WO2016158433A1 - 水浄化剤、及び水浄化方法 - Google Patents

水浄化剤、及び水浄化方法 Download PDF

Info

Publication number
WO2016158433A1
WO2016158433A1 PCT/JP2016/058410 JP2016058410W WO2016158433A1 WO 2016158433 A1 WO2016158433 A1 WO 2016158433A1 JP 2016058410 W JP2016058410 W JP 2016058410W WO 2016158433 A1 WO2016158433 A1 WO 2016158433A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water purification
ions
polymer flocculant
plant powder
Prior art date
Application number
PCT/JP2016/058410
Other languages
English (en)
French (fr)
Inventor
雅彦 伊東
竜 島田
貴則 藤田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202210151664.2A priority Critical patent/CN114307266A/zh
Priority to CN201680018554.1A priority patent/CN107427745A/zh
Priority to BR112017020968-3A priority patent/BR112017020968A2/ja
Priority to RU2017134507A priority patent/RU2017134507A/ru
Priority to EP16772316.2A priority patent/EP3278854B1/en
Priority to KR1020177030636A priority patent/KR102571739B1/ko
Priority to US15/560,077 priority patent/US20180079665A1/en
Publication of WO2016158433A1 publication Critical patent/WO2016158433A1/ja
Priority to US16/988,820 priority patent/US11440821B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5227Processes for facilitating the dissolution of solid flocculants in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the present invention relates to a plant-derived water purification agent used for purification of water such as industrial wastewater, and a water purification method using the water purification agent.
  • a step of adding a base to wastewater in which heavy metal ions are dissolved making the wastewater basic, insolubilizing at least part of the heavy metal ions to form a suspended solid, and an inorganic flocculant in the wastewater Contains a cation exchanger consisting of leafy vegetables such as Morohaya and Komatsuna.
  • a method of performing an adsorption process of passing wastewater through an adsorbed layer see, for example, Patent Document 1.
  • a coagulation method is proposed in which fine particles in a suspension are coagulated and separated by mixing or using a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant.
  • a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant for example, refer to Patent Document 2.
  • Patent Document 1 takes time and effort because the aggregation step using a flocculant and the adsorption step using a cation exchanger are separate.
  • Patent Document 2 takes time to reduce inorganic ions to a desired concentration or less. Neither method was satisfactory in water purification performance.
  • the methods described in these documents are not intended at all for an automatic device for purifying wastewater, and the purifiers described in the documents are not suitable for use in automated system devices. Therefore, it is desired to provide a water purifying agent having excellent water purifying performance that can reduce inorganic ions to a desired concentration or less within a predetermined time and that can be suitably used in an automation system apparatus. It was rare.
  • an object of the present invention is to provide a water purifying agent that is excellent in water purifying performance and that can be suitably used in an automatic waste water purifying device.
  • a water purification agent comprising a granulated product containing a mixture of a plant powder and a polymer flocculant, wherein the plant powder is covered with the polymer flocculant on the surface of the granulated product.
  • a water purifying agent characterized in that there is a coated portion and an uncoated portion in which the plant powder is not covered with the polymer flocculant.
  • ⁇ 3> The water purification according to any one of ⁇ 1> to ⁇ 2>, wherein a ratio of an area of the covering portion to a total of an area of the covering portion and an area of the non-covering portion is 30% to 70% It is an agent.
  • ⁇ 4> The water purifier according to any one of ⁇ 1> to ⁇ 3>, wherein the plant powder is any one of Nagatoro Hemp, Morohaya, Komatsuna, Trefoil, Mizuna, and Spinach.
  • ⁇ 5> The water purifier according to the above ⁇ 4>, wherein the plant powder is long burlap.
  • ⁇ 6> The water purifier according to any one of ⁇ 4> to ⁇ 5>, wherein the long burlap burlap is “Chinese burlap No. 4” having an appraisal number 2013 by the Chinese Academy of Agricultural Sciences.
  • ⁇ 7> The water purification agent according to any one of ⁇ 1> to ⁇ 6>, wherein a median diameter of the water purification agent is 150 ⁇ m or more.
  • ⁇ 8> The water purifier according to any one of ⁇ 1> to ⁇ 7>, wherein the polymer flocculant is polyacrylamide.
  • a water purifier is a sheet kneading step in which the plant powder and the polymer flocculant are mixed and moisture is added and kneaded to obtain a kneaded product, and the kneaded product is formed into a sheet shape by a stretching method.
  • the sheet is produced by a production method comprising a stretching / sheeting step for obtaining a molded product, a drying step for drying the sheet-like molded product to obtain a dried sheet, and a pulverizing step for pulverizing the dried sheet.
  • the water purifier according to any one of ⁇ 1> to ⁇ 8>.
  • the water purifier according to any one of ⁇ 1> to ⁇ 9> is dissolved in water to obtain a dispersion of plant powder and a polymer flocculant, and the dispersion is discharged into wastewater containing inorganic unnecessary substances.
  • a water purification method characterized in that inorganic unnecessary substances in the waste water are removed.
  • the wastewater is a wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. This is a water purification method.
  • FIG. 1 is a scanning electron microscope image (SEM image) showing an example of the surface of the granulated product.
  • FIG. 2 is a scanning electron microscope image (SEM image) showing an example of the surface of the granulated product.
  • FIG. 3 is a scanning electron microscope image (SEM image) showing an example of the surface of the granulated product.
  • the water purification agent of the present invention comprises a granulated product containing a mixture of plant powder and a polymer flocculant. On the surface of the granulated product, there are a coated portion where the plant powder is covered with the polymer flocculant and an uncoated portion where the plant powder is not covered with the polymer flocculant.
  • the water purifying agent of the present invention that satisfies the above requirements is a water purifying agent having excellent water purifying performance, and is a water purifying agent that can be suitably used for an automatic waste water purifying device.
  • the present inventors have conducted intensive studies on a water purification agent containing plant powder.
  • the plant powder existing on the surface of the granulated product is covered with the polymer flocculant on the surface of the granulated product. It was found that such a granulated product is excellent in water purification performance by the presence of a coated portion and an uncoated portion that is not covered with a polymer flocculant.
  • industrial wastewater for example, industrial wastewater containing inorganic unnecessary materials such as nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, lead, etc.
  • inorganic unnecessary materials such as nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, lead, etc.
  • insoluble inorganic ions such as nickel ions, fluorine ions, and iron ions in inorganic unnecessary materials to form suspended solids (also called micro flocs in the present invention)
  • the micro floc is coagulated and settled, and solid-liquid separation is performed.
  • the granulated product defined in the present invention having the coated portion and the non-coated portion on the surface can be produced by a production method described later.
  • fills the said requirements produced with the manufacturing method mentioned later shows an excellent value with respect to a viscosity and a bulk specific gravity other than the outstanding sedimentation resistance (refer the result of the following Example). . It is thought that it is one of the factors which show the outstanding water purification performance that it is a granulated material which shows such a physical property.
  • regulated by this invention shows the value with a favorable fluidity
  • a specific configuration of the water purifier will be described.
  • the plant is not particularly limited as long as it can agglomerate and separate unnecessary materials (nickel, copper, fluorine, etc.) in the wastewater.
  • unnecessary materials nickel, copper, fluorine, etc.
  • Nagase Hemp, Morohaya, Komatsuna examples include trefoil, mizuna and spinach.
  • These plant powders can be preferably used because they have a high cation exchange function and have pores capable of adsorbing micro flocs in waste water containing the inorganic ions.
  • the plant part can be any part of leaves, stems and roots.
  • long-bellied burlap (Chrysanthemum) and moroheiya are preferable, and long-burden burlap, which showed good results in the following examples, is more preferable.
  • “Chinese burlap No. 4” having an appraisal number 2013 by the Chinese Academy of Agricultural Sciences hemp laboratory is particularly preferred.
  • “Central Hemp 4” has the following characteristics.
  • Characteristic characteristics: Middle Hemp 4 is a normal fruit type of Hemp. It has a green stem, a cylindrical stem, a needle with dispersed leaves, a green leaf handle, a small angle with the main stem, and side buds and bamboo leaves.
  • the cocoons are green, long-cylindrical, five chambers, and the seeds are late-ripening varieties.
  • the polymer flocculant is not particularly limited as long as it exhibits the effect of removing the inorganic unnecessary substances in the waste water, as in the case of the above-described plant.
  • polyacrylamide PAM
  • polyacrylamide partial hydrolysis examples thereof include decomposition salts, polyamines, sodium alginate, sodium polyacrylate, and CMC sodium salt.
  • polyacrylamide can be preferably used.
  • commercially available Flopan AN 905, Flopan AN 926, Flopan AN 956 (manufactured by SNF Corporation) and the like can be used.
  • the mixing ratio of the plant powder and the polymer flocculant is preferably in the range of 10:90 to 90:10 by mass ratio.
  • the granulated product exhibits the following characteristics.
  • the surface of the granulated product there are a coated portion where the plant powder is covered with the polymer flocculant and an uncoated portion where the plant powder is not covered with the polymer flocculant.
  • the surface of the granulated product has a porous shape in which there are many holes due to the fiber structure of the plant powder and there are voids (porous).
  • the covering portion is formed by a polymer flocculant entering a void portion (porous) of the fiber of the plant material and covering the porous portion on the surface of the granulated material with the polymer flocculant.
  • FIG. 2 is an SEM image of the surface of the granulated product in which the porous part is not covered with the polymer flocculant.
  • the porous part is not covered with the polymer flocculant, and the coating part is not formed, that is, the area of the coating part is 0% with respect to the surface area of the granulated product.
  • FIG. 3 is an SEM image of the surface of the granulated product in which the porous part is completely covered with the polymer flocculant. It shows a state in which no uncoated portion is formed, that is, the area of the coated portion is 100% with respect to the surface area of the granulated product.
  • FIG. 3 is an SEM image of the surface of the granulated product in which the porous part is completely covered with the polymer flocculant. It shows a state in which no uncoated portion is formed, that is, the area of the coated portion is 100% with respect to the surface area of the granulated product.
  • FIG. 2 is an SEM image
