WO2016158256A1 - 水浄化剤、及び水浄化方法 - Google Patents

水浄化剤、及び水浄化方法 Download PDF

Info

Publication number
WO2016158256A1
WO2016158256A1 PCT/JP2016/057241 JP2016057241W WO2016158256A1 WO 2016158256 A1 WO2016158256 A1 WO 2016158256A1 JP 2016057241 W JP2016057241 W JP 2016057241W WO 2016158256 A1 WO2016158256 A1 WO 2016158256A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ions
granulated product
hemp
burlap
Prior art date
Application number
PCT/JP2016/057241
Other languages
English (en)
French (fr)
Inventor
中村 雅之
竜 島田
貴則 藤田
和浩 木村
正人 長谷川
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to BR112017020971-3A priority Critical patent/BR112017020971A2/ja
Priority to CN201680019448.5A priority patent/CN107405543A/zh
Priority to CN202210237300.6A priority patent/CN114524481A/zh
Priority to EP16772140.6A priority patent/EP3278853B1/en
Priority to KR1020177030637A priority patent/KR102462814B1/ko
Priority to MYPI2017703658A priority patent/MY184082A/en
Priority to US15/562,577 priority patent/US10954142B2/en
Publication of WO2016158256A1 publication Critical patent/WO2016158256A1/ja
Priority to PH12017501783A priority patent/PH12017501783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5272Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using specific organic precipitants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the present invention relates to a plant-derived water purification agent used for purification of water such as industrial wastewater, and a water purification method using the water purification agent.
  • a step of adding a base to wastewater in which heavy metal ions are dissolved making the wastewater basic, insolubilizing at least part of the heavy metal ions to form a suspended solid, and an inorganic flocculant in the wastewater Contains a cation exchanger consisting of leafy vegetables such as Morohaya and Komatsuna.
  • a method of performing an adsorption process of passing wastewater through an adsorbed layer see, for example, Patent Document 1.
  • a coagulation method is proposed in which fine particles in a suspension are coagulated and separated by mixing or using a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant.
  • a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant for example, refer to Patent Document 2.
  • Patent Document 1 takes time and effort because the aggregation step using a flocculant and the adsorption step using a cation exchanger are separate.
  • Patent Document 2 takes time to reduce inorganic ions to a desired concentration or less. Neither method was satisfactory in water purification performance.
  • the methods described in these documents are not intended at all for an automatic device for purifying wastewater, and the purifiers described in the documents are not suitable for use in automated system devices. Therefore, it is desired to provide a water purifying agent having excellent water purifying performance that can reduce inorganic ions to a desired concentration or less within a predetermined time and that can be suitably used in an automation system apparatus. It was rare.
  • an object of the present invention is to provide a water purifying agent that is excellent in water purifying performance and that can be suitably used in an automatic waste water purifying device.
  • Means for solving the problems are as follows. That is, ⁇ 1> A water purifying agent comprising a granulated product containing a mixture of a long flax burlap powder and a polymer flocculant, wherein the median diameter of the granulated product is 250 ⁇ m or more and 850 ⁇ m or less. It is a cleaning agent. ⁇ 2> The water purifier according to the above ⁇ 1>, wherein the Nagatoro Hemp is the “Chinese Hemp 4” of the National Hemp 2013, the appraisal number by the Chinese Academy of Agricultural Sciences. ⁇ 3> The water purifier according to the above ⁇ 1>, wherein the Nagatoro Hemp is an appraisal number by the Chinese Academy of Agricultural Sciences hemp laboratory, “Goten” No.
  • a water purifier is a kneading step of mixing the powder of the long burlap and the polymer flocculant, adding water and kneading to obtain a kneaded product, and molding the kneaded product into a sheet by a stretching method
  • a production method comprising a stretching / sheet forming step for obtaining a sheet-like molded product, a drying step for drying the sheet-like molded product to obtain a dried sheet, and a pulverizing step for pulverizing the dried sheet.
  • the water purifier according to any one of ⁇ 1> to ⁇ 7> which is produced.
  • the water purifier according to any one of ⁇ 1> to ⁇ 8> is dissolved in water to obtain a dispersion of a long flax burlap powder and a polymer flocculant, and the waste water containing inorganic unnecessary substances. It is a water purification method characterized by removing inorganic unnecessary substances in waste water by providing the dispersion.
  • the wastewater is wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. This is a water purification method.
  • FIG. 1 is a diagram showing appraisal numbers for “Chu Hemp 3” and “Chong Hemp” used in the present invention.
  • the water purification agent of the present invention is composed of a granulated product containing a mixture of powder of Nagatoro burlap and a polymer flocculant.
  • the median diameter of the water purifier is 250 ⁇ m or more and 850 ⁇ m or less.
  • the water purifying agent of the present invention that satisfies the above requirements is a water purifying agent having excellent water purifying performance, and is a water purifying agent that can be suitably used for an automatic waste water purifying device.
  • the present inventors have intensively studied a water purifying agent containing plant powder. As a result, it has been found that the granulated product obtained by kneading the powder of Nagatoro burlap and the polymer flocculant is excellent in water purification performance. Furthermore, it discovered that the water purification performance of a long burlap can be fully demonstrated by setting it as the granulated material which uses the long burlap burlap which has a median diameter of a specific range.
  • industrial wastewater for example, industrial wastewater containing inorganic unnecessary materials such as nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, lead, etc.
  • inorganic unnecessary materials such as nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, lead, etc.
  • insoluble inorganic ions such as nickel ions, fluorine ions, and iron ions in inorganic unnecessary materials to form suspended solids (also called micro flocs in the present invention)
  • the micro floc is coagulated and settled, and solid-liquid separation is performed.
  • the long burlap can be settled slowly, so the particle size of the granulated product can be made relatively large, but if the median diameter of the granulated product is larger than 850 ⁇ m, the sedimentation will be accelerated, so that the adsorption effect The inorganic ion removal function cannot be sufficiently ensured.
  • a granulated product having a median diameter in the range of 250 ⁇ m or more and 850 ⁇ m or less is considered to be able to make use of the characteristics of long burlap and exhibit excellent water purification performance with a sufficient adsorption effect. Yes.
  • the granulated product specified in the present invention can be preferably produced by the production method described later.
  • regulated by this invention is excellent in fluidity
  • a specific configuration of the water purifier will be described.
  • the long burlap burlap powder can be preferably used because it has a high cation exchange function and has pores capable of adsorbing micro flocs in waste water containing the inorganic ions. Leaves or stems can be preferably used as the site of long burlap.
  • the Changchun Hemp produced in Changsha City, China, or the Chinese National Agricultural Science Academy's hemp laboratory, the National Hemp 2013 “Chinese Hemp 4”, the appraisal number is a luxury product.
  • the above-mentioned “middle burlap 4”, “middle burlap 3”, and “middle burlap” are more preferable, and “middle burlap 4” is particularly preferable.
  • the identification numbers of the “middle burlap 3” and the “middle burlap” are shown in FIG.
  • Middle Hemp 4 is a normal fruit type of Hemp. It has a green stem, a cylindrical stem, a needle with dispersed leaves, a green leaf handle, a small angle with the main stem, and side buds and bamboo leaves.
  • the cocoons are green, long-cylindrical, five chambers, and the seeds are late-ripening varieties.
  • the polymer flocculant is not particularly limited as long as it exhibits an effect of removing the inorganic unnecessary substances in the waste water, as in the case of the long burlap, for example, polyacrylamide (PAM), polyacrylamide Partially hydrolyzed salts, polyamines, sodium alginate, sodium polyacrylate, CMC sodium salt and the like can be mentioned.
  • polyacrylamide can be preferably used.
  • commercially available Flopan AN 905, Flopan AN 926, Flopan AN 956 (manufactured by SNF Corporation) and the like can be used.
  • the mass composition ratio of the long burlap powder and the polymer flocculant is preferably in the range of 9: 1 to 1: 9. If it is this range, the effect which adsorb
  • the mass ratio is calculated based on the dry mass.
  • the granulated product exhibits the following characteristics.
  • the median diameter of the granulated product specified in the present invention is in the range of 250 ⁇ m or more and 850 ⁇ m or less.
  • the median diameter is preferably in the range of 300 ⁇ m to 800 ⁇ m, and more preferably in the range of 400 ⁇ m to 600 ⁇ m.
  • the median diameter is 250 ⁇ m or more, it is possible to sufficiently exert the adsorption effect by the powder of long burlap. Further, when the median diameter is 850 ⁇ m or less, a sufficient settling time can be ensured during purification, and the adsorption effect can be sufficiently exerted.
  • the median diameter is 850 ⁇ m or less, there is no risk of clogging in the piping of a pulverizer, an automatic feeder, etc., and the median diameter can be suitably used for an automated purification apparatus.
  • the median diameter (also referred to as d50) is the particle diameter plotted on 50% of the total number when the granulated product is plotted by the particle diameter (the larger side and the smaller side are equal).
  • the particle diameter refers to the volume particle diameter.
  • the median diameter can be measured by a commercially available measuring machine such as Mastersizer 2000 (manufactured by Malvern Instruments).
  • the granulated product specified in the present invention may have a moisture content of 16% by mass or less. It is because the effect of adsorbing insolubilized micro flocs is more exhibited when the content is 16% by mass or less.
