WO2016158247A1 - 撮影装置、撮影装置本体、及び撮影装置の制御方法 - Google Patents

撮影装置、撮影装置本体、及び撮影装置の制御方法 Download PDF

Info

Publication number
WO2016158247A1
WO2016158247A1 PCT/JP2016/057215 JP2016057215W WO2016158247A1 WO 2016158247 A1 WO2016158247 A1 WO 2016158247A1 JP 2016057215 W JP2016057215 W JP 2016057215W WO 2016158247 A1 WO2016158247 A1 WO 2016158247A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
program diagram
photographing
unit
imaging
Prior art date
Application number
PCT/JP2016/057215
Other languages
English (en)
French (fr)
Inventor
内田 亮宏
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680018787.1A priority Critical patent/CN107431764B/zh
Priority to JP2017509463A priority patent/JP6244062B2/ja
Publication of WO2016158247A1 publication Critical patent/WO2016158247A1/ja
Priority to US15/716,081 priority patent/US10122934B2/en
Priority to US16/149,905 priority patent/US10757338B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/091Digital circuits
    • G03B7/097Digital circuits for control of both exposure time and aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/18Control of exposure by setting shutters, diaphragms or filters, separately or conjointly in accordance with light-reducing "factor" of filter or other obturator used with or on the lens of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Definitions