  • FIG. 1 is an SEM image showing an example of a granulated product defined in the present invention.
  • FIG. 1 shows a state where a coated part and an uncoated part are mixed on the surface of the granulated product, and
  • FIG. 1 shows a state where the area of the coated part is 50% of the surface area of the granulated product. Yes.
  • the covering portion is formed.
  • coated part is less than 100% of the surface area of the said granulated material, and it is good in it being 90% or less.
  • a covering portion in which at least a part of the plant powder existing on the surface of the granulated product is covered with the polymer flocculant is formed.
  • coated part is good in it being larger than 0% of the surface area of the said granulated material, and 10% or more.
  • the area of the covering portion is measured as follows, and the ratio of the area of the covering portion to the surface area is obtained from the following equation (1). Covered area / (covered area + uncovered area) (1)
  • the ratio of the area of the covering portion to the total area of the covering portion and the non-covering portion is preferably 10% to 90%, more preferably 30% to 70%. .
  • the granulated product In order to form a coated part and an uncoated part on the surface of the granulated product, it is preferable to produce the granulated product using a manufacturing method described later. In particular, when the production method is used, the ratio between the coated portion and the uncoated portion can be adjusted. The manufacturing method will be described later. The area of the said covering part and the said non-coating part can be calculated
  • the portion where the porous structure along the oblique fiber structure can be observed is an uncoated portion that is not covered with the polymer flocculant, and the porous structure along the oblique fiber structure is observed.
  • the part that cannot be covered is a coated part that is covered with a polymer flocculant. Therefore, the SEM image is observed, divided into portions corresponding to the respective portions, and the respective areas are measured.
  • coated part in a surface area is set as the ratio of the said coating
  • the measurement is performed on an area where the image is bright enough to distinguish the above-described plant fiber structure. For example, if the surface of the granulated material is dark because it is depressed and the surface structure cannot be recognized, or it can be seen in some places in FIGS. 1 to 3, the image is dark and the surface structure is confirmed. If difficult, remove the area from the measurement.
  • the median diameter of the granulated product specified in the present invention is preferably 150 ⁇ m or more, and more preferably 200 ⁇ m or more and 900 ⁇ m or less. If the median diameter is less than 150 ⁇ m, the fluidity of the granulated product is lowered, so that the quantitative performance in the feeder is lowered. In addition, when the median diameter is 900 ⁇ m or less, there is no possibility of clogging in the piping of a pulverizer or an automatic feeder, and the median diameter can be suitably used for an automated purification device.
  • the median diameter (also referred to as d50) is the particle diameter plotted on 50% of the total number when the granulated product is plotted by the particle diameter (the larger side and the smaller side are equal).
  • the particle diameter refers to the volume particle diameter.
  • the median diameter can be measured by a commercially available measuring machine such as Mastersizer 2000 (manufactured by Malvern Instruments).
  • the flowability index of Carr obtained by measuring three items of repose angle, compressibility, and spatula angle of the water purifier of the present invention is preferably 45 or more, and more preferably 52.5 or more.
  • the angle of repose, the degree of compression, and the angle of spatula are the angle of repose listed in the measurement items of Carr's flowability index (RL Carr 'Evaluating Flow Properties of Solids' Chemical Engineering January 18, 1965). , Compression degree and spatula angle. These angle of repose, degree of compression, and spatula angle can be measured, for example, with various commercially available powder property measuring instruments.
  • the Carr's liquidity index table published by Hosokawa Micron Corporation is used.
  • the following table 1 shows the fluidity index table in three items of repose angle, compression degree, and spatula angle related to the present invention. Based on Table 1, the index of repose angle, the index of compression degree, and the index of spatula angle corresponding to the measurement results of the repose angle, the compression degree, and the spatula angle are obtained, and these values may be summed up. . In the present invention, the total value is defined as the fluidity index of the water purifier.
  • the angle of repose, the degree of compression, and the spatula angle can be obtained as follows.
  • the angle of repose (°) can be measured by the following injection method using a powder tester PT-N type (manufactured by Hosokawa Micron). The sample to be measured is dropped on a circular cradle through a funnel, and the angle formed by the slope when the layer is formed in a mountain shape is measured.
  • the compression degree Da solid apparent specific gravity
  • Db slack apparent specific gravity
  • a dedicated cap is attached to the top of a 100 cc stainless cup, a 150 cc to 200 cc sample is placed, and after dropping 180 times from a height of 2 cm to give a vibration, the specific gravity of the sample is measured and is set to Da.
  • the Da and Db values are substituted into the following equation (2).
  • Compressibility (%) ⁇ (Da ⁇ Db) / Da ⁇ ⁇ 100 (2)
  • the spatula angle (°) can be measured using a powder tester PT-N type (manufactured by Hosokawa Micron). The sample is deposited so that a rectangular spatula placed horizontally is buried, and the cross-sectional angle (A) of the mountain that is formed when the spatula is slowly pulled up in the vertical direction, and the pile of powder is given a constant impact The cross-sectional angle (B) of the mountain formed after the collapse is measured, and the value is substituted into the following equation (3) to obtain the spatula angle (°).
  • Spatula angle (°) ⁇ (A + B) / 2 ⁇ (3)
  • the water purification agent of the present invention produced by the production method described later shows a good fluidity index as shown in the following examples.
  • the water purifying agent of the present invention produced by the production method described later has a good value of bulk specific gravity and has little variation in the value of bulk specific gravity.
  • the bulk specific gravity of the water purifier is preferably 0.3 g / cm 3 or more and 0.8 g / cm 3 or less.
  • the bulk specific gravity can be measured using a powder tester PT-N type (manufactured by Hosokawa Micron). Gently place a 100 cc sample in a 100 cc stainless steel cup, measure the specific gravity of the sample at that time, and obtain the bulk specific gravity.
  • the variation of the bulk specific gravity of the water purifier (the ratio of the difference between the maximum value and the minimum value of the bulk specific gravity with respect to the minimum value of the bulk specific gravity) is preferably 4.5% or less.
  • the variation in bulk specific gravity can be determined as follows. A water purification agent as a measurement sample is put into a bag of a certain size (for example, a 700 mm ⁇ 500 mm plastic bag), and the mouth of the bag is heat sealed. At that time, in the next vibration operation, the amount of the water purifying agent to be put in the bag is taken into consideration so as to secure a space where the water purifying agent can freely move.
  • the water purifier contained in the bag is vibrated up and down to such an extent that the granulated material does not collapse, and then samples are taken out from five points including the upper and lower portions of the bag, and the bulk specific gravity is measured.
  • the maximum value and minimum value of the bulk specific gravity are recorded, and the variation is obtained by calculation of the following formula (4) based on the maximum value and minimum value. (Difference between maximum and minimum bulk specific gravity / minimum bulk specific gravity) ⁇ 100 (4)
  • the granulated product defined in the present invention comprises the kneading step of mixing the plant powder and the polymer flocculant, adding water and kneading to obtain a kneaded product, and molding the kneaded product into a sheet by a stretching method.
  • a production method comprising a drawing / sheet forming step for obtaining a sheet-like molded product, a drying step for drying the sheet-like molded product to obtain a dried sheet, and a pulverizing step for pulverizing the dried sheet Is done.
  • a classification step of classifying the granulated product with a sieve may be included.
  • the present inventors granulate, if too much shearing force (share) is applied to the kneaded product, the polymer flocculant enters the porous portion of the fiber of the plant material, and the plant powder on the surface is the polymer flocculant. It was confirmed by experiment that it was covered. Then, in order to control the share concerning a kneaded material, when the granulated material was manufactured with the granulation method by an extending
  • the kneaded product is gradually stretched by a roller, and a sheet-like molded product having a predetermined thickness is formed in steps.
  • a molded product can be produced while the viscosity of the kneaded product is kept good, and this effectively acts in producing the granulated product specified in the present invention. I think that.
  • the dried plant is coarsely pulverized and then finely pulverized to obtain a plant powder of a desired size, and then the obtained plant powder and the polymer flocculant are mixed to obtain moisture.
  • kneading is performed.
  • the addition amount of water for example, it is preferable to add, for example, about three times the mass of water to the total mass of the mixture of the plant powder and the polymer flocculant.
  • the kneading is performed by using a mixer, for example, a vertical mixer such as a planetary mixer, and the like, and setting the number of rotations and the time within a predetermined range.
  • the rotation speed and time during kneading in the mixer can be appropriately set in consideration of conditions such as the type of plant and the mixing ratio of the plant powder and the polymer flocculant.
  • the rotation speed is 20 rpm. ⁇ 150 rpm is preferable, and the time is preferably 5 minutes to 25 minutes.
  • the obtained kneaded product may be stretched by a stretching method using a roller to a thickness of 2 mm to 30 mm, preferably about 10 mm, and formed into a sheet shape.
  • the covering state of the plant powder on the surface of the granulated product can be controlled by controlling the share of the kneaded product.
  • the conditions such as the mixing ratio of plant powder and polymer, the amount of water added, the mixing speed (number of rotations of the mixer during kneading), the mixing time (kneading time in the mixer), etc. may be changed, or
  • the coating condition of the plant powder on the surface of the granulated product may be controlled by changing the stretching conditions.
  • the obtained molded product may be dried at a temperature of 80 ° C. to 150 ° C. for 2 hours to 12 hours using a multistage hot air dryer.
  • pulverization may be performed using a pulverizer, for example, an airflow type ultrafine pulverizer, so that the median diameter is in the range of 150 ⁇ m to 900 ⁇ m.
  • the pulverized powder is classified using a classifier, for example, a vibration sieve or a cartridge type sieve, to classify a granulated product having a particle diameter in a predetermined range so that the median diameter is in a range of 150 ⁇ m to 900 ⁇ m. Good.