  • the moisture content of the granulated product can be measured using a commercially available moisture meter, and is measured, for example, as follows. After measuring 2 ⁇ 0.1 g of the granulated product, measurement is performed with a moisture meter (manufactured by A & D Co., Ltd.) at a set temperature of 105 ° C. and a heating time of 20 minutes.
  • the granulated product specified in the present invention comprises a kneading step of mixing the powder of long burlap and the polymer flocculant and adding water to knead to obtain a kneaded product; A process comprising a stretching and sheeting step for obtaining a sheet-like molded product, a drying step for drying the sheet-like molded product to obtain a dried sheet, and a pulverizing step for pulverizing the dried sheet Manufactured by the method. Furthermore, after the pulverization step, a classification step of classifying the granulated product with a sieve may be included.
  • the inventors of the present invention have confirmed by experiments that a polymer flocculant enters the porous portion of the long burlap fiber when the kneaded product is subjected to excessive shearing force (share) during granulation.
  • the granulated product is formed with a porous shape in which there are voids (porous) with many holes due to the fiber structure of long burlap.
  • a granulated product is manufactured by a granulation method using a stretching / sheeting process, the share of the kneaded product can be controlled, and the granulated product manufactured in such a stretching / sheeting process is in contact with the waste water. It was found that the porous portion of the burlap can be secured sufficiently and exhibits a good adsorption effect on inorganic unnecessary materials.
  • the kneaded product is gradually stretched by a roller, and a sheet-like molded product having a predetermined thickness is formed step by step. According to this method, it is possible to produce a molded product while keeping the viscosity of the kneaded material good, and this also works effectively in order to exert the effect of adsorbing long burlap. It seems that there is not.
  • the dried product of long burlap is coarsely pulverized and then finely pulverized to obtain a long burlap powder having a desired size.
  • a molecular flocculant is mixed, and water is added to knead.
  • the addition amount of water for example, it is preferable to add, for example, about three times the mass of water to the total mass of the mixture of the powder of long burlap and the polymer flocculant.
  • the kneading is performed by using a mixer, for example, a vertical mixer such as a planetary mixer, and the like, and setting the number of rotations and the time within a predetermined range.
  • the number of rotations and time during kneading in the mixer can be appropriately set in consideration of the conditions such as the mixing ratio of the powder of the long burlap and the polymer flocculant.
  • the number of rotations is 20 rpm to 150 rpm.
  • the time is preferably 5 to 25 minutes.
  • the obtained kneaded product may be stretched by a stretching method using a roller to a thickness of 4 mm to 20 mm, preferably about 10 mm, and formed into a sheet shape.
  • the kneading step conditions such as the mixing ratio of the powder and the polymer of the long burlap, the amount of water, the mixing speed (the number of rotations of the mixer at the time of kneading), the mixing time (the kneading time in the mixer), or the stretching /
  • the stretching conditions in the sheeting step By appropriately changing the stretching conditions in the sheeting step, the share of the kneaded product can be controlled.
  • the obtained molded product may be dried at a temperature of 80 ° C. to 150 ° C. for 2 hours to 12 hours using a multistage hot air dryer.
  • pulverization may be performed using a pulverizer such as an airflow type ultrafine pulverizer so that the median diameter is in the range of 250 ⁇ m to 850 ⁇ m.
  • the pulverized powder is classified using a classifier such as a vibration sieve or a cartridge type sieve to classify a granulated product having a particle diameter in a predetermined range so that the median diameter is in a range of 250 ⁇ m to 850 ⁇ m. Good.
  • a granulated product having a particle size in the range of 250 ⁇ m to 850 ⁇ m is used by actively separating and eliminating (cutting) a granulated product having a particle size of less than 250 ⁇ m and a granulated product having a particle size of greater than 850 ⁇ m, preferable.
  • the above-described water purification agent of the present invention is dissolved in water to obtain a dispersion liquid of powder of a long burlap and a polymer flocculant, and the dispersion liquid is used for drainage.
  • the inorganic unnecessary materials include inorganic unnecessary materials having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead.
  • a micro floc is formed by insolubilizing inorganic ions such as nickel ions, fluorine ions, iron ions and the like in inorganic waste in waste water.
  • the dispersion is made into a 0.1% to 0.2% aqueous solution for this drainage.
  • the waste water is purified.
  • a base is added to the wastewater to make the wastewater basic, thereby insolubilizing the inorganic ions.
  • the polymer flocculant may be added alone. In that case, if the polymer flocculant is added alone before adding the water purifying agent of the present invention, the floc size of the micro floc in the waste water can be increased.
  • Example 1 As waste water used for experiments, potassium fluoride was dissolved in pure water to produce 800 g of an aqueous solution containing 2,500 mg / L of fluorine ions (virtual waste water). Next, 8.6 mg / L of calcium chloride was added to the waste water, and the mixture was stirred while adding sodium hydroxide so that the pH was 7.5 to 9.0, thereby insolubilizing fluorine. By this operation, the aqueous fluorine solution was separated into a supernatant and a precipitate containing micro floc. At this point, the fluorine concentration in the supernatant was 10 mg / L.
  • a granulated product having a mass ratio of Changchun Hemp (Changsha, China) and a polymer flocculant (polyamine) of 5: 5 is produced by the production method shown below to obtain a granulated product 1, This granulated product 1 was used as the water purification agent 1.
  • the obtained kneaded product was stretched by a roller using a press machine (45t press machine manufactured by Komatsu Industries Co., Ltd.) to produce a sheet-like molded product having a thickness of about 10 mm.
  • This molded product was dried at 120 ° C. for 3 hours and further at 150 ° C. for 2 hours using a multistage hot air dryer (manufactured by Nanyo Manufacturing Co., Ltd., rack type oven device).
  • the dried sheet was pulverized using an air flow type ultrafine pulverizer (Selenium mirror manufactured by Masuko Sangyo Co., Ltd.) so that the median diameter becomes 400 ⁇ m.
  • the median diameter was measured with Mastersizer 2000 (Malvern Instruments).
  • Mastersizer 2000 Malvern Instruments
  • the water purification agent 1 obtained above was dissolved in water to prepare a dispersion of a 0.1% by mass aqueous solution. This dispersion was added dropwise at a rate of 3 mL / min to the waste water composed of the supernatant containing the micro floc and the precipitate while stirring. At this time, the water purifier was added so that it might become 5 mg / L with respect to solid content in the said waste_water
  • the measuring method of "solid content” can be calculated
  • Example 1 After dripping, after stirring was maintained for 1 minute, the fluorine ion concentration was measured every minute after stirring was stopped, and the time required to reach 4 mg / L or less was measured.
  • the ion concentration was measured by lambda ( ⁇ ) 9000 (manufactured by Kyoritsu Riken).
  • the measurement result shows that within 6 hours is a practically acceptable level, and the shorter the time, the better the result.
  • Table 1-1 PAM represents polyacrylamide (the same applies to Tables 1-2 to 1-6).
  • Example 2 In Example 1, the pulverized powder was removed using a classifier (vibrating sieve manufactured by Dalton Co., Ltd.), and the particles having a particle diameter of less than 200 ⁇ m were removed (cut). Other than that was carried out similarly to Example 1, and produced the granulated material 2.
  • FIG. Using the water purification agent 2 comprising the granulated product 2, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 1-1.
  • Example 3 In Example 1, the pulverized powder was classified using a classifier (vibrating sieve manufactured by Dalton Co., Ltd.), and the particles having a particle size larger than 850 ⁇ m were removed by screening (cut). Other than that was carried out similarly to Example 1, and produced the granulated material 3.
  • FIG. Using the water purification agent 3 comprising the granulated product 3, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 3 are shown in Table 1-1.
  • Example 4 In Example 1, the pulverized powder was screened using a classifier (vibrating sieve machine manufactured by Dalton Co., Ltd.), and those having a particle size of less than 250 ⁇ m and larger than 850 ⁇ m were screened and removed (cut). A granulated product 4 was produced in the same manner as in Example 1 except that only particles having a particle diameter in the range of 250 ⁇ m or more and 850 ⁇ m or less were used. Using the water purification agent 4 comprising the granulated product 4, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 4 are shown in Table 1-1.
  • Example 5 A granulated product 5 was produced in the same manner as in Example 4 except that polyacrylamide (PAM) was used as the polymer flocculant in Example 4. Using the water purification agent 5 comprising the granulated product 5, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 5 are shown in Table 1-1.
  • PAM polyacrylamide
  • Example 6 In Example 5, a granulated product 6 was produced in the same manner as in Example 5 except that “Medium burlap No. 4” was used as the long burlap. Using the water purification agent 6 comprising the granulated product 6, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 6 are shown in Table 1-2.
  • Example 7 In Example 6, the granulated product 7 was produced in the same manner as in Example 6 except that the granulated product was stored under wet heat and the moisture content of the granulated product was adjusted to 16% by mass. Using the water purification agent 7 comprising the granulated product 7, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 7 are shown in Table 1-2.
  • Example 8 In Example 6, the granulated product 8 was produced in the same manner as in Example 6 except that the granulated product was stored under wet heat and the moisture content of the granulated product was adjusted to 20% by mass. Using the water purifier 8 comprising the granulated product 8, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 8 are shown in Table 2-2.