  • the present invention relates to a photographing apparatus including an apodization filter, a photographing apparatus main body, and a method for controlling the photographing apparatus.
  • An imaging apparatus including an apodization filter (hereinafter referred to as an APD filter) is known (see Patent Document 1).
  • the APD filter has an optical characteristic that the light transmittance decreases as the distance from the optical axis increases. For this reason, the dimming effect by the APD filter becomes larger as the aperture value is closer to the full aperture value.
  • the APD filter gives a gradation to the outline of the blurred image by reducing the peripheral light amount only for an out-of-focus blur image (such as a spotlight blur) without reducing the peripheral light amount on the image plane.
  • an out-of-focus blur image such as a spotlight blur
  • Realize beautiful bokeh In order to realize a beautiful blur by the APD filter, it is assumed that the background of the main subject is blurred. In order to generate a blur in the background, it is necessary to make the depth of field shallow, and it is required to open the aperture as much as possible, preferably an open aperture.
  • Patent Document 1 describes that when an APD filter is inserted into an optical axis, photographing exposure (photographing aperture value and photographing shutter speed) is automatically determined using a program diagram for APD.
  • This APD program diagram (hereinafter referred to as a second program diagram) is a normal program diagram (hereinafter referred to as a first program diagram) in order to preferentially determine an open aperture value as a photographing aperture value.
  • the region where the aperture value is fixed to the open aperture value is longer than that.
  • the photographing shutter speed may be increased in order to preferentially determine the open aperture value as the photographing aperture value than in the first program diagram.
  • Increasing the shooting shutter speed may cause problems such as flicker, but when an APD filter is used, it is allowed to increase the shooting shutter speed in order to prioritize the generation of a blurred image of the background.
  • Patent Document 2 describes an imaging apparatus in which a soft focus filter that is designed to make a blurred image generated in the background of a main subject beautiful is removably inserted into and removed from the optical axis, similar to an APD filter. ing.
  • the first and second program diagrams are also used.
  • Japanese Patent Application Laid-Open No. 2004-228561 proposes that the program diagram is automatically switched in accordance with the insertion and removal of the soft focus filter so that the user does not need to perform an operation related to the program diagram switching.
  • Patent Document 1 it is conceivable to apply the technique described in Patent Document 2 and automatically switch between the first program diagram and the second program diagram in accordance with the insertion / removal of the APD filter. .
  • the second program diagram used when the APD filter is inserted in the optical path is intended to keep the depth of field shallow by preferentially using the open aperture value. It is assumed that this is used in a shooting scene in which there is a distance difference between the image and the background and a blurred image is generated in the background.
  • the shutter speed is adjusted to increase the shooting shutter speed in order to maintain the shallow depth of field by giving priority to the open aperture value. To do.
  • adverse effects such as flicker may occur under an indoor light source such as a fluorescent lamp.
  • An object of the present invention is to provide a photographing apparatus, a photographing apparatus main body, and a photographing apparatus control method capable of appropriately selecting the first and second program diagrams.
  • the imaging apparatus of the present invention includes an imaging device, an aperture, a photometry unit, an apodization filter, a program diagram storage unit, a subject information acquisition unit, and a shooting exposure determination unit.
  • the image sensor photoelectrically converts incident light and outputs an image signal.
  • the diaphragm adjusts the amount of incident light.
  • the photometry unit performs photometry based on the imaging signal.
  • the apodization filter is disposed on the optical path of incident light.
  • the program diagram storage unit stores a first program diagram and a second program diagram. In the first program diagram, the aperture value is fixed to the open aperture value below the first exposure amount. In the second program diagram, the aperture value is fixed to the open aperture value at a value less than or equal to the second exposure amount greater than the first exposure amount.
  • the subject information acquisition unit acquires subject information based on the imaging signal.
  • the photographing exposure determining unit selects the second program diagram when the apodization filter is arranged on the optical path, and the subject information satisfies the first condition, and when the apodization filter is not arranged on the optical path, and the apodization
  • the first program diagram is selected, and based on the exposure value obtained from the photometric value by the photometric unit, a set of imaging aperture values and The photographing shutter speed is determined.
  • the subject information acquisition unit acquires, as subject information, a subject distance difference between the main subject and a subject farthest from the main subject, and the shooting exposure determination unit sets the subject distance difference to be a threshold or more as a first condition. It is preferable.
  • the subject information acquisition unit acquires, as subject information, a main subject distance that is a subject distance to the main subject in addition to the subject distance difference, and the shooting exposure determination unit determines that the main subject distance is smaller than the specific distance and the subject distance. It is preferable that the first condition is that the difference is equal to or greater than a threshold value.
  • the subject information acquisition unit divides the imaging range by the imaging device into a plurality of blocks, obtains the subject distance for each block, and obtains the main subject distance and the subject distance difference from the subject distance of each block.
  • the shutter speed corresponding to the second exposure amount in the second program diagram is preferably faster than the shutter speed corresponding to the first exposure amount in the first program diagram.
  • the shutter speed corresponding to the second exposure amount in the second program diagram is a limit speed on the high speed side of the mechanical shutter.
  • the image sensor has an electronic shutter function that enables a shooting shutter speed that is faster than the limit speed
  • the program diagram storage unit has an aperture value fixed at an open aperture value below a third exposure amount that is greater than the second exposure amount.
  • the third program diagram is stored, and the photographing exposure determination unit selects the third program diagram when the first condition is satisfied and the second condition different from the first condition is satisfied, and the first condition is satisfied
  • the second program diagram is preferably selected when the second condition is not satisfied.
  • the electronic shutter function is a rolling shutter system, and includes a motion detection unit that detects the amount of movement of the main subject based on imaging signals of a plurality of frames, and the shooting exposure determination unit determines that the amount of movement is less than a specific value. Two conditions are preferable.
  • a flicker detection unit that detects the presence or absence of flicker by obtaining a change in luminance value from the imaging signals of a plurality of frames is provided, and that the shooting exposure determination unit has a second condition that no flicker is detected.
  • the subject information acquisition unit detects, as subject information, the presence or absence of the subject's face based on the imaging signal in addition to the subject distance difference, and when the main subject distance is smaller than the specific distance and a face is detected, It is preferable to acquire the size, and it is preferable that the photographing exposure determination unit sets the first condition that a face is detected and the size of the face is equal to or greater than a threshold value.
  • the main body of the photographing apparatus of the present invention can be attached with a first lens barrel having an apodization filter and a second lens barrel without an apodization filter.
  • the imaging apparatus main body includes an imaging device, an aperture, a photometry unit, a program diagram storage unit, a subject information acquisition unit, and a shooting exposure determination unit.
  • the image sensor photoelectrically converts incident light and outputs an image signal.
  • the diaphragm adjusts the amount of incident light.
  • the photometry unit performs photometry based on the imaging signal.
  • the program diagram storage unit stores a first program diagram and a second program diagram. In the first program diagram, the aperture value is fixed to the open aperture value below the first exposure amount.
  • the aperture value is fixed to the open aperture value at a value less than or equal to the second exposure amount greater than the first exposure amount.
  • the subject information acquisition unit acquires subject information based on the imaging signal.
  • the photographing exposure determining unit selects the second program diagram when the first lens barrel is attached and the subject information satisfies the first condition, and when the second lens barrel is attached, and When one lens barrel is attached and the subject information does not satisfy the first condition, the first program diagram is selected, and based on the exposure value obtained from the photometric value by the photometric unit, a set of imaging aperture values and The photographing shutter speed is determined.
  • An imaging device control method includes an imaging device that photoelectrically converts incident light and outputs an imaging signal, an aperture that adjusts the amount of incident light, a photometry unit that performs photometry based on the imaging signal, and incident light.
  • An apodization filter includes: a program diagram storage unit that stores a second program diagram fixed to an aperture value; and a subject information acquisition unit that acquires subject information based on an imaging signal.
  • the second program diagram is selected when the subject information satisfies the first condition and the apodization filter is not placed on the optical path.
  • a set of photographic apertures is selected based on the photographic exposure amount obtained from the photometric value obtained by the photometric unit selected from the first program diagram when the dialysis filter is disposed on the optical path and the subject information does not satisfy the first condition. Determine the value and shooting shutter speed.
  • the apodization filter is arranged on the optical path, the second program diagram is selected when the subject information satisfies the first condition, the apodization filter is not arranged on the optical path, and the apodization Since the filter is disposed on the optical path and the first program diagram is selected when the subject information does not satisfy the first condition, the first and second program diagrams can be appropriately selected.
  • FIG. 8C is a diagram illustrating an example of the subject distance with respect to the lens position of the focus lens.
  • FIG. 8C is a diagram illustrating an example of the subject distance with respect to the lens position of the focus lens. It is a figure which shows a 1st program diagram. It is a figure which shows a 2nd program diagram. It is a flowchart explaining the effect
  • the photographing apparatus 10 is a digital camera with interchangeable lenses, and includes a photographing apparatus body 11 and a first lens barrel 12 that is detachably attached to the photographing apparatus body 11.
  • the first lens barrel 12 is a lens barrel having an apodization (APD) filter 26 (see FIG. 2).
  • the photographing device main body 11 is provided with an operation unit 13.
  • the operation unit 13 includes a power button 13A, a shutter button 13B, a mode switching dial 13C, and the like.
  • the power button 13A is operated when turning on / off the power of the photographing apparatus 10.
  • the shutter button 13B is a two-stage stroke type switch that enables so-called “half press” and “full press”.
  • the shutter button 13B outputs an S1 on signal by being half-pressed, and outputs an S2 on signal by being fully pressed after being half pressed.
  • the imaging apparatus 10 performs imaging preparation processing such as automatic focus adjustment (AF) control and automatic exposure control, and when the S2 ON signal is output, the imaging process is performed. Execute.
  • the mode switching dial 13C switches the operation mode.
  • the operation modes include a moving image shooting mode, a still image shooting mode, and a playback mode.
  • moving image shooting mode moving image shooting is performed by fully pressing the shutter button 13B during live view display.
  • still image shooting mode still image shooting is performed by fully pressing the shutter button 13B during live view display.
  • reproduction mode a moving image or a still image stored in the memory 46 (see FIG. 2) is reproduced and displayed on the display unit 44 (see FIG. 2).
  • live view display an image is displayed in real time on the display unit 44 (see FIG. 2) without recording an image.
  • the imaging apparatus main body 11 is provided with a lens barrel mounting portion 11A.
  • the base end portion 12A of the first lens barrel 12 is attached to the lens barrel attachment portion 11A.
  • the lens barrel mounting portion 11A is provided with an electrical contact 11B.
  • the electrical contact 11B electrically connects the imaging device main body 11 and the first lens barrel 12 by contacting the electrical contact 12B provided at the base end portion 12A.
  • the second lens barrel 14 not having the APD filter 26 can be attached to and detached from the photographing apparatus body 11.
  • the second lens barrel 14 has a base end portion 14 ⁇ / b> A attached to the lens barrel attachment portion 11 ⁇ / b> A of the photographing apparatus body 11. Similar to the first lens barrel 12, the base end portion 14A of the second lens barrel 14 is provided with an electrical contact 14B that contacts the electrical contact 11B of the lens barrel mounting portion 11A.
  • the first lens barrel 12 includes a focus lens 20, a diaphragm 22, an ID (Identification Data) storage unit 24, and an APD filter 26.
  • a focus lens 20, an aperture 22, and an APD filter 26 are arranged in this order from the subject side.
  • the optical axis LA corresponds to the optical path of incident light from the subject.
  • the second lens barrel 14 includes a focus lens 20, a diaphragm 22, and an ID storage unit 25. On the optical axis LA of the second lens barrel 14, a focus lens 20 and a diaphragm 22 are arranged in this order from the subject side.
  • the focus lens 20 focuses the incident light from the subject to form an image. Further, the focus lens 20 moves in the direction of the optical axis LA by driving the motor 28A based on the control of the main control unit 34 to be described later, and adjusts the photographing distance.
  • the motor 28A is a stepping motor or a servo motor.
  • the diaphragm 22 adjusts the amount of incident light.
  • the diaphragm 22 moves a plurality of diaphragm blades (not shown) by driving a motor 28B based on the control of the main controller 34 described later, and changes the amount of incident light to the image sensor 32 described later.
  • the motor 28B is a stepping motor or a servo motor.
  • the ID storage units 24 and 25 store an ID for specifying the type of the lens barrel. This ID is used by the main control unit 34 described later to specify the presence or absence of the APD filter 26.
  • the ID storage unit 24 of the first lens barrel 12 stores an ID including information that the APD filter 26 is provided. An ID including information that the APD filter 26 is not included is stored in the ID storage unit 25 of the second lens barrel 14.
  • the ID stored in the ID storage unit 24 is transmitted to the photographing apparatus main body 11 via the electrical contacts 11B and 12B when the photographing apparatus main body 11 and the first lens barrel 12 are connected.
  • the ID stored in the ID storage unit 25 is transmitted to the photographing apparatus main body 11 via the electrical contacts 11B and 14B when the photographing apparatus main body 11 and the second lens barrel 14 are connected.
  • the APD filter 26 has an optical characteristic that the light transmittance decreases as the distance from the optical axis LA increases.
  • the APD filter 26 does not reduce the amount of peripheral light on the image plane, but reduces the amount of peripheral light only for an out-of-focus blurred image (such as a spotlight blur). With such optical characteristics, the APD filter 26 provides gradation to the outline of the blurred image, and an apodization effect that achieves a beautiful blur is obtained.