  • the above-described water purification agent of the present invention is dissolved in water to obtain a dispersion of plant powder and a polymer flocculant, and the dispersion is used for drainage, so that an inorganic system in the wastewater is unnecessary. Remove objects.
  • the inorganic unnecessary materials include inorganic unnecessary materials having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead.
  • a micro floc is formed by insolubilizing inorganic ions such as nickel ions, fluorine ions, iron ions and the like in inorganic waste in waste water.
  • the dispersion is made into a 0.1% to 0.2% aqueous solution for this drainage.
  • the waste water is purified.
  • a base is added to the wastewater to make the wastewater basic, thereby insolubilizing the inorganic ions.
  • the polymer flocculant may be added alone. In that case, if the polymer flocculant is added alone before adding the water purifying agent of the present invention, the floc size of the micro floc in the waste water can be increased.
  • Example 1 As waste water used for experiments, nickel sulfate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 50 mg / L of nickel ions (virtual waste water). Next, caustic soda was supplied to the waste water so as to have a pH of 10, and stirred to insolubilize the nickel. The nickel ion concentration of the supernatant of the waste water was 2 mg / L.
  • ⁇ Water purification agent> Next, “Chibami spinach from Maebashi, Gunma Prefecture” was used as a plant, and polyacrylamide (PAM) was used as a polymer flocculant. The granulated product 1 was obtained by the production method shown below, and the granulated product 1 was used as the water purifier 1.
  • a kneaded product (plant powder + polymer flocculant + water 30 kg) obtained by adding water 3 times the mass of the solid content of the plant powder and the polymer flocculant was added to a planetary mixer ( A mixer manufactured by Aikosha Seisakusho Co., Ltd., mixing machine ACM-110, capacity 110 L), and kneading was performed under the conditions of mixing at a rotational speed of 150 rpm for 20 minutes.
  • the obtained kneaded product was stretched by a roller using a press machine (45t press machine manufactured by Komatsu Industries Co., Ltd.) to produce a sheet-like molded product having a thickness of about 10 mm. This molded product was dried at 120 ° C.
  • the dried sheet was pulverized using an air flow type ultrafine pulverizer (Selenium mirror manufactured by Masuko Sangyo Co., Ltd.) so that the median diameter becomes 400 ⁇ m.
  • the median diameter was measured with Mastersizer 2000 (Malvern Instruments).
  • the pulverized powder was screened using a classifier (vibrating sifter manufactured by Dalton Co., Ltd.), so that only particles having a particle size in the range of 200 ⁇ m to 900 ⁇ m were used. ).
  • the granulated material 1 was obtained and it was set as the water purification agent 1.
  • Example 2 In Example 1, Nagatoro Hemp (Guangzhou, China) was used as a plant, and the same procedure as in Example 1 was carried out except that the mixer rotation speed in the kneading process was changed to 80 rpm and the time was changed to 15 minutes. Granule 2 was produced. Using the water purification agent 2 comprising the granulated product 2, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 2-1. In Table 2-1, plant powder 2 represents “Nagato Hemp (Guangzhou, China)”.
  • Example 3 In Example 2, Appraisal Number 2013, “Chu Hemp No. 4” by Nagase Agricultural Institute of Agricultural Sciences of Nagatoro Hemp was used as the plant. Other than that was carried out similarly to Example 2, and produced the granulated material 3.
  • Example 4 In Example 3, a granulated product 4 was produced in the same manner as in Example 3 except that the number of revolutions of the mixer in the kneading step was changed to 150 rpm and the time was changed to 5 minutes. Using the water purification agent 4 comprising the granulated product 4, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 4 are shown in Table 2-1.
  • Example 5 a granulated product 5 was produced in the same manner as in Example 3 except that the rotation speed of the mixer in the kneading step was changed to 100 rpm and the time was changed to 10 minutes. Using the water purification agent 5 comprising the granulated product 5, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 5 are shown in Table 2-1.
  • Example 6 In Example 3, a granulated product 6 was produced in the same manner as in Example 3 except that the rotation speed of the mixer in the kneading step was changed to 50 rpm and the time was changed to 20 minutes. Using the water purification agent 6 comprising the granulated product 6, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 6 are shown in Table 2-2.
  • Example 7 In Example 3, a granulated product 7 was produced in the same manner as in Example 3 except that the rotation speed of the mixer in the kneading step was changed to 20 rpm and the time was changed to 25 minutes. Using the water purification agent 7 comprising the granulated product 7, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 7 are shown in Table 2-2.
  • Example 8 In Example 3, a granulated product 8 was produced in the same manner as Example 3 except that the classification step was not performed. Using the water purifier 8 comprising the granulated product 8, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 8 are shown in Table 2-2.
  • Example 9 A granulated product 9 was produced in the same manner as in Example 3 except that polyamine was used as the polymer flocculant in Example 3. Using the water purifier 9 comprising the granulated product 9, the characteristics of the water purifier were evaluated in the same manner as in Example 1. The evaluation results of Example 9 are shown in Table 2-2.
  • Example 10 As waste water used for experiments, potassium fluoride was dissolved in pure water to produce 800 g of an aqueous solution containing 2,500 mg / L of fluorine ions (virtual waste water). Next, 8.6 mg / L of calcium chloride was added to the waste water, and the mixture was stirred while adding sodium hydroxide so that the pH was 7.5 to 9.0, thereby insolubilizing fluorine. By this operation, the aqueous fluorine solution was separated into a supernatant and a precipitate containing micro floc. At this point, the ionic concentration of the supernatant of the wastewater was 10 mg / L. Except having used the said waste_water
  • Example 11 As waste water used for experiments, ferric chloride hexahydrate was dissolved in pure water to prepare 800 g of an aqueous solution containing 200 mg / L of iron ions (virtual waste liquid). Next, iron was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.5 to 9.0. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Except having used the said waste_water
  • Example 12 As waste water used for experiments, copper sulfate pentahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of copper ions (virtual waste liquid). Next, the waste water was stirred while adding sodium hydroxide so that the pH was 7.0 to 8.0 to insolubilize copper. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Except having used the said waste_water
  • Example 13 As waste water used for experiments, zinc nitrate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of zinc ions (virtual waste liquid). Next, the pH of the waste water is. The mixture was stirred while adding sodium hydroxide so as to be 9.0 to 9.5 to insolubilize zinc. At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L. Except having used the said waste_water
  • Example 14 As waste water used for experiments, potassium dichromate was dissolved in pure water to prepare 800 g of an aqueous solution containing 100 mg / L of chromium ions (virtual waste liquid). Next, chromium was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.0 to 7.5. At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L. Except having used the said waste_water
  • Example 15 As waste water used for experiments, arsenic trioxide was dissolved in pure water to prepare 800 g of an aqueous solution containing 10 mg / L arsenic ions (virtual waste liquid). Next, 65 mg / L of ferric chloride and 354 mg / L of calcium chloride are added to the waste water, and then stirred while adding sodium hydroxide so that the pH is 8.0 to 9.5. Arsenic was insolubilized. At this time, the ionic concentration of the supernatant of the wastewater was 0.05 mg / L.
  • Example 15 Except having used the said waste_water
  • Example 16 In Example 3, a granulated product 16 was produced in the same manner as in Example 3 except that the median diameter at the time of pulverizing the dry sheet was changed to 150 ⁇ m. Using the water purification agent 16 comprising the granulated product 16, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Example 16 are shown in Table 2-3.
  • Example 17 In Example 3, a granulated product 17 was produced in the same manner as in Example 3 except that the median diameter at the time of pulverizing the dry sheet was changed to 100 ⁇ m. Using the water purifying agent 17 composed of the granulated product 17, the characteristics of the water purifying agent were evaluated in the same manner as in Example 1. The evaluation results of Example 17 are shown in Table 2-3.
  • Comparative Example 1 In Example 1, the experiment was performed in the same manner as in Example 1 except that the granulated product was not used and only the polymer flocculant was used. Using the comparative water purification agent 1 of Comparative Example 1, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 2-4.
  • Comparative Example 2 In Example 1, the experiment was performed in the same manner as in Example 1 except that the granulated product was not used and the plant powder and the polymer flocculant were each used alone. Using the comparative water purification agent 2 of Comparative Example 2, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 2-4.
  • Comparative Example 3 a comparative granulated product 3 of Comparative Example 3 was produced in the same manner as in Example 3 except that the rotation speed of the mixer in the kneading step was changed to 20 rpm and the time was changed to 30 minutes. Using the comparative water purification agent 3 comprising the comparative granulated product 3, the characteristics of the water purification agent were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 3 are shown in Table 2-4.
  • Example 18 With respect to the granules 1 to 9 obtained in Examples 1 to 9, the angle of repose, the degree of compression, and the spatula angle were measured by the method described above, and the fluidity index was calculated based on Table 1 above. When the fluidity was evaluated according to the following criteria, all of the granulated materials 1 to 9 obtained in Examples 1 to 9 showed good results of ⁇ . ⁇ : 52.5 to 75 ⁇ : 45-52 ⁇ : 0 to 44.5
  • Example 19 The granulated product 3 obtained in Example 3 exhibits physical properties as shown in Table 3 below. These physical properties are considered to be effective properties that lead to good results when used as water purification agents. The reason why the water purifying agent having such good physical properties was obtained seems to be greatly influenced by the production by the granulation method by the drawing and sheeting process.
  • the sedimentation resistance is the sedimentation time described in 1 above.
  • the bulk specific gravity was measured by the method described above.
  • the solution viscosity (mPa ⁇ S) was measured with a B-type viscometer.
  • the water purification agent of the present invention is a water purification agent having excellent water purification performance capable of reducing the inorganic ion concentration to a desired concentration or less in a short time. did it. Further, the water purifier of the present invention has good fluidity, and no clogging occurred in an automatic feeder or a meter. It was confirmed that the water purification agent can be suitably used in an automation system apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