  • Example 9 In Example 6, the granulated product 9 was produced in the same manner as in Example 6 except that the granulated product was stored under wet heat and the moisture content of the granulated product was adjusted to 5% by mass. Using the water purifier 9 comprising the granulated product 9, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 9 are shown in Table 2-2.
  • Example 10 In Example 6, a granulated product 10 was produced in the same manner as in Example 6 except that the mass ratio of “Natural Burlap 4” and the polymer flocculant was changed to 90:10. Using the water purification agent 10 comprising the granulated product 10, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 10 are shown in Table 1-2.
  • Example 11 In Example 6, a granulated product 11 was produced in the same manner as in Example 6 except that the mass ratio of “Natural Burlap No. 4” and the polymer flocculant was changed to 70:30. Using the water purifier 11 comprising the granulated product 11, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 11 are shown in Table 1-3.
  • Example 12 In Example 6, a granulated product 12 was produced in the same manner as in Example 6 except that the mass ratio of “Natural Burlap No. 4” and the polymer flocculant was changed to 30:70. Using the water purifier 12 comprising the granulated product 12, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 12 are shown in Table 1-3.
  • Example 13 In Example 6, a granulated product 13 was produced in the same manner as in Example 6 except that the mass ratio of “Natural Burlap 4” and the polymer flocculant was changed to 10:90. Using the water purification agent 13 made of the granulated product 13, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 13 are shown in Table 1-3.
  • Example 14 In Example 6, the granulated product 14 was produced in the same manner as in Example 6 except that the amount added of “Natural burlap No. 4” was 2 mg / L with respect to the solid content of the wastewater containing the micro floc. did. Using the water purifier 14 comprising the granulated product 14, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 14 are shown in Table 1-3.
  • Example 15 In Example 6, a granulated product 15 was produced in the same manner as in Example 6 except that the addition amount of “Natural Burlap No. 4” was 1 mg / L with respect to the solid content of the wastewater containing the micro floc. did. Using the water purification agent 15 comprising the granulated product 15, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 15 are shown in Table 1-3.
  • Example 16 As waste water used for experiments, nickel sulfate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 50 mg / L of nickel ions (virtual waste water). Next, nickel was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 8.5 to 10.0. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Further, the “required time” was measured as the time required for the ion concentration to become 1 mg / L or less. Otherwise, the same operation as in Example 6 was performed, and the characteristics of the water purification agent were evaluated using the water purification agent 6 made of the granulated product 6. The evaluation results of Example 16 are shown in Table 1-4.
  • Example 17 As waste water used for experiments, ferric chloride hexahydrate was dissolved in pure water to prepare 800 g of an aqueous solution containing 200 mg / L of iron ions (virtual waste liquid). Next, iron was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.5 to 9.0. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Further, the “required time” was measured as the time required for the ion concentration to become 1 mg / L or less. Otherwise, the same operation as in Example 6 was performed, and the characteristics of the water purification agent were evaluated using the water purification agent 6 made of the granulated product 6. The evaluation results of Example 17 are shown in Table 1-4.
  • Example 18 As waste water used for experiments, copper sulfate pentahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of copper ions (virtual waste liquid). Next, the waste water was stirred while adding sodium hydroxide so that the pH was 7.0 to 8.0 to insolubilize copper. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Further, the “required time” was measured as the time required for the ion concentration to become 1 mg / L or less. Otherwise, the same operation as in Example 6 was performed, and the characteristics of the water purification agent were evaluated using the water purification agent 6 made of the granulated product 6. The evaluation results of Example 18 are shown in Table 1-4.
  • Example 19 As waste water used for experiments, zinc nitrate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of zinc ions (virtual waste liquid). Next, the pH of the waste water is. The mixture was stirred while adding sodium hydroxide so as to be 9.0 to 9.5 to insolubilize zinc. At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L. Further, the “required time” was measured as the time required for the ion concentration to reach 3 mg / L or less. Otherwise, the same operation as in Example 6 was performed, and the characteristics of the water purification agent were evaluated using the water purification agent 6 made of the granulated product 6. The evaluation results of Example 19 are shown in Table 1-4.
  • Example 20 As waste water used for experiments, potassium dichromate was dissolved in pure water to prepare 800 g of an aqueous solution containing 100 mg / L of chromium ions (virtual waste liquid). Next, chromium was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.0 to 7.5. At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L. Further, the “required time” was measured as the time required for the ion concentration to reach 3 mg / L or less. Otherwise, the same operation as in Example 6 was performed, and the characteristics of the water purification agent were evaluated using the water purification agent 6 made of the granulated product 6. The evaluation results of Example 20 are shown in Table 1-4.
  • Example 21 As waste water used for experiments, arsenic trioxide was dissolved in pure water to prepare 800 g of an aqueous solution containing 10 mg / L arsenic ions (virtual waste liquid). Next, 65 mg / L of ferric chloride and 354 mg / L of calcium chloride are added to the waste water, and then stirred while adding sodium hydroxide so that the pH is 8.0 to 9.5. Arsenic was insolubilized. At this time, the ionic concentration of the supernatant of the wastewater was 0.05 mg / L. The “required time” was measured as the time required for the ion concentration to be 0.01 mg / L or less. Otherwise, the same operation as in Example 6 was performed, and the characteristics of the water purification agent were evaluated using the water purification agent 6 made of the granulated product 6. The evaluation results of Example 21 are shown in Table 1-5.
  • Example 22 In Example 5, a granulated product 22 was produced in the same manner as in Example 5 except that “Natural burlap No. 1” was used as the long burlap. Using the water purifier 22 composed of the granulated product 22, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 22 are shown in Table 1-5.
  • Example 23 In Example 5, a granulated product 23 was produced in the same manner as in Example 5 except that “Medium burlap No. 3” was used as the long burlap. Using the water purifier 23 composed of the granulated product 23, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 23 are shown in Table 1-5.
  • Example 24 In Example 5, a granulated product 24 was produced in the same manner as in Example 5 except that “medium red hemp” was used as long bean. Using the water purifier 24 comprising the granulated product 24, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 24 are shown in Table 1-5.
  • Example 25 In Example 6, when the sheet was pulverized, the median diameter was pulverized to 300 ⁇ m, and the pulverized product obtained by the pulverization was used as it is as the granulated product 25 without being classified by sieving. The experiment was conducted in the same manner as above.
  • the water purifier 25 composed of the granulated product 25 the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 25 are shown in Table 1-5.
  • Example 26 In Example 25, an experiment was performed in the same manner as in Example 25 except that when the sheet was pulverized, the granulated product 26 was prepared by pulverizing the median diameter to 800 ⁇ m. Using the water purifier 26 comprising the granulated product 26, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 26 are shown in Table 1-5.
  • Comparative Example 1 Comparative Example 1
  • Example 6 the experiment was performed in the same manner as in Example 6 except that the granulated material was not used and only the polymer flocculant was used.
  • the amount of the polymer flocculant added in Comparative Example 1 was 5 mg / L, and the amount of water in the polymer flocculant was 10% by mass.
  • Comparative Example 1 water purification characteristics were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 1-6.
  • Comparative Example 2 In Example 6, an experiment was performed in the same manner as in Example 6 except that the granulated material was not used and the powder of long burlap and the polymer flocculant were each used alone.
  • the total amount of Nagatoro burlap and polymer flocculant added was 5 mg / L, and the water content of the mixture of Nagatoro burlap and polymer flocculant was 10% by mass.
  • the comparative water purification agent 2 of Comparative Example 2 the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 1-6.
  • Comparative Example 3 Comparative Example 3
  • Example 6 an experiment was performed in the same manner as in Example 6 except that the insolubilization treatment was not performed. In the same manner as in Example 1, the characteristics of the water purifier in Comparative Example 3 were evaluated. The evaluation results of Comparative Example 3 are shown in Table 1-6.
  • Comparative Example 4 In Example 25, an experiment was performed in the same manner as in Example 25 except that when the sheet was pulverized, the comparative granule 4 was prepared by pulverizing the median diameter to 200 ⁇ m. Using the comparative water purification agent 4 comprising the comparative granulated product 4, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 4 are shown in Table 1-6.
  • Example 5 Comparative Example 5
  • Comparative Example 5 Comparative Example 5
  • Table 1-6 shows the results obtained when the automatic feeder feeder was not clogged and the experiment was completed until the measurement was completed.
  • the water purifier of the present invention is an excellent water purifier capable of reducing the inorganic ion concentration to a desired concentration or less in a short time. did it.
  • the water purifier of the present invention is a water purifier that has good fluidity and can be suitably used in an automated system device that does not cause clogging in an automatic feeder or a meter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

