね2Bに接続され、右前分岐管路18Bは、右前輪(FR)側の前輪側エアサスペンション2の空気ばね2Bに接続されている。また、前輪側分岐管路18は、接続点9において給排管路8に接続されている。
後輪側分岐管路19は、タンク管路16を介してタンク15と左右の後輪側エアサスペンション3との間を接続している。後輪側分岐管路19の一端は、分岐点17においてタンク管路16に接続され、後輪側分岐管路19の他端は、左後分岐管路19Aと右後分岐管路19Bとに分岐している。左後分岐管路19Aは、左後輪(RL)側の後輪側エアサスペンション3の空気ばね3Bに接続され、右後分岐管路19Bは、右後輪(RR)側の後輪側エアサスペンション3の空気ばね3Bに接続されている。
このように、タンク15からタンク管路16に吐出した空気は、分岐点17において前輪側分岐管路18に流れる空気と後輪側分岐管路19に流れる空気とに分岐する。後輪側分岐管路19側に分岐した空気は、後輪側エアサスペンション3に供給され、前輪側分岐管路18側に分岐した空気は、後述の流量調整弁23を通って前輪側エアサスペンション2に供給される。
第1切替弁20は、タンク15と分岐点17との間に位置してタンク管路16に設けられている。第1切替弁20は、例えば2ポート2位置の電磁式切替弁により構成され、通常時は遮断位置(c)を保持し、コントローラ24からの制御信号が供給されることにより、連通位置(d)に切り替えられる。従って、第1切替弁20が遮断位置(c)から連通位置(d)に切り替えられることにより、前輪側エアサスペンション2および後輪側エアサスペンション3とタンク15との間は、遮断状態から連通状態に切り替えられる。
2個の第2切替弁21は、左右の前輪側エアサスペンション2と第1切替弁20との間に位置して前輪側分岐管路18に設けられている。具体的には、一方の第2切替弁21は、左前輪(FL)側の前輪側エアサスペンション2と接続点9との間に位置して左前分岐管路18Aに設けられ、他方の第2切替弁21は、右前輪(FR)側の前輪側エアサスペンション2と接続点9との間に位置して右前分岐管路18Bに設けられている。これら2個の第2切替弁21は、例えば2ポート2位置の電磁式切替弁により構成され、通常時は遮断位置(e)を保持し、コントローラ24からの制御信号が供給されることにより、連通位置(f)に切り替えられる。従って、第2切替弁21が遮断位置(e)から連通位置(f)に切り替えられ、第1切替弁20が連通位置(d)に切り替えられることにより、タンク15からの空気は、流量調整弁23を通って前輪側エアサスペンション2に供給される。
2個の第3切替弁22は、左右の後輪側エアサスペンション3と第1切替弁20との間に位置して後輪側分岐管路19に設けられている。具体的には、一方の第3切替弁22は、左後輪(RL)側の後輪側エアサスペンション3と分岐点17との間に位置して左後分岐管路19Aに設けられ、他方の第3切替弁22は、右後輪(RR)側の後輪側エアサスペンション3と分岐点17との間に位置して右後分岐管路19Bに設けられている。これら2個の第3切替弁22は、例えば2ポート2位置の電磁式切替弁により構成され、通常時は遮断位置(g)を保持し、コントローラ24からの制御信号が供給されることにより、連通位置(h)に切り替えられる。従って、第3切替弁22が遮断位置(g)から連通位置(h)に切り替えられ、第1切替弁20が連通位置(d)に切り替えられることにより、タンク15からの空気は後輪側エアサスペンション3に供給される。
抵抗部としての流量調整弁23は、分岐点17と第2切替弁21との間に位置して前輪側分岐管路18に設けられている。流量調整弁23は、例えば2ポート2位置の電磁式切替弁により構成され、通常時は大流量位置(j)を保持し、コントローラ24からの制御信号が供給されることにより、絞りを有する小流量位置(k)に切り替えられる。即ち、流量調整弁23は、面積調整部としての小流量位置(k)を有し、小流量位置(k)に切り替えられた流量調整弁23の流路の面積は、第1切替弁20、第2切替弁21、第3切替弁22の流路の面積よりも小さく設定されている。従って、流量調整弁23が小流量位置(k)に切り替えられたときには、前輪側分岐管路18を流れる空気に対して流量調整弁23による絞り作用が付与され、第1切替弁20、第2切替弁21、第3切替弁22よりも大きな流路抵抗が発生する。
コントローラ24は、例えばマイクロコンピュータ等により構成されている。コントローラ24の入力側には、圧力検出器25、複数の車高センサ26等が接続されている。圧力検出器25は、例えば分岐点17の位置に設けられ、タンク管路16を介してタンク15内の圧力を検出し、この圧力に応じた検出信号をコントローラ24に出力する。複数の車高センサ26は、左前輪(FL)側、右前輪(FR)側、左後輪(RL)側、右後輪(RR)側にそれぞれ設けられ、左右の前輪側エアサスペンション2および左右の後輪側エアサスペンション3による車高を個別に検出し、車高に応じた検出信号をコントローラ24に出力する。
コントローラ24の出力側には、コンプレッサ4の電動モータ5、排気弁14、第1切替弁20、2個の第2切替弁21、2個の第3切替弁22、流量調整弁23等に接続されている。コントローラ24は、ROM、RAM、不揮発性メモリ等からなるメモリ24Aを有し、メモリ24Aには、後述する車高上げ時の閾値、車高下げ時の閾値等が、更新可能に格納されている。
第1の実施形態によるエアサスペンションシステム1は、上述の如き構成を有するもので、次に、前輪側エアサスペンション2と後輪側エアサスペンション3にタンク15から空気を供給し、車高を上げる動作(車高上げ動作)について説明する。ここで、前輪側エアサスペンション2の空気ばね2Bの容量およびばね定数と、後輪側エアサスペンション3の空気ばね3Bの容量およびばね定数は、車両の前輪側と後輪側との重量配分に応じて設定されている。本実施形態による前輪側エアサスペンション2と後輪側エアサスペンション3とは、両者に同時に空気を供給して車高上げ動作を行った場合には、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している。
コントローラ24は、圧力検出器25からの検出信号が示すタンク15内の圧力、車高センサ26が示す前輪側および後輪側の車高等に基づいて前輪側エアサスペンション2および後輪側エアサスペンション3の状況を判断し、この状況に応じて車高上げ動作を実行する。具体的には、コントローラ24は、第1切替弁20、第2切替弁21、第3切替弁22、流量調整弁23に制御信号を出力する。これにより、図3に示すように、第1切替弁20、第2切替弁21、第3切替弁22が、それぞれ連通位置(d)、(f)、(h)に切り替えられる。また、流量調整弁23は、小流量位置(k)に切り替えられる。これにより、タンク15に貯留された圧縮空気がタンク管路16に吐出し、この空気は、分岐点17において前輪側分岐管路18に導出される空気と、後輪側分岐管路19に導出される空気とに分岐する。後輪側分岐管路19に導出された空気は、左後分岐管路19Aを通じて左後輪(RL)側の後輪側エアサスペンション3(空気ばね3B)に供給されると共に、右後分岐管路19Bを通じて右後輪(RR)側の後輪側エアサスペンション3に供給される。これにより、左右の後輪側エアサスペンション3の空気ばね3Bが拡張され、空気ばね3Bに対する空気の供給量に応じて後輪側の車高が上昇する。
一方、前輪側分岐管路18に導出された空気は、左前分岐管路18Aを通じて左前輪(FL)側の前輪側エアサスペンション2(空気ばね2B)に供給されると共に、右前分岐管路18Bを通じて右前輪(FR)側の前輪側エアサスペンション2に供給される。これにより、左右の前輪側エアサスペンション2の空気ばね2Bが拡張され、空気ばね2Bに対する空気の供給量に応じて前輪側の車高が上昇する。ここで、前輪側分岐管路18を流れる空気は、小流量位置(k)となった流量調整弁23を通過するときに絞り作用を受ける。従って、流量調整弁23を通過するときの流路抵抗により、左前輪(FL)側および右前輪(FR)側の前輪側エアサスペンション2に供給される空気の流量は、後輪側エアサスペンション3に供給される空気の流量よりも減少する。
図5中の実線の特性線27は、前輪側の車高の変化を示し、破線の特性線28は、後輪側の車高の変化を示している。図5中の時点t1において、コントローラ24からの制御信号により、第1切替弁20、第2切替弁21、第3切替弁22が連通位置(d)、(f)、(h)に切り替えられると共に、流量調整弁23が小流量位置(k)に切り替えられ、車高上げ動作が開始される。そして、時点t1から時点t2までの間は、流量調整弁23が小流量位置(k)を保持することにより、前輪側エアサスペンション2に供給される空気の流量は、後輪側エアサスペンション3に供給される空気の流量よりも減少する。このため、車両は、後輪側の車高が前輪側の車高よりも高い姿勢となり、車高上げ動作時にヘッドランプ(図示せず)が上向きにならない姿勢を保持することができる。