  • the amount of light reduction increases as the aperture value (F value) of the aperture 22 approaches the open value.
  • the F value is an aperture value determined by the effective aperture diameter of the aperture 22 and does not consider the light transmittance in the effective aperture region.
  • a substantial aperture value in consideration of the light transmittance in the effective aperture region is a T value.
  • the T value is generally expressed by equation (1), where P is the light transmittance.
  • the F value threshold Fth at which the apodization effect is obtained is “2.8”.
  • FIG. 4 shows AV (F) and AV (T) defined by Expression (2) and Expression (3).
  • AV (F) is AV (Aperture value) corresponding to the F value.
  • AV (T) is an AV corresponding to the T value.
  • the maximum aperture value Fmin of the aperture 22 is “1.4”. According to FIG. 4, the T value corresponding to the full aperture value Fmin is “2.0”. Therefore, the amount of light reduced by the APD filter 26 when the aperture 22 is set to the full aperture value Fmin corresponds to one stage of AV (a value with which the amount of light is halved).
  • a shutter unit 30, an image sensor 32, a main control unit 34, an image processing unit 36, an AF control unit 38, a subject information acquisition unit 40, an exposure control unit 42, A display unit 44 and a memory 46 are provided inside the photographing apparatus main body 11.
  • the shutter unit 30 is a mechanical shutter such as a focal plane shutter.
  • the shutter unit 30 is provided so as to be able to block the optical path between the lens barrel mounting portion 11A and the image sensor 32.
  • the shutter unit 30 opens and closes when the shutter motor 31 is driven based on the control of the main controller 34 described later.
  • the image sensor 32 photoelectrically converts incident light incident through the shutter unit 30 and outputs an image signal.
  • the imaging signal output from the imaging element 32 is input to the image processing unit 36.
  • the image sensor 32 is a CMOS (Complementary Metal Metal Oxide Semiconductor) type sensor and has an electronic shutter function. The shutter speed of this electronic shutter function can be controlled by the main control unit 34.
  • the main control unit 34 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) storing programs and parameters used in the CPU, a RAM (Random Access Memory) used as a work memory of the CPU, and the like ( Neither is shown).
  • the main control unit 34 is electrically connected to each unit of the photographing apparatus 10 and comprehensively controls the entire photographing apparatus 10 based on an operation signal input from the operation unit 13.
  • the main control unit 34 receives the S1 on signal and the S2 on signal from the shutter button 13B. Further, the main control unit 34 specifies the currently set operation mode from the mode switching dial 13C.
  • the main control unit 34 receives the ID from the ID storage units 24 and 25 via the electrical contact 11B. Based on the received ID, the main control unit 34 specifies the type of the lens barrel connected to the imaging apparatus main body 11 (which is the first lens barrel 12 or the second lens barrel 14). .
  • the main control unit 34 determines the presence or absence of the APD filter 26 based on the specified type of the lens barrel. Specifically, when the specified lens barrel is the first lens barrel 12, the main control unit 34 determines that the APD filter 26 is present, and the specified lens barrel is the second lens barrel. If it is 14, it is determined that there is no APD filter 26. Then, the main control unit 34 transmits the determination result to the photographing exposure determination unit 56 as APD filter information.
  • the image processing unit 36 generates image data from the imaging signal received from the imaging device 32.
  • the image processing unit 36 transmits the generated image data to the display unit 44 and the memory 46.
  • the display unit 44 displays an image based on the image data.
  • the memory 46 stores image data. Further, the image processing unit 36 generates a luminance signal by performing Y / C conversion on the received imaging signal, and transmits the generated luminance signal to the exposure control unit 42.
  • the AF control unit 38 performs AF control by the contrast AF method based on the imaging signal.
  • an AF evaluation value integrated value of high frequency components
  • the AF control unit 38 detects the position (focus position) of the focus lens 20 that maximizes the AF evaluation value, and moves the focus lens 20 to this focus position.
  • the AF evaluation value corresponds to the contrast of the image.
  • the AF area for obtaining the focus position of the main subject is, for example, the central area of the imaging range.
  • the AF control unit 38 detects an in-focus position by calculating an AF evaluation value from signals included in the AF area among the imaging signals. The acquisition of the in-focus position is performed with the aperture 22 opened.
  • the subject information acquisition unit 40 acquires subject information regarding the subject within the angle of view based on the imaging signal.
  • the subject information is a distance difference (subject distance difference) between the main subject and a subject farthest from the main subject.
  • the subject information acquisition unit 40 divides the imaging range 48 of the imaging device 32 into a plurality of blocks, obtains the subject distance for each block, and determines the subject from the subject distance of each block. Find the distance difference.
  • the subject information acquisition unit 40 divides the imaging range 48 into nine blocks B1 to B9.
  • the block B5 located at the center of the imaging range 48 is the aforementioned AF area.
  • Block B5 includes an image of the main subject 49.
  • the subject information acquisition unit 40 uses the focus position obtained for the AF area by the AF control unit 38 for the focus position of the block B5 (focus position of the main subject 49).
  • the subject information acquisition unit 40 controls the AF control unit 38 to perform AF control for each block for the blocks B1 to B4 and B6 to B9 around the block B5 that is the AF area. Accordingly, the subject information acquisition unit 40 acquires the in-focus positions of subjects other than the main subject 49 for each of the blocks B1 to B4 and B6 to B9. The acquisition of the in-focus position is performed with the aperture 22 opened.
  • the subject information acquisition unit 40 obtains a subject distance for each of the blocks B1 to B9 based on each in-focus position obtained for each of the blocks B1 to B9.
  • the subject information acquisition unit 40 obtains the subject distance to the main subject 49 (see FIG. 5) based on the focus position L5 of the block B5 that is the AF area.
  • the subject distance in this block B5 corresponds to the main subject distance Dm shown in FIG.
  • the subject information acquisition unit 40 as shown in FIG. 6B, the subject distance to subjects other than the main subject 49 based on the respective in-focus positions of the blocks B1 to B4 and B6 to B9 other than the AF area.
  • the subject distance to the subject 50 is obtained based on the focus position L3 of the block B3.
  • the subject distance in the block B3 corresponds to the subject distance Dn shown in FIG.
  • the subject information acquisition unit 40 determines the subject distance difference Rx between the subject distance of the subject farthest from the main subject 49 and the main subject distance Dm by comparing the obtained main subject distance Dm with other subject distances. .
  • the subject distance difference Rx is the distance difference between the in-focus position of the block containing the image of the main subject 49 and the in-focus position of the block containing the image of the subject farthest from the main subject 49. It corresponds.
  • the subject information acquisition unit 40 transmits the obtained subject distance difference Rx to the photographing exposure determination unit 56 via the main control unit 34.
  • the subject information acquisition unit 40 obtains a distance difference (absolute value) between each subject distance of the blocks B1 to B4 and B6 to B9 and the main subject distance Dm, and determines the largest distance difference as the subject distance.
  • the distance difference is Rx.
  • the focus position L3 of the block B3 is farthest from the focus position L5 of the block B5.
  • the main subject distance Dm has the largest distance difference (
  • the threshold value Rth is obtained by multiplying the depth of field DOF by n times when the aperture 22 is opened. This constant n is set to a value of 0.5 or more.
  • FIG. 6B when the subject distance difference Rx satisfies the relationship of Rx ⁇ Rth, a blurred image tends to occur in the background of the main subject 49.
  • FIGS. 8A to 8C when the subject distance difference Rx satisfies the relationship of Rx ⁇ Rth, a blurred image hardly occurs in the background of the main subject 49.
  • FIG. 8A shows an in-focus position L5 in the AF area (block B5) in which the main subject 49 is included.
  • FIG. 8B shows the subject distance difference Rx when Rx ⁇ Rth is satisfied.
  • FIG. 8C shows the main subject distance Dm of the main subject 49 and the subject distance Dn of the subject 50 farthest from the main subject 49.
  • the exposure control unit 42 determines an optimal exposure amount, shutter speed, and aperture value (hereinafter referred to as a shooting exposure amount, a shooting shutter speed, and a shooting aperture value) based on the luminance signal.
  • the exposure control unit 42 includes a photometry unit 52, a program diagram storage unit 54, and a photographing exposure determination unit 56.
  • the photometric unit 52 performs photometry of the subject by calculating a photometric value based on the luminance signal received from the image processing unit 36.
  • the photometry unit 52 transmits the calculated photometry value to the photographing exposure determination unit 56.
  • the program diagram storage unit 54 stores a first program diagram P1 shown in FIG. 9 and a second program diagram P2 shown in FIG.
  • the first and second program diagrams P1 and P2 are expressed by EV (Exposure Value), AV, and TV (Time Value) that satisfy the APEX (Additive system of Photographic Exposure) equation (4).
  • EV Exposure Value
  • AV Video
  • TV Time Value
  • one set of AV and TV corresponds to one EV.
  • the TV has a relationship of the shutter speed t (unit: second) and the expression (5).
  • AV is expressed by using the AV (F) described above.
  • the first and second program diagrams P1 and P2 are a multistage aperture method.
  • AV photographing aperture value
  • the first program diagram P1 is basically used when the second lens barrel 14 that does not have the APD filter 26 is connected to the photographing apparatus main body 11. As shown in FIG. 9, in the first program diagram P1, the aperture value is fixed to the open aperture value Fmin in the region where the exposure amount is equal to or less than the first exposure amount EV1.
  • EV1 12.
  • the shutter speed TV1 corresponding to the first exposure amount EV1 is “11”.
  • the second program diagram P2 is basically used when the first lens barrel 12 having the APD filter 26 is connected to the photographing apparatus main body 11. As shown in FIG. 10, in the second program diagram P2, the aperture value is fixed at the full aperture value Fmin in the region where the exposure amount is equal to or less than the second exposure amount EV2.
  • the region in which the aperture value is fixed at the open aperture value Fmin is longer than that in the first program diagram P1.
  • the open aperture value Fmin is determined more preferentially as the photographing aperture value than in the case of the first program diagram.
  • the shutter speed TV2 corresponding to the second exposure amount EV2 is “13”.
  • the shutter speed TV2 is faster than the shutter speed TV1 corresponding to the first exposure amount EV1 in the first program diagram P1.
  • the shutter speed TV ⁇ b> 2 is the limit speed on the high speed side of the shutter unit 30.
  • the photographing exposure determination unit 56 calculates an appropriate photographing exposure amount EV by performing a predetermined calculation based on the photometric value received from the photometric unit 52.
  • the photographing exposure determination unit 56 also uses the first program diagram P1 or the second program line from the program diagram storage unit 54 by a method described later based on the APD filter information and subject information received from the main control unit 34. Select Figure P2.
  • the photographing exposure determining unit 56 determines a set of photographing aperture value and photographing shutter speed based on the photographing exposure amount EV obtained by the above calculation using the selected program diagram.
  • the main control unit 34 sets the photographing aperture value and the photographing shutter speed determined by the photographing exposure determining unit 56 in the diaphragm 22 and the shutter unit 30, respectively.
  • the main control unit 34 determines whether the first lens barrel 12 or the second lens barrel 14 is connected to the photographing apparatus body 11. If it is detected and connection is detected, the ID is acquired from the connected lens barrel (step S11). Further, in the photographing apparatus 10, the still image photographing mode or the moving image photographing mode is executed according to the setting of the mode switching dial 13C, and live view display is performed.
  • Step S13 When the shutter button 13B is pressed halfway during the live view display and the main control unit 34 acquires the S1 ON signal (YES in step S12), the AF control unit 38 executes the above-described AF control for the AF area. (Step S13).
  • the image processing unit 36 acquires a luminance signal from the imaging signal (step S14), and transmits the luminance signal to the photometry unit 52.
  • the photometric unit 52 calculates the photometric value of the subject based on the received luminance signal (step S15), and transmits the photometric value to the photographing exposure determining unit 56.
  • the photographing exposure determining unit 56 calculates a photographing exposure amount EV based on the received photometric value (step S16).
  • the photographing exposure determination unit 56 selects the first program diagram P1 or the second program diagram P2 from the program diagram storage unit 54 (step S17).
  • step S17 The program diagram selection operation in step S17 is performed based on the flowchart shown in FIG.
  • the photographing exposure determination unit 56 determines whether or not the APD filter 26 is arranged on the optical path (presence or absence of the APD filter 26) based on the APD filter information received from the main control unit 34 (step S31).
  • the photographing exposure determination unit 56 selects the first program diagram P1 from the program diagram storage unit 54 (step S35). ).
  • the photographing exposure determination unit 56 causes the subject information acquisition unit 40 to acquire subject information (step S32).
  • the subject information acquisition unit 40 acquires the subject distance difference Rx described above as subject information.
  • the photographing exposure determination unit 56 determines whether or not the acquired subject distance difference Rx is equal to or greater than the threshold value Rth (step S33).
  • Rx ⁇ Rth YES in step S33
  • the shooting exposure determination unit 56 selects the second program diagram P2 because a blurred image tends to occur in the background of the main subject (step S34).
  • the photographing exposure determining unit 56 selects the first program diagram P1 because a blurred image is unlikely to occur in the background of the main subject (step S35).
  • the shooting exposure determination unit 56 determines shooting exposure (shooting aperture value and shooting shutter speed) based on the shooting exposure amount EV calculated in step S16 using the selected program diagram (step S16). S18).
  • the main control unit 34 sets the photographing aperture value and the photographing shutter speed in the diaphragm 22 and the shutter unit 30, respectively (step S19).
  • step S21 shooting is executed (step S21).
  • the APD filter 26 is arranged on the optical path, when Rx ⁇ Rth is satisfied and the second program diagram P2 is selected and shooting is performed, the outline of the blurred image generated in the background of the main subject Further, gradation is given by the effect of the APD filter 26, and a beautiful blur is obtained.
  • the condition (first condition) satisfying Rx ⁇ Rth is satisfied, and the background of the main subject is blurred.
  • the first program diagram P1 which is a normal program diagram is selected instead of the second program diagram P2 which is a program diagram for APD.
  • the first program diagram P1 is selected, so that the occurrence of adverse effects such as flicker is prevented.
  • the first and second program diagrams P1 and P2 are appropriately selected.
  • the photographic exposure determination unit 56 selects the second program diagram P2 to satisfy Rx ⁇ Rth when the APD filter 26 is disposed on the optical path (claimed).