水浄化性能に優れた、排水の自動化浄化装置にも好適に使用し得る水浄化剤であって、 長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなり、前記造粒物のメジアン径が250μm以上850μm以下であることを特徴とする水浄化剤である。

Description

水浄化剤、及び水浄化方法
 本発明は、工業排水などの水の浄化に使用する、植物由来の水浄化剤、及び該水浄化剤を用いた水浄化方法に関する。
 近年、工場に於いて種々の製品を製造する過程において、無機イオンとして金属イオンやフッ素イオン等の環境負荷物質を含む廃液が大量に発生している。
 一方、これらの無機イオンの排出に関する規制は徐々に厳しくなっている。この排出規制を遵守するために、無機イオンを含む排水から無機イオンを効果的に除去することができ、しかもできるだけ簡易に、低コストで実施できる無機イオンの除去方法が求められている。
 従来、工場排水などから不純物イオンを除去する方法としては、凝集沈殿法、イオン交換法、活性炭などの吸着剤への吸着法、電気的吸着法、および磁気吸着法などが提案されている。
 例えば、凝集沈殿法として、重金属イオンが溶解した排水に塩基を加え、排水を塩基性にして、重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる工程と、排水に無機凝集剤を加え、懸濁固形物を凝結沈降させる工程と、排水に高分子凝集剤を加え、懸濁固形物を巨大フロック化する工程と、モロヘイヤ、小松菜などの葉菜からなる陽イオン交換体が含有されている吸着層に排水を通水する吸着工程を行う方法が提案されている(例えば、特許文献1参照)。
 また、モロヘイヤ、又はこの乾燥物、又はこの抽出物の少なくともいずれかを含有する凝集剤と、高分子凝集剤とを混合或いは併用して懸濁液中の微粒子を凝集分離する凝集方法が提案されている(例えば、特許文献2参照)。
 ところで、浄化したい排水の量が多い、排水に含まれる不要物質の量が多い、あるいは排水に含まれる不要物質の種類が多いほど、これら排水の浄化処理に必要な浄化剤を自動で投入するシステムの構築が望まれる。
 高速で安定した浄化処理を行ううえで、装置の自動化は重要な課題であり、自動化浄化装置に供するうえで適した水浄化剤の提供が望まれている。
特開2011-194385号公報 特開平11-114313号公報
 しかし、上記特許文献1に記載の方法は、凝集剤による凝集工程と陽イオン交換体による吸着工程が別々であるために手間と時間が掛かる。また、上記特許文献2に記載の方法は、所望の濃度以下まで無機イオンを減少させるのに時間がかかる。いずれの方法も水浄化性能が満足のいくものではなかった。
 さらにこれらの文献に記載の方法は、排水を浄化処理する自動化装置は全く意図しておらず、文献に記載の浄化剤は、自動化システム装置に供するうえで適したものではなかった。
 そこで、所定の時間内に所望の濃度以下まで無機イオンを減少させることができる水浄化性能に優れた水浄化剤であって、自動化システム装置にも好適に使用し得る水浄化剤の提供が望まれていた。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、水浄化性能に優れた水浄化剤であって、排水の自動化浄化装置にも好適に使用し得る水浄化剤を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物のメジアン径が250μm以上850μm以下であることを特徴とする水浄化剤である。
<2> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である、前記<1>に記載の水浄化剤である。
<3> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209006の「「中黄麻3号」である、前記<1>に記載の水浄化剤である。
<4> 前記長朔黄麻が、 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209001の「中紅麻」である、前記<1>に記載の水浄化剤である。
<5> 前記高分子凝集剤がポリアクリルアミドである、前記<1>から<4>のいずれかに記載の水浄化剤である。
<6> 前記造粒物の水分量が16質量%以下である、前記<1>から<5>のいずれかに記載の水浄化剤である。
<7> 前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である、前記<1>から<6>のいずれかに記載の水浄化剤である。
<8> 水浄化剤が、前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される、前記<1>から<7>のいずれかに記載の水浄化剤である。
<9> 前記<1>から<8>のいずれかに記載の水浄化剤を水に溶かし、長朔黄麻の粉末及び高分子凝集剤の分散液を得、無機系不要物を含有する排水に該分散液を供することにより、排水中の無機系不要物を除去することを特徴とする水浄化方法である。
<10> 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、前記<9>に記載の水浄化方法である。
<11> 前記無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、ヒ素イオン、カドミウムイオン、錫イオン、及び鉛イオンの少なくともいずれかの無機イオンに対し不溶化処理を施した後、前記分散液を前記排水に供する、前記<10>に記載の水浄化方法である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、水浄化性能に優れた水浄化剤であって、排水の自動化浄化装置にも好適に使用し得る水浄化剤を提供することができる。
図1は、本発明で使用する「中黄麻3号」と「中紅麻」の鑑定番号を示す図である。
(水浄化剤)
 本発明の水浄化剤は、長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる。
 前記水浄化剤のメジアン径は、250μm以上850μm以下である。
 上記要件を満たす本発明の水浄化剤は、水浄化性能に優れた水浄化剤であって、排水の自動化浄化装置にも好適に使用し得る水浄化剤となる。
 本発明者らは、水浄化性能に優れた水浄化剤を提供するため、植物粉末を含む水浄化剤について鋭意検討を行った。その結果、長朔黄麻の粉末と高分子凝集剤とを混練して得られた造粒物が水浄化性能に優れていることを見出した。
 さらに、特定の範囲のメジアン径を有する長朔黄麻を使用した造粒物とすることで、長朔黄麻の水浄化性能を十分発揮させることができることを見出した。
 理由は明らかではないが、以下のように考えられる。
 本発明では、工業排水、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、鉛などの無機系不要物を含有する工業排水を対象とし、その排水から無機系不要物を除去する(水の浄化ともいう)のに、無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオンなどの無機イオンを不溶化し、懸濁固形物(本発明では、ミクロフロックともいう)を形成させ、該ミクロフロックを凝集沈降させ、固液分離することにより行っている。かかる水の浄化の際、長朔黄麻の粉末と高分子凝集剤とからなる造粒物を使うと、
(i)高分子凝集剤により排水中の無機イオンのミクロフロック化が促進される、
(ii)長朔黄麻の粉末により排水中の無機イオンの吸着効果が高まる、
(iii)長朔黄麻の粉末に存在する細孔によりミクロフロックを吸着する効果が高まる、
と考えている。
 その際、長朔黄麻が急速に吸水し沈降してしまうと、上記吸着効果を発揮することができず、一方、長朔黄麻の繊維の空隙(ポーラス)部分と排水とが十分接触できないと、陽イオン交換機能を有する長朔黄麻による上記(ii)及び(iii)の効果を発揮することができない。
 造粒物のメジアン径が250μm未満であると、表面積が小さく、長朔黄麻の吸着効果を十分発揮させることができない。一方、浄化の際、長朔黄麻は沈降が遅いので、造粒物の粒径は比較的大きくすることができるが、しかし造粒物のメジアン径が850μmより大きいと沈降が早まるため、吸着効果を発揮することができず、無機イオンの除去機能を十分確保することができない。
 造粒物のメジアン径が250μm以上850μm以下の範囲である造粒物は、長朔黄麻の特徴を活かすことができ、十分な吸着効果がある優れた水浄化性能を示すことができると考えている。
 本発明で規定する造粒物は、後述する製造方法により好ましく作製できる。
 また、本発明で規定する造粒物は、流動性に優れており、自動化浄化装置にも好適に使用し得る。
 以下、水浄化剤の具体的な構成について説明する。   
<長朔黄麻>
 前記長朔黄麻の粉末は、陽イオン交換機能が高く、また前記無機イオンを含む排水中のミクロフロックを吸着し得る細孔を有するため、好ましく用いることができる。
 長朔黄麻の部位としては、葉又は茎が、好ましく使用できる。
 また、長朔黄麻の中でも、中国の長沙市産の長朔黄麻、又は中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」、鑑定番号が皖品▲鑑▼登字第1209006の「中黄麻3号」、鑑定番号がXPD005-2005の「中黄麻1号」、若しくは鑑定番号が皖品▲鑑▼登字第1209001の「中紅麻」が好ましく使用できる。さらに、前記「中黄麻4号」、前記「中黄麻3号」、及び前記「中紅麻」がより好ましく、前記「中黄麻4号」が特に好ましい。
 尚、前記「中黄麻3号」と前記「中紅麻」の鑑定番号を図1に示す。
 前記「中黄麻4号」は、以下の特性を有する。
 農産物種類:黄麻
 品種の出所:湘黄麻3号×0-4(l)交雑F1代と湘黄麻3号で繁殖したもの
 特徴特性:中黄麻4号は、長果種の通常品の黄麻で、緑茎で、茎が円筒状で、葉っぱが分散した針の形で、葉の柄が緑色で、主茎との角が小さくて、側芽・托葉がある。萼が緑色で、長果円筒形で、五室、種が晩熟品種である。
<高分子凝集剤>
 前記高分子凝集剤としては、上記長朔黄麻と同様、排水中の前記無機系不要物を除去する効果を示すものであれば、特に制限はなく、例えば、ポリアクリルアミド(PAM)、ポリアクリルアミドの部分加水分解塩、ポリアミン、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、CMCナトリウム塩などを挙げることができる。これらの中でも、ポリアクリルアミドが好ましく使用できる。該ポリアクリルアミドとしては、例えば、市販されているFlopan AN 905、Flopan AN 926、Flopan AN 956(株式会社エス・エヌ・エフ製)などを用いることができる。
<長朔黄麻の粉末と高分子凝集剤との混合物の造粒物>
 前記長朔黄麻の粉末と前記高分子凝集剤の質量組成比は、9:1~1:9の範囲であるとよい。この範囲であれば、不溶化したミクロフロックを吸着する効果が十分発揮される。尚、上記質量比は、乾燥質量をもとに算出する。
 前記造粒物は、以下の特性を示す。
<<メジアン径>>
 本発明で規定する造粒物のメジアン径は、250μm以上850μm以下の範囲である。また、メジアン径が、300μm以上800μm以下の範囲であると好ましく、400μm以上600μm以下の範囲であるとより好ましい。
 メジアン径が250μm以上であると、長朔黄麻の粉末による吸着効果を十分発揮させることができる。また、メジアン径が850μm以下であると、浄化の際の沈降時間を十分確保し、吸着効果を十分発揮させることができる。