ここで、流量調整弁23が小流量位置(k)を保持し続けると、前輪側の車高と後輪側の車高との差(ピッチ角)が過大となってしまう。コントローラ24のメモリ24Aには、車高上げ時に許容できる前輪側の車高と後輪側の車高との差の最大値が閾値29(図5中の二点鎖線の特性線)として格納されている。このため、時点t2において、前輪側の車高と後輪側の車高との差が閾値29に達すると、コントローラ24は、流量調整弁23への制御信号の出力を停止する。これにより、流量調整弁23が大流量位置(j)に切り替えられ、タンク15から流量調整弁23を介して前輪側エアサスペンション2に供給される空気の流量が増加する。前輪側エアサスペンション2と後輪側エアサスペンション3とは、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有しているため、前輪側の車高の上昇速度は、後輪側の車高の上昇速度よりも大きくなり、時点t3において、前輪側の車高と後輪側の車高とが一致する。
コントローラ24は、時点t3において流量調整弁23に制御信号を出力し、流量調整弁23を小流量位置(k)に切り替える。これにより、前輪側エアサスペンション2に供給される空気の流量が減少するが、前輪側エアサスペンション2は、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している。このため、時点t3から時点t4の間は、前輪側の車高の上昇速度と後輪側の車高の上昇速度とがほぼ一致し、車両の姿勢をほぼ水平に保ったまま、前輪側の車高と後輪側の車高とは、時点t4において同時に目標車高Hに達する。時点t4において、前輪側の車高と後輪側の車高とが目標車高Hに達すると、コントローラ24は、第2切替弁21および第3切替弁22への制御信号の供給を停止する。これにより、第2切替弁21、第3切替弁22が遮断位置(e)、(g)に切り替えられ、前輪側の車高と後輪側の車高が目標車高Hに保持された状態で、車高上げ動作が終了する。
車高上げ動作が終了したときに、タンク15内の圧力が予め設定された設定圧よりも低下している場合には、コントローラ24は、流量調整弁23を大流量位置(j)に切り替えると共に、電動モータ5を作動させる。これにより、コンプレッサ4によって圧縮空気が生成され、この圧縮空気は、エアドライヤ10によって乾燥された後、給排管路8、前輪側分岐管路18、タンク管路16等を通じてタンク15内に充填される。そして、タンク15内の圧力が設定圧に達すると、コントローラ24は、第1切替弁20を遮断位置(c)に切り替えると共に、電動モータ5を停止させる。
ここで、エアサスペンションシステム1による車高上げ動作と、従来技術による車高上げ動作との比較について述べる。図5中の実線の特性線30は、従来技術による前輪側の車高の変化を示し、破線の特性線31は、従来技術による後輪側の車高の変化を示している。従来技術では、ヘッドランプが上向きになるのを抑えるため、時点t1において、後輪側のエアサスペンションのみに空気が供給される。これにより、後輪側の車高が先に上昇し、時点t5において目標車高Hに達する。時点t5において後輪側の車高が目標車高Hに達すると、前輪側のエアサスペンションのみに空気が供給される。これにより、前輪側の車高が遅れて上昇し、時点t6において目標車高Hに達する。従って、エアサスペンションシステム1による車高上げ動作によって前輪側の車高と後輪側の車高が目標車高Hに達する時点t4は、従来技術による車高上げ動作によって前輪側の車高と後輪側の車高が目標車高Hに達する時点t6よりも時間Δtだけ短縮されている。
このように、従来技術によるエアサスペンションシステムでは、ヘッドランプが上向きにならない姿勢を保持した状態で車高上げ動作を行うため、後輪側の車高と前輪側の車高を交互に上昇させる。これに対し、本実施形態によるエアサスペンションシステム1では、前輪側の車高と後輪側の車高を同時に上昇させることにより、ヘッドランプが上向きにならない姿勢を保持した状態で車高上げ動作を行うことができる。この結果、エアサスペンションシステム1では、前輪側の車高と後輪側の車高が目標車高Hに達するまでの時間を、従来技術に比較してΔtだけ短縮することができ、車高上げ動作を短時間で行うことができる。しかも、コントローラ24は、前輪側の車高と後輪側の車高との差が閾値以上であるか否かに応じて、流量調整弁23を大流量位置(j)と小流量位置(k)とに切り替える。これにより、タンク15から前輪側エアサスペンション2に供給される空気の流量を適宜に調整することができ、車両がほぼ水平な姿勢を保持した状態で車高上げ動作を円滑に行うことができる。
次に、前輪側エアサスペンション2に充填された空気、および後輪側エアサスペンション3に充填された空気を排出し、車高を下げる動作(車高下げ動作)について説明する。
車高下げ動作を行う場合には、コントローラ24は、排気弁14、第2切替弁21、第3切替弁22、流量調整弁23に制御信号を出力し、第1切替弁20への制御信号の出力を停止する。これにより、図4に示すように、排気弁14、第2切替弁21、第3切替弁22が、それぞれ連通位置(b)、(f)、(h)に切り替えられ、第1切替弁20は遮断位置(c)に切り替えられる。また、流量調整弁23は、小流量位置(k)に切り替えられる。これにより、前輪側エアサスペンション2に充填された空気は、前輪側分岐管路18、給排管路8、スローリターン弁11、エアドライヤ10を通じて排気管路12に導出され、排気管路12から消音器13を通って大気中に放出される。これにより、左右の前輪側エアサスペンション2の空気ばね2Bが収縮し、空気ばね2Bからの空気の排出量に応じて前輪側の車高が下降する。
一方、後輪側エアサスペンション3に充填された空気は、後輪側分岐管路19、前輪側分岐管路18、流量調整弁23、給排管路8、スローリターン弁11、エアドライヤ10を通じて排気管路12に導出され、排気管路12から消音器13を通って大気中に放出される。これにより、左右の後輪側エアサスペンション3の空気ばね3Bが収縮し、空気ばね3Bからの空気の排出量に応じて後輪側の車高が下降する。ここで、前輪側分岐管路18を流れる空気は、小流量位置(k)となった流量調整弁23を通過するときに絞り作用を受ける。従って、流量調整弁23を通過するときの流路抵抗により、左後輪(RL)側および右後輪(RR)側の後輪側エアサスペンション3から排出される空気の流量は、前輪側エアサスペンション2から排出される空気の流量よりも減少する。
図6中の実線の特性線27′は、前輪側の車高の変化を示し、破線の特性線28′は、後輪側の車高の変化を示している。図6中の時点t11において、コントローラ24からの制御信号により、第1切替弁20が遮断位置(c)に切り替えられ、第2切替弁21、第3切替弁22が連通位置(f)、(h)に切り替えられると共に、流量調整弁23が小流量位置(k)に切り替えられ、車高下げ動作が開始される。そして、時点t11から時点t12までの間は、流量調整弁23が小流量位置(k)を保持することにより、後輪側エアサスペンション3から排出される空気の流量は、前輪側エアサスペンション2から排出される空気の流量よりも減少する。このため、車両は、後輪側の車高が前輪側の車高よりも高い姿勢となり、車高下げ動作時にヘッドランプが上向きにならない姿勢を保持することができる。
ここで、流量調整弁23が小流量位置(k)を保持し続けると、前輪側の車高と後輪側の車高との差(ピッチ角)が過大となってしまう。コントローラ24のメモリ24Aには、車高下げ時に許容できる前輪側の車高と後輪側の車高との差の最大値が閾値29′(図6中の二点鎖線の特性線)として格納されている。このため、時点t12において、前輪側の車高と後輪側の車高との差が閾値29′に達すると、コントローラ24は、流量調整弁23への制御信号の出力を停止する。これにより、流量調整弁23が大流量位置(j)に切り替えられ、後輪側エアサスペンション3から排出される空気の流量が増加する。このため、前輪側分岐管路18のうち流量調整弁23よりも下流側(接続点9)の圧力が上昇する分、前輪側エアサスペンション2から排出される空気の流量が減少する。この結果、前輪側の車高の下降速度が小さくなり、時点t13において、前輪側の車高と後輪側の車高とが一致する。
コントローラ24は、時点t13において流量調整弁23に制御信号を出力し、流量調整弁23を小流量位置(k)に切り替える。これにより、後輪側エアサスペンション3から排出される空気の流量が減少し、前輪側分岐管路18のうち流量調整弁23よりも下流側(接続点9)の圧力上昇が抑えられる。このため、前輪側エアサスペンション2から排出される空気の流量が増加し、前輪側の車高の下降速度が大きくなる。一方、後輪側エアサスペンション3から排出される空気の流量が減少することにより、後輪側の車高の下降速度は小さくなる。そして、時点t14において、前輪側の車高と後輪側の車高との差が閾値29′に達すると、コントローラ24は、流量調整弁23を大流量位置(j)に切り替える。これにより、前輪側分岐管路18のうち流量調整弁23よりも下流側の圧力が上昇する分、前輪側エアサスペンション2から排出される空気の流量が減少する。この結果、前輪側の車高の下降速度が小さくなり、前輪側の車高と後輪側の車高とは、時点t15において目標車高H′に達する。