  • the blurred image is generated to enhance the image of the main subject in focus, if the main subject distance is small to some extent and the main subject in the image is not large to some extent, The subject cannot be brought out. For example, in a shooting scene for shooting a building or landscape at a long distance, it is not expected to obtain an image in which a main subject is emphasized by a blurred image.
  • the photographing exposure determination unit 56 determines that the main subject distance Dm is smaller than the specific distance in addition to satisfying Rx ⁇ Rth.
  • the second program diagram P2 is selected as the condition (the first condition described in the claims).
  • a program diagram is selected based on the flowchart shown in FIG.
  • the photographing exposure determination unit 56 first determines whether or not the main subject distance Dm is smaller than the specific distance (step S41).
  • the photographing exposure determination unit 56 acquires a subject distance difference Rx as subject information (step S32). Then, the photographic exposure determining unit 56 determines whether or not the subject distance difference Rx is greater than or equal to the threshold value Rth (step S33), and if Rx ⁇ Rth (YES in step S33), the second program diagram. P2 is selected (step S34).
  • step S41 when the main subject distance Dm is greater than or equal to the specific distance (NO in step S41), the shooting exposure determination unit 56 selects the first program diagram P1 (step S35).
  • Other configurations of the second embodiment are the same as those of the first embodiment.
  • step S41 and step S33 correspond to the “first condition” recited in the claims.
  • the subject distance difference Rx As described above, in the second embodiment, before the program diagram is selected based on the subject distance difference Rx, if the main subject distance Dm is equal to or greater than the specific distance based on the main subject distance Dm, the subject distance difference Since the first program diagram P1 is selected without performing the operation of calculating Rx, there is also an effect of speeding up the program diagram selection process.
  • the second program diagram P2 in the shooting scene for shooting a building or landscape at a long distance, when the APD filter 26 is arranged on the optical path, the second program diagram P2 is selected and the open aperture is set.
  • the value is preferentially used and the depth of field is kept shallow.
  • the first program diagram P1 is selected even in the case where the APD filter 26 is arranged on the optical path in the shooting scene for shooting a building or landscape at a long distance.
  • the aperture is reduced to increase the depth of field, and it is easy to obtain a sharp image in which all subjects are in focus.
  • the photographing exposure determination unit 56 is provided on the condition that the main subject distance Dm is smaller than the specific distance in addition to satisfying Rx ⁇ Rth.
  • the second program diagram P2 is selected.
  • the size of the human face detected in the image is not less than a threshold value. As a result, the second program diagram P2 is selected.
  • the subject information acquisition unit 40 receives the image data generated based on the imaging signal from the image processing unit 36, and detects whether or not a human face exists in the image.
  • the subject information acquisition unit 40 stores face information related to a person's face such as eyes, nose, and mouth in advance, and performs face detection from the image by performing pattern recognition using the face information.
  • the subject information acquisition unit 40 obtains the size of the face when the face is detected by the face detection. For example, the subject information acquisition unit 40 obtains the area of a region detected as a face in the image.
  • an image in which a main subject is emphasized by a blurred image can be obtained can be determined by the size (for example, area) of the face.
  • the shooting exposure determination unit 56 selects a program diagram based on the flowchart shown in FIG.
  • the photographing exposure determination unit 56 determines whether or not the APD filter 26 is disposed on the optical path based on the APD filter information (step S31). When it is determined that the APD filter 26 is not disposed on the optical path (NO in step S31), the photographing exposure determination unit 56 selects the first program diagram P1 from the program diagram storage unit 54 (step S35). ).
  • the photographing exposure determination unit 56 causes the subject information acquisition unit 40 to perform face detection (step S51).
  • the subject information acquisition unit 40 detects the presence or absence of the face of the subject based on the imaging signal (step S52). If the subject information acquisition unit 40 detects a face (YES in step S52), the subject information acquisition unit 40 acquires the size of the face (step S53).
  • the photographing exposure determination unit 56 determines whether or not the face size obtained by the subject information acquisition unit 40 is greater than or equal to a threshold value (step S54). If the face size is less than the threshold value (NO in step S54), the shooting exposure determination unit 56 selects the first program diagram P1 (step S35). On the other hand, when the face size is equal to or larger than the threshold (YES in step S54), the photographic exposure determining unit 56 acquires the above-described subject distance difference Rx (step S32). Note that if no face is detected in step S52 (NO in step S52), the process proceeds to step S32.
  • step S33 the photographing exposure determination unit 56 determines whether or not the subject distance difference Rx is equal to or greater than the threshold value Rth (step S33).
  • the photographing exposure determination unit 56 selects the second program diagram P2 when Rx ⁇ Rth (YES in step S33) (step S34).
  • step S34 the photographic exposure determining unit 56 selects the first program diagram P1 (step S35).
  • step S54 and step S33 correspond to the “first condition” recited in the claims.
  • the size of the face detected in the image is equal to or greater than the threshold value.
  • the second program diagram P2 is selected on the condition that the second program diagram P2 is not selected except in a shooting scene in which an image in which a main subject is emphasized by a blurred image is obtained. Generation of adverse effects such as flicker due to selection of the program diagram P2 is prevented.
  • the shutter speed is controlled by the shutter unit 30, but the shutter speed may be controlled by an electronic shutter function provided in the image sensor 32.
  • the electronic shutter function can set the shutter speed at a higher speed than the shutter unit 30 that is a mechanical shutter.
  • the range in which the open aperture value Fmin is determined as the photographing aperture value can be expanded to the high exposure value side.
  • the program diagram storage unit 54 includes a third program diagram P3 shown in FIG. 15 in addition to the first program diagram P1 shown in FIG. 9 and the second program diagram P2 shown in FIG. Is remembered.
  • the aperture value is fixed to the open aperture value Fmin when the exposure value EV3 is less than or equal to the third exposure value EV3 greater than the second exposure value EV2.
  • EV3 16.
  • the imaging element 32 performs an imaging operation by a rolling shutter method. As shown in FIG. 16, the image sensor 32 performs charge reset, exposure, and readout of accumulated charge for each pixel row. The charge reset timing and readout timing differ for each pixel row. The period from the completion of charge reset to the start of charge readout is the same for each pixel row. For this reason, the exposure period is different for each pixel row. During live view display or in the moving image shooting mode, the reset and read operations from the first pixel row to the last pixel row are repeated.
  • the main subject image may be distorted. This distortion increases as the amount of movement of the main subject increases. Further, in the rolling shutter system, this distortion increases as the photographing shutter speed increases. This is because in the rolling shutter system, the overlap of the exposure periods of the pixel rows becomes smaller as the shooting shutter speed increases.
  • the photographing exposure determination unit 56 satisfies the condition that Rx ⁇ Rth (the first condition described in the claims), and the condition that the amount of movement of the main subject is a specific value or less.
  • the third program diagram P3 is selected.
  • the imaging apparatus main body 70 of the fourth embodiment is provided with a motion detection unit 72 that detects the amount of movement of the main subject.
  • the motion detection unit 72 detects the amount of motion of the main subject based on a plurality of frames of image signals output from the image sensor 32 during live view display. For example, as illustrated in FIG. 18, the motion detection unit 72 is obtained from the image processing unit 36 at one time (first frame) of image data 74 obtained at time t1 during live view display, and at time t2. 1 frame (second frame) of image data 75 is acquired. The motion detection unit 72 divides each acquired image data 74 and 75 into a plurality of areas, and obtains a luminance value of each area for each frame. Each of the image data 74 and 75 includes an area having a specific luminance value corresponding to the main subject 76.
  • the motion detector 72 detects the amount of motion of the main subject 76 by detecting an area where the luminance value has changed between frames. This corresponds to the fact that the amount of movement of the main subject 76 increases as the number of areas whose luminance values change between frames increases.
  • the shooting exposure determination unit 56 selects a program diagram based on the flowchart shown in FIG.
  • the photographing exposure determination unit 56 determines whether or not the APD filter 26 is disposed on the optical path based on the APD filter information (step S31). When it is determined that the APD filter 26 is not disposed on the optical path (NO in step S31), the photographing exposure determination unit 56 selects the first program diagram P1 from the program diagram storage unit 54 (step S35). ).
  • the shooting exposure determination unit 56 acquires the subject distance difference Rx as subject information in the subject information acquisition unit 40. (Step S32). The shooting exposure determination unit 56 determines whether or not the subject distance difference Rx is equal to or greater than the threshold value Rth (step S33). If Rx ⁇ Rth (NO in step S33), the photographic exposure determining unit 56 selects the first program diagram P1 (step S35).
  • the photographic exposure determination unit 56 controls the motion detection unit 72 to detect the amount of motion of the main subject (step S61).
  • the motion detection unit 72 transmits the detected amount of movement of the main subject to the photographing exposure determination unit 56.
  • the photographing exposure determination unit 56 determines whether or not the received movement amount of the main subject is equal to or less than a specific value (step S62). When the amount of movement is equal to or less than the specific value (YES in step S62), the photographic exposure determining unit 56 selects the third program diagram P3 (step S63). On the other hand, when the amount of motion is greater than the specific value (NO in step S62), the photographic exposure determining unit 56 selects the second program diagram P2 (step S64).
  • step S33 corresponds to the “first condition” recited in the claims
  • step S62 corresponds to the “second condition” recited in the claims.
  • the electronic shutter function can be appropriately used by selecting the second program diagram P2 and the third program diagram P3 based on the amount of movement of the main subject. Since the third program diagram P3 is selected when the amount of motion is less than or equal to the specific value, even if the electronic shutter function of the image sensor 32 is used, distortion of the main subject image is prevented.
  • the shooting exposure determination unit 56 uses the amount of movement of the main subject to be a specific value or less as a condition for selecting the third program diagram P3.
  • the flicker Is selected as a condition (second condition described in claims) the third program diagram P3 is selected. This is because the effect of flicker is more likely to occur on the image as the shooting shutter speed increases using the electronic shutter function.
  • the imaging apparatus main body 80 of the fifth embodiment is provided with a flicker detection unit 82 that detects the presence or absence of flicker in addition to the components of the imaging apparatus main body 11 of the first embodiment.
  • flicker is captured under the illumination of a fluorescent lamp that is turned on by a commercial AC power supply
  • the temporal change in the image signal occurs due to the difference between the luminance change frequency of the fluorescent lamp and the imaging frequency. It is a phenomenon. This change in brightness appears as flickering or striped patterns in the image.
  • the flicker detection unit 82 detects the presence or absence of flicker by obtaining a change in luminance value from a plurality of frames of image signals.
  • the flicker detection process the technique described in Japanese Patent Application Laid-Open No. 2005-33616 can be used. As described below, the flicker detection unit 82 detects flicker assuming that the frequency of the luminance change of the fluorescent lamp is 50 Hz and 60 Hz.
  • the flicker detection unit 82 causes the image sensor 32 to periodically perform an image capturing operation with the frame rate of the image sensor 32 being 50 Hz and the shutter speed being 1/50 second during live view display.
  • the flicker detection unit 82 determines whether there is a change in the luminance value at the center of the angle of view between frames based on the imaging signal output in each frame.
  • the flicker detection unit 82 determines that flicker exists when there is a change in the luminance value.
  • the flicker detection unit 82 sets the frame rate of the image sensor 32 to 60 Hz and the shutter speed to 1/60 second, performs the same flicker detection operation as described above, and sets the luminance value at the center of the angle of view between frames. If there is a change, it is determined that flicker exists.
  • the photographing exposure determining unit 56 selects a program diagram based on the flowchart shown in FIG.
  • flicker is detected instead of the amount of movement of the subject (step S71), and determination based on the presence / absence of flicker detection is performed instead of determination based on the amount of motion (step S72).
  • flicker is detected instead of the amount of movement of the subject (step S71)
  • determination based on the presence / absence of flicker detection is performed instead of determination based on the amount of motion (step S72).
  • flicker is detected instead of the amount of movement of the subject (step S71), and determination based on the presence / absence of flicker detection is performed instead of determination based on the amount of motion (step S72).
  • step S73 when the flicker is detected by the flicker detection unit 82 (NO in step S72), the photographing exposure determination unit 56 selects the third program diagram P3 (step S73), and no flicker is detected. If so (NO in step S72), the second program diagram P2 is selected (step S74).
  • step S33 corresponds to the “first condition” recited in the claims
  • step S72 corresponds to the “second condition” recited in the claims.
  • the electronic shutter function can be appropriately used by selecting the second program diagram P2 and the third program diagram P3 based on the presence or absence of flicker. Since the third program diagram P3 is selected when there is no flicker, even if the electronic shutter function of the image sensor 32 is used, it is possible to prevent the image from being affected by flicker.
  • the present invention has been described by way of an example of an interchangeable lens type photographic device in which the lens barrel and the photographic device main body are detachable.
  • the present invention can also be applied to an integrated photographing apparatus in which is integrated.
  • the interchangeable lens imaging device the APD filter is inserted and removed from the optical path by exchanging the lens barrel.
  • a mechanism for inserting and removing the APD filter on the optical path may be provided. .
  • CMOS type image sensor is used as the image sensor 32, but a CCD (Charge Coupled Device) image sensor may be used.
  • CCD Charge Coupled Device
  • the AF control unit 38 performs the AF control by the contrast AF method, but may perform the AF control by the phase difference AF method. That is, the focus position for each block obtained by dividing the imaging range 48 shown in FIG. 5 may be acquired by the phase difference AF method.
  • the exposure control is performed after the shutter button 13B is half-pressed.
  • the exposure control may be performed even during live view display before the shutter button 13B is half-pressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