 さらにまた、メジアン径が850μm以下であると、粉砕機や自動供給機等での配管内での詰まりを生じる恐れがなく、自動化浄化装置に好適に使用し得る。
 ここで、メジアン径(d50ともいう)とは、前記造粒物を粒子径の大きさでプロットしたとき、全体の個数の50%にプロットされた粒子径(粒子径の大きい側と小さい側が等量となっている粒子径)をいう。本発明において、粒子径とは、容積粒子径をいう。
 また、前記メジアン径は、マスターサイザー2000(マルバーン インスツルメント製)等の市販の測定機により計測することができる。
<<造粒物の水分量>>
 本発明で規定する造粒物は、水分量が16質量%以下であるとよい。16質量%以下であると、不溶化したミクロフロックを吸着する効果がより発揮されるからである。
 ここで、造粒物の水分量は、市販の水分計を用いて測定することができ、例えば、以下のようにして測定する。
 造粒物を、2±0.1g計量後、設定温度105℃、加熱時間20分間で水分計(株式会社エーアンドディー社製)により測定を行う。
<造粒物の製造方法>
 本発明で規定する造粒物は、前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される。
 さらに、前記粉砕工程後に、ふるいにより造粒物を分級する分級工程を含んでもよい。
 本発明者らは、造粒する際、混練物に剪断力(シェア)を強くかけ過ぎると、長朔黄麻の繊維のポーラス部分に高分子凝集剤が入り込んでしまうことを実験により確認した。
 造粒物には、長朔黄麻の繊維構造により穴がたくさん空いている空隙(ポーラス)が存在する多孔質形状が形成されている。
 延伸・シート化工程による造粒法で造粒物を製造したところ、混練物にかかるシェアをコントロールすることができ、そのような延伸・シート化工程で製造した造粒物は、排水と接する長朔黄麻のポーラス部分を十分確保することができ、無機系不要物に対する良好な吸着効果を示すことがわかった。
 さらに、前記延伸・シート化工程では、混練物はローラーにより徐々に伸ばされていき、段階を踏んで所定の厚みのシート状成形物が形成される。この方法によれば、混練物の粘度が良好に保たれたまま成形物を製造することができ、このことも長朔黄麻の吸着効果を発揮させるうえで、効果的に作用しているのではないかと思われる。
 前記混練工程では、長朔黄麻の乾燥物を粗粉砕をし、次に微粉砕をし、所望の大きさの長朔黄麻の粉末を得、その後、得られた長朔黄麻の粉末と、高分子凝集剤とを混合し、水分を加えて混練を行う。
 ここで、水の添加量としては、例えば、長朔黄麻の粉末と高分子凝集剤とを混合した合計質量に対し、例えば3倍の質量程度の水を加えるのが好ましい。
 混練は、ミキサー、例えばプラネタリーミキサーなどの縦型ミキサー等を用い、回転数、及び時間を所定の範囲に設定して行う。
 ミキサーにおける混練の際の回転数、及び時間は、長朔黄麻の粉末と高分子凝集剤との混合比等の条件を考慮しつつ適宜設定することができるが、例えば、回転数は20rpm~150rpmが好ましく、時間は、5分~25分が好ましい。
 前記延伸・シート化工程では、得られた混練物に対しローラーを用い延伸法により、厚さ4mm~20mmになるよう、好ましくは10mm程度になるまで延伸し、シート状に成形するとよい。
 前記混練工程における、長朔黄麻の粉末と高分子の混合比率、加水量、混合速度(混練時のミキサーの回転数)、混合時間(ミキサーでの混練時間)等の条件や、あるいは前記延伸・シート化工程における、延伸条件を適宜変更することにより、混練物にかかるシェアをコントロールすることができる。
 前記乾燥工程では、得られた成形物に対し、多段階熱風式乾燥機を用い、80℃~150℃の温度で2時間~12時間乾燥させるとよい。
 前記粉砕工程では、粉砕機、例えば気流式超微粉砕機を用いメジアン径が250μm~850μmの範囲になるよう粉砕するとよい。
 前記分級工程では、粉砕した粉末を、分級機、例えば振動ふるい機、あるいはカートリッジ式ふるい機を用い、メジアン径が250μm~850μmの範囲になるよう粒子径が所定の範囲にある造粒物を分級するとよい。
 さらに本発明では、ふるいにかけ、250μm未満の造粒物や850μmより大きい造粒物を積極的に分別・排除(カット)し、粒子径が250μmから850μmの範囲の造粒物のみ使用すると、より好ましい。
(水浄化方法)
 本発明の水浄化方法は、上述した本発明の水浄化剤を水に溶かし、長朔黄麻の粉末と高分子凝集剤との分散液を得、該分散液を排水に供することにより排水中の無機系不要物を除去する。
 前記無機系不要物としては、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物が挙げられる。
 本発明の水浄化方法について具体的に説明する。
 排水中の無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオンなどの無機イオンに対し不溶化処理を施し、ミクロフロックを形成させる。この排水に、0.1%から0.2%の水溶液とした前記分散液を供する。そして、ミクロフロックを凝集沈降させ、沈降分離された沈殿物を取り除くと、排水は浄化される。
 前記不溶化処理では、例えば排水に塩基を加え排水を塩基性にして、前記無機イオンを不溶化させる。さらに、塩基を加えた後、高分子凝集剤を単独で添加してもよい。その場合、本発明の水浄化剤を添加する前に、高分子凝集剤を単独で添加しておくと、排水中のミクロフロックのフロックサイズを大きくすることができる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
 実験用に使用する排水として、フッ化カリウムを純水に溶解し、2,500mg/Lのフッ素イオンを含む水溶液を800g作製した(仮想排水)。
 次に、上記排水に、塩化カルシウムを8.6mg/L添加し、pHが7.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌してフッ素を不溶化した。
 この操作により、フッ素水溶液は、ミクロフロックを含む上澄み液と沈殿物に分離した。
 この時点で、上澄み液のフッ素濃度は10mg/Lであった。
<水浄化剤>
 次に、長朔黄麻(中国の長沙市産)と高分子凝集剤(ポリアミン)の質量比が5:5である造粒物を下記に示す製造方法により作製し、造粒物1を得、かかる造粒物1を水浄化剤1として使用した。
<<水浄化剤の製造方法>>
 長朔黄麻の粉末と高分子凝集剤とを合わせた固形分の質量に対し3倍の質量の水を加えて得られた混練物(長朔黄麻の粉末+高分子凝集剤+水=30kg)を、プラネタリーミキサー(株式会社愛工舎製作所製、混合機ACM-110、容量110L)に入れ、回転数80rpm、15分混合の条件にてシェアをかけ混練した。
 得られた混練物をプレス機(コマツ産機株式会社製 45tプレス機)を用いてローラーによる延伸を施し、厚さ10mm程度のシート状の成形物を作製した。
 この成形物を、多段階熱風式乾燥機(株式会社七洋製作所製、ラック式オーブン装置)を用いて、120℃で3時間、さらに150℃で2時間乾燥させた。
 次に乾燥させたシートを気流式超微粉砕機(増幸産業株式会社製 セレンミラー)を用いてメジアン径が400μmになるよう粉砕した。
 尚、メジアン径は、マスターサイザー2000(マルバーン インスツルメント製)により測定した。
 このようにして、造粒物1を得、水浄化剤1とした。
 上記で得られた造粒物1の水分量を、上述した方法で測定したところ、10質量%であった。
 次に、上記で得られた水浄化剤1を水に溶かし、0.1質量%水溶液の分散液を作製した。この分散液を、上記ミクロフロックを含む上澄み液と沈殿物からなる排水に対して、攪拌しながら、3mL/分間の速度で滴下した。この際、上記排水中の固形分に対して5mg/Lになるように水浄化剤を添加した。ここで、「固形分」の測定方法は、排水中のスラリー濃度を水分計にて計測し、逆算することにより、求めることができる。
 滴下後、1分間撹拌を維持した後、撹拌停止後1分毎にフッ素イオン濃度を測定し、4mg/L以下になるまでに要した時間を測定した。
 ここで、イオン濃度は、ラムダ(Λ)9000(共立理化学研究所製)により測定した。
 尚、測定結果は、6時間以内が実用上合格レベルであり、更に時間が短いほど良好な結果であることを表している。
 実施例1の評価結果を表1-1に示す。尚、表1-1において、PAMはポリアクリルアミドを表す(表1-2~表1-6においても同様)。
(実施例2)
 実施例1において、粉砕した粉末を分級機(株式会社ダルトン製 振動ふるい機)を用い、粒子径が200μm未満ものは、ふるいにかけ取り除いた(カットした)。
 それ以外は、実施例1と同様にして、造粒物2を作製した。
 造粒物2からなる水浄化剤2を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例2の評価結果を表1-1に示す。
(実施例3)
 実施例1において、粉砕した粉末を分級機(株式会社ダルトン製 振動ふるい機)を用い、粒子径が850μmより大きいものは、ふるいにかけ取り除いた(カットした)。
 それ以外は、実施例1と同様にして、造粒物3を作製した。
 造粒物3からなる水浄化剤3を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例3の評価結果を表1-1に示す。
(実施例4)
 実施例1において、粉砕した粉末を分級機(株式会社ダルトン製 振動ふるい機)を用い、粒子径が250μm未満のものと850μmより大きいものは、ふるいにかけ取り除いた(カットした)。粒子径が250μm以上850μm以下の範囲に入るもののみ使用するようにし、それ以外は、実施例1と同様にして、造粒物4を作製した。
 造粒物4からなる水浄化剤4を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例4の評価結果を表1-1に示す。
(実施例5)
 実施例4において、高分子凝集剤としてポリアクリルアミド(PAM)を使用した以外は、実施例4と同様にして、造粒物5を作製した。
 造粒物5からなる水浄化剤5を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例5の評価結果を表1-1に示す。
(実施例6)
 実施例5において、長朔黄麻として、「中黄麻4号」を使用した以外は、実施例5と同様にして、造粒物6を作製した。
 造粒物6からなる水浄化剤6を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例6の評価結果を表1-2に示す。
(実施例7)
 実施例6において、造粒物を湿熱下で保存し、造粒物の水分量が16質量%になるよう調整した以外は、実施例6と同様にして、造粒物7を作製した。
 造粒物7からなる水浄化剤7を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例7の評価結果を表1-2に示す。
(実施例8)
 実施例6において、造粒物を湿熱下で保存し、造粒物の水分量が20質量%になるよう調整した以外は、実施例6と同様にして、造粒物8を作製した。
 造粒物8からなる水浄化剤8を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例8の評価結果を表2-2に示す。
(実施例9)
 実施例6において、造粒物を湿熱下で保存し、造粒物の水分量が5質量%になるよう調整した以外は、実施例6と同様にして、造粒物9を作製した。