時点t15において、前輪側の車高と後輪側の車高とが目標車高H′に達すると、コントローラ24は、第2切替弁21および第3切替弁22への制御信号の供給を停止する。これにより、第2切替弁21、第3切替弁22が遮断位置(e)、(g)に切り替えられ、前輪側の車高と後輪側の車高が目標車高H′に保持された状態で、車高下げ動作が終了する。
ここで、エアサスペンションシステム1による車高下げ動作と、従来技術による車高下げ動作との比較について述べる。図6中の実線の特性線30′は、従来技術による前輪側の車高の変化を示し、破線の特性線31′は、従来技術による後輪側の車高の変化を示している。従来技術では、ヘッドランプが上向きになるのを抑えるため、時点t11において、前輪側のエアサスペンションから空気が排出される。これにより、前輪側の車高が先に下降し、時点t16において目標車高H′に達する。時点t16において前輪側の車高が目標車高H′に達した後、後輪側のエアサスペンションから空気が排出される。これにより、後輪側の車高が遅れて下降し、時点t17において目標車高H′に達する。従って、エアサスペンションシステム1による車高下げ動作によって前輪側の車高と後輪側の車高が目標車高H′に達する時点t15は、従来技術による車高下げ動作によって前輪側の車高と後輪側の車高が目標車高H′に達する時点t17よりも時間Δt′だけ短縮されている。
このように、従来技術によるエアサスペンションシステムでは、ヘッドランプが上向きにならない姿勢を保持した状態で車高下げ動作を行うため、前輪側の車高と後輪側の車高を交互に上昇させる。これに対し、エアサスペンションシステム1では、前輪側の車高と後輪側の車高を同時に下降させることにより、ヘッドランプが上向きにならない姿勢を保持した状態で車高下げ動作を行うことができる。この結果、エアサスペンションシステム1では、前輪側の車高と後輪側の車高が目標車高H′に達するまでの時間を、従来技術に比較してΔt′だけ短縮することができ、車高下げ動作を短時間で行うことができる。しかも、コントローラ24が、流量調整弁23を大流量位置(j)と小流量位置(k)とに切り替え、後輪側エアサスペンション3から排出される空気の流量を適宜に調整することにより、車両がほぼ水平な姿勢を保持した状態で車高下げ動作を円滑に行うことができる。
次に、図7ないし図10は、本発明の第2の実施形態を示している。本実施形態の特徴は、抵抗部として固定絞りを用いたことにある。なお、第2の実施形態では、第1の実施形態と同一の構成要素に同一符号を付し、その説明を省略する。
図7において、第2の実施形態によるエアサスペンションシステム41は、前輪側分岐管路18のうち分岐点17と第2切替弁21との間に、抵抗部としての固定絞り42が設けられている。即ち、固定絞り42は、第1の実施形態による流量調整弁23に代えて本実施形態に適用されている。固定絞り42は、空気の流路の面積を縮小させる面積調整部を構成し、固定絞り42の流路の面積は、第1切替弁20、第2切替弁21、第3切替弁22の流路の面積よりも小さい一定の面積に設定(固定)されている。従って、車高上げ動作時または車高下げ動作時には、前輪側分岐管路18を流れる空気に対し、常に固定絞り42による絞り作用が付与され、第1切替弁20、第2切替弁21、第3切替弁22よりも大きな流路抵抗が発生する。
第2の実施形態によるエアサスペンションシステム41は、上述の如き固定絞り42を備えたもので、以下、車高上げ動作および車高下げ動作について説明する。ここで、前輪側エアサスペンション2と後輪側エアサスペンション3とは、両者に同時に空気を供給して車高上げ動作を行った場合には、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している。
車高上げ動作を行うときには、第1切替弁20、第2切替弁21、第3切替弁22が、それぞれ連通位置(d)、(f)、(h)に切り替えられる。これにより、タンク15からタンク管路16に空気が吐出し、この空気は、分岐点17において前輪側分岐管路18側と後輪側分岐管路19側とに分岐する。後輪側分岐管路19に導出された空気は、左後分岐管路19Aを通じて左後輪(RL)側の後輪側エアサスペンション3に供給されると共に、右後分岐管路19Bを通じて右後輪(RR)側の後輪側エアサスペンション3に供給される。これにより、左右の後輪側エアサスペンション3(空気ばね3B)に対する空気の供給量に応じて、後輪側の車高が上昇する。
一方、前輪側分岐管路18に導出された空気は、固定絞り42、左前分岐管路18Aを通じて左前輪(FL)側の前輪側エアサスペンション2に供給されると共に、右前分岐管路18Bを通じて右前輪(FR)側の前輪側エアサスペンション2に供給される。これにより、左右の前輪側エアサスペンション2(空気ばね2B)に対する空気の供給量に応じて、前輪側の車高が上昇する。ここで、前輪側分岐管路18を流れる空気は、固定絞り42を通過するときに絞り作用を受ける。従って、固定絞り42を通過するときの流路抵抗により、前輪側エアサスペンション2に供給される空気の流量は、後輪側エアサスペンション3に供給される空気の流量よりも減少する。
図8中の実線の特性線43は、前輪側の車高の変化を示し、破線の特性線44は、後輪側の車高の変化を示している。図8中の時点t21において、第1切替弁20、第2切替弁21、第3切替弁22が連通位置(d)、(f)、(h)に切り替えられ、車高上げ動作が開始される。ここで、前輪側エアサスペンション2と後輪側エアサスペンション3とは、両者に同量の空気を供給した場合には、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している。しかし、前輪側エアサスペンション2に供給される空気の流量は、固定絞り42を通過するときの流路抵抗により、後輪側エアサスペンション3に供給される空気の流量よりも減少している。このため、前輪側分岐管路18の流路の面積が固定絞り42によって適切に調整(減少)されている場合には、前輪側の車高と後輪側の車高とは、時点t21以降、ほぼ一致したまま上昇し、時点t22において同時に目標車高Hに達する。従って、車両は、ほぼ水平な姿勢(ヘッドランプが上向きにならない姿勢)を保持した状態で、車高上げ動作を行うことができる。
ここで、エアサスペンションシステム41による車高上げ動作と、従来技術による車高上げ動作との比較について述べる。図8中の実線の特性線45は、従来技術による前輪側の車高の変化を示し、破線の特性線46は、従来技術による後輪側の車高の変化を示している。従来技術では、ヘッドランプが上向きになるのを抑えるため、時点t21において、後輪側のエアサスペンションのみに空気が供給され、後輪側の車高は、時点t23において目標車高Hに達する。時点t23において後輪側の車高が目標車高Hに達すると、前輪側のエアサスペンションのみに空気が供給され、前輪側の車高は、時点t24において目標車高Hに達する。従って、エアサスペンションシステム41による車高上げ動作によって前輪側の車高と後輪側の車高が目標車高Hに達する時点t22は、従来技術による車高上げ動作によって前輪側の車高と後輪側の車高が目標車高Hに達する時点t24よりも時間Δtだけ短縮されている。
次に、車高下げ動作を行うときには、排気弁14、第2切替弁21、第3切替弁22が、それぞれ連通位置(b)、(f)、(h)に切り替えられ、第1切替弁20は遮断位置(c)に切り替えられる。これにより、前輪側エアサスペンション2に充填された空気は、前輪側分岐管路18、給排管路8、スローリターン弁11、エアドライヤ10、排気管路12を通じて大気中に放出される。これにより、左右の前輪側エアサスペンション2(空気ばね2B)からの空気の排出量に応じて前輪側の車高が下降する。
一方、後輪側エアサスペンション3(空気ばね3B)に充填された空気は、後輪側分岐管路19、前輪側分岐管路18、固定絞り42、給排管路8、スローリターン弁11、エアドライヤ10、排気管路12を通じて大気中に放出される。これにより、左右の後輪側エアサスペンション3(空気ばね3B)からの空気の排出量に応じて後輪側の車高が下降する。ここで、後輪側エアサスペンション3から排出される空気の流量は、固定絞り42を通過するときの流路抵抗により、前輪側エアサスペンション2から排出される空気の流量よりも減少する。従って、前輪側の車高は、後輪側の車高よりも早く目標車高まで下降し、車両は、ヘッドランプが上向きにならない姿勢を保持した状態で、車高下げ動作を行うことができる。