 第1及び第2プログラム線図を適切に選択することを可能とする撮影装置、撮影装置本体、及び撮影装置の制御方法を提供する。 被写体情報取得部(40)は、撮像素子(32)からの撮像信号に基づき、主要被写体と、主要被写体から最も離れた被写体との距離差である被写体距離差を取得する。プログラム線図記憶部(54)は、第1露出量EV1以下で絞り値が開放絞り値に固定された第1プログラム線図(P1)と、第1露出量EV1より大きい第2露出量EV2以下で絞り値が開放絞り値に固定された第2プログラム線図(P2)とを記憶している。撮影露出決定部(56)は、APDフィルタ(26)が光路上に配置された場合において、被写体距離差が閾値以上であり、ボケ像が生じやすい撮影シーンである場合に第2プログラム線図(P2)を選択し、被写体距離差が閾値未満であり、ボケ像が生じにくい撮影シーンである場合に第1プログラム線図(P1)を選択する。

Description

撮影装置、撮影装置本体、及び撮影装置の制御方法
 本発明は、アポダイゼーションフィルタを備える撮影装置、撮影装置本体、及び撮影装置の制御方法に関するものである。
 アポダイゼーションフィルタ(以下、APDフィルタと称する)を備えた撮影装置が知られている(特許文献1参照)。APDフィルタは、光軸から離れるにつれて光透過率が低下するという光学特性を有している。このため、APDフィルタによる減光効果は、絞り値が開放絞り値に近いほど大きくなる。
 APDフィルタは、像面での周辺光量は低下させずに、ピントの合っていないボケ像(点光ボケ等)に対してのみ周辺光量を低下させることで、ボケ像の輪郭にグラデーションを与え、美しいボケ味を実現する。APDフィルタによって美しいボケ味を実現するためには、主要被写体の背景にボケが生じていることが前提である。背景にボケを生じさせるためには、被写界深度を浅くする必要があり、絞りをできるだけ開き、好ましくは開放絞りとすることが求められる。
 特許文献1には、APDフィルタが光軸に挿入された場合に、APD用のプログラム線図を用いて撮影露出(撮影絞り値及び撮影シャッタ速度)を自動決定することが記載されている。このAPD用のプログラム線図(以下、第2プログラム線図という)は、撮影絞り値として開放絞り値を優先的に決定するために、通常のプログラム線図(以下、第1プログラム線図という)よりも、絞り値が開放絞り値に固定された領域が長い。このため、第2プログラム線図では、第1プログラム線図の場合よりも、撮影絞り値として開放絞り値を優先的に決定するために、撮影シャッタ速度が高速化されることがある。撮影シャッタ速度が高速化するとフリッカ等の弊害が生じる恐れがあるが、APDフィルタを用いる場合には、背景のボケ像の生成を優先するために、撮影シャッタ速度の高速化を許容している。
 特許文献1に記載の撮影装置では、APDフィルタが非挿入の場合には、第1プログラム線図が用いられる。しかし、この撮影装置では、APDフィルタの挿脱とともに、第2プログラム線図への切り換えが行われることはない。このため、APDフィルタの挿脱を行う場合には、ユーザーがプログラム線図の切り換えに係る操作を行わなければならないという煩わしさがある。
 特許文献2には、APDフィルタと同様に、主要被写体の背景に生じるボケ像のボケ味を美しくすることを目的としたソフトフォーカスフィルタが光軸に挿脱可能に構成された撮影装置が記載されている。この特許文献2に記載の撮影装置においても、第1及び第2プログラム線図が用いられる。特許文献2では、ユーザーがプログラム線図の切り換えに係る操作を行う必要がないように、ソフトフォーカスフィルタの挿脱に応じて、プログラム線図を自動的に切り替えることが提案されている。
特開2005-62733号公報 特開昭63-206729号公報
 特許文献1の撮影装置においても、特許文献2に記載された技術を適用し、APDフィルタの挿脱に応じて第1プログラム線図と第2プログラム線図とを自動的に切り換えることが考えられる。APDフィルタが光路上に挿入される際に用いられる第2プログラム線図は、開放絞り値を優先的に使用することによって被写界深度を浅く維持することを目的とするものであり、主要被写体と背景との間に距離差があり、背景にボケ像が生じる撮影シーンで用いられることを前提としている。
 しかしながら、特許文献1に記載の撮影装置では、ユーザーによっては、APDフィルタを光路上に挿入させたまま、主要被写体と背景との間に距離差がなく、背景にボケ像が生じない撮影シーンで撮影が行われることが考えられる。このような撮影シーンとしては、例えば、屋内で絵画などを撮影する状況が考えられる。
 このような撮影シーンで露出オーバーとなると、第2プログラム線図では、開放絞り値を優先して被写界深度を浅く維持するために、シャッタ速度の調整が行われ、撮影シャッタ速度が高速化する。撮影シャッタ速度が高速化すると、蛍光灯等の屋内光源下ではフリッカ等の弊害が発生することがある。
 本発明は、第1及び第2プログラム線図を適切に選択することを可能とする撮影装置、撮影装置本体、及び撮影装置の制御方法を提供することを目的とする。
 本発明の撮影装置は、撮像素子と、絞りと、測光部と、アポダイゼーションフィルタと、プログラム線図記憶部と、被写体情報取得部と、撮影露出決定部と、を備える。撮像素子は、入射光を光電変換して撮像信号を出力する。絞りは、入射光の光量を調整する。測光部は、撮像信号に基づいて測光を行う。アポダイゼーションフィルタは、入射光の光路上に配置される。プログラム線図記憶部は、第1プログラム線図と、第2プログラム線図とを記憶する。第1プログラム線図は、第1露出量以下で絞り値が開放絞り値に固定されている。第2プログラム線図は、第1露出量より大きい第2露出量以下で絞り値が開放絞り値に固定されている。被写体情報取得部は、撮像信号に基づき、被写体情報を取得する。撮影露出決定部は、アポダイゼーションフィルタが光路上に配置されており、被写体情報が第1条件を満たす場合に第2プログラム線図を選択し、アポダイゼーションフィルタが光路上に配置されていない場合、及びアポダイゼーションフィルタが光路上に配置されており、被写体情報が第1条件を満たさない場合に第1プログラム線図を選択し、測光部による測光値から求まる撮影露出量に基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する。
 被写体情報取得部は、被写体情報として、主要被写体と主要被写体から最も離れた被写体との被写体距離差を取得し、撮影露出決定部は、被写体距離差が閾値以上であることを第1条件とすることが好ましい。
 被写体情報取得部は、被写体情報として、被写体距離差に加えて、主要被写体までの被写体距離である主要被写体距離を取得し、撮影露出決定部は、主要被写体距離が特定距離より小さく、且つ被写体距離差が閾値以上であることを第1条件とすることが好ましい。
 被写体情報取得部は、撮像素子による撮像範囲を複数のブロックに分割して、ブロック毎に被写体距離を求め、各ブロックの被写体距離から主要被写体距離及び被写体距離差を求めることが好ましい。
第2プログラム線図で第2露出量に対応するシャッタ速度は、第1プログラム線図の第1露出量に対応するシャッタ速度より速いことが好ましい。
 メカシャッタを備え、第2プログラム線図で第2露出量に対応するシャッタ速度は、メカシャッタの高速側の限界速度であることが好ましい。
 撮像素子は、限界速度より速い撮影シャッタ速度を可能とする電子シャッタ機能を有し、プログラム線図記憶部は、第2露出量より大きい第3露出量以下で絞り値が開放絞り値に固定された第3プログラム線図を記憶し、撮影露出決定部は、第1条件を満たし、且つ第1条件とは異なる第2条件を満たす場合に第3プログラム線図を選択し、第1条件を満たし、且つ第2条件を満たさない場合に第2プログラム線図を選択することが好ましい。
 電子シャッタ機能は、ローリングシャッタ方式であり、複数フレームの撮像信号に基づいて主要被写体の動き量を検出する動き検出部を備え、撮影露出決定部は、動き量が特定値以下であることを第2条件とすることが好ましい。
 複数フレームの撮像信号から輝度値の変化を求めてフリッカの有無を検出するフリッカ検出部を備え、撮影露出決定部は、フリッカが検出されていないことを第2条件とすることが好ましい。
 被写体情報取得部は、被写体情報として、被写体距離差に加えて、撮像信号に基づいて被写体の顔の有無を検出し、主要被写体距離が特定距離より小さく、且つ顔が検出された場合に顔の大きさを取得するものであり、撮影露出決定部は、顔が検出され、顔の大きさが閾値以上であることを第1条件とすることが好ましい。
 本発明の撮影装置本体は、アポダイゼーションフィルタを有する第1レンズ鏡筒と、アポダイゼーションフィルタを有しない第2レンズ鏡筒とが取り付け可能である。撮影装置本体は、撮像素子と、絞りと、測光部と、プログラム線図記憶部と、被写体情報取得部と、撮影露出決定部と、を備える。撮像素子は、入射光を光電変換して撮像信号を出力する。絞りは、入射光の光量を調整する。測光部は、撮像信号に基づいて測光を行う。プログラム線図記憶部は、第1プログラム線図と、第2プログラム線図とを記憶する。第1プログラム線図は、第1露出量以下で絞り値が開放絞り値に固定されている。第2プログラム線図は、第1露出量より大きい第2露出量以下で絞り値が開放絞り値に固定されている。被写体情報取得部は、撮像信号に基づき、被写体情報を取得する。撮影露出決定部は、第1レンズ鏡筒が取り付けられており、被写体情報が第1条件を満たす場合に第2プログラム線図を選択し、第2レンズ鏡筒が取り付けられている場合、及び第1レンズ鏡筒が取り付けられており、被写体情報が第1条件を満たさない場合に第1プログラム線図を選択し、測光部による測光値から求まる撮影露出量に基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する。
 本発明の撮影装置の制御方法は、入射光を光電変換して撮像信号を出力する撮像素子と、入射光の光量を調整する絞りと、撮像信号に基づいて測光を行う測光部と、入射光の光路上に配置されるアポダイゼーションフィルタと、第1露出量以下で絞り値が開放絞り値に固定された第1プログラム線図と、第1露出量より大きい第2露出量以下で絞り値が開放絞り値に固定された第2プログラム線図とを記憶するプログラム線図記憶部と、撮像信号に基づき、被写体情報を取得する被写体情報取得部と、を備える撮影装置の制御方法において、アポダイゼーションフィルタが光路上に配置されており、被写体情報が第1条件を満たす場合に第2プログラム線図を選択し、アポダイゼーションフィルタが光路上に配置されていない場合、及びアポダイゼーションフィルタが光路上に配置されており、被写体情報が第1条件を満たさない場合に第1プログラム線図を選択し、測光部による測光値から求まる撮影露出量に基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する。
 本発明によれば、アポダイゼーションフィルタが光路上に配置されており、被写体情報が第1条件を満たす場合に第2プログラム線図を選択し、アポダイゼーションフィルタが光路上に配置されていない場合、及びアポダイゼーションフィルタが光路上に配置されており、被写体情報が第1条件を満たさない場合に第1プログラム線図を選択するので、第1及び第2プログラム線図を適切に選択することができる。
第1実施形態の撮影装置の外観斜視図である。 第1実施形態の撮影装置の構成を示すブロック図である。 APDフィルタの光学特性を示す図である。 F値とT値の関係を示すグラフである。 複数のブロックに分割された撮像範囲を示す図である。 (A)は、主要被写体が含まれるAFエリアにおけるAF評価値の例を示す図である。(B)は、AFエリア以外のエリアにおけるAF評価値の第1の例を示す図である。(C)は、フォーカスレンズのレンズ位置に対する被写体距離の例を示す図である。 被写界深度と閾値との関係を示す図である。 (A)は、主要被写体が含まれるAFエリアにおけるAF評価値の例を示す図である。(B)は、AFエリア以外のエリアにおけるAF評価値の第2の例を示す図である。(C)は、フォーカスレンズのレンズ位置に対する被写体距離の例を示す図である。 第1プログラム線図を示す図である。 第2プログラム線図を示す図である。 第1実施形態の作用を説明するフローチャートである。 第1実施形態におけるプログラム線図の選択手順を説明するフローチャートである。 第2実施形態におけるプログラム線図の選択手順を説明するフローチャートである。 第3実施形態におけるプログラム線図の選択手順を説明するフローチャートである。 第3プログラム線図を示す図である。 ローリングシャッタ方式での撮像動作を説明する図である。 第4実施形態の撮影装置の構成を示すブロック図である。 動き量の検出を説明する図である。 第4実施形態におけるプログラム線図の選択手順を説明するフローチャートである。 第5実施形態の撮影装置の構成を示すブロック図である。 第5実施形態におけるプログラム線図の選択手順を説明するフローチャートである。
 [第1実施形態]
 図1に示すように、撮影装置10は、レンズ交換式のデジタルカメラであり、撮影装置本体11と、撮影装置本体11に着脱可能に取り付けられる第1レンズ鏡筒12とを備える。第1レンズ鏡筒12は、アポダイゼーション(APD:Apodization)フィルタ26(図2参照)を有するレンズ鏡筒である。
 撮影装置本体11には、操作部13が設けられている。操作部13には、電源ボタン13A、シャッタボタン13B、モード切替ダイヤル13C等が含まれている。電源ボタン13Aは、撮影装置10の電源をオン/オフする際に操作される。
 シャッタボタン13Bは、いわゆる「半押し」と「全押し」とを可能とする2段ストローク式のスイッチである。シャッタボタン13Bは、半押しされることによってS1オン信号を出力し、半押しから更に押し込む全押しが行われることによってS2オン信号を出力する。撮影装置10は、シャッタボタン13BからS1オン信号が出力されると自動焦点調節(AF:Auto Focus)制御や自動露出制御などの撮影準備処理を実行し、S2オン信号が出力されると撮影処理を実行する。
 モード切替ダイヤル13Cは、動作モードを切り替える。動作モードには、動画撮影モード、静止画撮影モード、及び再生モードがある。動画撮影モードでは、ライブビュー表示中にシャッタボタン13Bが全押しされることによって、動画撮影が行われる。静止画撮影モードでは、ライブビュー表示中にシャッタボタン13Bが全押しされることによって、静止画撮影が行われる。再生モードでは、メモリ46(図2参照)に記憶された動画または静止画が表示部44(図2参照)に再生表示される。ライブビュー表示では、画像を記録せずに、表示部44(図2参照)にリアルタイムに画像表示が行われる。
 図2において、撮影装置本体11には、レンズ鏡筒取付部11Aが設けられている。レンズ鏡筒取付部11Aには、第1レンズ鏡筒12の基端部12Aが取り付けられる。レンズ鏡筒取付部11Aには、電気接点11Bが設けられている。電気接点11Bは、基端部12Aに設けられた電気接点12Bと接触することによって、撮影装置本体11と第1レンズ鏡筒12とを電気的に接続させる。
 また、撮影装置本体11には、APDフィルタ26を有する第1レンズ鏡筒12に代えて、APDフィルタ26を有しない第2レンズ鏡筒14が着脱可能とされている。第2レンズ鏡筒14は、基端部14Aが撮影装置本体11のレンズ鏡筒取付部11Aに取り付けられる。第1レンズ鏡筒12と同様に、第2レンズ鏡筒14の基端部14Aには、レンズ鏡筒取付部11Aの電気接点11Bと接触する電気接点14Bが設けられている。
 第1レンズ鏡筒12は、フォーカスレンズ20と、絞り22と、ID(Identification Data)記憶部24と、APDフィルタ26とを有している。第1レンズ鏡筒12の光軸LA上には、フォーカスレンズ20、絞り22、及びAPDフィルタ26が、被写体側からこの順に配置されている。光軸LAは、被写体からの入射光の光路に相当する。
 第2レンズ鏡筒14は、フォーカスレンズ20と、絞り22と、ID記憶部25とを有している。第2レンズ鏡筒14の光軸LA上には、フォーカスレンズ20及び絞り22が、被写体側からこの順に配置されている。
 フォーカスレンズ20は、被写体からの入射光を集光して結像する。また、フォーカスレンズ20は、後述する主制御部34の制御に基づいて、モータ28Aの駆動により光軸LA方向に移動し、撮影距離を調節する。モータ28Aは、ステッピングモータやサーボモータである。
 絞り22は、入射光の光量を調整する。絞り22は、後述する主制御部34の制御に基づいて、モータ28Bの駆動により複数枚の絞り羽根(図示せず)を移動させ、後述する撮像素子32への入射光量を変化させる。モータ28Bは、ステッピングモータやサーボモータである。
 ID記憶部24,25は、レンズ鏡筒の種類を特定するためのIDを記憶している。このIDは、後述する主制御部34によって、APDフィルタ26の有無を特定するために用いられる。第1レンズ鏡筒12のID記憶部24には、APDフィルタ26を有するという情報を含むIDが記憶されている。第2レンズ鏡筒14のID記憶部25には、APDフィルタ26を有しないという情報を含むIDが記憶されている。
 ID記憶部24に記憶されたIDは、撮影装置本体11と第1レンズ鏡筒12とが接続された場合に、電気接点11B,12Bを介して、撮影装置本体11に送信される。また、ID記憶部25に記憶されたIDは、撮影装置本体11と第2レンズ鏡筒14とが接続された場合に、電気接点11B,14Bを介して、撮影装置本体11に送信される。
 図3に示すように、APDフィルタ26は、光軸LAからの距離が大きくなるにつれて光透過率が低下するという光学特性を有する。APDフィルタ26は、像面での周辺光量は低下させずに、ピントの合っていないボケ像(点光ボケ等)に対してのみ周辺光量を低下させる。APDフィルタ26は、このような光学特性によって、ボケ像の輪郭にグラデーションを与え、美しいボケ味を実現するアポダイゼーション効果が得られる。