 造粒物9からなる水浄化剤9を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例9の評価結果を表2-2に示す。
(実施例10)
 実施例6において、「中黄麻4号」と高分子凝集剤との質量比を90:10に変更した以外は、実施例6と同様にして、造粒物10を作製した。
 造粒物10からなる水浄化剤10を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例10の評価結果を表1-2に示す。
(実施例11)
 実施例6において、「中黄麻4号」と高分子凝集剤との質量比を70:30に変更した以外は、実施例6と同様にして、造粒物11を作製した。
 造粒物11からなる水浄化剤11を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例11の評価結果を表1-3に示す。
(実施例12)
 実施例6において、「中黄麻4号」と高分子凝集剤との質量比を30:70に変更した以外は、実施例6と同様にして、造粒物12を作製した。
 造粒物12からなる水浄化剤12を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例12の評価結果を表1-3に示す。
(実施例13)
 実施例6において、「中黄麻4号」と高分子凝集剤との質量比を10:90に変更した以外は、実施例6と同様にして、造粒物13を作製した。
 造粒物13からなる水浄化剤13を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例13の評価結果を表1-3に示す。
(実施例14)
 実施例6において、「中黄麻4号」の添加量が、前記ミクロフロックを含有する排水の固形分に対し2mg/Lとした以外は、実施例6と同様にして、造粒物14を作製した。
 造粒物14からなる水浄化剤14を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例14の評価結果を表1-3に示す。
(実施例15)
 実施例6において、「中黄麻4号」の添加量が、前記ミクロフロックを含有する排水の固形分に対し1mg/Lとした以外は、実施例6と同様にして、造粒物15を作製した。
 造粒物15からなる水浄化剤15を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例15の評価結果を表1-3に示す。
(実施例16)
 実験用に使用する排水として、硫酸ニッケル六水和物を純水に溶解し、50mg/Lのニッケルイオンを含む水溶液を800g作製した(仮想排水)。
 次に、上記排水に、pHが8.5~10.0になるよう水酸化ナトリウムを添加しながら攪拌して、ニッケルを不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
 また、「所要時間」は、イオン濃度が1mg/L以下になるまでに要した時間を測定した。
 それ以外は、実施例6と同様の操作を行い、造粒物6からなる水浄化剤6を使用して、水浄化剤の特性を評価した。実施例16の評価結果を表1-4に示す。
(実施例17)
 実験用に使用する排水として、塩化第二鉄・六水和物を純水に溶解し、200mg/Lの鉄イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが6.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌して、鉄を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
 また、「所要時間」は、イオン濃度が1mg/L以下になるまでに要した時間を測定した。
 それ以外は、実施例6と同様の操作を行い、造粒物6からなる水浄化剤6を使用して、水浄化剤の特性を評価した。実施例17の評価結果を表1-4に示す。
(実施例18)
 実験用に使用する排水として、硫酸銅・五水和物を純水に溶解し、100mg/Lの銅イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが7.0~8.0になるよう水酸化ナトリウムを添加しながら攪拌して、銅を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
 また、「所要時間」は、イオン濃度が1mg/L以下になるまでに要した時間を測定した。
 それ以外は、実施例6と同様の操作を行い、造粒物6からなる水浄化剤6を使用して、水浄化剤の特性を評価した。実施例18の評価結果を表1-4に示す。
(実施例19)
 実験用に使用する排水として、硝酸亜鉛・六水和物を純水に溶解し、100mg/Lの亜鉛イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが.9.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、亜鉛を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
 また、「所要時間」は、イオン濃度が3mg/L以下になるまでに要した時間を測定した。
 それ以外は、実施例6と同様の操作を行い、造粒物6からなる水浄化剤6を使用して、水浄化剤の特性を評価した。実施例19の評価結果を表1-4に示す。
(実施例20)
 実験用に使用する排水として、二クロム酸カリウムを純水に溶解し、100mg/Lのクロムイオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが6.0~7.5になるよう水酸化ナトリウムを添加しながら攪拌して、クロムを不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
 また、「所要時間」は、イオン濃度が3mg/L以下になるまでに要した時間を測定した。
 それ以外は、実施例6と同様の操作を行い、造粒物6からなる水浄化剤6を使用して、水浄化剤の特性を評価した。実施例20の評価結果を表1-4に示す。
(実施例21)
 実験用に使用する排水として、三酸化二ヒ素を純水に溶解し、10mg/Lのヒ素イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、塩化第二鉄を65mg/L、塩化カルシウムを354mg/L添加し、次に、pHが8.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、ヒ素を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は0.05mg/Lであった。
 また、「所要時間」は、イオン濃度が0.01mg/L以下になるまでに要した時間を測定した。
 それ以外は、実施例6と同様の操作を行い、造粒物6からなる水浄化剤6を使用して、水浄化剤の特性を評価した。実施例21の評価結果を表1-5に示す。
(実施例22)
 実施例5において、長朔黄麻として、「中黄麻1号」を使用した以外は、実施例5と同様にして、造粒物22を作製した。
 造粒物22からなる水浄化剤22を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例22の評価結果を表1-5に示す。
(実施例23)
 実施例5において、長朔黄麻として、「中黄麻3号」を使用した以外は、実施例5と同様にして、造粒物23を作製した。
 造粒物23からなる水浄化剤23を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例23の評価結果を表1-5に示す。
(実施例24)
 実施例5において、長朔黄麻として、「中紅麻」を使用した以外は、実施例5と同様にして、造粒物24を作製した。
 造粒物24からなる水浄化剤24を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例24の評価結果を表1-5に示す。
(実施例25)
 実施例6において、シートを粉砕する際、メジアン径が300μmになるよう粉砕し、その粉砕により得られた粉砕物をふるいによる分級を行わずそのまま造粒物25として使用した以外は、実施例6と同様にして実験を行った。
 実施例25で使用した造粒物25は、上記実施例1の造粒物1と同様、粉砕後の分級工程は行っておらず、ふるいによるカットは行わなかった。
 造粒物25からなる水浄化剤25を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例25の評価結果を表1-5に示す。
(実施例26)
 実施例25において、シートを粉砕する際、メジアン径が800μmになるよう粉砕して、造粒物26を作製した以外は、実施例25と同様にして実験を行った。
 造粒物26からなる水浄化剤26を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例26の評価結果を表1-5に示す。
(比較例1)
 実施例6において、造粒物を使用せず、高分子凝集剤のみ使用した以外は、実施例6と同様にして、実験を行った。比較例1における高分子凝集剤の添加量は5mg/Lであり、高分子凝集剤の水分量は10質量%であった。
 比較例1の比較用水浄化剤1を使用して、実施例1と同様にして、水浄化特性を評価した。比較例1の評価結果を表1-6に示す。
(比較例2)
 実施例6において、造粒物を使用せず、長朔黄麻の粉末と高分子凝集剤とをそれぞれ単体で使用した以外は、実施例6と同様にして、実験を行った。比較例2における長朔黄麻と高分子凝集剤とを合計した添加量は5mg/Lであり、長朔黄麻と高分子凝集剤とを合わせた混合物の水分量は10質量%であった。
 比較例2の比較用水浄化剤2を使用して、実施例1と同様にして、水浄化剤の特性を評価した。比較例2の評価結果を表1-6に示す。
(比較例3)
 実施例6において、不溶化処理を行わなかった以外は、実施例6と同様にして、実験を行った。
 実施例1と同様にして、比較例3における水浄化剤の特性を評価した。比較例3の評価結果を表1-6に示す。
(比較例4)
 実施例25において、シートを粉砕する際、メジアン径が200μmになるよう粉砕して、比較用造粒物4を作製した以外は、実施例25と同様にして実験を行った。
 比較用造粒物4からなる比較用水浄化剤4を使用して、実施例1と同様にして、水浄化剤の特性を評価した。比較例4の評価結果を表1-6に示す。
(比較例5)
 実施例25において、シートを粉砕する際、メジアン径が900μmになるよう粉砕して、比較用造粒物5を作製した以外は、実施例25と同様にして実験を行った。
 比較用造粒物5からなる比較用水浄化剤5を使用して、実施例1と同様にして、水浄化剤の特性を評価した。比較例5の評価結果を表1-6に示す。
 尚、比較例5は、再現性に問題があった。測定結果が得られる場合と、自動供給機フィーダーに詰まりが生じ自動供給できなくなり測定ができない場合があった。そこで、表1-6には、自動供給機フィーダーに詰まりがなく、最後まで実験でき測定に至った時に得られた結果を記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上、実施例1から26の結果から、本発明の水浄化剤は、短時間で所望の濃度以下まで無機イオン濃度を減少させることできる、水浄化性能に優れた水浄化剤であることが確認できた。また、本発明の水浄化剤は、流動性がよく、自動供給機や定量器などにおいて、つまりを生じることのない自動化システム装置に好適に使用し得る水浄化剤である。
 