次に、前輪側エアサスペンション2と後輪側エアサスペンション3とに対し、タンク15から同時に空気を供給して車高上げ動作を行うときに、前輪側分岐管路18に固定絞り42を設けないエアサスペンションシステム(以下、比較例という)に比較して、本実施形態によるエアサスペンションシステム41では、車高上げ動作に要する時間が短縮される理由について、図9および図10を参照して説明する。
図9中の実線の特性線47は、エアサスペンションシステム41の前輪側分岐管路18内の圧力を示し、破線の特性線48は、エアサスペンションシステム41の後輪側分岐管路19内の圧力を示している。短破線の特性線49は、比較例の前輪側分岐管路18および後輪側分岐管路19内の圧力を示している。一方、図10中の実線の特性線50は、エアサスペンションシステム41のタンク15から吐出する空気の質量(空気質量)を示し、長破線の特性線51は、エアサスペンションシステム41の前輪側エアサスペンション2に供給される空気質量を示し、破線の特性線52は、後輪側エアサスペンション3に供給される空気質量を示している。また、図10中の二点鎖線の特性線53は、比較例の前輪側エアサスペンション2に供給される空気質量を示し、一点鎖線の特性線54は、比較例の後輪側エアサスペンション3に供給される空気質量を示し、短破線の特性線55は、比較例のタンク15から吐出する空気質量を示している。
まず、本実施形態によるエアサスペンションシステム41では、図9および図10に示すように、前輪側エアサスペンション2と後輪側エアサスペンション3とに対し、時点t31において同時にタンク15から空気が供給されることにより、両者に供給される空気質量が増加していく。特性線47で示す前輪側分岐管路18内の圧力と、特性線48で示す後輪側分岐管路19内の圧力とは、時点t31から後述する時点t32までの間、ほぼ一定値を保つ。これにより、特性線50で示すタンク15から吐出する空気質量は、ほぼ一定の変化量で増加する。前輪側分岐管路18には固定絞り42が設けられているため、前輪側分岐管路18内の圧力(特性線47)は、後輪側分岐管路19内の圧力(特性線48)よりも低くなる。従って、特性線51で示す前輪側エアサスペンション2に供給される空気質量は、特性線52で示す後輪側エアサスペンション3に供給される空気質量よりも少ない。しかし、前輪側エアサスペンション2の空気ばね2Bは、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している。この結果、時点t32において、前輪側エアサスペンション2および後輪側エアサスペンション3に供給される空気質量が、それぞれ目標車高に対応した質量に達し、前輪側の車高と後輪側の車高とが同時に目標車高に達する。
一方、比較例では、前輪側エアサスペンション2と後輪側エアサスペンション3とに対し、時点t31において同時にタンク15から空気が供給されると、特性線49で示す前輪側分岐管路18および後輪側分岐管路19内の圧力が上昇する。ここで、前輪側エアサスペンション2の空気ばね2Bは、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している。このため、特性線53で示すように、時点t33において前輪側エアサスペンション2に供給される空気質量が目標車高に対応した質量に達し、前輪側の車高が目標車高に達する。このとき、第2切替弁21が遮断位置(e)に切り替えられることにより、特性線49で示すように、前輪側分岐管路18および後輪側分岐管路19内の圧力が上昇する。これにより、特性線54で示すように、後輪側エアサスペンション3に供給される空気質量は、時点t33から増加傾向となる。しかし、前輪側分岐管路18および後輪側分岐管路19内の圧力が上昇した分、タンク15内の圧力との圧力差が小さくなる。このため、特性線55で示すように、時点t33以降、タンク15から吐出する空気質量が減少し、後輪側エアサスペンション3に効率良く空気を供給することができなくなる。この結果、特性線54で示すように、時点t32よりも時間Δtだけ遅れた時点t34において、後輪側エアサスペンション3に供給される空気質量が目標車高に対応した質量となり、後輪側の車高が目標車高に達する。従って、エアサスペンションシステム41による車高上げ動作によって前輪側の車高と後輪側の車高が目標車高に達する時点t32は、比較例による車高上げ動作によって前輪側の車高と後輪側の車高が目標車高に達する時点t34よりも時間Δtだけ短縮されている。
このように、第2の実施形態によるエアサスペンションシステム41は、分岐点17と第2切替弁21との間を接続する前輪側分岐管路18に固定絞り42を設けることにより、前輪側エアサスペンション2に供給される空気質量を、後輪側エアサスペンション3に供給される空気質量よりも減少させることができる。これにより、前輪側エアサスペンション2の空気ばね2Bが、前輪側の車高が後輪側の車高よりも早く上昇する空気ばね特性を有している場合には、前輪側の車高と後輪側の車高とを同時に目標車高に到達させることができる。従って、固定絞り42による絞り量を適宜に設定した状態で、前輪側の車高と後輪側の車高を同時に上昇させることにより、ヘッドランプが上向きにならない姿勢を保持した状態で車高上げ動作を短時間で行うことができる。
次に、図11および図12は、本発明の第3の実施形態を示している。本実施形態の特徴は、閉回路式のエアサスペンションシステムに、抵抗部としての流量調整弁を設けたことにある。なお、第3の実施形態では、第1の実施形態と同一の構成要素に同一符号を付し、その説明を省略する。
第3の実施形態によるエアサスペンションシステム61は、前輪側エアサスペンション2、後輪側エアサスペンション3、タンク15、第1切替弁20、第2切替弁21、第3切替弁22、流量調整弁23、コンプレッサ62等を含んで構成されている。エアサスペンションシステム61は、閉回路式のエアサスペンションシステム(クローズドシステム)を構成している。
空気供給源としてのコンプレッサ62は、電動モータ62Aによって駆動されることにより、タンク15から吸込んだ空気を圧縮して圧縮空気を生成し、この圧縮空気を前輪側エアサスペンション2および後輪側エアサスペンション3に供給する。また、コンプレッサ62は、前輪側エアサスペンション2および後輪側エアサスペンション3から排出された空気を圧縮し、この圧縮空気をタンク15に供給する。コンプレッサ62の吸気側62Bには、排気管路63の一端が接続され、排気管路63の他端は、接続点64において前輪側分岐管路18に接続されている。排気管路63は、車高下げ動作時に前輪側エアサスペンション2および後輪側エアサスペンション3から排出された空気をコンプレッサ62に導く。コンプレッサ62の吐出側62Cには、給排管路65の一端が接続され、給排管路65の他端は、分岐点17において後輪側分岐管路19に接続されている。給排管路65は、車高上げ動作時にコンプレッサ62から吐出した空気を前輪側エアサスペンション2および後輪側エアサスペンション3に導くと共に、車高下げ動作時に前輪側エアサスペンション2および後輪側エアサスペンション3から排出された空気をタンク15へと導く。
タンク15は、タンク管路66を介して排気管路63に接続されている。即ち、タンク管路66の一端はタンク15に接続され、タンク管路66の他端は、接続点67において排気管路63に接続されている。タンク管路66は、戻り管路68を介して給排管路65に接続されている。即ち、戻り管路68の一端は、接続点69においてタンク管路66に接続され、戻り管路68の他端は、接続点70において給排管路65に接続されている。戻り管路68は、車高下げ動作時にコンプレッサ62から吐出した空気をタンク15に導く。
給排管路65のうち、コンプレッサ62と接続点70との間には、エアドライヤ10とスローリターン弁11が設けられている。排気管路63のうち接続点64と接続点67との間には、排気弁71が設けられている。排気弁71は、例えば2ポート2位置の電磁式切替弁により構成され、コントローラ(図示せず)からの制御信号により連通位置または遮断位置に切り替えられる。タンク管路66のうち接続点67と接続点69との間には、開閉弁72が設けられ、戻り管路68のうち接続点69と接続点70との間には、開閉弁73が設けられている。これら開閉弁72および開閉弁73は、例えば2ポート2位置の電磁式切替弁により構成され、コントローラ(図示せず)からの制御信号により連通位置または遮断位置に切り替えられる。
抵抗部としての流量調整弁23は、分岐点17と第2切替弁21との間に位置して前輪側分岐管路18に設けられている。流量調整弁23は、例えば2ポート2位置の電磁式切替弁により構成され、コントローラ(図示せず)からの制御信号により、大流量位置(j)または小流量位置(k)に切り替えられる。