植物粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物の表面には、前記植物粉末が前記高分子凝集剤で覆われている被覆部分と、前記植物粉末が前記高分子凝集剤で覆われていない非被覆部分とが存在することを特徴とする水浄化剤である。

Description

水浄化剤、及び水浄化方法
 本発明は、工業排水などの水の浄化に使用する、植物由来の水浄化剤、及び該水浄化剤を用いた水浄化方法に関する。
 近年、工場に於いて種々の製品を製造する過程において、無機イオンとして金属イオンやフッ素イオン等の環境負荷物質を含む廃液が大量に発生している。
 一方、これらの無機イオンの排出に関する規制は徐々に厳しくなっている。この排出規制を遵守するために、無機イオンを含む排水から無機イオンを効果的に除去することができ、しかもできるだけ簡易に、低コストで実施できる無機イオンの除去方法が求められている。
 従来、工場排水などから不純物イオンを除去する方法としては、凝集沈殿法、イオン交換法、活性炭などの吸着剤への吸着法、電気的吸着法、および磁気吸着法などが提案されている。
 例えば、凝集沈殿法として、重金属イオンが溶解した排水に塩基を加え、排水を塩基性にして、重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる工程と、排水に無機凝集剤を加え、懸濁固形物を凝結沈降させる工程と、排水に高分子凝集剤を加え、懸濁固形物を巨大フロック化する工程と、モロヘイヤ、小松菜などの葉菜からなる陽イオン交換体が含有されている吸着層に排水を通水する吸着工程を行う方法が提案されている(例えば、特許文献1参照)。
 また、モロヘイヤ、又はこの乾燥物、又はこの抽出物の少なくともいずれかを含有する凝集剤と、高分子凝集剤とを混合或いは併用して懸濁液中の微粒子を凝集分離する凝集方法が提案されている(例えば、特許文献2参照)。
 ところで、浄化したい排水の量が多い、排水に含まれる不要物質の量が多い、あるいは排水に含まれる不要物質の種類が多いほど、これら排水の浄化処理に必要な浄化剤を自動で投入するシステムの構築が望まれる。
 高速で安定した浄化処理を行ううえで、装置の自動化は重要な課題であり、自動化浄化装置に供するうえで適した水浄化剤の提供が望まれている。
特開2011-194385号公報 特開平11-114313号公報
 しかし、上記特許文献1に記載の方法は、凝集剤による凝集工程と陽イオン交換体による吸着工程が別々であるために手間と時間が掛かる。また、上記特許文献2に記載の方法は、所望の濃度以下まで無機イオンを減少させるのに時間がかかる。いずれの方法も水浄化性能が満足のいくものではなかった。
 さらにこれらの文献に記載の方法は、排水を浄化処理する自動化装置は全く意図しておらず、文献に記載の浄化剤は、自動化システム装置に供するうえで適したものではなかった。
 そこで、所定の時間内に所望の濃度以下まで無機イオンを減少させることができる水浄化性能に優れた水浄化剤であって、自動化システム装置にも好適に使用し得る水浄化剤の提供が望まれていた。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、水浄化性能に優れた水浄化剤であって、排水の自動化浄化装置にも好適に使用し得る水浄化剤を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 植物粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物の表面には、前記植物粉末が前記高分子凝集剤で覆われている被覆部分と、前記植物粉末が前記高分子凝集剤で覆われていない非被覆部分とが存在することを特徴とする水浄化剤である。
<2> 前記被覆部分の面積と前記非被覆部分の面積の合計に対する前記被覆部分の面積の割合が10%~90%である、前記<1>に記載の水浄化剤である。
<3> 前記被覆部分の面積と前記非被覆部分の面積の合計に対する前記被覆部分の面積の割合が30%~70%である、前記<1>から<2>のいずれかに記載の水浄化剤である。
<4> 前記植物粉末が、長朔黄麻、モロヘイヤ、小松菜、三つ葉、水菜、及びほうれん草のいずれかである、前記<1>から<3>のいずれかに記載の水浄化剤である。
<5> 前記植物粉末が長朔黄麻である、前記<4>に記載の水浄化剤である。
<6> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号2013の「中黄麻4号」である、前記<4>から<5>のいずれかに記載の水浄化剤である。
<7> 前記水浄化剤のメジアン径が150μm以上である、前記<1>から<6>のいずれかに記載の水浄化剤である。
<8> 前記高分子凝集剤がポリアクリルアミドである、前記<1>から<7>のいずれかに記載の水浄化剤である。
<9> 水浄化剤が、前記植物粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される、前記<1>から<8>のいずれかに記載の水浄化剤である。
<10> 前記<1>から<9>のいずれかに記載の水浄化剤を水に溶かし、植物粉末及び高分子凝集剤の分散液を得、無機系不要物を含有する排水に該分散液を供することにより、排水中の無機系不要物を除去することを特徴とする水浄化方法である。
<11> 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、前記<10>に記載の水浄化方法である。
<12> 前記無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、ヒ素イオン、カドミウムイオン、錫イオン、及び鉛イオンの少なくともいずれかの無機イオンに対し不溶化処理を施した後、前記分散液を前記排水に供する、前記<11>に記載の水浄化方法である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、水浄化性能に優れた水浄化剤であって、排水の自動化浄化装置にも好適に使用し得る水浄化剤を提供することができる。
図1は、造粒物の表面の一例を示す走査型電子顕微鏡像(SEM像)である。 図2は、造粒物の表面の一例を示す走査型電子顕微鏡像(SEM像)である。 図3は、造粒物の表面の一例を示す走査型電子顕微鏡像(SEM像)である。
(水浄化剤)
 本発明の水浄化剤は、植物粉末と高分子凝集剤との混合物を含む造粒物からなる。
 前記造粒物の表面には、前記植物粉末が前記高分子凝集剤で覆われている被覆部分と、前記植物粉末が前記高分子凝集剤で覆われていない非被覆部分とが存在する。
 上記要件を満たす本発明の水浄化剤は、水浄化性能に優れた水浄化剤であって、排水の自動化浄化装置にも好適に使用し得る水浄化剤となる。
 本発明者らは、水浄化性能に優れた水浄化剤を提供するため、植物粉末を含む水浄化剤について鋭意検討を行った。その結果、植物粉末と高分子凝集剤とを混練して得られた造粒物において、前記造粒物の表面に、造粒物の表面に存在する植物粉末が高分子凝集剤で覆われている被覆部分と、高分子凝集剤で覆われていない非被覆部分とを存在させることにより、このような造粒物が水浄化性能に優れていることを見出した。
 理由は明らかではないが、以下のように考えられる。
 本発明では、工業排水、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、鉛などの無機系不要物を含有する工業排水を対象とし、その排水から無機系不要物を除去する(水の浄化ともいう)のに、無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオンなどの無機イオンを不溶化し、懸濁固形物(本発明では、ミクロフロックともいう)を形成させ、該ミクロフロックを凝集沈降させ、固液分離することにより行っている。かかる水の浄化の際、植物粉末と高分子凝集剤とからなる造粒物を使うと、
(i)高分子凝集剤により排水中の無機イオンのミクロフロック化が促進される、
(ii)植物粉末により排水中の無機イオンの吸着効果が高まる、
(iii)植物粉末に存在する細孔によりミクロフロックを吸着する効果が高まる、
と考えている。
 そこで、植物材料の繊維の空隙(ポーラス)部分が高分子凝集剤で全く覆われていない(被覆部分が形成されていない)と、植物粒子が急速に吸水し沈降してしまい、上記吸着効果を発揮することができず、一方、ポーラス部分が高分子凝集剤で完全に覆われていると(非被覆部分が形成されていない)と、上記陽イオン交換機能を有する植物粉末粒子と排水とが十分接触できないため、上記(ii)及び(iii)の効果を発揮することができないのではないかと考えられる。
 従って、前記被覆部分と前記非被覆部分とを両方、表面に有する本発明で規定する造粒物は、優れた水浄化性能を示すことができるのではないかと考えている。
 表面に前記被覆部分と前記非被覆部分とを有する本発明で規定する造粒物は、後述する製造方法により作製することができる。
 そして、後述する製造方法で作製した上記要件を満たす本発明で規定する造粒物は、優れた耐沈降性を示す他、粘度や嵩比重も良好な値を示す(下記実施例の結果参照)。このような物性を示す造粒物であることも、優れた水浄化性能を示す要因の一つであると考えられる。
 また、本発明で規定する造粒物は、下記実施例で示すように流動性指数が良好な値を示し、流動性に優れており、自動化浄化装置にも好適に使用し得る。
 以下、水浄化剤の具体的な構成について説明する。   
<植物>
 前記植物としては、排水中の不要物(ニッケル、銅、フッ素など)を凝集分離することができる植物であれば、特に制限はなく、例えば、長朔黄麻(チョウサクコウマ)、モロヘイヤ、小松菜、三つ葉、水菜、ほうれん草などを挙げることができる。これらの植物粉末は、陽イオン交換機能が高く、また前記無機イオンを含む排水中のミクロフロックを吸着し得る細孔を有するため、好ましく用いることができる。
 植物の部位としては、葉、茎、根のいずれの部分であっても使用できる。
 前記植物の中でも、長朔黄麻(チョウサクコウマ)、及びモロヘイヤが好ましく、下記実施例で良好な結果を示した、長朔黄麻がより好ましい。
 また、長朔黄麻の中でも、中国農業科学院麻類研究所による鑑定番号2013の「中黄麻4号」が特に好ましい。
 「中黄麻4号」とは、以下の特性を有する。
 農産物種類:黄麻
 品種の出所:湘黄麻3号×0-4(l)交雑F1代と湘黄麻3号で繁殖したもの
 特徴特性:中黄麻4号は、長果種の通常品の黄麻で、緑茎で、茎が円筒状で、葉っぱが分散した針の形で、葉の柄が緑色で、主茎との角が小さくて、側芽・托葉がある。萼が緑色で、長果円筒形で、五室、種が晩熟品種である。
<高分子凝集剤>
 前記高分子凝集剤としては、上記植物と同様、排水中の前記無機系不要物を除去する効果を示すものであれば、特に制限はなく、例えば、ポリアクリルアミド(PAM)、ポリアクリルアミドの部分加水分解塩、ポリアミン、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、CMCナトリウム塩などを挙げることができる。これらの中でも、ポリアクリルアミドが好ましく使用できる。該ポリアクリルアミドとしては、例えば、市販されているFlopan AN 905、Flopan AN 926、Flopan AN 956(株式会社エス・エヌ・エフ製)などを用いることができる。
<植物粉末と高分子凝集剤との混合物の造粒物>
 前記植物粉末と前記高分子凝集剤の混合比率は、質量比で10:90~90:10の範囲であるとよい。
 前記造粒物は、以下の特性を示す。
<<表面状態>>
 前記造粒物の表面には、前記植物粉末が前記高分子凝集剤で覆われている被覆部分と、前記植物粉末が前記高分子凝集剤で覆われていない非被覆部分とが存在する。
 造粒物の表面は、植物粉末の繊維構造により穴がたくさん空いている、空隙(ポーラス)が存在する多孔質形状となっている。
 前記被覆部分は、植物材料の繊維の空隙(ポーラス)部分に高分子凝集剤が入り込み、造粒物表面にあるポーラス部分が高分子凝集剤で覆われることにより形成される。
 前記被覆部分、及び前記非被覆部分の状態を図1から図3をもとに説明する。
 図2は、ポーラス部が高分子凝集剤で覆われていない造粒物の表面のSEM像である。ポーラス部が高分子凝集剤で覆われておらず、被覆部分が形成されていない、つまり被覆部分の面積が造粒物の表面積に対し0%である状態を示している。
 図3は、ポーラス部が高分子凝集剤で完全に覆われている造粒物の表面のSEM像である。非被覆部分が形成されていない、つまり被覆部分の面積が造粒物の表面積に対し100%である状態を示している。
 それに対し、図1は、本発明で規定する造粒物の一例を示すSEM像である。図1は、造粒物の表面に被覆部分と非被覆部分が混在している状態を示しており、図1では被覆部分の面積が造粒物の表面積に対し50%である状態を示している。