 APDフィルタ26は、絞り22の絞り値(F値)が開放値に近づくほど、減光量が大きくなる。F値は、絞り22の有効開口径で決まる絞り値であり、有効開口領域内の光透過率は考慮されていない。有効開口領域内の光透過率を考慮した実質的な絞り値はT値である。T値は、光透過率をPとすると、一般に式(1)で表される。
 T=F/P1/2  ・・・(1)
 式(1)の光透過率PにAPDフィルタ26の光透過率を適用すると、APDフィルタ26の光学特性を考慮したT値が得られる。T値とF値との関係は、図4に示す曲線で表される。T値は、F値が開放値に近づくほどF値との差異が大きくなる。
 本実施形態では、APDフィルタ26は、F値が2.8を超えると減光量がほぼゼロとなり、F値が2.8以下の領域で減光効果が得られる。すなわち、アポダイゼーション効果が得られるF値の閾値Fthは、「2.8」である。
 図4には、式(2)及び式(3)で定義されるAV(F)及びAV(T)が記載されている。AV(F)は、F値に対応するAV(Aperture Value)である。AV(T)は、T値に対応するAVである。
 AV(F)=2×log(F)  ・・・(2)
 AV(T)=2×log(T)  ・・・(3)
 本実施形態では、絞り22の開放絞り値Fminは、「1.4」である。図4によると、開放絞り値Fminに対応するT値は「2.0」である。したがって、絞り22が開放絞り値Fminに設定された場合のAPDフィルタ26による減光量は、AVの1段分(光量を1/2とする値)に相当する。
 撮影装置本体11の内部には、シャッタユニット30と、撮像素子32と、主制御部34と、画像処理部36と、AF制御部38と、被写体情報取得部40と、露出制御部42と、表示部44と、メモリ46とが設けられている。
 シャッタユニット30は、フォーカルプレーンシャッタ等のメカシャッタである。シャッタユニット30は、レンズ鏡筒取付部11Aと撮像素子32との間の光路を遮断可能に設けられている。シャッタユニット30は、後述する主制御部34の制御に基づいてシャッタモータ31が駆動することにより開閉動作を行う。
 撮像素子32は、シャッタユニット30を介して入射する入射光を光電変換して撮像信号を出力する。撮像素子32から出力された撮像信号は、画像処理部36に入力される。撮像素子32は、CMOS(Complementary Metal Oxide Semiconductor)型センサであり、電子シャッタ機能を有する。この電子シャッタ機能のシャッタ速度は、主制御部34により制御可能である。
 主制御部34は、CPU(Central Processing Unit)と、このCPUで使用されるプログラムやパラメータを記憶したROM(Read Only Memory)と、CPUのワークメモリとして使用されるRAM(Random Access Memory)など(いずれも図示せず)を備えている。主制御部34は、撮影装置10の各部と電気的に接続されており、操作部13から入力される操作信号に基づいて、撮影装置10の全体を統括的に制御する。主制御部34は、シャッタボタン13Bから、S1オン信号及びS2オン信号を受信する。また、主制御部34は、モード切替ダイヤル13Cから、現在設定されている動作モードを特定する。
 また、主制御部34は、電気接点11Bを介してID記憶部24,25からIDを受信する。主制御部34は、受信したIDに基づき、撮影装置本体11に接続されているレンズ鏡筒の種類(第1レンズ鏡筒12と第2レンズ鏡筒14とのいずれであるか)を特定する。
 また、主制御部34は、特定したレンズ鏡筒の種類に基づいて、APDフィルタ26の有無を判定する。具体的には、主制御部34は、特定したレンズ鏡筒が第1レンズ鏡筒12であった場合には、APDフィルタ26が有ると判定し、特定したレンズ鏡筒が第2レンズ鏡筒14であった場合には、APDフィルタ26が無いと判定する。そして、主制御部34は、この判定結果をAPDフィルタ情報として撮影露出決定部56に送信する。
 画像処理部36は、撮像素子32から受信した撮像信号から画像データを生成する。画像処理部36は、生成した画像データを表示部44及びメモリ46に送信する。表示部44には、画像データに基づいた画像が表示される。メモリ46には画像データが記憶される。また、画像処理部36は、受信した撮像信号をY/C変換することによって輝度信号を生成し、生成した輝度信号を露出制御部42に送信する。
 AF制御部38は、撮像信号に基づいて、コントラストAF方式によりAF制御を実行する。AF制御では、フォーカスレンズ20を移動させながら、撮像信号に基づいてAF評価値(高周波成分の積算値)を算出する。そして、AF制御部38は、AF評価値が最大となるフォーカスレンズ20の位置(合焦位置)を検出し、この合焦位置にフォーカスレンズ20を移動させる。AF評価値は、画像のコントラストに対応している。主要被写体の合焦位置を求めるAFエリアは、例えば、撮像範囲の中央領域である。AF制御部38は、撮像信号のうち、AFエリアに含まれる信号からAF評価値を算出して合焦位置を検出する。なお、この合焦位置の取得は、絞り22を開放とした状態で行われる。
 被写体情報取得部40は、撮像信号に基づき、画角内の被写体に関する被写体情報を取得する。本実施形態では、被写体情報は、主要被写体と、主要被写体から最も離れた被写体との距離差(被写体距離差)である。具体的には、被写体情報取得部40は、図5に示すように、撮像素子32の撮像範囲48を複数のブロックに分割して、ブロック毎に被写体距離を求め、各ブロックの被写体距離から被写体距離差を求める。
 例えば、被写体情報取得部40は、撮像範囲48をブロックB1~B9の9つのブロックに分割する。撮像範囲48の中央に位置するブロックB5は、前述のAFエリアである。ブロックB5には主要被写体49の画像が含まれる。被写体情報取得部40は、ブロックB5の合焦位置(主要被写体49の合焦位置)については、AF制御部38によってAFエリアについて得られる合焦位置を用いる。
 また、被写体情報取得部40は、AFエリアであるブロックB5の周囲のブロックB1~B4,B6~B9については、AF制御部38を制御して、ブロック毎にAF制御を行わせる。これにより、被写体情報取得部40は、ブロックB1~B4,B6~B9のそれぞれについて、主要被写体49以外の被写体の合焦位置を取得する。なお、この合焦位置の取得は、絞り22を開放とした状態で行われる。
 被写体情報取得部40は、ブロックB1~B9のそれぞれについて得られた各合焦位置に基づいて、ブロックB1~B9のそれぞれについて被写体距離を求める。被写体情報取得部40は、図6(A)に示すように、AFエリアであるブロックB5の合焦位置L5に基づいて、主要被写体49(図5参照)までの被写体距離を求める。このブロックB5における被写体距離は、図6(C)に示す主要被写体距離Dmに対応する。また、被写体情報取得部40は、図6(B)に示すように、AFエリア以外のブロックB1~B4,B6~B9の各合焦位置に基づいて、主要被写体49以外の被写体までの被写体距離をそれぞれ求める。例えば、ブロックB3の合焦位置L3に基づいて、被写体50(図5参照)までの被写体距離が求められる。このブロックB3における被写体距離は、図6(C)に示す被写体距離Dnに対応する。
 被写体情報取得部40は、求めた主要被写体距離Dmとその他の被写体距離とを比較することによって、主要被写体49から最も離れた被写体の被写体距離と、主要被写体距離Dmとの被写体距離差Rxを求める。被写体距離差Rxは、主要被写体49の画像が含まれているブロックの合焦位置と、主要被写体49から最も距離が離れた被写体の画像が含まれているブロックの合焦位置との距離差に対応している。被写体情報取得部40は、求めた被写体距離差Rxを、主制御部34を介して撮影露出決定部56に送信する。
 具体的には、被写体情報取得部40は、ブロックB1~B4,B6~B9の各被写体距離と、主要被写体距離Dmとの距離差(差の絶対値)を求め、最も大きい距離差を、被写体距離差Rxとする。図6(B)に示す例では、ブロックB3の合焦位置L3が、ブロックB5の合焦位置L5から最も距離が離れている。主要被写体距離Dmは、ブロックB3に含まれる被写体50の被写体距離Dnとの距離差(|Dn-Dm|)が最も大きく、この距離差が被写体距離差Rxとなる。
 この被写体距離差Rxを、被写界深度に基づいて定められた閾値Rthと比較することにより、ピントを合わせた主要被写体49の背景にボケ像が生じやすいか否かを判定することができる。図7に示すように、閾値Rthは、絞り22を開放とした場合の被写界深度DOFをn倍としたものである。この定数nは、0.5以上の値に設定されている。
 したがって、図6(B)に示すように、被写体距離差Rxが、Rx≧Rthの関係を満たす場合には、主要被写体49の背景にボケ像が生じやすい。一方、図8(A)~(C)に示すように、被写体距離差Rxが、Rx<Rthの関係を満たす場合には、主要被写体49の背景にはボケ像は生じにくい。図8(A)は、主要被写体49が含まれるAFエリア(ブロックB5)の合焦位置L5を示している。図8(B)は、Rx<Rthを満たす場合の被写体距離差Rxを示している。図8(C)は、主要被写体49の主要被写体距離Dmと、主要被写体49から最も離れた被写体50の被写体距離Dnとを示している。
 露出制御部42は、輝度信号に基づいて、撮影に最適な露出量、シャッタ速度、及び絞り値(以下、撮影露出量、撮影シャッタ速度、及び撮影絞り値という)を決定する。露出制御部42は、測光部52と、プログラム線図記憶部54と、撮影露出決定部56とを備えている。
 測光部52は、画像処理部36から受信した輝度信号に基づいて測光値を算出することによって被写体の測光を行う。測光部52は、算出した測光値を撮影露出決定部56に送信する。
 プログラム線図記憶部54は、図9に示す第1プログラム線図P1と、図10に示す第2プログラム線図P2とを記憶している。第1及び第2プログラム線図P1,P2は、APEX(Additive system of Photographic EXposure)演算式(4)を満たすEV(Exposure Value)、AV、及びTV(Time Value)で表されている。第1及び第2プログラム線図P1,P2では、1つのEVに対して、一組のAV及びTVが対応している。
 EV=AV+TV    ・・・(4)
 EVは、露出量を示している。TVは、シャッタ速度t(単位:秒)と式(5)の関係にある。
 TV=-log(t) ・・・(5)
 第1及び第2プログラム線図P1,P2では、AVを、前述のAV(F)を用いて表している。
 第1及び第2プログラム線図P1,P2は、多段絞り方式である。多段絞り方式のプログラム線図では、AVが離散的な値を取っているので、測光値から求まる撮影露出量EVの変化に伴って、撮影絞り値(AV)が頻繁に変化することが防止される。
 第1プログラム線図P1は、基本的に、APDフィルタ26を有していない第2レンズ鏡筒14が撮影装置本体11に接続されている場合に用いられる。図9に示すように、第1プログラム線図P1は、露出量が第1露出量EV1以下の領域で絞り値が開放絞り値Fminに固定されている。開放絞り値Fminは、「AV(F)=1」に対応している。本実施形態では、EV1=12である。また、第1露出量EV1に対応するシャッタ速度TV1は「11」である。
 第2プログラム線図P2は、基本的に、APDフィルタ26を有している第1レンズ鏡筒12が撮影装置本体11に接続されている場合に用いられる。図10に示すように、第2プログラム線図P2は、露出量が第2露出量EV2以下の領域で、絞り値が開放絞り値Fminに固定されている。第2露出量EV2は、第1露出量EV1よりも大きい値である。本実施形態では、EV2=14としている。第2プログラム線図P2では、絞り値が開放絞り値Fminに固定された領域が第1プログラム線図P1より長い。第2プログラム線図では、第1プログラム線図の場合よりも、撮影絞り値として開放絞り値Fminがより優先的に決定される。
 第2露出量EV2に対応するシャッタ速度TV2は、「13」である。このシャッタ速度TV2は、第1プログラム線図P1の第1露出量EV1に対応するシャッタ速度TV1より速い。本実施形態では、シャッタ速度TV2は、シャッタユニット30の高速側の限界速度とされている。
 撮影露出決定部56は、測光部52から受信した測光値に基づいて所定の演算を行うことにより、適正な撮影露出量EVを算出する。また、撮影露出決定部56は、主制御部34から受信したAPDフィルタ情報及び被写体情報に基づいて、後述する方法により、プログラム線図記憶部54から、第1プログラム線図P1または第2プログラム線図P2を選択する。
 撮影露出決定部56は、選択したプログラム線図を用いて、上記演算により求めた撮影露出量EVに基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する。主制御部34は、撮影露出決定部56により決定された撮影絞り値及び撮影シャッタ速度を、絞り22及びシャッタユニット30にそれぞれ設定する。
 次に、図11に示すフローチャートを参照して、撮影装置10の撮影動作を説明する。電源ボタン13Aの操作によって撮影装置10の電源がオンとされると、主制御部34は、撮影装置本体11に第1レンズ鏡筒12または第2レンズ鏡筒14が接続されているか否かを検出し、接続を検出した場合には、接続されているレンズ鏡筒からIDを取得する(ステップS11)。また、撮影装置10では、モード切替ダイヤル13Cの設定に応じて、静止画撮影モードまたは動画撮影モードが実行され、ライブビュー表示が行われる。
 このライブビュー表示中にシャッタボタン13Bが半押しされ、主制御部34がS1オン信号を取得すると(ステップS12でYES)、AF制御部38により、AFエリアを対象とした前述のAF制御が実行される(ステップS13)。
 画像処理部36は、撮像信号から輝度信号を取得し(ステップS14)、輝度信号を測光部52に送信する。測光部52は、受信した輝度信号に基づいて被写体の測光値を算出し(ステップS15)、測光値を撮影露出決定部56に送信する。撮影露出決定部56は、受信した測光値に基づいて撮影露出量EVを算出する(ステップS16)。
 そして、撮影露出決定部56は、プログラム線図記憶部54から第1プログラム線図P1または第2プログラム線図P2を選択する(ステップS17)。
 ステップS17のプログラム線図の選択動作は、図12に示すフローチャートに基づいて行われる。まず、撮影露出決定部56は、主制御部34から受信したAPDフィルタ情報に基づいて、APDフィルタ26が光路上に配置されているか否か(APDフィルタ26の有無)を判定する(ステップS31)。撮影露出決定部56は、APDフィルタ26が光路上に配置されていないと判定した場合(ステップS31でNO)には、プログラム線図記憶部54から第1プログラム線図P1を選択する(ステップS35)。
 一方、撮影露出決定部56は、APDフィルタ26が光路上に配置されていると判定された場合(ステップS31でYES)には、被写体情報取得部40に、被写体情報を取得させる(ステップS32)。本実施形態では、被写体情報取得部40により、被写体情報として、前述の被写体距離差Rxが取得される。
 そして、撮影露出決定部56は、取得した被写体距離差Rxが閾値Rth以上であるか否かを判定する(ステップS33)。撮影露出決定部56は、Rx≧Rthの場合(ステップS33でYES)には、主要被写体の背景にボケ像が生じやすいので、第2プログラム線図P2を選択する(ステップS34)。
 一方、撮影露出決定部56は、Rx<Rthの場合(ステップS33でNO)には、主要被写体の背景にはボケ像が生じにくいので、第1プログラム線図P1を選択する(ステップS35)。
 図11に戻り、撮影露出決定部56は、選択したプログラム線図を用いて、ステップS16で算出した撮影露出量EVに基づいて、撮影露出(撮影絞り値及び撮影シャッタ速度)を決定する(ステップS18)。主制御部34は、撮影絞り値及び撮影シャッタ速度を、絞り22及びシャッタユニット30にそれぞれ設定する(ステップS19)。
 そして、この撮影露出の設定後に、シャッタボタン13Bが全押しされ、主制御部34がS2オン信号を取得すると(ステップS20でYES)、撮影が実行される(ステップS21)。例えば、APDフィルタ26が光路上に配置されている場合に、Rx≧Rthを満たし、第2プログラム線図P2が選択されて撮影が実行されると、主要被写体の背景に生じたボケ像の輪郭に、APDフィルタ26の効果によってグラデーションが与えられ、美しいボケ味が得られる。
 以上のように、本発明の撮影装置10では、APDフィルタ26が光路上に配置されている場合であっても、Rx<Rthの条件(第1条件)を満たし、主要被写体の背景にボケ像が生じにくい撮影シーンであると判定される場合には、APD用のプログラム線図である第2プログラム線図P2ではなく、通常のプログラム線図である第1プログラム線図P1が選択される。
 このようなボケ像が生じにくい撮影シーンで第2プログラム線図P2が用いられると、露出オーバーとなった場合には、開放絞り値を優先して被写界深度を浅く維持するために、シャッタ速度の調整が行われ、撮影シャッタ速度が高速化する。このように撮影シャッタ速度が高速化すると、蛍光灯等の屋内光源下ではフリッカ等の弊害が発生することがある。
 本発明の撮影装置10では、上記撮影シーンにおいて、APDフィルタ26が光路上に配置されている場合であっても、第1プログラム線図P1を選択するので、フリッカ等の弊害の発生が防止される。すなわち、本発明の撮影装置10では、第1及び第2プログラム線図P1,P2が適切に選択される。
 [第2実施形態]