第3の実施形態によるエアサスペンションシステム61は、上述の如き構成を有するもので、車高上げ動作時には、図11に示すように、第1切替弁20、第2切替弁21、第3切替弁22が、それぞれ連通位置(d)、(f)、(h)に切り替えられると共に、開閉弁72が連通位置に切り替えられる。また、排気弁71、開閉弁73は、それぞれ遮断位置に切り替えられる。さらに、流量調整弁23は、小流量位置(k)に切り替えられる。これにより、タンク15内の空気が、タンク管路66、排気管路63を通じてコンプレッサ62に導入される。コンプレッサ62は、導入された空気を圧縮して圧縮空気を生成し、この圧縮空気を給排管路65に吐出する。
給排管路65に吐出された空気は、分岐点17において前輪側分岐管路18に導出される空気と、後輪側分岐管路19に導出される空気とに分岐する。後輪側分岐管路19に導出された空気は、左後分岐管路19Aおよび右後分岐管路19Bを通じて左後輪(RL)側および右後輪(RR)側の後輪側エアサスペンション3に供給される。これにより、後輪側エアサスペンション3に対する空気の供給量に応じて後輪側の車高が上昇する。一方、前輪側分岐管路18に導出された空気は、流量調整弁23、左前分岐管路18Aおよび右前分岐管路18Bを通じて左前輪(FL)側および右前輪(FR)側の前輪側エアサスペンション2に供給される。これにより、前輪側エアサスペンション2に対する空気の供給量に応じて前輪側の車高が上昇する。
ここで、前輪側分岐管路18を流れる空気は、小流量位置(k)となった流量調整弁23を通過するときに絞り作用を受ける。従って、流量調整弁23を通過するときの流路抵抗により、左前輪(FL)側および右前輪(FR)側の前輪側エアサスペンション2に供給される空気の流量は、後輪側エアサスペンション3に供給される空気の流量よりも減少する。従って、前輪側の車高が後輪側の車高よりも低くなることにより、ヘッドランプが上向きにならない姿勢を保つことができるので、前輪側の車高と後輪側の車高とを同時に上昇させ、車高上げ動作を短時間で行うことができる。
次に、車高下げ動作時には、図12に示すように、第1切替弁20が遮断位置(c)に切り替えられると共に、第2切替弁21、第3切替弁22が、それぞれ連通位置(f)、(h)に切り替えられる。また、排気弁71、開閉弁73が、それぞれ連通位置に切り替えられると共に、開閉弁72が遮断位置に切り替えられる。さらに、流量調整弁23は、小流量位置(k)に切り替えられる。これにより、前輪側エアサスペンション2に充填された空気は、前輪側分岐管路18、排気管路63を通じてコンプレッサ62に導入される。コンプレッサ62は、導入された空気を圧縮して圧縮空気を生成し、この圧縮空気を給排管路65に吐出する。この圧縮空気は、給排管路65から戻り管路68、タンク管路66を通じてタンク15に供給される。これにより、前輪側エアサスペンション2からの空気の排出量に応じて前輪側の車高が下降する。
一方、後輪側エアサスペンション3に充填された空気は、後輪側分岐管路19、前輪側分岐管路18、流量調整弁23、排気管路63を通じてコンプレッサ62に導入される。コンプレッサ62で生成された圧縮空気は、タンク15に供給される。これにより、後輪側エアサスペンション3からの空気の排出量に応じて後輪側の車高が下降する。ここで、後輪側エアサスペンション3から排出される空気の流量は、小流量位置(k)となった流量調整弁23を通過するときの流路抵抗により、前輪側エアサスペンション2から排出される空気の流量よりも減少する。従って、前輪側の車高が後輪側の車高よりも低くなることにより、ヘッドランプが上向きにならない姿勢を保つことができるので、前輪側の車高と後輪側の車高とを同時に下降させ、車高下げ動作を短時間で行うことができる。
次に、図13は本発明の第4の実施形態を示している。本実施形態の特徴は、閉回路式のエアサスペンションシステムに、抵抗部としての固定絞りを設けたことにある。なお、第4の実施形態では、第1の実施形態と同一の構成要素に同一符号を付し、その説明を省略する。
第4の実施形態によるエアサスペンションシステム81は、前輪側エアサスペンション2、後輪側エアサスペンション3、タンク15、第1切替弁20、第2切替弁21、第3切替弁22、コンプレッサ82、固定絞り94等を含んで構成されている。エアサスペンションシステム81は、閉回路式のエアサスペンションシステム(クローズドシステム)を構成している。
空気供給源としてのコンプレッサ82は、電動モータ82Aによって駆動されることにより、タンク15から吸込んだ空気を圧縮して圧縮空気を生成し、この圧縮空気を前輪側エアサスペンション2および後輪側エアサスペンション3に供給する。また、コンプレッサ82は、前輪側エアサスペンション2および後輪側エアサスペンション3から排出された空気を圧縮し、この圧縮空気をタンク15に供給する。コンプレッサ82の吸気側82Bには、排気管路83の一端が接続され、排気管路83の他端は、接続点84において前輪側分岐管路18に接続されている。コンプレッサ82の吐出側82Cには、給排管路85の一端が接続され、給排管路85の他端は、分岐点17において後輪側分岐管路19に接続されている。
タンク15は、タンク管路86を介して排気管路83に接続されている。即ち、タンク管路86の一端はタンク15に接続され、タンク管路86の他端は、接続点87において排気管路83に接続されている。タンク管路86は、戻り管路88を介して給排管路85に接続されている。即ち、戻り管路88の一端は、接続点89においてタンク管路86に接続され、戻り管路88の他端は、接続点90において給排管路85に接続されている。給排管路85のうち、コンプレッサ82と接続点90との間には、エアドライヤ10とスローリターン弁11が設けられている。排気管路83のうち接続点84と接続点87との間には、排気弁91が設けられている。タンク管路86のうち接続点87と接続点89との間には、開閉弁92が設けられている。戻り管路88のうち接続点89と接続点90との間には、開閉弁93が設けられている。これら排気弁91、開閉弁92、開閉弁93は、例えば2ポート2位置の電磁式切替弁により構成され、コントローラ(図示せず)からの制御信号により連通位置または遮断位置に切り替えられる。
抵抗部としての固定絞り94は、前輪側分岐管路18のうち分岐点17と第2切替弁21との間に設けられている。固定絞り94は、空気の流路の面積を縮小させる面積調整部を構成し、固定絞り94の流路の面積は、第1切替弁20、第2切替弁21、第3切替弁22の流路の面積よりも小さい面積に設定されている。従って、車高上げ動作時または車高下げ動作時には、前輪側分岐管路18を流れる空気に対し、常に固定絞り94による絞り作用が付与され、第1切替弁20、第2切替弁21、第3切替弁22よりも大きな流路抵抗が発生する。
第4の実施形態によるエアサスペンションシステム81は、上述の如き構成を有するもので、車高上げ動作時には、第1切替弁20、第2切替弁21、第3切替弁22が、それぞれ連通位置(d)、(f)、(h)に切り替えられると共に、開閉弁92が連通位置に切り替えられる。また、排気弁91、開閉弁93は、それぞれ遮断位置に切り替えられる。これにより、タンク15内の空気が、タンク管路86、排気管路83を通じてコンプレッサ82に導入され、コンプレッサ82で圧縮された圧縮空気は、給排管路85に吐出する。
給排管路85に吐出された空気は、分岐点17において前輪側分岐管路18に導出される空気と、後輪側分岐管路19に導出される空気とに分岐する。後輪側分岐管路19に導出された空気は、左後分岐管路19Aおよび右後分岐管路19Bを通じて左後輪(RL)側および右後輪(RR)側の後輪側エアサスペンション3に供給される。これにより、後輪側エアサスペンション3に対する空気の供給量に応じて後輪側の車高が上昇する。一方、前輪側分岐管路18に導出された空気は、固定絞り94、左前分岐管路18Aおよび右前分岐管路18Bを通じて左前輪(FL)側および右前輪(FR)側の前輪側エアサスペンション2に供給される。これにより、前輪側エアサスペンション2に対する空気の供給量に応じて前輪側の車高が上昇する。
ここで、前輪側分岐管路18を通じて前輪側エアサスペンション2に供給される空気の流量は、固定絞り94を通過するときの流路抵抗により、後輪側エアサスペンション3に供給される空気の流量よりも減少する。従って、前輪側の車高が後輪側の車高よりも低くなることにより、ヘッドランプが上向きにならない姿勢を保つことができるので、前輪側の車高と後輪側の車高とを同時に上昇させ、車高上げ動作を短時間で行うことができる。