Claims (11)

  1.  長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物のメジアン径が250μm以上850μm以下であることを特徴とする水浄化剤。
  2.  前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である、請求項1に記載の水浄化剤。
  3.  前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209006の「「中黄麻3号」である、請求項1に記載の水浄化剤。
  4.  前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209001の「中紅麻」である、請求項1に記載の水浄化剤。
  5.  前記高分子凝集剤がポリアクリルアミドである、請求項1から4のいずれかに記載の水浄化剤。
  6.  前記造粒物の水分量が16質量%以下である、請求項1から5のいずれかに記載の水浄化剤。
  7.  前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である、請求項1から6のいずれかに記載の水浄化剤。
  8.  水浄化剤が、前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される、請求項1から7のいずれかに記載の水浄化剤。
  9.  請求項1から8のいずれかに記載の水浄化剤を水に溶かし、長朔黄麻の粉末及び高分子凝集剤の分散液を得、無機系不要物を含有する排水に該分散液を供することにより、排水中の無機系不要物を除去することを特徴とする水浄化方法。
  10.  前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、請求項9に記載の水浄化方法。
  11.  前記無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、ヒ素イオン、カドミウムイオン、錫イオン、及び鉛イオンの少なくともいずれかの無機イオンに対し不溶化処理を施した後、前記分散液を前記排水に供する、請求項10に記載の水浄化方法。
PCT/JP2016/057241 2015-03-30 2016-03-08 水浄化剤、及び水浄化方法 WO2016158256A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112017020971-3A BR112017020971A2 (ja) 2015-03-30 2016-03-08 A water depurator and a water cleaning method
CN201680019448.5A CN107405543A (zh) 2015-03-30 2016-03-08 水净化剂和水净化方法
CN202210237300.6A CN114524481A (zh) 2015-03-30 2016-03-08 水净化剂和水净化方法
EP16772140.6A EP3278853B1 (en) 2015-03-30 2016-03-08 Water cleaning method
KR1020177030637A KR102462814B1 (ko) 2015-03-30 2016-03-08 수 정화제 및 수 정화 방법
MYPI2017703658A MY184082A (en) 2015-03-30 2016-03-08 Water cleaning agent and water cleaning method
US15/562,577 US10954142B2 (en) 2015-03-30 2016-03-08 Water cleaning agent and water cleaning method
PH12017501783A PH12017501783A1 (en) 2015-03-30 2017-09-28 Water cleaning agent and water cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069281A JP6133348B2 (ja) 2015-03-30 2015-03-30 水浄化剤、水浄化剤の製造方法、及び水浄化方法
JP2015-069281 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158256A1 true WO2016158256A1 (ja) 2016-10-06

Family

ID=57007026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057241 WO2016158256A1 (ja) 2015-03-30 2016-03-08 水浄化剤、及び水浄化方法

Country Status (10)

Country Link
US (1) US10954142B2 (ja)
EP (1) EP3278853B1 (ja)
JP (1) JP6133348B2 (ja)
KR (1) KR102462814B1 (ja)
CN (2) CN114524481A (ja)
BR (1) BR112017020971A2 (ja)
MY (1) MY184082A (ja)
PH (1) PH12017501783A1 (ja)
TW (2) TWI704949B (ja)
WO (1) WO2016158256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217841A1 (ja) * 2019-04-26 2020-10-29 デクセリアルズ株式会社 水浄化剤、及び水浄化方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142029B (zh) * 2019-06-27 2020-05-22 中国农业科学院麻类研究所 一种复合吸附絮凝剂及其制备方法
JP2021178291A (ja) * 2020-05-14 2021-11-18 デクセリアルズ株式会社 排水処理剤、及び排水処理剤の製造方法
EP4223382A4 (en) * 2020-10-01 2024-02-21 Dexerials Corp ORGANIC COAGULANT AND METHOD FOR THE PRODUCTION THEREOF AND WATER PURIFICATION AGENT AND METHOD FOR THE PRODUCTION THEREOF

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983681A (ja) * 1972-12-18 1974-08-12
JPS522877A (en) * 1975-06-24 1977-01-10 Noubi Kogyo Kk Process and apparatus for granulating of high molecular coagulating ag ents
JPH11114313A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JP2004000923A (ja) * 2002-03-28 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤の製造法
US20090272693A1 (en) * 2005-04-28 2009-11-05 Rhodia Chime Utilization of polysaccharides to eliminate anions of heavy metals from water
US20110094968A1 (en) * 2009-10-22 2011-04-28 Profile Products L.L.C. Flocculant Composition For Dewatering Solids Laden Slurries
JP2011194384A (ja) * 2010-03-24 2011-10-06 Sony Corp 排水中の重金属イオンの除去方法
JP2014008428A (ja) * 2012-06-28 2014-01-20 Sony Corp 凝集剤混合物及び凝集方法
JP2014505588A (ja) * 2011-01-14 2014-03-06 ソニー株式会社 植物由来の凝集剤、凝集剤混合物、凝集方法、及び、植物由来の凝集剤の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2145836A1 (de) 1970-09-15 1972-03-16 Czeskoslovenska Akademie Ved., Prag Sorbens zum Trennen von Bestandteilen wässriger Flüssigkeiten und Aerosole und Verfahren zu seiner Herstellung
JPS5987098A (ja) * 1982-10-28 1984-05-19 Sanyo Chem Ind Ltd 汚泥の真空脱水方法
JP3481676B2 (ja) 1994-05-16 2003-12-22 蛇の目ミシン工業株式会社 浴槽湯の清浄化装置及び浴槽湯の清浄化方法
JPH09117776A (ja) 1995-10-27 1997-05-06 Yokohama Rubber Co Ltd:The 排水中の重金属イオンの除去方法
JPH11114314A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JPH11194385A (ja) * 1997-12-29 1999-07-21 Takashi Kawakami カメラ
CA2380237A1 (en) 1999-07-26 2001-02-01 Ban D. Green Method for injecting dense additive into drilling wells and composition therefor
EP1417154A2 (en) * 2001-05-22 2004-05-12 Biss-Biosystems APS c/o George Mhlanga Flocculant derived from a vegetable source and method for flocculation
UA47749C2 (en) 2001-09-03 2004-12-15 Inst Technical Thermal Physics Nat Academy Sciences Ukraine Method of film cooling and appliance for its implementation
JP2003103254A (ja) * 2001-09-28 2003-04-08 Okudagumi:Kk 無機質水処理材とその製造方法
US6783676B2 (en) 2002-02-28 2004-08-31 Aquafiber Technologies Corporation Pre- and post-treatment system and method for aquatic plant filtration using ozone
US7303084B2 (en) 2004-01-27 2007-12-04 Mcphillips Kevin Compositions, devices, and methods for use in environmental remediation
JP4422202B1 (ja) 2009-05-29 2010-02-24 佳和 福井 凝集剤組成物及び凝集処理方法
TWI445671B (zh) 2010-03-24 2014-07-21 Sony Corp 陽離子交換器及移除廢水中重金屬離子之方法
JP2011194385A (ja) 2010-03-24 2011-10-06 Sony Corp 陽イオン交換体、及び排水中の重金属イオンの除去方法
CN102616899A (zh) * 2011-01-28 2012-08-01 尹帼英 固体水质净化剂及其制造方法、水处理方法
CN102247814A (zh) 2011-05-17 2011-11-23 中国农业科学院麻类研究所 用于重金属废水处理的生物质吸附剂及重金属废水处理方法
JP2013078717A (ja) 2011-10-03 2013-05-02 Rematec Corp 汚泥付着木材の洗浄廃水処理剤および処理法
WO2013090569A2 (en) * 2011-12-13 2013-06-20 Soane Energy, Llc Treatment of wastewater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983681A (ja) * 1972-12-18 1974-08-12
JPS522877A (en) * 1975-06-24 1977-01-10 Noubi Kogyo Kk Process and apparatus for granulating of high molecular coagulating ag ents
JPH11114313A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JP2004000923A (ja) * 2002-03-28 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤の製造法
US20090272693A1 (en) * 2005-04-28 2009-11-05 Rhodia Chime Utilization of polysaccharides to eliminate anions of heavy metals from water
US20110094968A1 (en) * 2009-10-22 2011-04-28 Profile Products L.L.C. Flocculant Composition For Dewatering Solids Laden Slurries
JP2011194384A (ja) * 2010-03-24 2011-10-06 Sony Corp 排水中の重金属イオンの除去方法
JP2014505588A (ja) * 2011-01-14 2014-03-06 ソニー株式会社 植物由来の凝集剤、凝集剤混合物、凝集方法、及び、植物由来の凝集剤の製造方法
JP2014008428A (ja) * 2012-06-28 2014-01-20 Sony Corp 凝集剤混合物及び凝集方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEMASA SHIMADA ET AL.: "Nosanfu", 2010, XP009506771, Retrieved from the Internet <URL:http://www2.mmc.atomi.ac.jp/web01/Flower%20Information%20by%20Vps/Flower%20Albumn/ch4vegitables/taiwan%20tsunaso.html> [retrieved on 20160323] *
See also references of EP3278853A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217841A1 (ja) * 2019-04-26 2020-10-29 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
JP2020179358A (ja) * 2019-04-26 2020-11-05 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
JP7190959B2 (ja) 2019-04-26 2022-12-16 デクセリアルズ株式会社 水浄化剤、及び水浄化方法

Also Published As

Publication number Publication date
EP3278853A1 (en) 2018-02-07
JP6133348B2 (ja) 2017-05-24
BR112017020971A2 (ja) 2018-07-10
TWI704949B (zh) 2020-09-21
KR20170131579A (ko) 2017-11-29
US10954142B2 (en) 2021-03-23
CN107405543A (zh) 2017-11-28
TWI705128B (zh) 2020-09-21
JP2016187783A (ja) 2016-11-04
TW201634650A (zh) 2016-10-01
TW202023667A (zh) 2020-07-01
PH12017501783A1 (en) 2018-04-02
CN114524481A (zh) 2022-05-24
US20180111857A1 (en) 2018-04-26
EP3278853A4 (en) 2018-10-31
MY184082A (en) 2021-03-17
KR102462814B1 (ko) 2022-11-03
EP3278853B1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2016158433A1 (ja) 水浄化剤、及び水浄化方法
WO2016158256A1 (ja) 水浄化剤、及び水浄化方法
JP6885826B2 (ja) 水浄化剤の製造方法、及び排水処理方法
KR102437576B1 (ko) 물 정화용 분산액, 그 물 정화용 분산액의 제조 방법, 및 배수 처리 방법
TWI756264B (zh) 水淨化用分散液、該水淨化用分散液的製造方法、以及排放水處理方法
TWI746638B (zh) 水淨化劑的製造方法及排放水處理方法
WO2020217841A1 (ja) 水浄化剤、及び水浄化方法
WO2022102448A1 (ja) 造粒吸着材及びその製造方法
TWI838505B (zh) 水淨化劑、及水淨化方法
WO2022070745A1 (ja) 有機凝結剤及びその製造方法、並びに水浄化剤及びその製造方法
JP2022059562A (ja) 有機凝結剤及びその製造方法、並びに水浄化剤及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562577

Country of ref document: US

Ref document number: 12017501783

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020971

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177030637

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017020971

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170929