 第1実施形態では、撮影露出決定部56は、APDフィルタ26が光路上に配置されている場合に、Rx≧Rthを満たすことを、第2プログラム線図P2を選択するための条件(請求の範囲に記載の第1条件)としている。これは、アポダイゼーション効果を与える対象であるボケ像が生じるための条件である。
 しかし、ボケ像は、ピントの合った主要被写体の画像を引き立たせるために生じさせるためのものであるので、主要被写体距離がある程度小さく、画像中の主要被写体の大きさがある程度大きくなければ、主要被写体を引き立たせることはできない。例えば、遠距離にある建物や風景などを撮影する撮影シーンでは、ボケ像により主要被写体を引き立たたせた画像を得ることは期待できない。
 そこで、第2実施形態では、撮影露出決定部56は、APDフィルタ26が光路上に配置されている場合に、Rx≧Rthを満たすことに加えて、主要被写体距離Dmが特定距離より小さいことを条件(請求の範囲に記載の第1条件)として、第2プログラム線図P2を選択する。
 具体的に、第2実施形態では、図13に示すフローチャートに基づいてプログラム線図を選択する。撮影露出決定部56は、APDフィルタ26が光路上に存在すると判定した場合(ステップS31でYES)には、まず、主要被写体距離Dmが特定距離より小さいか否かを判定する(ステップS41)。
 撮影露出決定部56は、主要被写体距離Dmが特定距離より小さい場合(ステップS41でYES)には、被写体情報として被写体距離差Rxを取得する(ステップS32)。そして、撮影露出決定部56は、被写体距離差Rxが閾値Rth以上であるか否かを判定し(ステップS33)、Rx≧Rthである場合(ステップS33でYES)には、第2プログラム線図P2を選択する(ステップS34)。
 一方、撮影露出決定部56は、主要被写体距離Dmが特定距離以上である場合(ステップS41でNO)には、第1プログラム線図P1を選択する(ステップS35)。第2実施形態のその他の構成は、第1実施形態と同様である。第2実施形態においては、ステップS41とステップS33が請求の範囲に記載の「第1条件」に対応する。
 このように、第2実施形態では、被写体距離差Rxに基づいてプログラム線図の選択を行う前に、主要被写体距離Dmに基づき、主要被写体距離Dmが特定距離以上の場合には、被写体距離差Rxを算出する動作を行うことなく第1プログラム線図P1を選択するので、プログラム線図の選択処理が高速化するという効果もある。
 また、第1実施形態では、遠距離にある建物や風景などを撮影する撮影シーンでは、APDフィルタ26が光路上に配置されている場合に、第2プログラム線図P2が選択されて、開放絞り値が優先的に使用され、被写界深度が浅く維持される。これに対して、第2実施形態では、遠距離にある建物や風景などを撮影する撮影シーンでは、APDフィルタ26が光路上に配置されていても第1プログラム線図P1が選択されるので、絞りが絞り込まれて被写界深度が深くなり、全被写体にピントが合ったシャープな画像が得られやすい。
 [第3実施形態]
 第2実施形態では、撮影露出決定部56は、APDフィルタ26が光路上に配置されている場合に、Rx≧Rthを満たすことに加えて、主要被写体距離Dmが特定距離より小さいことを条件として、第2プログラム線図P2を選択している。第3実施形態では、APDフィルタ26が光路上に配置されている場合に、Rx≧Rthを満たすことに加えて、画像中に検出された人物の顔の大きさが閾値以上であることを条件として、第2プログラム線図P2を選択する。
 第3実施形態では、被写体情報取得部40は、画像処理部36から撮像信号に基づいて生成された画像データを受信し、この画像中に人物の顔が存在するか否かを検出する。例えば、被写体情報取得部40は、目、鼻、口など人物の顔に関する顔情報を予め記憶しており、この顔情報を用いたパターン認識を行うことによって、画像中から顔検出を行う。
 また、被写体情報取得部40は、顔検出により顔を検出した場合には、この顔の大きさを求める。例えば、被写体情報取得部40は、画像中において、顔として検出された領域の面積を求める。
 ボケ像により主要被写体を引き立たせる撮影シーンでは、主要被写体である顔の画像中の大きさをある程度大きくする必要がある。このため、ボケ像により主要被写体を引き立たたせた画像が得られるか否かは、顔の大きさ(例えば、面積)により判定することができる。
 具体的に、第3実施形態では、撮影露出決定部56は、図14に示すフローチャートに基づいてプログラム線図の選択を行う。撮影露出決定部56は、APDフィルタ情報に基づいて、APDフィルタ26が光路上に配置されているか否かを判定する(ステップS31)。撮影露出決定部56は、APDフィルタ26が光路上に配置されていないと判定した場合(ステップS31でNO)には、プログラム線図記憶部54から第1プログラム線図P1を選択する(ステップS35)。
 一方、撮影露出決定部56は、APDフィルタ26が光路上に存在すると判定した場合(ステップS31でYES)には、被写体情報取得部40に、顔検出を行わせる(ステップS51)。被写体情報取得部40は、撮像信号に基づいて被写体の顔の有無を検出する(ステップS52)。被写体情報取得部40は、顔を検出した場合(ステップS52でYES)には、顔の大きさを取得する(ステップS53)。
 撮影露出決定部56は、被写体情報取得部40により得られた顔の大きさが閾値以上であるか否かを判定する(ステップS54)。撮影露出決定部56は、顔の大きさが閾値未満である場合(ステップS54でNO)には、第1プログラム線図P1を選択する(ステップS35)。一方、撮影露出決定部56は、顔の大きさが閾値以上である場合(ステップS54でYES)には、前述の被写体距離差Rxを取得する(ステップS32)。なお、ステップS52において、顔が検出されなかった場合(ステップS52でNO)にも、ステップS32に移行する。
 被写体距離差Rxが取得されると、撮影露出決定部56は、被写体距離差Rxが閾値Rth以上であるか否かを判定する(ステップS33)。撮影露出決定部56は、Rx≧Rthの場合(ステップS33でYES)には、第2プログラム線図P2を選択する(ステップS34)。一方、撮影露出決定部56は、Rx<Rthの場合(ステップS33でNO)には、第1プログラム線図P1を選択する(ステップS35)。第3実施形態においては、ステップS54とステップS33が請求の範囲に記載の「第1条件」に対応する。
 このように、第3実施形態では、APDフィルタ26が光路上に配置されている場合に、Rx≧Rthを満たすことに加えて、画像中に検出された顔の大きさが閾値以上であることを条件として、第2プログラム線図P2を選択しているので、ボケ像により主要被写体を引き立たたせた画像が得られる撮影シーン以外で第2プログラム線図P2が選択されることがなく、第2プログラム線図P2を選択することによるフリッカ等の弊害の発生が防止される。
 [第4実施形態]
 第1実施形態では、シャッタユニット30によりシャッタ速度を制御しているが、撮像素子32が備えている電子シャッタ機能によりシャッタ速度を制御しても良い。一般的に、電子シャッタ機能は、メカシャッタであるシャッタユニット30よりも、シャッタ速度を高速に設定可能である。このように、電子シャッタ機能を用いることにより、撮影絞り値として開放絞り値Fminが決定される範囲を高露出値側に広げることができる。
 第4実施形態では、プログラム線図記憶部54には、図9に示す第1プログラム線図P1と図10に示す第2プログラム線図P2に加えて、図15に示す第3プログラム線図P3が記憶されている。第3プログラム線図P3は、第2露出量EV2より大きい第3露出量EV3以下で絞り値が開放絞り値Fminに固定されている。本実施形態では、EV3=16としている。
 第3露出量EV3に対応する撮影シャッタ速度TV3は、シャッタユニット30の高速側の限界速度であるシャッタ速度TV2よりも速い。例えば、TV3=15とする。このため、第3プログラム線図P3において、TV2より高速側の領域で決定される撮影シャッタ速度は、撮像素子32の電子シャッタ機能を用いて設定される。
 撮像素子32は、ローリングシャッタ方式で撮像動作を行う。図16に示すように、撮像素子32は、1画素行ごとに、電荷のリセット、露光及び蓄積された電荷の読み出しを行う。電荷のリセットタイミングと読み出しタイミングは、画素行ごとに異なっている。電荷のリセットが完了してから電荷の読み出しが開始されるまでの期間は、各画素行で同じである。このため、画素行ごとに露光期間が異なる。ライブビュー表示中や動画撮影モードの場合には、先頭の画素行から最終の画素行までのリセット及び読み出し動作が繰り返し行われる。
 しかし、ローリングシャッタ方式では、画素行ごとに露光期間が異なるので、主要被写体に動きが生じている場合には、主要被写体の像に歪みが生じることがある。この歪は、主要被写体の動き量が大きいほど大きくなる。また、この歪は、ローリングシャッタ方式では、撮影シャッタ速度が速くなるほど大きくなる。これは、ローリングシャッタ方式では、撮影シャッタ速度が速くなるほど、各画素行の露光期間の重なりが小さくなるためである。
 このため、第4実施形態では、撮影露出決定部56は、Rx≧Rthという条件(請求の範囲に記載の第1条件)を満たすことに加えて、主要被写体の動き量が特定値以下という条件(請求の範囲に記載の第2条件)を満たす場合に第3プログラム線図P3を選択する。
 図17において、第4実施形態の撮影装置本体70には、第1実施形態の撮影装置本体11の各構成に加えて、主要被写体の動き量を検出する動き検出部72が設けられている。
 動き検出部72は、ライブビュー表示中に撮像素子32から出力された複数フレームの撮像信号に基づいて、主要被写体の動き量を検出する。例えば、図18に示すように、動き検出部72は、画像処理部36から、ライブビュー表示中の時刻t1に得られた1フレーム(1フレーム目)の画像データ74と、時刻t2に得られた1フレーム(2フレーム目)の画像データ75とを取得する。動き検出部72は、取得した各画像データ74,75をそれぞれ複数エリアに分割し、フレーム毎に、各エリアの輝度値を求める。各画像データ74,75には、主要被写体76に対応する特定の輝度値を有するエリアが含まれている。動き検出部72は、フレーム間で輝度値が変化したエリアを検出することによって、主要被写体76の動き量を検出する。フレーム間で輝度値が変化したエリア数が多いほど、主要被写体76の動き量が大きいことに対応する。
 第4実施形態では、撮影露出決定部56は、図19に示すフローチャートに基づいてプログラム線図の選択を行う。撮影露出決定部56は、APDフィルタ情報に基づいて、APDフィルタ26が光路上に配置されているか否かを判定する(ステップS31)。撮影露出決定部56は、APDフィルタ26が光路上に配置されていないと判定した場合(ステップS31でNO)には、プログラム線図記憶部54から第1プログラム線図P1を選択する(ステップS35)。
 一方、撮影露出決定部56は、APDフィルタ26が光路上に配置されていると判定された場合(ステップS31でYES)には、被写体情報取得部40に、被写体情報として被写体距離差Rxを取得させる(ステップS32)。撮影露出決定部56は、被写体距離差Rxが閾値Rth以上であるか否かを判定する(ステップS33)。撮影露出決定部56は、Rx<Rthの場合(ステップS33でNO)には、第1プログラム線図P1を選択する(ステップS35)。
 撮影露出決定部56は、Rx≧Rthの場合(ステップS33でYES)には、動き検出部72を制御することによって、主要被写体の動き量を検出させる(ステップS61)。動き検出部72は、検出した主要被写体の動き量を撮影露出決定部56に送信する。
 撮影露出決定部56は、受信した主要被写体の動き量が特定値以下であるか否かを判定する(ステップS62)。撮影露出決定部56は、動き量が特定値以下である場合(ステップS62でYES)には、第3プログラム線図P3を選択する(ステップS63)。一方、撮影露出決定部56は、動き量が特定値より大きい場合(ステップS62でNO)には、第2プログラム線図P2を選択する(ステップS64)。第4実施形態においては、ステップS33が請求の範囲に記載の「第1条件」に対応し、ステップS62が請求の範囲に記載の「第2条件」に対応する。
 このように、第4実施形態では、主要被写体の動き量に基づいて第2プログラム線図P2と第3プログラム線図P3とを選択することにより、電子シャッタ機能を適切に使用することができる。動き量が特定値以下である場合に第3プログラム線図P3が選択されるので、撮像素子32の電子シャッタ機能を用いたとしても主要被写体の像に歪みが生じることが防止される。
 [第5実施形態]
 第4実施形態では、撮影露出決定部56は、主要被写体の動き量が特定値以下であることを、第3プログラム線図P3を選択するための条件としているが、第5実施形態では、フリッカが検出されていないことを条件(請求の範囲に記載の第2条件)として、第3プログラム線図P3を選択する。これは、電子シャッタ機能を用いて、撮影シャッタ速度が速くなるほど、画像にフリッカの影響が生じやすくなるためである。
 図20において、第5実施形態の撮影装置本体80には、第1実施形態の撮影装置本体11の各構成に加え、フリッカの有無を検出するフリッカ検出部82が設けられている。フリッカは、商用交流電源によって点灯される蛍光灯の照明下で撮像を行った場合に、蛍光灯の輝度変化の周波数と、撮像周波数との違いによって、撮像信号に時間的な明暗の変化が生じる現象である。この明暗の変化が、画像に、チラつきや縞模様として現れる。
 フリッカ検出部82は、複数フレームの撮像信号から輝度値の変化を求めてフリッカの有無を検出する。このフリッカ検出処理としては、特開2005-33616号公報に記載された技術を用いることが可能である。フリッカ検出部82は、以下のように、蛍光灯の輝度変化の周波数として、50Hzの場合と60Hzの場合とを想定してフリッカの検出を行う。
 フリッカ検出部82は、ライブビュー表示中に、撮像素子32のフレームレートを50Hz、シャッタ速度を1/50秒として、撮像素子32に周期的に撮像動作を行わせる。フリッカ検出部82は、各フレームで出力された撮像信号に基づいて、フレーム間の画角中央の輝度値に変化が有るか否かを判定する。フリッカ検出部82は、輝度値の変化が有る場合には、フリッカが存在すると判定する。
 この後、フリッカ検出部82は、撮像素子32のフレームレートを60Hz、シャッタ速度を1/60秒と設定して、上記と同様のフリッカ検出動作を行い、フレーム間の画角中央の輝度値に変化が有る場合には、フリッカが存在すると判定する。
 第5実施形態では、撮影露出決定部56は、図21に示すフローチャートに基づいてプログラム線図の選択を行う。このフローチャートでは、被写体の動き量に代えて、フリッカの検出を行い(ステップS71)、動き量に基づく判定に代えて、フリッカの検出の有無に基づく判定を行う(ステップS72)点が、第4実施形態と異なる。
 第5実施形態では、撮影露出決定部56は、フリッカ検出部82によりフリッカが検出された場合(ステップS72でNO)には第3プログラム線図P3を選択し(ステップS73)、フリッカが検出されない場合(ステップS72でNO)には第2プログラム線図P2を選択する(ステップS74)。第5実施形態においては、ステップS33が請求の範囲に記載の「第1条件」に対応し、ステップS72が請求の範囲に記載の「第2条件」に対応する。
 このように、第5実施形態では、フリッカの有無に基づいて第2プログラム線図P2と第3プログラム線図P3とを選択することにより、電子シャッタ機能を適切に使用することができる。フリッカが無い場合に第3プログラム線図P3が選択されるので、撮像素子32の電子シャッタ機能を用いたとしても画像にフリッカの影響が生じることが防止される。
 また、上記各実施形態では、レンズ鏡筒と撮影装置本体とが着脱可能なレンズ交換型の撮影装置を例として本発明を説明しているが、本発明は、レンズ鏡筒と撮影装置本体とが一体化された一体型の撮影装置にも適用可能である。レンズ交換型の撮影装置では、レンズ鏡筒を交換することによりAPDフィルタが光路上から挿脱されるが、一体型の撮影装置では、APDフィルタを光路上に挿脱させる機構を設ければよい。
 上記各実施形態では、撮像素子32としてCMOS型イメージセンサを用いているが、CCD(Charge Coupled Device)イメージセンサを用いてもよい。
 上記各実施形態では、AF制御部38は、コントラストAF方式によりAF制御を行っているが、位相差AF方式によりAF制御を行ってもよい。すなわち、図5に示す撮像範囲48を分割した各ブロックについての合焦位置の取得を、位相差AF方式により行ってもよい。
 上記各実施形態では、シャッタボタン13Bが半押しされた後に露出制御を行っているが、シャッタボタン13Bが半押しされる前のライブビュー表示時においても露出制御を行ってもよい。
 10 撮影装置
 11,70,80 撮影装置本体
 11A レンズ鏡筒取付部
 11B 電気接点
 12 第1レンズ鏡筒
 12A 基端部
 12B 電気接点
 13 操作部
 13A 電源ボタン
 13B シャッタボタン
 13C モード切替ダイヤル
 14 第2レンズ鏡筒
 14A 基端部
 14B 電気接点
 20 フォーカスレンズ
 22 絞り
 24,25 ID記憶部
 26 APDフィルタ
 28A,28B モータ
 30 シャッタユニット
 31 シャッタモータ
 32 撮像素子
 34 主制御部
 36 画像処理部
 38 AF制御部
 40 被写体情報取得部
 42 露出制御部
 44 表示部
 46 メモリ
 48 撮像範囲
 49,76 主要被写体
 50 被写体
 52 測光部
 54 プログラム線図記憶部
 56 撮影露出決定部
 72 動き検出部
 74,75 画像データ
 82 フリッカ検出部
 P1 第1プログラム線図
 P2 第2プログラム線図
 P3 第3プログラム線図