次に、車高下げ動作時には、第1切替弁20が遮断位置(c)に切り替えられると共に、第2切替弁21、第3切替弁22が、それぞれ連通位置(f)、(h)に切り替えられる。また、排気弁91、開閉弁93が、それぞれ連通位置に切り替えられると共に、開閉弁92が遮断位置に切り替えられる。これにより、前輪側エアサスペンション2に充填された空気は、前輪側分岐管路18、排気管路83を通じてコンプレッサ82に導入される。コンプレッサ82で圧縮された圧縮空気は、給排管路85から戻り管路88、タンク管路86を通じてタンク15に供給される。これにより、前輪側エアサスペンション2からの空気の排出量に応じて前輪側の車高が下降する。一方、後輪側エアサスペンション3に充填された空気は、後輪側分岐管路19、前輪側分岐管路18、固定絞り94、排気管路83を通じてコンプレッサ82に導入される。コンプレッサ82で圧縮された圧縮空気は、給排管路85から戻り管路88、タンク管路86を通じてタンク15に供給される。これにより、後輪側エアサスペンション3からの空気の排出量に応じて後輪側の車高が下降する。
ここで、前輪側分岐管路18を通じて後輪側エアサスペンション3から排出される空気の流量は、固定絞り94を通過するときの流路抵抗により、前輪側エアサスペンション2から排出される空気の流量よりも減少する。従って、前輪側の車高が後輪側の車高よりも低くなることにより、ヘッドランプが上向きにならない姿勢を保つことができるので、前輪側の車高と後輪側の車高とを同時に下降させ、車高下げ動作を短時間で行うことができる。
次に、図14は本発明の第5の実施形態を示している。本実施形態の特徴は、タンクからの空気を前輪側エアサスペンションと後輪側エアサスペンションとに分岐させる分岐点と第2切替弁との間、および前記分岐点と第3切替弁との間に、それぞれ抵抗部としての固定絞りを設けたことにある。なお、第5の実施形態では、第1の実施形態と同一の構成要素に同一符号を付し、その説明を省略する。
第5の実施形態によるエアサスペンションシステム101は、前輪側エアサスペンション2、後輪側エアサスペンション3、コンプレッサ4、タンク15、第1切替弁20、第2切替弁21、第3切替弁22、前輪側固定絞り107、前輪側チェック弁109、後輪側固定絞り110、後輪側チェック弁112等を含んで構成されている。
コンプレッサ4の吐出側4Bには、給排管路102の一端が接続されている。給排管路102の他端は、分岐点103において前輪側分岐管路104と後輪側分岐管路105に接続されている。前輪側分岐管路104は、左前分岐管路104Aと右前分岐管路104Bとに分岐し、これら左前分岐管路104Aと右前分岐管路104Bとは、それぞれ左前輪(FL)側と右前輪(FR)側の前輪側エアサスペンション2(空気ばね2B)に接続されている。後輪側分岐管路105は、左後分岐管路105Aと右後分岐管路105Bとに分岐し、これら左後分岐管路105Aと右後分岐管路105Bとは、それぞれ左後輪(RL)側と右後輪(RR)側の後輪側エアサスペンション3(空気ばね3B)に接続されている。即ち、分岐点103は、タンク15からの空気を、前輪側分岐管路104を通じて前輪側エアサスペンション2に流れる空気と、後輪側分岐管路105を通じて後輪側エアサスペンション3に流れる空気とに分岐させている。
タンク15には、タンク管路106の一端が接続されている。タンク管路106の他端は、分岐点103とスローリターン弁11との間で給排管路102に接続されている。タンク管路106には、第1切替弁20が設けられている。また、前輪側分岐管路104の左前分岐管路104Aと右前分岐管路104Bには、それぞれ第2切替弁21が設けられている。後輪側分岐管路105の左後分岐管路105Aと右後分岐管路105Bには、それぞれ第3切替弁22が設けられている。
前輪側分岐管路104のうち左前分岐管路104Aと右前分岐管路104Bとに分岐する部位と分岐点103との間には、抵抗部としての前輪側固定絞り107が設けられている。前輪側固定絞り107は、空気の流路の面積を縮小させる面積調整部を構成し、前輪側固定絞り107の流路の面積は、第1切替弁20、第2切替弁21、第3切替弁22の流路の面積よりも小さい面積に設定されている。右前分岐管路104Bには、前輪側バイパス管路108の一端が接続され、前輪側バイパス管路108の他端は、後輪側分岐管路105に接続されている。前輪側バイパス管路108は、前輪側固定絞り107をバイパスして右前分岐管路104Bと後輪側分岐管路105とを接続している。前輪側バイパス管路108には、前輪側チェック弁109が設けられている。前輪側チェック弁109は、左右の前輪側エアサスペンション2から後輪側分岐管路105に向かう空気の流れを許容し、逆向きの流れを阻止する。
後輪側分岐管路105のうち左後分岐管路105Aと右後分岐管路105Bとに分岐する部位と分岐点103との間には、抵抗部としての後輪側固定絞り110が設けられている。後輪側固定絞り110は、空気の流路の面積を縮小させる面積調整部を構成し、後輪側固定絞り110の流路の面積は、第1切替弁20、第2切替弁21、第3切替弁22の流路の面積よりも小さく、かつ、前輪側固定絞り107の流路の面積とは異なる面積に設定されている。右後分岐管路105Bには、後輪側バイパス管路111の一端が接続され、後輪側バイパス管路111の他端は、後輪側分岐管路105に接続されている。後輪側バイパス管路111は、後輪側固定絞り110をバイパスして右後分岐管路105Bと後輪側分岐管路105とを接続している。後輪側バイパス管路111には、後輪側チェック弁112が設けられている。後輪側チェック弁112は、後輪側分岐管路105から左右の後輪側エアサスペンション3に向かう空気の流れを許容し、逆向きの流れを阻止する。
第5の実施形態によるエアサスペンションシステム101は、上述の如き構成を有するもので、車高上げ動作時には、第1切替弁20、第2切替弁21、第3切替弁22が、それぞれ連通位置(d)、(f)、(h)に切り替えられる。これにより、タンク15内の空気は、タンク管路106から給排管路102へと流れ、分岐点103において前輪側分岐管路104側と後輪側分岐管路105側とに分岐する。後輪側分岐管路105に導出された空気は、後輪側バイパス管路111、後輪側チェック弁112、左後分岐管路105Aを通じて左後輪(RL)側の後輪側エアサスペンション3に供給されると共に、右後分岐管路105Bを通じて右後輪(RR)側の後輪側エアサスペンション3に供給される。これにより、左右の後輪側エアサスペンション3(空気ばね3B)に対する空気の供給量に応じて、後輪側の車高が上昇する。
一方、前輪側分岐管路104に導出された空気は、前輪側固定絞り107を通過し、左前分岐管路104Aを通じて左前輪(FL)側の前輪側エアサスペンション2に供給されると共に、右前分岐管路104Bを通じて右前輪(FR)側の前輪側エアサスペンション2に供給される。これにより、左右の前輪側エアサスペンション2(空気ばね2B)に対する空気の供給量に応じて、前輪側の車高が上昇する。ここで、前輪側エアサスペンション2に供給される空気の流量は、前輪側固定絞り107を通過するときの流路抵抗により、後輪側エアサスペンション3に供給される空気の流量よりも減少する。従って、車高上げ動作時には、後輪側の車高が前輪側の車高よりも早く目標車高まで上昇するので、ヘッドランプが上向きにならない姿勢を保った状態で、前輪側の車高と後輪側の車高とを同時に上昇させ、車高上げ動作を短時間で行うことができる。
次に、車高下げ動作時には、第1切替弁20が遮断位置(c)に切り替えられると共に、排気弁14、第2切替弁21、第3切替弁22が、それぞれ連通位置(b)、(f)、(h)に切り替えられる。これにより、前輪側エアサスペンション2に充填された空気は、左前分岐管路104A、右前分岐管路104B、前輪側バイパス管路108、前輪側チェック弁109、後輪側分岐管路105、給排管路102、スローリターン弁11、エアドライヤ10、排気管路12を通じて大気中に放出される。これにより、左右の前輪側エアサスペンション2(空気ばね2B)からの空気の排出量に応じて前輪側の車高が下降する。
一方、後輪側エアサスペンション3(空気ばね3B)に充填された空気は、左後分岐管路105A、右後分岐管路105B、後輪側固定絞り110、後輪側分岐管路105、給排管路102、スローリターン弁11、エアドライヤ10、排気管路12を通じて大気中に放出される。これにより、左右の後輪側エアサスペンション3(空気ばね3B)からの空気の排出量に応じて後輪側の車高が下降する。ここで、後輪側エアサスペンション3から排出される空気の流量は、後輪側固定絞り110を通過するときの流路抵抗により、前輪側エアサスペンション2から排出される空気の流量よりも減少する。従って、車高下げ動作時には、前輪側の車高が後輪側の車高よりも早く目標車高まで下降するので、ヘッドランプが上向きにならない姿勢を保った状態で、前輪側の車高と後輪側の車高とを同時に下降させ、車高下げ動作を短時間で行うことができる。
次に、図15は本発明の第6の実施形態を示している。本実施形態の特徴は、タンクからの空気を前輪側エアサスペンションと後輪側エアサスペンションとに分岐させる分岐点と第3切替弁との間に、抵抗部としての流量調整弁を設けたことにある。なお、第6の実施形態では、第1の実施形態と同一の構成要素に同一符号を付し、その説明を省略する。