 前記造粒物が、上述した(i)~(iii)の効果を十分発揮するためには、造粒物の表面に存在する植物粉末の少なくとも一部が高分子凝集剤で覆われていない非被覆部が形成されていることが重要である。本発明において、前記被覆部分の面積は、前記造粒物の表面積の100%未満であり、90%以下であるとよい。一方、上述した(i)~(iii)の効果を十分発揮するためには、造粒物の表面に存在する植物粉末の少なくとも一部が高分子凝集剤で覆われている被覆部が形成されていることも重要である。本発明において、前記被覆部分の面積は、前記造粒物の表面積の0%より大きく、10%以上であるとよい。
 本発明では、被覆部分の面積は、以下のように測定しており、表面積における被覆部分の面積の割合は、下記(1)式より求める。
 被覆部分の面積/(被覆部分の面積+非被覆部分の面積)  (1)
 本発明において、前記被覆部分の面積と前記非被覆部分の面積の合計に対する前記被覆部分の面積の割合は、10%~90%であることが好ましく、30%~70%であることがより好ましい。
 造粒物の表面に被覆部分と非被覆部分とを形成させるのに、後述する製造方法を用いて造粒物を作製するのが好ましい。特に該製造方法を使用すると、被覆部分と非被覆部分の割合を調整することもできる。該製造方法については、後述する。
 前記被覆部分、及び前記非被覆部分の面積は、SEM像から以下の方法により求めることができる。
[表面積における被覆部分の割合の測定方法]
 図1で示すように、斜めの繊維質構造に沿ったポーラス構造が観察できる部分は、高分子凝集剤によって覆われていない非被覆部分であり、斜めの繊維質構造に沿ったポーラス構造が観察できない部分は、高分子凝集剤によって覆われている被覆部分である。そこで、SEM像を観察し、それぞれの部分に該当する箇所に分け、それぞれの面積を計測する。そして、上記(1)式で表されるように、被覆部分の面積と非被覆部分の面積の合計に対する被覆部分の面積の割合を算出することにより、表面積における前記被覆部分の割合とする。
 尚、測定は、上述した植物の繊維質構造が判別できる程度に画像が明るい領域に対して行なう。例えば、造粒物表面がくぼんでいる等の理由で暗く表示されており表面構造が認識できない場合や、あるいは、図1から図3においてもところどころ見られるが、画像が暗くて表面構造が確認しにくい場合には、その領域は測定から外す。
<<メジアン径>>
 本発明で規定する造粒物のメジアン径は、150μm以上であるとよく、200μm以上900μm以下であるとより好ましい。
 メジアン径が、150μm未満であると、造粒物の流動性が下がるために供給機での定量性能が低下する。
 また、メジアン径が900μm以下であると、粉砕機や自動供給機等での配管内での詰まりを生じる恐れがなく、自動化浄化装置に好適に使用し得る。
 ここで、メジアン径(d50ともいう)とは、前記造粒物を粒子径の大きさでプロットしたとき、全体の個数の50%にプロットされた粒子径(粒子径の大きい側と小さい側が等量となっている粒子径)をいう。本発明において、粒子径とは、容積粒子径をいう。
 また、前記メジアン径は、マスターサイザー2000(マルバーン インスツルメント製)等の市販の測定機により計測することができる。
<<流動性指数>>
 本発明の水浄化剤の安息角、圧縮度、及びスパチュラ角の3項目を測定することにより得られるCarrの流動性指数は、45以上であると好ましく、52.5以上であるとより好ましい。
 ここで、安息角、圧縮度、及びスパチュラ角とは、Carrの流動性指数(R.L.Carr‘Evaluating Flow Properties of Solids’ Chemical Engineering January 18. 1965)の測定項目に挙げられている安息角、圧縮度、及びスパチュラ角をいう。
 これら安息角、圧縮度、及びスパチュラ角は、例えば、市販の各種粉体物性測定器で測定することができる。具体的には、例えば、パウダーテスターPT-N型(ホソカワミクロン株式会社製)を用いて後述する方法により測定することができる。
 得られた安息角、圧縮度、及びスパチュラ角から、流動性指数を求めるには、Carrの流動性指数として一般に知られている基準を用いることができる。
 本発明では、ホソカワミクロン株式会社が、R.L.Carr及びMcGraw-Hill社の承認を得て、上記Chemical Engineering January 18.(1965)の166ページ及び167ページをもとに作成した、ホソカワミクロン株式会社が公表しているCarrの流動性指数表を使用する。
 Carrの流動性指数の評価項目のうち、本発明に関係する安息角、圧縮度、及びスパチュラ角の3項目における流動性指数表を下記表1に示す。該表1をもとに、安息角、圧縮度、及びスパチュラ角のそれぞれの測定結果に対応した安息角の指数、圧縮度の指数、スパチュラ角の指数を求め、それらの値を合計すればよい。本発明では、その合計値を、前記水浄化剤の流動性指数とする。
Figure JPOXMLDOC01-appb-T000001
 前記安息角、前記圧縮度、及び前記スパチュラ角は、次のようにして求めることができる。
[安息角(°)の測定]
 安息角(°)は、パウダーテスターPT-N型(ホソカワミクロン社製)を用い、下記の注入法により測定することができる。
 円形状の受け台にロートを介して、測定する試料を落下させ、山型に層を形成したときの斜面が水平面となす角を測定する。
[圧縮度(°)の測定]
 圧縮度のDa(固め見かけ比重)、Db(ゆるみ見かけ比重)は、パウダーテスターPT-N型(ホソカワミクロン社製)を用い測定することができる。
 100ccのステンレスカップの上部に専用のキャップを取り付け、150ccから200ccの試料を入れ、2cmの高さから180回繰り返し落として振動を与えた後の試料の比重を測定し、Daとする。
 100ccのステンレスカップに100ccの試料を静かに入れ、その時の試料の比重を測定し、Dbとする。
 DaとDb値を下記(2)式に代入する。
 圧縮度(%)={(Da-Db)/Da}×100   (2)
 Da(固め見かけ比重):粉末及び/又は粒を一定容積の容器に入れて、高さ2cmから180回繰り返し落として振動を与えた後に計測される比重。
 Db(ゆるみ見掛け比重):粉末及び/又は粒を一定容積の容器に静かに入れたとき計測される比重。
[スパチュラ角(°)の測定]
 スパチュラ角(°)は、パウダーテスターPT-N型(ホソカワミクロン社製)を用い測定することができる。
 試料を水平に置いた矩形のスパチュラが埋まるように堆積させ、スパチュラをゆっくり垂直方向に引き上げたときに形成する山の断面角度(A)と、そこに一定の衝撃を与えて粉体の山が崩れたあとに形成される山の断面角度(B)を測定し、それらの値から下記(3)式に代入し、スパチュラ角(°)を求める。
 スパチュラ角(°)={(A+B)/2}   (3)
 後述する製造方法で作製した本発明の水浄化剤は、下記実施例で示すように流動性指数が良好な結果を示す。
<<嵩比重>>
 後述する製造方法で作製した本発明の水浄化剤は、嵩比重の値が良好な値を示し、嵩比重の値のバラツキも少ないものとなる。
 前記水浄化剤の嵩比重は、0.3g/cm以上0.8g/cm以下であるとよい。
 嵩比重は、パウダーテスターPT-N型(ホソカワミクロン社製)を用い測定することができる。
 100ccのステンレスカップに100ccの試料を静かに入れ、その時の試料の比重を測定し、嵩比重とする。
 前記水浄化剤の嵩比重のばらつき(嵩比重の最小値に対する、嵩比重の最大値と最小値との差の割合)は、4.5%以下であるとよい。
 嵩比重のばらつきは以下のように求めることができる。
 測定試料である水浄化剤を、一定の大きさの袋(例えば、700mm×500mmのポリ袋)に入れ、袋の口を熱封止する。その際、次の振動操作において、該水浄化剤が自由に動ける程度の空間が確保されているように袋に入れる水浄化剤の量を考慮する。次に、造粒物が崩れない程度に、袋に入れた水浄化剤を上下に振動させ、その後、該袋の上下部分を含む5点から試料を取り出し、それぞれの嵩比重を測定する。
 嵩比重の最大値と最小値を記録し、その最大値と最小値をもとに下記(4)式の計算によりばらつきを求める。
  (嵩比重の最大値と最小値の差/嵩比重の最小値)×100  (4)
<造粒物の製造方法>
 本発明で規定する造粒物は、前記植物粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される。
 さらに、前記粉砕工程後に、ふるいにより造粒物を分級する分級工程を含んでもよい。
 本発明者らは、造粒する際、混練物に剪断力(シェア)を強くかけ過ぎると、植物材料の繊維のポーラス部分に高分子凝集剤が入り込み、表面の植物粉末が高分子凝集剤で覆われてしまうことを実験により確認した。
 そこで、混練物にかかるシェアをコントロールするため、延伸・シート化工程による造粒法で造粒物を製造したところ、被覆部分と非被覆部分とが存在する造粒物が製造できることを見出した。さらに、延伸・シート化工程による造粒法によると、被覆部分の表面積における割合もコントロールすることができる。
 前記延伸・シート化工程では、混練物はローラーにより徐々に伸ばされていき、段階を踏んで所定の厚みのシート状成形物が形成される。この方法によれば、混練物の粘度が良好に保たれたまま成形物を製造することができ、このことが本発明で規定する造粒物を製造するうえで効果的に作用しているのではないかと思われる。
 前記混練工程では、乾燥植物を粗粉砕をし、次に微粉砕をし、所望の大きさの植物粉末を得、その後、得られた植物粉末と、高分子凝集剤とを混合し、水分を加えて混練を行う。
 ここで、水の添加量としては、例えば、植物粉末と高分子凝集剤とを混合した合計質量に対し、例えば3倍の質量程度の水を加えるのが好ましい。
 混練は、ミキサー、例えばプラネタリーミキサーなどの縦型ミキサー等を用い、回転数、及び時間を所定の範囲に設定して行う。
 ミキサーにおける混練の際の回転数、及び時間は、植物の種類や、植物粉末と高分子凝集剤との混合比等の条件を考慮しつつ適宜設定することができるが、例えば、回転数は20rpm~150rpmが好ましく、時間は、5分~25分が好ましい。
 前記延伸・シート化工程では、得られた混練物に対しローラーを用い延伸法により、厚さ2mm~30mmになるよう、好ましくは10mm程度になるまで延伸し、シート状に成形するとよい。
 尚、混練物にかかるシェアをコントロールすることにより、造粒物表面の植物粉末の被覆状態をコントロールすることができる。例えば、前記混練工程において、植物粉末と高分子の混合比率、加水量、混合速度(混練時のミキサーの回転数)、混合時間(ミキサーでの混練時間)等の条件を変更したり、あるいは前記延伸・シート化工程において、延伸条件を変更することにより、造粒物表面の植物粉末の被覆状態をコントロールするとよい。
 前記乾燥工程では、得られた成形物に対し、多段階熱風式乾燥機を用い、80℃~150℃の温度で2時間~12時間乾燥させるとよい。
 前記粉砕工程では、粉砕機、例えば気流式超微粉砕機を用いメジアン径が150μm~900μmの範囲になるよう粉砕するとよい。
 前記分級工程では、粉砕した粉末を、分級機、例えば振動ふるい機、あるいはカートリッジ式ふるい機を用い、メジアン径が150μm~900μmの範囲になるよう粒子径が所定の範囲にある造粒物を分級するとよい。
(水浄化方法)
 本発明の水浄化方法は、上述した本発明の水浄化剤を水に溶かし、植物粉末と高分子凝集剤との分散液を得、該分散液を排水に供することにより排水中の無機系不要物を除去する。
 前記無機系不要物としては、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物が挙げられる。
 本発明の水浄化方法について具体的に説明する。
 排水中の無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオンなどの無機イオンに対し不溶化処理を施し、ミクロフロックを形成させる。この排水に、0.1%から0.2%の水溶液とした前記分散液を供する。そして、ミクロフロックを凝集沈降させ、沈降分離された沈殿物を取り除くと、排水は浄化される。
 前記不溶化処理では、例えば排水に塩基を加え排水を塩基性にして、前記無機イオンを不溶化させる。さらに、塩基を加えた後、高分子凝集剤を単独で添加してもよい。その場合、本発明の水浄化剤を添加する前に、高分子凝集剤を単独で添加しておくと、排水中のミクロフロックのフロックサイズを大きくすることができる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
 実験用に使用する排水として、硫酸ニッケル六水和物を純水に溶解し、50mg/Lのニッケルイオンを含む水溶液を800g作製した(仮想排水)。
 次に、上記排水に苛性ソーダをpHが10になるよう供給し、攪拌してニッケルを不溶化した。該排水の上澄み液のニッケルイオン濃度は2mg/Lであった。
<水浄化剤>
 次に、植物として「群馬県前橋産 ちぢみほうれん草」を、高分子凝集剤としてポリアクリルアミド(PAM)を使用した。下記に示す製造方法により、造粒物1を得、かかる造粒物1を水浄化剤1として使用した。
<<水浄化剤の製造方法>>
 植物粉末と高分子凝集剤とを合わせた固形分の質量に対し3倍の質量の水を加えて得られた混練物(植物粉末+高分子凝集剤+水=30kg)を、プラネタリーミキサー(株式会社愛工舎製作所製、混合機ACM-110、容量110L)に入れ、回転数150rpm、20分混合の条件にてシェアをかけ混練した。
 得られた混練物をプレス機(コマツ産機株式会社製 45tプレス機)を用いてローラーによる延伸を施し、厚さ10mm程度のシート状の成形物を作製した。
 この成形物を、多段階熱風式乾燥機(株式会社七洋製作所製、ラック式オーブン装置)を用いて、120℃で3時間、さらに150℃で2時間乾燥させた。
 次に乾燥させたシートを気流式超微粉砕機(増幸産業株式会社製 セレンミラー)を用いてメジアン径が400μmになるよう粉砕した。
 尚、メジアン径はマスターサイザー2000(マルバーン インスツルメント製)により測定した。
 粉砕した粉末を分級機(株式会社ダルトン製 振動ふるい機)を用い、粒子径が200μm~900μmの範囲に入るもののみ使用するよう、200μm未満と900μmより大きいものは、ふるいにかけ取り除いた(カットした)。
 このようにして、造粒物1を得、水浄化剤1とした。
<特性評価>
 造粒物1の被覆部分の面積を、上述した測定方法により測定した。その結果、造粒物の表面積の50%が被覆部分であった。
 次に、上記排水に対して、水浄化剤1を固形分に対して7mg/Lになるように添加し、攪拌した。ここで、「固形分」の測定方法は、排水中のスラリー濃度を水分計にて計測し、逆算することにより、求めることができる。
 水浄化剤1を添加した排水を沈殿槽に移送し、その後静置して1時間毎に目視で状態を確認した。
 明らかに上澄み液と沈殿物の2層に分かれたと確認した時点を沈降時間として測定した。
 また、上澄み液を採取し、ラムダ(Λ)9000(共立理化学研究所製)により、イオン濃度を測定した。
 その結果、下記の基準により水浄化性能を評価した。
[水浄化性能の評価基準]
 ◎:1.0mg/L未満(検出限界以下)
 ○:1.0mg/L以上1.5mg/L未満
 △:1.5mg/L以上2.0mg/L未満
 ×:2.0mg/L以上
 実施例1の評価結果を表2-1に示す。尚、表2-1において、植物粉末1は、「群馬県前橋産 ちぢみほうれん草」を、PAMはポリアクリルアミドを表す(表2-2~表2-4においても同様)。
(実施例2)
 実施例1において、植物として、長朔黄麻(中国・広州産)を使用し、混練工程におけるミキサーの回転数を80rpm、時間を15分に変更した以外は、実施例1と同様にして、造粒物2を作製した。
 造粒物2からなる水浄化剤2を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例2の評価結果を表2-1に示す。尚、表2-1において、植物粉末2は、「長朔黄麻(中国・広州産)」を表す。
(実施例3)
 実施例2において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号2013、「中黄麻4号」を使用した。それ以外は、実施例2と同様にして、造粒物3を作製した。
 造粒物3からなる水浄化剤3を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例3の評価結果を表2-1に示す。尚、表2-1において、植物粉末3は、「中黄麻4号」を表す。
(実施例4)
 実施例3において、混練工程におけるミキサーの回転数を150rpm、時間を5分に変更した以外は、実施例3と同様にして、造粒物4を作製した。
 造粒物4からなる水浄化剤4を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例4の評価結果を表2-1に示す。
(実施例5)
 実施例3において、混練工程におけるミキサーの回転数を100rpm、時間を10分に変更した以外は、実施例3と同様にして、造粒物5を作製した。
 造粒物5からなる水浄化剤5を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例5の評価結果を表2-1に示す。
(実施例6)
 実施例3において、混練工程におけるミキサーの回転数を50rpm、時間を20分に変更した以外は、実施例3と同様にして、造粒物6を作製した。
 造粒物6からなる水浄化剤6を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例6の評価結果を表2-2に示す。
(実施例7)
 実施例3において、混練工程におけるミキサーの回転数を20rpm、時間を25分に変更した以外は、実施例3と同様にして、造粒物7を作製した。
 造粒物7からなる水浄化剤7を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例7の評価結果を表2-2に示す。
(実施例8)
 実施例3において、分級工程を行わなかった以外は、実施例3と同様にして、造粒物8を作製した。
 造粒物8からなる水浄化剤8を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例8の評価結果を表2-2に示す。
(実施例9)
 実施例3において、高分子凝集剤としてポリアミンを使用した以外は、実施例3と同様にして、造粒物9を作製した。
 造粒物9からなる水浄化剤9を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例9の評価結果を表2-2に示す。
(実施例10)
 実験用に使用する排水として、フッ化カリウムを純水に溶解し、2,500mg/Lのフッ素イオンを含む水溶液を800g作製した(仮想排水)。
 次に、上記排水に、塩化カルシウムを8.6mg/L添加し、pHが7.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌してフッ素を不溶化した。この操作により、フッ素水溶液は、ミクロフロックを含む上澄み液と沈殿物に分離した。
 この時点で、該排水の上澄み液のイオン濃度は10mg/Lであった。
 上記排水を使用したこと以外は、実施例3と同様にして、造粒物3からなる水浄化剤3を使用して、水浄化剤の特性を評価した。実施例10の評価結果を表2-2に示す。
(実施例11)
 実験用に使用する排水として、塩化第二鉄・六水和物を純水に溶解し、200mg/Lの鉄イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが6.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌して、鉄を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
 上記排水を使用したこと以外は、実施例3と同様にして、造粒物3からなる水浄化剤3を使用して、水浄化剤の特性を評価した。実施例11の評価結果を表2-3に示す。
(実施例12)
 実験用に使用する排水として、硫酸銅・五水和物を純水に溶解し、100mg/Lの銅イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが7.0~8.0になるよう水酸化ナトリウムを添加しながら攪拌して、銅を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
 上記排水を使用したこと以外は、実施例3と同様にして、造粒物3からなる水浄化剤3を使用して、水浄化剤の特性を評価した。実施例12の評価結果を表2-3に示す。
(実施例13)
 実験用に使用する排水として、硝酸亜鉛・六水和物を純水に溶解し、100mg/Lの亜鉛イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが.9.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、亜鉛を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
 上記排水を使用したこと以外は、実施例3と同様にして、造粒物3からなる水浄化剤3を使用して、水浄化剤の特性を評価した。実施例13の評価結果を表2-3に示す。
(実施例14)
 実験用に使用する排水として、二クロム酸カリウムを純水に溶解し、100mg/Lのクロムイオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、pHが6.0~7.5になるよう水酸化ナトリウムを添加しながら攪拌して、クロムを不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
 上記排水を使用したこと以外は、実施例3と同様にして、造粒物3からなる水浄化剤3を使用して、水浄化剤の特性を評価した。実施例14の評価結果を表2-3に示す。
(実施例15)
 実験用に使用する排水として、三酸化二ヒ素を純水に溶解し、10mg/Lのヒ素イオンを含む水溶液を800g作製した(仮想廃液)。
 次に、上記排水に、塩化第二鉄を65mg/L、塩化カルシウムを354mg/L添加し、次に、pHが8.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、ヒ素を不溶化した。
 この時点で、該排水の上澄み液のイオン濃度は0.05mg/Lであった。
 上記排水を使用したこと以外は、実施例3と同様にして、造粒物3からなる水浄化剤3を使用して、水浄化剤の特性を評価した。
 但し、実施例15においては、実施例3と同様にして、沈降時間を測定した後、上澄み液を採取し、エバポレーターにより体積が1/100になるよう濃縮後、イオン濃度を測定した。ヒ素イオンについては、イオン濃度が0.01mg/L以下を好ましい結果であると判断し、◎として評価した。実施例15の評価結果を表2-3に示す。
(実施例16)
 実施例3において、乾燥シート粉砕時におけるメジアン径を150μmに変更した以外は、実施例3と同様にして、造粒物16を作製した。
 造粒物16からなる水浄化剤16を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例16の評価結果を表2-3に示す。
(実施例17)
 実施例3において、乾燥シート粉砕時におけるメジアン径を100μmに変更した以外は、実施例3と同様にして、造粒物17を作製した。
 造粒物17からなる水浄化剤17を使用して、実施例1と同様にして、水浄化剤の特性を評価した。実施例17の評価結果を表2-3に示す。
(比較例1)
 実施例1において、造粒物を使用せず、高分子凝集剤のみ使用した以外は、実施例1と同様にして、実験を行った。
 比較例1の比較用水浄化剤1を使用して、実施例1と同様にして、水浄化剤の特性を評価した。比較例1の評価結果を表2-4に示す。
(比較例2)
 実施例1において、造粒物を使用せず、植物粉末と高分子凝集剤とをそれぞれ単体で使用した以外は、実施例1と同様にして、実験を行った。
 比較例2の比較用水浄化剤2を使用して、実施例1と同様にして、水浄化剤の特性を評価した。比較例2の評価結果を表2-4に示す。
(比較例3)
 実施例3において、混練工程におけるミキサーの回転数を20rpm、時間を30分に変更した以外は、実施例3と同様にして、比較例3の比較用造粒物3を作製した。
 比較用造粒物3からなる比較用水浄化剤3を使用して、実施例1と同様にして、水浄化剤の特性を評価した。比較例3の評価結果を表2-4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(実施例18)
 実施例1から9で得られた造粒物1から9について、上述した方法により安息角、圧縮度、スパチュラ角を測定し、上記表1をもとに流動性指数を算出した。
 下記の基準で流動性を評価したところ、実施例1から9で得られた造粒物1から9は全て、○の良好な結果を示した。
 ○:52.5~75
 △:45~52
 ×:0~44.5
(実施例19)
 実施例3で得られた造粒物3は、下記表3で示すような物性を示す。これらの物性は水浄化剤として使用した場合、良好な結果につながる有効な特性であると考えている。このような良好な物性を示す水浄化剤が得られたのは、延伸・シート化工程による造粒法で製造したことが大きく影響していると思われる。
Figure JPOXMLDOC01-appb-T000006
 尚、表3中、耐沈降性(時間)は、上記1において記載した沈降時間のことである。また、嵩比重は、上述した方法により測定した。溶解液粘度(mPa・S)は、B型粘度計により測定した。
 以上、実施例1から19の結果から、本発明の水浄化剤は、短時間で所望の濃度以下まで無機イオン濃度を減少させることできる、水浄化性能に優れた水浄化剤であることが確認できた。また、本発明の水浄化剤は、流動性がよく、自動供給機や定量器などにおいて、つまりを生じることはなかった。自動化システム装置に好適に使用し得る水浄化剤であることが確認できた。
 