Claims (12)

  1.  入射光を光電変換して撮像信号を出力する撮像素子と、
     前記入射光の光量を調整する絞りと、
     前記撮像信号に基づいて測光を行う測光部と、
     前記入射光の光路上に配置されるアポダイゼーションフィルタと、
     第1露出量以下で絞り値が開放絞り値に固定された第1プログラム線図と、前記第1露出量より大きい第2露出量以下で絞り値が開放絞り値に固定された第2プログラム線図とを記憶するプログラム線図記憶部と、
     前記撮像信号に基づき、被写体情報を取得する被写体情報取得部と、
     前記アポダイゼーションフィルタが前記光路上に配置されており、前記被写体情報が第1条件を満たす場合に前記第2プログラム線図を選択し、前記アポダイゼーションフィルタが前記光路上に配置されていない場合、及び前記アポダイゼーションフィルタが前記光路上に配置されており、前記被写体情報が前記第1条件を満たさない場合に前記第1プログラム線図を選択し、前記測光部による測光値から求まる撮影露出量に基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する撮影露出決定部と、
     を備える撮影装置。
  2.  前記被写体情報取得部は、前記被写体情報として、主要被写体と前記主要被写体から最も離れた被写体との被写体距離差を取得し、
     前記撮影露出決定部は、前記被写体距離差が閾値以上であることを前記第1条件とする請求項1に記載の撮影装置。
  3.  前記被写体情報取得部は、前記被写体情報として、前記被写体距離差に加えて、主要被写体までの被写体距離である主要被写体距離を取得し、
     前記撮影露出決定部は、前記主要被写体距離が特定距離より小さく、且つ前記被写体距離差が閾値以上であることを前記第1条件とする請求項2に記載の撮影装置。
  4.  前記被写体情報取得部は、前記撮像素子による撮像範囲を複数のブロックに分割して、前記ブロック毎に被写体距離を求め、前記各ブロックの被写体距離から前記主要被写体距離及び前記被写体距離差を求める請求項3に記載の撮影装置。
  5.  前記第2プログラム線図で前記第2露出量に対応するシャッタ速度は、前記第1プログラム線図の前記第1露出量に対応するシャッタ速度より速い請求項1~4いずれか1項
    に記載の撮影装置。
  6.  メカシャッタを備え、
     前記第2プログラム線図で前記第2露出量に対応するシャッタ速度は、前記メカシャッタの高速側の限界速度である請求項5に記載の撮影装置。
  7.  前記撮像素子は、前記限界速度より速い撮影シャッタ速度を可能とする電子シャッタ機能を有し、
     前記プログラム線図記憶部は、前記第2露出量より大きい第3露出量以下で絞り値が開放絞り値に固定された第3プログラム線図を記憶し、
     前記撮影露出決定部は、前記第1条件を満たし、且つ前記第1条件とは異なる第2条件を満たす場合に前記第3プログラム線図を選択し、前記第1条件を満たし、且つ前記第2条件を満たさない場合に前記第2プログラム線図を選択する請求項6に記載の撮影装置。
  8.  前記電子シャッタ機能は、ローリングシャッタ方式であり、
     複数フレームの前記撮像信号に基づいて主要被写体の動き量を検出する動き検出部を備え、
     前記撮影露出決定部は、前記動き量が特定値以下であることを前記第2条件とする請求項7に記載の撮影装置。
  9.  複数フレームの前記撮像信号から輝度値の変化を求めてフリッカの有無を検出するフリッカ検出部を備え、
     前記撮影露出決定部は、前記フリッカが検出されていないことを前記第2条件とする請求項7に記載の撮影装置。
  10.  前記被写体情報取得部は、前記被写体情報として、前記被写体距離差に加えて、前記撮像信号に基づいて被写体の顔の有無を検出し、前記顔が検出された場合に前記顔の大きさを取得するものであり、
     前記撮影露出決定部は、前記主要被写体距離が特定距離より小さく、且つ前記顔が検出され、前記顔の大きさが閾値以上であることを前記第1条件とする請求項2に記載の撮影装置。
  11.  アポダイゼーションフィルタを有する第1レンズ鏡筒と、アポダイゼーションフィルタを有しない第2レンズ鏡筒とが取り付け可能な撮影装置本体において、
     入射光を光電変換して撮像信号を出力する撮像素子と、
     前記入射光の光量を調整する絞りと、
     前記撮像信号に基づいて測光を行う測光部と、
     第1露出量以下で絞り値が開放絞り値に固定された第1プログラム線図と、前記第1露出量より大きい第2露出量以下で絞り値が開放絞り値に固定された第2プログラム線図とを記憶するプログラム線図記憶部と、
     前記撮像信号に基づき、被写体情報を取得する被写体情報取得部と、
     前記第1レンズ鏡筒が取り付けられており、前記被写体情報が第1条件を満たす場合に前記第2プログラム線図を選択し、前記第2レンズ鏡筒が取り付けられている場合、及び前記第1レンズ鏡筒が取り付けられており、前記被写体情報が前記第1条件を満たさない場合に前記第1プログラム線図を選択し、前記測光部による測光値から求まる撮影露出量に基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する撮影露出決定部と、
     を備える撮影装置本体。
  12.  入射光を光電変換して撮像信号を出力する撮像素子と、
     前記入射光の光量を調整する絞りと、
     前記撮像信号に基づいて測光を行う測光部と、
     前記入射光の光路上に配置されるアポダイゼーションフィルタと、
     第1露出量以下で絞り値が開放絞り値に固定された第1プログラム線図と、前記第1露出量より大きい第2露出量以下で絞り値が開放絞り値に固定された第2プログラム線図とを記憶するプログラム線図記憶部と、
     前記撮像信号に基づき、被写体情報を取得する被写体情報取得部と、
     を備える撮影装置の制御方法において、
     前記アポダイゼーションフィルタが前記光路上に配置されており、前記被写体情報が第1条件を満たす場合に前記第2プログラム線図を選択し、前記アポダイゼーションフィルタが前記光路上に配置されていない場合、及び前記アポダイゼーションフィルタが前記光路上に配置されており、前記被写体情報が前記第1条件を満たさない場合に前記第1プログラム線図を選択し、前記測光部による測光値から求まる撮影露出量に基づき、一組の撮影絞り値及び撮影シャッタ速度を決定する撮影装置の制御方法。
PCT/JP2016/057215 2015-03-27 2016-03-08 撮影装置、撮影装置本体、及び撮影装置の制御方法 WO2016158247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680018787.1A CN107431764B (zh) 2015-03-27 2016-03-08 摄影装置、摄影装置主体及摄影装置的控制方法
JP2017509463A JP6244062B2 (ja) 2015-03-27 2016-03-08 撮影装置、撮影装置本体、及び撮影装置の制御方法
US15/716,081 US10122934B2 (en) 2015-03-27 2017-09-26 Imaging apparatus having an apodization filter and capable of selecting first and second program diagrams
US16/149,905 US10757338B2 (en) 2015-03-27 2018-10-02 Imaging apparatus capable of determining whether an apodization filter is present or not and selecting first and second program diagrams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-067014 2015-03-27
JP2015067014 2015-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/716,081 Continuation US10122934B2 (en) 2015-03-27 2017-09-26 Imaging apparatus having an apodization filter and capable of selecting first and second program diagrams

Publications (1)

Publication Number Publication Date
WO2016158247A1 true WO2016158247A1 (ja) 2016-10-06

Family

ID=57005652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057215 WO2016158247A1 (ja) 2015-03-27 2016-03-08 撮影装置、撮影装置本体、及び撮影装置の制御方法

Country Status (4)

Country Link
US (2) US10122934B2 (ja)
JP (1) JP6244062B2 (ja)
CN (1) CN107431764B (ja)
WO (1) WO2016158247A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431764B (zh) * 2015-03-27 2018-08-21 富士胶片株式会社 摄影装置、摄影装置主体及摄影装置的控制方法
JP6755405B2 (ja) * 2017-08-18 2020-09-16 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び撮像装置の制御プログラム
WO2019163441A1 (ja) * 2018-02-20 2019-08-29 富士フイルム株式会社 絞り制御装置、絞り制御方法、絞り制御プログラム、露光制御装置、露光制御方法、露光制御プログラム、交換レンズ、カメラ本体及びカメラ
US11012634B2 (en) 2018-06-29 2021-05-18 Canon Kabushiki Kaisha Image pickup apparatus capable of performing image pickup with reduced flicker influence, method for controlling the same, and storage medium
US10957729B2 (en) * 2019-04-15 2021-03-23 Mediatek Inc. Image sensor with embedded light-measuring pixels and method of automatic exposure control using the same
CN111899615B (zh) * 2019-05-06 2022-08-05 杭州海康威视数字技术股份有限公司 实验的评分方法、装置、设备及存储介质
CN112153245B (zh) * 2019-06-26 2021-09-24 杭州海康威视数字技术股份有限公司 控制方法及摄像机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268382A (ja) * 1997-03-21 1998-10-09 Minolta Co Ltd フィルタ交換式カメラ
JP2005062733A (ja) * 2003-08-20 2005-03-10 Canon Inc 光量調節装置、撮影装置、及び光学フィルタ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526826B2 (ja) 1987-02-24 1996-08-21 株式会社ニコン ソフト撮影可能なカメラ
JPH08184876A (ja) * 1994-12-29 1996-07-16 Canon Inc 絞り装置および撮像装置
JPH11289487A (ja) * 1998-04-02 1999-10-19 Sony Corp 撮像装置
CN100468181C (zh) * 2003-04-30 2009-03-11 佳能株式会社 光量调节装置和拍摄装置
JP4428961B2 (ja) * 2003-08-20 2010-03-10 キヤノン株式会社 撮影装置
US7099555B2 (en) 2003-08-20 2006-08-29 Canon Kabushiki Kaisha Light amount adjusting apparatus, optical equipment, optical filter and image-taking apparatus
JP2007243250A (ja) * 2006-03-03 2007-09-20 Olympus Imaging Corp 撮像装置および撮像方法
JP4854581B2 (ja) * 2007-04-24 2012-01-18 キヤノン株式会社 撮像装置及びその制御方法
JP5225065B2 (ja) * 2008-12-27 2013-07-03 キヤノン株式会社 撮像装置及び撮像方法
JP5452329B2 (ja) * 2010-04-06 2014-03-26 富士フイルム株式会社 フィルタ、撮像レンズ、撮像装置および携帯端末機器
JP2012142748A (ja) * 2010-12-28 2012-07-26 Sony Corp 撮像制御装置、撮像制御方法及び撮像制御プログラム並びに撮像装置
JP5967865B2 (ja) * 2011-04-01 2016-08-10 キヤノン株式会社 撮像装置、撮像装置の制御方法及びプログラム
CN107431764B (zh) * 2015-03-27 2018-08-21 富士胶片株式会社 摄影装置、摄影装置主体及摄影装置的控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268382A (ja) * 1997-03-21 1998-10-09 Minolta Co Ltd フィルタ交換式カメラ
JP2005062733A (ja) * 2003-08-20 2005-03-10 Canon Inc 光量調節装置、撮影装置、及び光学フィルタ

Also Published As

Publication number Publication date
US20190037119A1 (en) 2019-01-31
US20180027166A1 (en) 2018-01-25
JPWO2016158247A1 (ja) 2018-02-08
JP6244062B2 (ja) 2017-12-06
CN107431764A (zh) 2017-12-01
US10122934B2 (en) 2018-11-06
US10757338B2 (en) 2020-08-25
CN107431764B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
JP6244062B2 (ja) 撮影装置、撮影装置本体、及び撮影装置の制御方法
US8830338B2 (en) Imaging device
US9762806B2 (en) Imaging apparatus having variable diaphragm
WO2013088917A1 (ja) 画像処理装置、画像処理方法、及び記録媒体
JP6244063B2 (ja) 撮影装置、撮影装置本体、及び撮影装置の制御方法
JP2015115922A (ja) 撮像装置および撮像方法
JP6166848B2 (ja) 撮影装置、撮影装置本体、及びレンズ鏡筒
JP2007243759A (ja) ディジタル撮像装置
JP4944393B2 (ja) 撮像装置
JP5458937B2 (ja) 撮像装置及び撮像方法及びこの撮像方法を実行するためのプログラムが記録されたコンピュータが読み取り可能な記録媒体
JP2017183999A (ja) 撮影装置および撮影方法
JP2018006827A (ja) 撮像装置、撮像プログラム、撮像方法
JP6887245B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP5316923B2 (ja) 撮像装置及びそのプログラム
JP6603892B2 (ja) 撮像装置
JP3943613B2 (ja) 撮像装置及びレンズユニット
JP2014157202A (ja) 撮像装置
US11665438B2 (en) Electronic device capable of acquiring line-of-sight information
JP2012227744A (ja) 撮像装置
JP6727975B2 (ja) 撮像装置、その制御方法とプログラム
JP5720382B2 (ja) 撮像装置
JP5323245B2 (ja) 撮像装置
JP2013161011A (ja) 撮像装置
JP2012010168A (ja) 撮影装置
JP2018019435A (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772131

Country of ref document: EP

Kind code of ref document: A1