第6の実施形態によるエアサスペンションシステム121は、前輪側エアサスペンション2′、後輪側エアサスペンション3′、コンプレッサ4、タンク15、第1切替弁20、第2切替弁21、第3切替弁22、流量調整弁23等を含んで構成されている。本実施形態に用いられる前輪側エアサスペンション2′と後輪側エアサスペンション3′とは、両者に同時に空気を供給して車高上げ動作を行った場合に、後輪側の車高が前輪側の車高よりも早く上昇する空気ばね特性を有している。
本実施形態に用いられる前輪側エアサスペンション2′は、シリンダ2A′と、空気ばね2B′とにより構成され、後輪側エアサスペンション3′は、シリンダ3A′と、空気ばね3B′とにより構成されている。コンプレッサ4の吐出側4Bには、給排管路122の一端が接続されている。給排管路122の他端は、接続点123において後輪側分岐管路124に接続されている。後輪側分岐管路124は、左後分岐管路124Aと右後分岐管路124Bとに分岐し、これら左後分岐管路124Aと右後分岐管路124Bとは、それぞれ左後輪(RL)側と右後輪(RR)側の後輪側エアサスペンション3′(空気ばね3B′)に接続されている。左後分岐管路124Aと右後分岐管路124Bには、それぞれ第3切替弁22が設けられている。
タンク15には、タンク管路125の一端が接続され、タンク管路125の他端は、分岐点126において、後輪側分岐管路124と前輪側分岐管路127とに接続されている。タンク管路125には、第1切替弁20が設けられている。前輪側分岐管路127は、左前分岐管路127Aと右前分岐管路127Bとに分岐し、これら左前分岐管路127Aと右前分岐管路127Bとは、それぞれ左前輪(FL)側と右前輪(FR)側の前輪側エアサスペンション2′(空気ばね2B′)に接続されている。左前分岐管路127Aと右前分岐管路127Bには、それぞれ第2切替弁21が設けられている。
抵抗部としての流量調整弁23は、分岐点126と第3切替弁22との間に位置して後輪側分岐管路124に設けられている。流量調整弁23は、コントローラ24からの制御信号が供給されることにより、大流量位置(j)と絞りを有する小流量位置(k)とに切り替えられる。即ち、流量調整弁23は、面積調整部としての小流量位置(k)を有し、小流量位置(k)に切り替えられた流量調整弁23の流路の面積は、第1切替弁20、第2切替弁21、第3切替弁22の流路の面積よりも小さく設定されている。従って、流量調整弁23が小流量位置(k)に切り替えられたときには、後輪側分岐管路124を流れる空気に対して絞り作用が付与され、第1切替弁20、第2切替弁21、第3切替弁22よりも大きな流路抵抗が発生する。
第6の実施形態によるエアサスペンションシステム121は、上述の如き構成を有するもので、車高上げ動作時には、第1切替弁20、第2切替弁21、第3切替弁22が、それぞれ連通位置(d)、(f)、(h)に切り替えられる。また、流量調整弁23は、小流量位置(k)に切り替えられる。これにより、タンク15からタンク管路125に吐出した空気は、分岐点126において前輪側分岐管路127に導出される空気と、後輪側分岐管路124に導出される空気とに分岐する。前輪側分岐管路127に導出された空気は、左前分岐管路127Aおよび右前分岐管路127Bを通じて左前輪(FL)側および右前輪(FR)側の前輪側エアサスペンション2′に供給される。これにより、前輪側エアサスペンション2′に対する空気の供給量に応じて前輪側の車高が上昇する。
一方、後輪側分岐管路124に導出された空気は、流量調整弁23を通過し、左後分岐管路124Aおよび右後分岐管路124Bを通じて左後輪(RL)側および右後輪(RR)側の後輪側エアサスペンション3′に供給される。これにより、後輪側エアサスペンション3′に対する空気の供給量に応じて後輪側の車高が上昇する。ここで、後輪側エアサスペンション3′に供給される空気の流量は、流量調整弁23を通過するときの流路抵抗により、前輪側エアサスペンション2′に供給される空気の流量よりも減少する。従って、後輪側の車高が上昇する速度を抑えることができる。この結果、前輪側エアサスペンション2′と後輪側エアサスペンション3′の空気ばね特性が、両者に同時に空気を供給して車高上げ動作を行った場合に、後輪側の車高が前輪側の車高よりも早く上昇する空気ばね特性を有している場合でも、後輪側の車高が上昇する速度を制限することにより、車両がほぼ水平な姿勢を保持した状態で、車高上げ動作を短時間で行うことができる。
なお、第1、第3、第6の実施形態では、抵抗部として大流量位置(j)と小流量位置(k)とに切り替えられる流量調整弁23を用いた場合を例示している。しかし、本発明はこれに限らず、例えばコントローラから供給される制御信号の電流値に応じて弁開度が調整される電磁比例弁を用いる構成としてもよい。
また、第2の実施形態では、抵抗部として空気の流路の面積を縮小させる固定絞り42を用いた場合を例示している。しかし、本発明はこれに限らず、例えば管路長さを伸ばしたり、管路に折曲げ部を設けることにより抵抗部を構成してもよい。
以上説明した実施形態に基づくエアサスペンションシステムとして、例えば、以下に述べる態様のものが考えられる。
第1の態様としては、車体と車軸との間に介装され空気の給排に応じて車高調整を行う前輪側エアサスペンションおよび後輪側エアサスペンションと、前記前輪側エアサスペンションおよび前記後輪側エアサスペンションに空気を供給する空気供給源と、前記前輪側エアサスペンションおよび前記後輪側エアサスペンションと前記空気供給源との間を連通状態と遮断状態とに切り替える第1切替弁と、前記第1切替弁と前記前輪側エアサスペンションとの間に設けられ、前記第1切替弁と前記前輪側エアサスペンションとの間を連通状態と遮断状態とに切り替える第2切替弁と、前記第1切替弁と前記後輪側エアサスペンションとの間に設けられ、前記第1切替弁と前記後輪側エアサスペンションとの間を連通状態と遮断状態とに切り替える第3切替弁と、前記空気供給源からの空気を前記前輪側エアサスペンションと前記後輪側エアサスペンションとに分岐させる分岐点と前記第2切替弁との間、および/または前記分岐点と前記第3切替弁との間に設けられ、前記第1切替弁、前記第2切替弁、前記第3切替弁のそれぞれよりも流路抵抗が大きな抵抗部とを備える。
第1の態様によれば、分岐点と第2切替弁との間、および/または分岐点と第3切替弁との間に抵抗部を設けることにより、前輪側エアサスペンションおよび後輪側エアサスペンションの空気ばね特性に応じて、車高上げ動作時に前輪側エアサスペンションまたは後輪側エアサスペンションに供給される空気の流量を減少させ、車高下げ動作時に前輪側エアサスペンションまたは後輪側エアサスペンションから排出される空気の流量を減少させることができる。この結果、後輪側の車高を前輪側の車高よりも高くなる姿勢(ヘッドランプが上向きにならない姿勢)を保った状態で、車高上げ動作あるいは車高下げ動作を同時に行うことができ、車高調整を短時間で行うことができる。
第2の態様としては、前記抵抗部は、空気の流路の面積を調整する面積調整部を有し、前記面積調整部は、前記前輪側エアサスペンションおよび/または前記後輪側エアサスペンションの状況に応じて前記流路の面積を調整可能である。この第2の態様によれば、前輪側の車高、後輪側の車高、前輪側エアサスペンション、後輪側エアサスペンションのばね圧等に応じて流路の面積を調整することができ、車両が、ヘッドランプが上向きにならない姿勢を保った状態で、車高上げ動作あるいは車高下げ動作を行うことができる。
第3の態様としては、前記抵抗部は、空気の流路の面積を調整する面積調整部を有し、前記面積調整部は、前記第1切替弁、前記第2切替弁、前記第3切替弁のそれぞれの流路よりも前記流路の面積を小さく設定してなる。この第3の態様によれば、車高上げ動作時に抵抗部を通じて前輪側エアサスペンションまたは後輪側エアサスペンションに供給される空気の流量を減少させることができ、車高下げ動作時に抵抗部を通じて前輪側エアサスペンションまたは後輪側エアサスペンションから排出される空気の流量を減少させることができる。
第4の態様としては、前記空気供給源は、高圧の空気が貯留されたタンクである。この第4の態様によれば、タンク内に貯留された空気が前輪側エアサスペンションおよび後輪側エアサスペンションに供給されることにより、車高の上げ動作を行うことができる。
第5の態様としては、前記空気供給源は、空気を圧縮して吐出するコンプレッサである。この第5の態様によれば、コンプレッサから吐出した空気が前輪側エアサスペンションおよび後輪側エアサスペンションに供給されることにより、車高の上げ動作を行うことができる。
1,41,61,81,101,121:エアサスペンションシステム、2,2′:前輪側エアサスペンション、3,3′:後輪側エアサスペンション、15:タンク(空気供給源)、17,103,126:分岐点、20:第1切替弁、21:第2切替弁、22:第3切替弁、23:流量調整弁(抵抗部、面積調整部)、42,94:固定絞り(抵抗部、面積調整部)、62,82:コンプレッサ(空気供給源)、107:前輪側固定絞り(抵抗部、面積調整部)、110:後輪側固定絞り(抵抗部、面積調整部)