Claims (12)

  1.  植物粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物の表面には、前記植物粉末が前記高分子凝集剤で覆われている被覆部分と、前記植物粉末が前記高分子凝集剤で覆われていない非被覆部分とが存在することを特徴とする水浄化剤。
  2.  前記被覆部分の面積と前記非被覆部分の面積の合計に対する前記被覆部分の面積の割合が10%~90%である、請求項1に記載の水浄化剤。
  3.  前記被覆部分の面積と前記非被覆部分の面積の合計に対する前記被覆部分の面積の割合が30%~70%である、請求項1から2のいずれかに記載の水浄化剤。
  4.  前記植物粉末が、長朔黄麻、モロヘイヤ、小松菜、三つ葉、水菜、及びほうれん草のいずれかである、請求項1から3のいずれかに記載の水浄化剤。
  5.  前記植物粉末が長朔黄麻である、請求項4に記載の水浄化剤。
  6.  前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号2013の「中黄麻4号」である、請求項4から5のいずれかに記載の水浄化剤。
  7.  前記水浄化剤のメジアン径が150μm以上である、請求項1から6のいずれかに記載の水浄化剤。
  8.  前記高分子凝集剤がポリアクリルアミドである、請求項1から7のいずれかに記載の水浄化剤。
  9.  水浄化剤が、前記植物粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される、請求項1から8のいずれかに記載の水浄化剤。
  10.  請求項1から9のいずれかに記載の水浄化剤を水に溶かし、植物粉末及び高分子凝集剤の分散液を得、無機系不要物を含有する排水に該分散液を供することにより、排水中の無機系不要物を除去することを特徴とする水浄化方法。
  11.  前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、請求項10に記載の水浄化方法。
  12.  前記無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、ヒ素イオン、カドミウムイオン、錫イオン、及び鉛イオンの少なくともいずれかの無機イオンに対し不溶化処理を施した後、前記分散液を前記排水に供する、請求項11に記載の水浄化方法。
PCT/JP2016/058410 2015-03-30 2016-03-16 水浄化剤、及び水浄化方法 WO2016158433A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202210151664.2A CN114307266A (zh) 2015-03-30 2016-03-16 水净化剂和水净化方法
CN201680018554.1A CN107427745A (zh) 2015-03-30 2016-03-16 水净化剂和水净化方法
BR112017020968-3A BR112017020968A2 (ja) 2015-03-30 2016-03-16 A water depurator and a water cleaning method
RU2017134507A RU2017134507A (ru) 2015-03-30 2016-03-16 Агент для очистки воды и способ очистки воды
EP16772316.2A EP3278854B1 (en) 2015-03-30 2016-03-16 Water-purifying agent and water purification method
KR1020177030636A KR102571739B1 (ko) 2015-03-30 2016-03-16 수 정화제 및 수 정화 방법
US15/560,077 US20180079665A1 (en) 2015-03-30 2016-03-16 Water-Purifying Agent and Water Purification Method
US16/988,820 US11440821B2 (en) 2015-03-30 2020-08-10 Water-purifying agent and water purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-069266 2015-03-30
JP2015069266A JP6109225B2 (ja) 2015-03-30 2015-03-30 水浄化剤、及び水浄化方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/560,077 A-371-Of-International US20180079665A1 (en) 2015-03-30 2016-03-16 Water-Purifying Agent and Water Purification Method
US16/988,820 Division US11440821B2 (en) 2015-03-30 2020-08-10 Water-purifying agent and water purification method

Publications (1)

Publication Number Publication Date
WO2016158433A1 true WO2016158433A1 (ja) 2016-10-06

Family

ID=57004486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058410 WO2016158433A1 (ja) 2015-03-30 2016-03-16 水浄化剤、及び水浄化方法

Country Status (9)

Country Link
US (2) US20180079665A1 (ja)
EP (1) EP3278854B1 (ja)
JP (1) JP6109225B2 (ja)
KR (1) KR102571739B1 (ja)
CN (2) CN114307266A (ja)
BR (1) BR112017020968A2 (ja)
RU (1) RU2017134507A (ja)
TW (1) TWI685469B (ja)
WO (1) WO2016158433A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217841A1 (ja) * 2019-04-26 2020-10-29 デクセリアルズ株式会社 水浄化剤、及び水浄化方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067284A1 (ja) * 2018-09-27 2020-04-02 デクセリアルズ株式会社 アニオン性凝集剤、アニオン性凝集剤の製造方法、及び処理方法
CN112996581B (zh) * 2018-09-27 2023-02-10 迪睿合株式会社 阴离子性絮凝剂、阴离子性絮凝剂的制造方法和处理方法
CN113115897A (zh) * 2019-12-31 2021-07-16 丰益(上海)生物技术研发中心有限公司 降低含砷物质的砷含量的方法及应用
JP2021178290A (ja) * 2020-05-14 2021-11-18 デクセリアルズ株式会社 排水処理剤、及び排水処理剤の製造方法
EP4223382A4 (en) 2020-10-01 2024-02-21 Dexerials Corp ORGANIC COAGULANT AND METHOD FOR THE PRODUCTION THEREOF AND WATER PURIFICATION AGENT AND METHOD FOR THE PRODUCTION THEREOF

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983681A (ja) * 1972-12-18 1974-08-12
JPS522877A (en) * 1975-06-24 1977-01-10 Noubi Kogyo Kk Process and apparatus for granulating of high molecular coagulating ag ents
JPH07308527A (ja) * 1994-05-16 1995-11-28 Janome Sewing Mach Co Ltd 浴槽湯の清浄化装置及び清浄化方法
JPH11114313A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JPH11114314A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
US20110094968A1 (en) * 2009-10-22 2011-04-28 Profile Products L.L.C. Flocculant Composition For Dewatering Solids Laden Slurries
JP2011194384A (ja) * 2010-03-24 2011-10-06 Sony Corp 排水中の重金属イオンの除去方法
JP2011194385A (ja) * 2010-03-24 2011-10-06 Sony Corp 陽イオン交換体、及び排水中の重金属イオンの除去方法
JP2013078717A (ja) * 2011-10-03 2013-05-02 Rematec Corp 汚泥付着木材の洗浄廃水処理剤および処理法
JP2014008428A (ja) * 2012-06-28 2014-01-20 Sony Corp 凝集剤混合物及び凝集方法
JP2014505588A (ja) * 2011-01-14 2014-03-06 ソニー株式会社 植物由来の凝集剤、凝集剤混合物、凝集方法、及び、植物由来の凝集剤の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2145836A1 (de) * 1970-09-15 1972-03-16 Czeskoslovenska Akademie Ved., Prag Sorbens zum Trennen von Bestandteilen wässriger Flüssigkeiten und Aerosole und Verfahren zu seiner Herstellung
JPS5987098A (ja) * 1982-10-28 1984-05-19 Sanyo Chem Ind Ltd 汚泥の真空脱水方法
JPH09117776A (ja) 1995-10-27 1997-05-06 Yokohama Rubber Co Ltd:The 排水中の重金属イオンの除去方法
CA2380237A1 (en) 1999-07-26 2001-02-01 Ban D. Green Method for injecting dense additive into drilling wells and composition therefor
UA47749C2 (en) 2001-09-03 2004-12-15 Inst Technical Thermal Physics Nat Academy Sciences Ukraine Method of film cooling and appliance for its implementation
JP2003236567A (ja) 2002-02-14 2003-08-26 Nippon Shokubai Co Ltd 無機硫黄化合物を含有する排水の処理方法
US6783676B2 (en) 2002-02-28 2004-08-31 Aquafiber Technologies Corporation Pre- and post-treatment system and method for aquatic plant filtration using ozone
JP2004000923A (ja) 2002-03-28 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤の製造法
US7303084B2 (en) * 2004-01-27 2007-12-04 Mcphillips Kevin Compositions, devices, and methods for use in environmental remediation
FR2885125B1 (fr) 2005-04-28 2007-11-09 Rhodia Chimie Sa Utilisation de polysaccharides pour eliminer les metaux lourds contenus sous la forme d'anions dans les eaux
JP4422202B1 (ja) 2009-05-29 2010-02-24 佳和 福井 凝集剤組成物及び凝集処理方法
TWI445671B (zh) * 2010-03-24 2014-07-21 Sony Corp 陽離子交換器及移除廢水中重金屬離子之方法
KR20120021241A (ko) 2010-08-31 2012-03-08 스윙 가부시키가이샤 오니용 탈수 보조제 및 오니의 탈수 방법과 장치
CN102247814A (zh) * 2011-05-17 2011-11-23 中国农业科学院麻类研究所 用于重金属废水处理的生物质吸附剂及重金属废水处理方法
JP2013006174A (ja) 2011-05-24 2013-01-10 Hakki Sangyo Kk 染色排水を浄化処理するための凝集剤組成物および凝集方法
WO2013090569A2 (en) * 2011-12-13 2013-06-20 Soane Energy, Llc Treatment of wastewater
US20140014586A1 (en) * 2012-04-19 2014-01-16 Soane Energy, Llc Treatment of wastewater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983681A (ja) * 1972-12-18 1974-08-12
JPS522877A (en) * 1975-06-24 1977-01-10 Noubi Kogyo Kk Process and apparatus for granulating of high molecular coagulating ag ents
JPH07308527A (ja) * 1994-05-16 1995-11-28 Janome Sewing Mach Co Ltd 浴槽湯の清浄化装置及び清浄化方法
JPH11114313A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JPH11114314A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
US20110094968A1 (en) * 2009-10-22 2011-04-28 Profile Products L.L.C. Flocculant Composition For Dewatering Solids Laden Slurries
JP2011194384A (ja) * 2010-03-24 2011-10-06 Sony Corp 排水中の重金属イオンの除去方法
JP2011194385A (ja) * 2010-03-24 2011-10-06 Sony Corp 陽イオン交換体、及び排水中の重金属イオンの除去方法
JP2014505588A (ja) * 2011-01-14 2014-03-06 ソニー株式会社 植物由来の凝集剤、凝集剤混合物、凝集方法、及び、植物由来の凝集剤の製造方法
JP2013078717A (ja) * 2011-10-03 2013-05-02 Rematec Corp 汚泥付着木材の洗浄廃水処理剤および処理法
JP2014008428A (ja) * 2012-06-28 2014-01-20 Sony Corp 凝集剤混合物及び凝集方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217841A1 (ja) * 2019-04-26 2020-10-29 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
JP2020179358A (ja) * 2019-04-26 2020-11-05 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
JP7190959B2 (ja) 2019-04-26 2022-12-16 デクセリアルズ株式会社 水浄化剤、及び水浄化方法

Also Published As

Publication number Publication date
JP2016187782A (ja) 2016-11-04
JP6109225B2 (ja) 2017-04-05
TW201634401A (zh) 2016-10-01
BR112017020968A2 (ja) 2018-07-10
EP3278854A4 (en) 2018-10-31
US20180079665A1 (en) 2018-03-22
US20200369539A1 (en) 2020-11-26
KR102571739B1 (ko) 2023-08-28
CN107427745A (zh) 2017-12-01
EP3278854B1 (en) 2021-07-07
RU2017134507A (ru) 2019-04-04
US11440821B2 (en) 2022-09-13
EP3278854A1 (en) 2018-02-07
CN114307266A (zh) 2022-04-12
KR20170131578A (ko) 2017-11-29
TWI685469B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2016158433A1 (ja) 水浄化剤、及び水浄化方法
JP6885826B2 (ja) 水浄化剤の製造方法、及び排水処理方法
JP6826011B2 (ja) 水浄化用分散液、該水浄化用分散液の製造方法、及び排水処理方法
WO2016158256A1 (ja) 水浄化剤、及び水浄化方法
WO2016052696A1 (ja) 水浄化剤、及び水浄化方法
TWI756264B (zh) 水淨化用分散液、該水淨化用分散液的製造方法、以及排放水處理方法
TWI746638B (zh) 水淨化劑的製造方法及排放水處理方法
JP7190959B2 (ja) 水浄化剤、及び水浄化方法
JP2023012134A (ja) 水浄化剤及びその製造方法、並びに水浄化方法
JP2018023972A (ja) 粒状凝集剤の製造方法、粒状凝集剤および被覆粒状凝集剤
WO2022102448A1 (ja) 造粒吸着材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017134507

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020968

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177030636

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017020968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170929