Claims (5)
- 車体と車軸との間に介装され空気の給排に応じて車高調整を行う前輪側エアサスペンションおよび後輪側エアサスペンションと、
前記前輪側エアサスペンションおよび前記後輪側エアサスペンションに空気を供給する空気供給源と、
前記前輪側エアサスペンションおよび前記後輪側エアサスペンションと前記空気供給源との間を連通状態と遮断状態とに切り替える第1切替弁と、
前記第1切替弁と前記前輪側エアサスペンションとの間に設けられ、前記第1切替弁と前記前輪側エアサスペンションとの間を連通状態と遮断状態とに切り替える第2切替弁と、
前記第1切替弁と前記後輪側エアサスペンションとの間に設けられ、前記第1切替弁と前記後輪側エアサスペンションとの間を連通状態と遮断状態とに切り替える第3切替弁と、
前記空気供給源からの空気を前記前輪側エアサスペンションと前記後輪側エアサスペンションとに分岐させる分岐点と前記第2切替弁との間、および/または前記分岐点と前記第3切替弁との間に設けられ、前記第1切替弁、前記第2切替弁、前記第3切替弁のそれぞれよりも流路抵抗が大きな抵抗部とを備えることを特徴とするエアサスペンションシステム。 - 前記抵抗部は、空気の流路の面積を調整する面積調整部を有し、
前記面積調整部は、前記前輪側エアサスペンションおよび/または前記後輪側エアサスペンションの状況に応じて前記流路の面積を調整可能である請求項1に記載のエアサスペンションシステム。 - 前記抵抗部は、空気の流路の面積を調整する面積調整部を有し、
前記面積調整部は、前記第1切替弁、前記第2切替弁、前記第3切替弁のそれぞれの流路よりも前記流路の面積を小さく設定してなる請求項1に記載のエアサスペンションシステム。 - 前記空気供給源は、高圧の空気が貯留されたタンクである請求項1に記載のエアサスペンションシステム。
- 前記空気供給源は、空気を圧縮して吐出するコンプレッサである請求項1に記載のエアサスペンションシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-110352 | 2020-06-26 | ||
JP2020110352 | 2020-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261220A1 true WO2021261220A1 (ja) | 2021-12-30 |
Family
ID=79281113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021375 WO2021261220A1 (ja) | 2020-06-26 | 2021-06-04 | エアサスペンションシステム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021261220A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024198250A1 (zh) * | 2023-03-31 | 2024-10-03 | 比亚迪股份有限公司 | 集成调节系统以及车辆 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026909U (ja) * | 1983-07-30 | 1985-02-23 | マツダ株式会社 | 自動車のエア−サスペンション装置 |
JP2015105014A (ja) * | 2013-11-29 | 2015-06-08 | アイシン精機株式会社 | 車高調整装置 |
US20190111753A1 (en) * | 2017-10-18 | 2019-04-18 | Beijingwest Industries Co., Ltd. | Concurrent leveling system for a vehicle |
JP2020066291A (ja) * | 2018-10-23 | 2020-04-30 | 日立オートモティブシステムズ株式会社 | サスペンションシステム |
-
2021
- 2021-06-04 WO PCT/JP2021/021375 patent/WO2021261220A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026909U (ja) * | 1983-07-30 | 1985-02-23 | マツダ株式会社 | 自動車のエア−サスペンション装置 |
JP2015105014A (ja) * | 2013-11-29 | 2015-06-08 | アイシン精機株式会社 | 車高調整装置 |
US20190111753A1 (en) * | 2017-10-18 | 2019-04-18 | Beijingwest Industries Co., Ltd. | Concurrent leveling system for a vehicle |
JP2020066291A (ja) * | 2018-10-23 | 2020-04-30 | 日立オートモティブシステムズ株式会社 | サスペンションシステム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024198250A1 (zh) * | 2023-03-31 | 2024-10-03 | 比亚迪股份有限公司 | 集成调节系统以及车辆 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11433730B2 (en) | Air suspension apparatus | |
CN104039570B (zh) | 机动车的空气悬架系统和用于对其进行控制的方法 | |
US10682894B2 (en) | Air suspension system | |
US20090079155A1 (en) | Pneumatic Shock Absorbing System For a Motor Vehicle | |
WO2016076210A1 (ja) | エアサスペンション装置 | |
US20020070523A1 (en) | Air suspension having a closed compressed-air system | |
KR102245114B1 (ko) | 서스펜션 시스템 | |
WO2017187829A1 (ja) | エアサスペンション装置のドライヤ再生方法 | |
US20190263212A1 (en) | Air suspension system | |
CN108883684B (zh) | 气动系统、压缩空气供应设备、其和/或气动设备运行的方法和其控制和/或调控装置 | |
JP6231863B2 (ja) | エアサスペンションシステム | |
WO2021261220A1 (ja) | エアサスペンションシステム | |
WO2017169772A1 (ja) | エアサスペンションシステム | |
US20210394577A1 (en) | Air suspension system | |
WO2020084963A1 (ja) | サスペンションシステム | |
JP2022127406A (ja) | エアサスペンション装置およびその制御装置 | |
JP2020044979A (ja) | エアサスペンション装置 | |
JP2015054643A (ja) | エアサスペンション装置 | |
CN108883683B (zh) | 压缩空气供应设备 | |
CN118679071A (zh) | 用于运行气动系统的方法和具有压缩空气供应设施和空气弹簧设施的气动系统 | |
WO2020066515A1 (ja) | エアサスペンション装置 | |
WO2016158494A1 (ja) | エアサスペンション装置 | |
JP6367130B2 (ja) | 車高調整装置 | |
US20220144033A1 (en) | Method for operating a compressed air supply device, and compressed air supply device | |
WO2020194926A1 (ja) | エアサスペンション装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21828785 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21828785 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |