WO2016158183A1 - 中空糸炭素膜の製造方法及び分離膜モジュール - Google Patents

中空糸炭素膜の製造方法及び分離膜モジュール Download PDF

Info

Publication number
WO2016158183A1
WO2016158183A1 PCT/JP2016/056497 JP2016056497W WO2016158183A1 WO 2016158183 A1 WO2016158183 A1 WO 2016158183A1 JP 2016056497 W JP2016056497 W JP 2016056497W WO 2016158183 A1 WO2016158183 A1 WO 2016158183A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
gas
fiber carbon
carbon membrane
membrane
Prior art date
Application number
PCT/JP2016/056497
Other languages
English (en)
French (fr)
Inventor
美紀 吉宗
賢治 原谷
伸生 原
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201680019127.5A priority Critical patent/CN107405582B/zh
Priority to JP2017509432A priority patent/JP6572512B2/ja
Priority to US15/562,150 priority patent/US10456751B2/en
Publication of WO2016158183A1 publication Critical patent/WO2016158183A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/0232Manufacturing thereof using hollow fibers mats as precursor, e.g. wound or pleated mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/0233Manufacturing thereof forming the bundle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the present invention relates to a method for producing a hollow fiber carbon membrane and a separation membrane module, and more specifically, can easily control the gas molecule permeation rate and selectivity of a hollow fiber carbon membrane that can be used as a gas separation membrane.
  • the present invention relates to a method for producing a hollow fiber carbon membrane and a separation membrane module comprising the hollow fiber carbon membrane.
  • Carbon membranes exhibit excellent gas separation performance among various inorganic membranes, and are expected to be put to practical use because they can be used in environments where heat resistance and chemical resistance are required to which organic membranes cannot be applied.
  • the hollow fiber membrane is excellent in pressure resistance and has a large membrane area per unit volume, it has a feature that it can be made a compact separation membrane module as compared with a flat membrane or a spiral membrane.
  • Hydrogen gas used in the field of fuel cells and the like is required to have particularly high purity.
  • the permeability and selectivity of separation membrane gas used for purification are used. It is necessary to have a technology that can precisely control
  • An object of the present invention is to provide a method capable of easily controlling the permeation rate and selectivity of gas molecules of a hollow fiber carbon membrane that can be used as a gas separation membrane.
  • the inventors of the present invention have obtained the gas of the hollow fiber carbon membrane obtained by heating in the presence of a specific hydrocarbon gas when carbonizing the precursor.
  • the inventors have found that the permeation rate and selectivity of molecules can be easily controlled, and have completed the present invention.
  • the present invention is as follows. ⁇ 1> A preparatory step of preparing a precursor formed by molding an organic polymer compound into a hollow fiber shape, a preheating step of heating the precursor to 150 ° C. to 400 ° C. in an atmosphere containing oxygen gas, and the preheating step A method for producing a hollow fiber carbon membrane, comprising a carbonization step of carbonizing by heating the passed precursor to 450 ° C. to 850 ° C., A method for producing a hollow fiber carbon membrane, wherein the carbonization step includes heating in the presence of a hydrocarbon gas having 1 to 8 carbon atoms which may contain nitrogen atoms.
  • the organic polymer compound includes polyphenylene oxide and at least one selected from the group consisting of polyphenylene oxide derivatives having a structure represented by the following formulas (a) and (b): ⁇ 1> Or the manufacturing method of the hollow fiber carbon membrane as described in ⁇ 2>.
  • each R independently represents a hydrogen atom, —SO 3 H, or —SO 3 NH 4 , provided that R is not a hydrogen atom.
  • the radius (bending radius) of the cylinder in which the hollow fiber carbon membrane is not broken when the hollow fiber carbon membrane is wound around the cylinder by 180 ° or more is 5 mm or less.
  • a separation membrane module comprising a hollow fiber carbon membrane produced by the method for producing a hollow fiber carbon membrane according to any one of ⁇ 1> to ⁇ 4>.
  • the gas molecule permeation rate and selectivity of the hollow fiber carbon membrane can be easily controlled.
  • the method for producing a hollow fiber carbon membrane which is an embodiment of the present invention is a preparation step of preparing a precursor obtained by forming an organic polymer compound into a hollow fiber shape. (Hereinafter, it may be abbreviated as “preparation step”.), A preheating step (hereinafter referred to as “preheating step”) in which the precursor is heated to 150 ° C. to 400 ° C. in an atmosphere containing oxygen gas. ), And a carbonization step in which the precursor subjected to the preheating step is heated to 450 ° C. to 850 ° C.
  • the “hollow fiber carbon membrane” means a carbon (simple substance) material having a hollow fiber membrane (straw shape) shape (see FIG. 1), and it is mainly composed of carbon. Details of impurities, crystal structure, etc. are not particularly limited.
  • the “preparation step”, “preheating step”, and “carbonization step” will be described in detail.
  • the preparation step is a step of preparing a precursor obtained by molding an organic polymer compound into a hollow fiber shape, but the preparation method of the precursor, the type of the organic polymer compound, the size of the precursor, the preparation method of the precursor, etc. It does not specifically limit and well-known content can be selected suitably.
  • the method for preparing the precursor include a method for preparing the precursor itself and a method for obtaining the precursor. The method for preparing the precursor will be described later.
  • the organic polymer compound may be a synthetic polymer compound such as polyphenylene oxide and polyimide, or a natural polymer compound such as cellulose, as long as it is a polymer compound having a carbon skeleton.
  • Examples of the synthetic polymer compound include polyphenylene oxide, polyphenylene oxide derivatives having a structure represented by the following formulas (a) and (b) (hereinafter sometimes abbreviated as “polyphenylene oxide derivatives”), and the like.
  • each R independently represents a hydrogen atom, —SO 3 H, or —SO 3 NH 4 , provided that R is not a hydrogen atom.
  • polyphenylene oxide derivatives having a structure represented by formulas (a) and (b) are particularly preferable.
  • a polyphenylene oxide derivative is used as the organic polymer compound, a flexible hollow fiber carbon membrane having excellent bending strength can be produced.
  • the ratio of the structure represented by formula (b) in the polyphenylene oxide derivative (number of substances in formula (b) / (number of substances in formula (a) + number of substances in formula (b)) ⁇ 100) is: Usually 15% or more, preferably 18% or more, more preferably 20% or more, and usually 60% or less, preferably 40% or less, more preferably 35% or less.
  • the molecular weight of the organic polymer compound should be appropriately selected according to the type, but in the case of polyphenylene oxide or polyphenylene oxide derivative, the weight average molecular weight (M w ) is usually 5,000 or more, preferably It is 10,000 or more, more preferably 20,000 or more, usually 1,000,000 or less, preferably 900,000 or less, more preferably 800,000 or less.
  • the precursor is formed into a hollow fiber shape, but the outer diameter of the hollow fiber is usually 0.2 mm or more, preferably 0.22 mm or more, more preferably 0.25 mm or more, and usually 0.5 mm or less. , Preferably 0.4 mm or less, more preferably 0.35 mm or less.
  • the inner diameter of the hollow fiber is usually 0.18 mm or more, preferably 0.2 mm or more, more preferably 0.23 mm or more, and usually 0.48 mm or less, preferably 0.38 mm or less, more preferably 0.33 mm or less. is there.
  • a method for preparing the precursor there is a method using a hollow fiber spinning nozzle having a double tube annular structure as shown in FIG. Specifically, it is a method of simultaneously extruding a dissolved or melted organic polymer compound from the outer tube of the double tube and a solvent that does not dissolve the organic polymer compound as a core solution from the inner tube of the double tube.
  • the solvent used for dissolving the organic polymer compound should be appropriately selected according to the type of the organic polymer compound.
  • polyphenylene oxide derivatives methanol, ethanol, tetrahydrofuran, N, N-dimethylacetamide N-methyl-2-pyrrolidone and the like.
  • the solvent used in the coagulation bath and the core solution is not particularly limited as long as it does not dissolve the organic polymer compound.
  • water and an aqueous ammonium salt solution are exemplified.
  • ammonium salt in the ammonium salt aqueous solution include ammonium nitrate, ammonium hydrochloride, and ammonium sulfate.
  • the temperature of the core liquid and the coagulation bath is ⁇ 20 ° C. to 60 ° C., preferably 0 ° C. to 30 ° C.
  • the preheating step is a step of heating the precursor to 150 ° C. to 400 ° C. in an atmosphere containing oxygen gas, but the oxygen gas concentration, the heating device, the heating temperature, the heating time, etc. are not particularly limited and are publicly known. The contents of can be selected as appropriate. Hereinafter, a specific example will be described.
  • the atmosphere containing oxygen gas includes air, and the concentration of oxygen gas is usually 1% by volume or more, preferably 5% by volume or more, more preferably 10% by volume or more, and usually 100% by volume or less, preferably Is 50% by volume or less, more preferably 30% by volume or less.
  • the heating device may be any device that can be heated up to about 400 ° C., and may be an atmosphere containing oxygen gas.
  • a muffle furnace is mentioned as a heating apparatus.
  • the heating temperature is 150 ° C. to 400 ° C., preferably 250 ° C. or higher, more preferably 280 ° C. or higher, preferably 350 ° C. or lower, more preferably 320 ° C. or lower.
  • the heating time is usually 10 minutes or longer, preferably 30 minutes or longer, more preferably 1 hour or longer, and usually 4 hours or shorter, preferably 3 hours or shorter, more preferably 2 hours or shorter. Within the above range, melting of the precursor and the like are suppressed, and it becomes easy to produce a good quality hollow fiber carbon membrane.
  • the carbonization step is a step in which the precursor that has undergone the preheating step is heated to 450 ° C. to 850 ° C. to carbonize, but the atmosphere gas, the heating device, the heating temperature, the heating time, etc. are not particularly limited, and known contents Can be appropriately selected. Hereinafter, a specific example will be described.
  • the carbonization step in order to “carbonize” the precursor, it is usually heated in an atmosphere that does not contain a substance that oxidizes carbon. Specifically, heating is performed in an inert gas atmosphere. Examples of the inert gas include nitrogen gas, helium gas, and argon gas.
  • heating is performed in an atmosphere that does not contain substances that oxidize carbon, as a heating device, a batch reactor that can be sealed and a continuous reactor that can continuously supply and discharge inert gas, etc. are heated from the outside.
  • the apparatus which performs is mentioned. Particularly preferred is an apparatus for heating a continuous tubular reactor as shown in FIG.
  • the heating temperature is 450 ° C. to 850 ° C., preferably 550 ° C. or higher, more preferably 600 ° C. or higher, preferably 750 ° C. or lower, more preferably 700 ° C. or lower.
  • the heating time is usually 5 minutes or more, preferably 10 minutes or more, more preferably 20 minutes or more, further preferably 30 minutes or more, and is usually 4 hours or less, preferably 2 hours or less, more preferably 1 hour or less.
  • the carbonization step includes heating in the presence of a hydrocarbon gas having 1 to 8 carbon atoms which may contain nitrogen atoms (hereinafter sometimes abbreviated as “hydrocarbon gas”).
  • hydrocarbon gas may contain a nitrogen atom
  • the hydrocarbon gas contains a functional group containing a nitrogen atom such as a primary amino group (—NH 2 ) or a cyano group (—CN), as well as a second group.
  • a functional group containing a nitrogen atom such as a secondary amino group (—NH—) may be contained in the carbon skeleton.
  • the hydrocarbon gas is not limited to a straight-chain saturated hydrocarbon group, and may have a carbon-carbon unsaturated bond, a branched structure, or a cyclic structure, and particularly has a carbon-carbon unsaturated bond.
  • a hydrocarbon is preferred.
  • the hydrocarbon has a carbon-carbon unsaturated bond, the gas molecule permeation rate and selectivity of the hollow fiber carbon membrane can be easily controlled.
  • the carbon number of the hydrocarbon gas is preferably 6 or less, more preferably 4 or less, and particularly preferably 3 or less.
  • Hydrocarbon gases include methane, ethane, ethylene, acetylene, acetonitrile, n-propane, i-propane, propylene, n-butane, i-butane, 1-butene, 1,3-butadiene, n-hexane, cyclohexane, etc. Is mentioned. Among these, propylene and ethylene are particularly preferable.
  • the carbonization step is a step of heating and carbonizing the precursor that has undergone the preheating step to 450 ° C. to 850 ° C., and further includes heating in the presence of a hydrocarbon gas.
  • a hydrocarbon gas As a specific aspect, An example is an embodiment in which the precursor subjected to the preheating step is heated to 450 ° C. to 850 ° C. while supplying an inert gas and a hydrocarbon gas, and carbonized.
  • the inert gas and hydrocarbon are usually used in the atmosphere of an inert gas. You may carry out, supplying gas.
  • the concentration of hydrocarbon gas (volume flow rate of hydrocarbon gas / volume flow rate of inert gas ⁇ 100 [volume%]) when supplying an inert gas and a hydrocarbon gas simultaneously is usually 1 volume% or more, preferably 5 It is at least 10% by volume, more preferably at least 100% by volume, preferably at most 50% by volume, more preferably at most 20% by volume.
  • the heating temperature in the carbonization step may be changed in the middle as shown in FIG. 4. As a combination of heating temperatures, 450 ° C. to 650 ° C.
  • first half of the carbonization step is changed to 600 ° C. to 750 ° C. (second half of the carbonization step).
  • 650 ° C. to 750 ° C. first half of the carbonization step
  • 500 ° C. to 650 ° C. second half of the carbonization step.
  • the heating temperature during the period of supplying the hydrocarbon gas is preferably 550 ° C. or higher, more preferably 650 ° C. or higher, preferably 800 ° C. or lower, more preferably 750 ° C. or lower.
  • the supply time of the hydrocarbon gas is usually 2 minutes or more, preferably 5 minutes or more, more preferably 10 minutes or more, and usually 1 hour or less, preferably 30 minutes or less, more preferably 20 minutes or less.
  • the production method of the present invention is not particularly limited as long as it includes the above-described preparation step, preheating step, and carbonization step, and may include a known step. It includes a post-treatment step of heating the obtained hollow fiber carbon membrane to 150 ° C. to 300 ° C. For example, the flexibility of the hollow fiber carbon membrane can be improved by including a post-treatment step.
  • the physical properties, dimensions, etc. of the hollow fiber carbon membrane produced by the production method of the present invention are not particularly limited, but are preferably hollow fiber carbon membranes that satisfy the following conditions.
  • the radius (bending radius) of the cylinder in which the hollow fiber carbon membrane is not broken when the hollow fiber carbon membrane is wound around the cylinder by 180 ° or more is 5 mm or less.
  • the bending radius of the hollow fiber carbon membrane is preferably 10 mm or less, more preferably 7 mm or less, still more preferably 5 mm or less, and usually 2 mm or more. Within the above range, breakage of the membrane can be reduced in the production of a membrane module in which a hollow fiber carbon membrane is compactly filled in a container.
  • the outer diameter of the hollow fiber carbon membrane is usually 0.08 mm or more, preferably 0.1 mm or more, more preferably 0.15 mm or more, and usually 0.5 mm or less, preferably 0.35 mm or less, more preferably 0.00. 25 mm or less.
  • the inner diameter of the hollow fiber carbon membrane is usually 0.06 mm or more, preferably 0.08 mm or more, more preferably 0.13 mm or more, and usually 0.48 mm or less, preferably 0.33 mm or less, more preferably 0.23 mm. It is as follows.
  • Gas combinations to be separated include helium gas (He) and nitrogen gas (N 2 ), hydrogen gas (H 2 ) and nitrogen gas (N 2 ), carbon dioxide gas (CO 2 ) and nitrogen gas (N 2 ), Oxygen gas (O 2 ) and nitrogen gas (N 2 ), hydrogen gas (H 2 ) and methane gas (CH 4 ), carbon dioxide gas (CO 2 ) and methane gas (CH 4 ), nitrogen gas (N 2 ) and methane gas ( CH 4 ), helium gas (He), methane gas (CH 4 ) and the like.
  • the production method of the present invention is a method that can easily control the gas molecule permeation rate and selectivity of the hollow fiber carbon membrane, but the hollow fiber carbon produced by the production method of the present invention.
  • a separation membrane module including a membrane (hereinafter sometimes abbreviated as “a separation membrane module of the present invention”) is also an embodiment of the present invention.
  • the specific structure of the separation membrane module of the present invention, the number of hollow fiber carbon membranes, etc. are not particularly limited, and can be appropriately selected according to the purpose.
  • Examples of the separation membrane module of the present invention include those having the structure shown in FIG.
  • the separation membrane module 1 in FIG. 5 has a container 2 and a separation membrane element 3.
  • the separation membrane element 3 includes a separation membrane portion 31 configured by bundling a plurality of hollow fiber carbon membranes (separation membranes), and a fixing portion 32 that fixes one of the separation membrane portions 31.
  • the two internal spaces are arranged so as to be divided into a first space 8 and a second space 9.
  • the hollow fiber carbon membrane has a structure in which one end on the fixed portion 32 side is open and the other end is closed, and the opening communicates with the first space 8. Therefore, the first space 8 and the second space 9 communicate with each other through the hollow fiber carbon membrane.
  • the separation membrane element 3 is fixed to the container 2.
  • the container 2 includes a gas supply port 4, a gas discharge port 5, and a gas discharge port 6, and is cylindrical in this embodiment.
  • the gas supply port 4 is for supplying a supply substance (for example, dehydrogenation reactant) to the second space 9, and is provided on the peripheral surface of the container 2 in this embodiment.
  • the gas discharge port 5 is for discharging a non-permeating substance (for example, dehydrogenated product) that has not permeated through the separation membrane portion 31 from the second space 9 to the outside of the container 2. It is provided at one end.
  • the gas discharge port 6 is for discharging a permeation substance (for example, hydrogen molecules) that has permeated through the separation membrane unit 31 from the first space 8 to the outside of the container 2. Is provided.
  • the number of hollow fiber carbon membranes provided in the separation membrane module 1 is appropriately selected according to the performance of the hollow fiber carbon membrane, the amount of high purity hydrogen required, and the like.
  • Example 1 (Preparation process) 8.0 g of sulfonated polyphenylene oxide having a structure ratio represented by the formula (b) of 28% is dissolved in a mixed solution of 10.3 g of methanol and 10.3 g of N, N-dimethylacetamide, and 28% by weight of organic A polymer compound solution was prepared. An organic polymer compound solution obtained from the outer tube of a hollow fiber spinning nozzle having a double tube annular structure with an outer diameter of 0.4 mm and an inner diameter of 0.18 mm is used as a core liquid from the inner tube of the nozzle. A 20 wt% ammonium nitrate aqueous solution was simultaneously extruded into a water coagulation bath and air-dried at room temperature to prepare a precursor.
  • the obtained precursor was heated to 320 ° C. at a rate of 8 ° C./min in an air atmosphere in a muffle furnace, heated at this temperature for 1 hour, and then allowed to cool.
  • the precursor that had been preheated was carbonized using a continuous tube reactor while supplying high-purity nitrogen gas as an inert gas at a flow rate of 3.0 liters / minute.
  • dehydration treatment is performed at 120 ° C. for 1 hour, the temperature is increased to 650 ° C. at a rate of 10 ° C./min, heating is performed at this temperature for 55 minutes, and then the supply of nitrogen gas is stopped.
  • high-purity propylene gas was supplied at a flow rate of 3.0 liters / minute (hydrocarbon gas concentration: 100% by volume (propylene)) and heated for 5 minutes. Thereafter, the supply of propylene gas was stopped, and after switching to nitrogen gas, the mixture was allowed to cool to obtain a hollow fiber carbon membrane (supply method 6).
  • Example 2 Hollow fiber carbon was produced in the same manner as in Example 1 except that high-purity propylene gas was changed to industrial propylene gas (propylene concentration: 76% by volume) (hydrocarbon gas concentration: 76 to 100% by volume (propylene, etc.)). A membrane was obtained.
  • the impurities contained in industrial propylene are hydrocarbon compounds such as propane, and the water concentration is 1000 PPM or less.
  • Example 3 A hollow fiber carbon membrane was obtained in the same manner as in Example 1 except that the high purity propylene gas was changed to high purity ethylene gas (hydrocarbon gas concentration: 100% by volume (ethylene)).
  • Example 4 In carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, first, dehydration treatment was performed at 120 ° C. for 1 hour, and the temperature was raised to 650 ° C. at a rate of 10 ° C./minute. .
  • the supply gas is switched from nitrogen gas to 14 volume% acetonitrile / nitrogen mixed gas and supplied at a flow rate of 3.4 liters / minute (concentration of hydrocarbon gas: 14 volume% (acetonitrile)) at this temperature for 1 hour. Heated. Thereafter, the supply of the acetonitrile / nitrogen mixed gas was stopped, and after switching to nitrogen gas, the mixture was allowed to cool to obtain a hollow fiber carbon membrane (supply method 3).
  • Example 5 A hollow fiber carbon membrane was obtained in the same manner as in Example 4 except that the 14 volume% acetonitrile / nitrogen mixed gas was changed to a 16 volume% cyclohexane / nitrogen mixed gas (hydrocarbon gas concentration: 16 volume% (cyclohexane)). It was.
  • Example 6 In carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, first, dehydration treatment was performed at 120 ° C. for 1 hour, and the temperature was raised to 650 ° C. at a rate of 10 ° C./minute. . After heating at this temperature for 1 hour, the temperature is lowered to 600 ° C. at a rate of 10 ° C./minute, and at the same time as the supply of nitrogen gas is stopped, high purity propylene gas is supplied at a flow rate of 3.0 liter / minute (hydrocarbon). Gas concentration: 100% by volume (propylene)) and heated for 10 minutes. Thereafter, the supply of propylene gas was stopped, and after switching to nitrogen gas, the mixture was allowed to cool to obtain a hollow fiber carbon membrane (supply method 6).
  • Example 7 In carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, first, dehydration treatment was performed at 120 ° C. for 1 hour, and the temperature was raised to 700 ° C. at a rate of 20 ° C./minute. . After heating at this temperature for 15 minutes, at the same time as stopping the supply of nitrogen gas, high-purity propylene gas was supplied at a flow rate of 3.0 liters / minute (hydrocarbon gas concentration: 100% by volume (propylene)). Heated for 5 minutes. Thereafter, the supply of propylene gas was stopped, and after switching to nitrogen gas, the mixture was allowed to cool to obtain a hollow fiber carbon membrane (supply method 6).
  • Example 8> In carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, first, dehydration treatment was performed at 120 ° C. for 1 hour, and the temperature was raised to 700 ° C. at a rate of 20 ° C./minute. .
  • the supply gas is switched from nitrogen gas to 10 volume% propylene / nitrogen mixed gas and supplied at a flow rate of 3.0 liters / minute (concentration of hydrocarbon gas: 10 volume% (propylene)), and at this temperature for 20 minutes. Heated. Thereafter, the supply of the propylene / nitrogen mixed gas was stopped, switched to nitrogen gas, and allowed to cool to obtain a hollow fiber carbon membrane (supply method 3).
  • Example 9 A hollow fiber carbon membrane was obtained in the same manner as in Example 8 except that the 10 volume% propylene / nitrogen mixed gas was changed to a 5 volume% propylene / nitrogen mixed gas (hydrocarbon gas concentration: 5 volume% (propylene)). It was.
  • Example 10 In carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, first, dehydration treatment was performed at 120 ° C. for 1 hour, and the temperature was raised to 700 ° C. at a rate of 20 ° C./minute. . After heating at this temperature for 10 minutes, the supply gas is switched from nitrogen gas to 10 volume% propylene / nitrogen mixed gas and supplied at a flow rate of 3.0 liters / minute (hydrocarbon gas concentration: 10 volume% (propylene)). And heated at this temperature for an additional 10 minutes. Thereafter, the supply of the propylene / nitrogen mixed gas was stopped, and after switching to nitrogen gas, the mixture was allowed to cool to obtain a hollow fiber carbon membrane (supply method 5).
  • Example 11 A hollow fiber carbon membrane was obtained in the same manner as in Example 10, except that the 10 volume% propylene / nitrogen mixed gas was changed to 20 volume% propylene / nitrogen mixed gas (hydrocarbon gas concentration: 20 volume% (propylene)). It was.
  • Example 12 A hollow fiber carbon membrane was obtained by the same method as in Example 10 except that the 10 volume% propylene / nitrogen mixed gas was changed to 5 volume% propylene / nitrogen mixed gas (hydrocarbon gas concentration: 5 volume% (propylene)). It was.
  • Example 13 In carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, first, dehydration treatment was performed at 120 ° C. for 1 hour, and the temperature was raised to 700 ° C. at a rate of 20 ° C./minute. .
  • the supply gas is switched from nitrogen gas to 16 volume% cyclohexane / nitrogen mixed gas and supplied at a flow rate of 3.4 liters / minute (hydrocarbon gas concentration: 16 volume% (cyclohexane)), and at this temperature for 20 minutes. Heated. Thereafter, the supply of the cyclohexane / nitrogen mixed gas was stopped, switched to nitrogen gas, and then allowed to cool to obtain a hollow fiber carbon membrane (supply method 3).
  • Example 14 In the carbonization treatment, while supplying high purity nitrogen gas at a flow rate of 3.0 liters / minute, the dehydration treatment was first performed at 120 ° C. for 1 hour, and the temperature was raised to 750 ° C. at a rate of 20 ° C./minute. . After heating at this temperature for 5 minutes, the supply gas is switched from nitrogen gas to 10 volume% propylene / nitrogen mixed gas and supplied at a flow rate of 3.0 liters / minute (hydrocarbon gas concentration: 10 volume% (propylene)). And heated at this temperature for an additional 5 minutes. Thereafter, the supply of the propylene / nitrogen mixed gas was stopped, and after switching to nitrogen gas, the mixture was allowed to cool to obtain a hollow fiber carbon membrane (supply method 5).
  • the hollow fiber carbon membrane produced by the production method of the present invention is used in fields such as hydrogen production, carbon dioxide separation and recovery, exhaust gas separation and recovery, natural gas separation, gas dehumidification, alcohol dehydration apparatus, and production of oxygen from air. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 気体分離膜として利用することができる中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができる方法を提供することを目的とする。有機高分子化合物を中空糸状に成形した前駆体を準備する準備工程、前記前駆体を酸素ガスを含む雰囲気下で150℃~400℃に加熱する予備加熱工程、及び予備加熱工程を経た前駆体を450℃~850℃に加熱して炭化する炭化工程を含み、前記炭化工程が、窒素原子を含んでいてもよい炭素数1~8の炭化水素ガスの存在下で加熱することを含む中空糸炭素膜の製造方法によって、得られる中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができる。

Description

中空糸炭素膜の製造方法及び分離膜モジュール
 本発明は、中空糸炭素膜の製造方法及び分離膜モジュールに関し、より詳しくは気体分離膜として利用することができる中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができる中空糸炭素膜の製造方法及び該中空糸炭素膜を備える分離膜モジュールに関する。
 炭素膜は、種々の無機膜の中でも優れた気体分離性能を示し、なおかつ有機膜が適用できない耐熱性・耐薬品性が要求される環境でも使用できることからその実用化が期待されている。また、中空糸膜は耐圧性に優れ、かつ単位容積あたりに占める膜面積が大きいため、平膜やスパイラル膜に比べてコンパクトな分離膜モジュールとすることができる特長を有する。
 中空糸炭素膜については、膜の脆さ、シールの困難性、コスト等の課題が報告されており、これらの課題を解決するために、安価なポリフェニレンオキシド誘導体を前駆体として利用した中空糸炭素膜(特許文献1参照)やスルホン化されたポリフェニレンオキシド誘導体を前駆体として利用した柔軟性のある中空糸炭素膜(特許文献2参照)等が提案されている。
特開2006-231095号公報 特開2009-034614号公報
 燃料電池分野等に利用される水素ガスは、特に高い純度が必要とされており、このようなガスを効率良く生産するためには、精製に利用される分離膜の気体の透過性や選択性を精密に制御できる技術が必要である。
 本発明は、気体分離膜として利用することができる中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができる方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、前駆体を炭化する際に、特定の炭化水素ガスの存在下で加熱することにより、得られる中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> 有機高分子化合物を中空糸状に成形した前駆体を準備する準備工程、前記前駆体を酸素ガスを含む雰囲気下で150℃~400℃に加熱する予備加熱工程、及び前記予備加熱工程を経た前駆体を450℃~850℃に加熱して炭化する炭化工程を含む中空糸炭素膜の製造方法であって、
 前記炭化工程が、窒素原子を含んでいてもよい炭素数1~8の炭化水素ガスの存在下で加熱することを含む、中空糸炭素膜の製造方法。
<2> 前記炭化水素ガスが、炭素-炭素不飽和結合を有する炭化水素である、<1>に記載の中空糸炭素膜の製造方法。
<3> 前記有機高分子化合物が、ポリフェニレンオキシド、並びに下記式(a)及び(b)で表される構造を有するポリフェニレンオキシド誘導体からなる群より選択される少なくとも1種を含むものである、<1>又は<2>に記載の中空糸炭素膜の製造方法。
Figure JPOXMLDOC01-appb-C000002
(式(b)中、Rはそれぞれ独立して水素原子、-SO3H、又は-SO3NH4を表す。但し、Rが共に水素原子であることはない。)
<4> 下記条件を満たす中空糸炭素膜を製造する方法である、<1>~<3>の何れかに記載の中空糸炭素膜の製造方法。
(条件)中空糸炭素膜を円柱に180°以上巻き付けた時に中空糸炭素膜が破断しない円柱の半径(曲げ半径)が5mm以下である。
<5> <1>~<4>の何れかに記載の中空糸炭素膜の製造方法によって製造された中空糸炭素膜を備える分離膜モジュール。
 本発明によれば、中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができる。
中空糸炭素膜の断面を撮影した走査型電子顕微鏡(SEM)の写真である(図面代用写真)。 中空糸状の前駆体を調製するために利用することができる二重管環状構造の中空糸紡糸ノズルを表した概念図である。 本発明における炭化工程に利用することができる装置の概念図である。 本発明における炭化工程の温度の経時変化の一例を表した図である。 本発明の中空糸炭素膜の製造方法によって製造された中空糸炭素膜を備える分離膜モジュールの一例を表す概念図である。
 本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<中空糸炭素膜の製造方法>
 本発明の一態様である中空糸炭素膜の製造方法(以下、「本発明の製造方法」と略す場合がある。)は、有機高分子化合物を中空糸状に成形した前駆体を準備する準備工程(以下、「準備工程」と略す場合がある。)、前駆体を酸素ガスを含む雰囲気下で150℃~400℃に加熱する予備加熱工程(以下、「予備加熱工程」と略す場合がある。)、及び予備加熱工程を経た前駆体を450℃~850℃に加熱して炭化する炭化工程(以下、「炭化工程」と略す場合がある。)を含む方法であり、炭化工程が、窒素原子を含んでいてもよい炭素数1~8の炭化水素ガスの存在下で加熱することを含むことを特徴とする。
 本発明者らは、中空糸炭素膜の気体分子の透過速度や選択性を改良すべく鋭意検討を重ねた結果、前駆体を炭化する際に、特定の炭化水素ガスの存在下で加熱することにより、表面に新たな炭化物層を形成して、得られる中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができることを見出したのである。
 なお、「中空糸炭素膜」とは、中空糸膜(ストロー状)の形状を有した炭素(単体)材料を意味するものとし(図1参照)、主に炭素から構成されるものであれば、不純物の含有、結晶構造等の詳細は特に限定されないものとする。
 以下、「準備工程」、「予備加熱工程」、「炭化工程」について詳細に説明する。
(準備工程)
 準備工程は、有機高分子化合物を中空糸状に成形した前駆体を準備する工程であるが、前駆体の準備方法、有機高分子化合物の種類、前駆体の寸法、前駆体の調製方法等は、特に限定されず、公知の内容を適宜選択することができる。以下、具体例を挙げて説明する。
 前駆体の準備方法としては、自ら前駆体を調製する方法、前駆体を入手する方法が挙げられる。なお、前駆体を調製する方法については、後述するものとする。
 有機高分子化合物は、炭素骨格を有する高分子化合物であれば、ポリフェニレンオキシド、ポリイミド等の合成高分子化合物であっても、セルロース等の天然高分子化合物であってもよいが、合成高分子化合物であることが好ましい。
 合成高分子化合物としては、ポリフェニレンオキシド、下記式(a)及び(b)で表される構造を有するポリフェニレンオキシド誘導体(以下「ポリフェニレンオキシド誘導体」と略す場合がある。)等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式(b)中、Rはそれぞれ独立して水素原子、-SO3H、又は-SO3NH4を表す。但し、Rが共に水素原子であることはない。)
 この中でも式(a)及び(b)で表される構造を有するポリフェニレンオキシド誘導体が特に好ましい。有機高分子化合物としてポリフェニレンオキシド誘導体を使用すると、曲げ強度に優れた柔軟な中空糸炭素膜を製造することができる。
 ポリフェニレンオキシド誘導体における式(b)で表される構造の比率(式((b)の物質量数/(式(a)の物質量数+式(b)の物質量数)×100)は、通常15%以上、好ましくは18%以上、より好ましくは20%以上であり、通常60%以下、好ましくは40%以下、より好ましくは35%以下である。
 なお、有機高分子化合物の分子量は、その種類に応じて適宜選択されるべきであるが、ポリフェニレンオキシドやポリフェニレンオキシド誘導体の場合、重量平均分子量(Mw)は、通常5,000以上、好ましくは10,000以上、より好ましくは20,000以上であり、通常1,000,000以下、好ましくは900,000以下、より好ましくは800,000以下である。
 前駆体は、中空糸状に成形されたものであるが、中空糸の外径は、通常0.2mm以上、好ましくは0.22mm以上、より好ましくは0.25mm以上であり、通常0.5mm以下、好ましくは0.4mm以下、より好ましくは0.35mm以下である。中空糸の内径は、通常0.18mm以上、好ましくは0.2mm以上、より好ましくは0.23mm以上であり、通常0.48mm以下、好ましくは0.38mm以下、より好ましくは0.33mm以下である。
 前駆体を調製する方法としては、図2に示すような二重管環状構造の中空糸紡糸ノズルを使用する方法が挙げられる。具体的には、溶解又は融解した有機高分子化合物を二重管の外管から、また有機高分子化合物を溶解しない溶媒を芯液として二重管の内管から同時に押出す方法である。
 有機高分子化合物を溶解するために使用する溶媒は、有機高分子化合物の種類に応じて適宜選択されるべきであるが、ポリフェニレンオキシド誘導体の場合、メタノール、エタノール、テトラヒドロフラン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等が挙げられる。
 凝固浴や芯液に使用する溶媒は、有機高分子化合物を溶解しない溶媒であれば特に限定されないが、ポリフェニレンオキシド誘導体の場合、水、アンモニウム塩水溶液が挙げられる。なお、アンモニウム塩水溶液のアンモニウム塩としては、硝酸アンモニウム、塩酸アンモニウム、硫酸アンモニウムが挙げられる。なお、芯液および凝固浴の温度は、-20℃~60℃であり、好ましくは0℃~30℃である。
(予備加熱工程)
 予備加熱工程は、前駆体を酸素ガスを含む雰囲気下で150℃~400℃に加熱する工程であるが、酸素ガスの濃度、加熱装置、加熱温度、加熱時間等は、特に限定されず、公知の内容を適宜選択することができる。以下、具体例を挙げて説明する。
 酸素ガスを含む雰囲気としては、空気が挙げられ、酸素ガスの濃度としては、通常1体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上であり、通常100体積%以下、好ましくは50体積%以下、より好ましくは30体積%以下である。
 加熱装置は、400℃程度まで加熱することができる装置であればよく、また酸素ガスを含む雰囲気でよいため、装置内が密閉された雰囲気である必要もない。加熱装置としては、マッフル炉が挙げられる。
 加熱温度は、150℃~400℃であるが、好ましくは250℃以上、より好ましく280℃以上であり、好ましくは350℃以下、より好ましくは320℃以下である。
 加熱時間は、通常10分以上、好ましくは30分以上、より好ましく1時間以上であり、通常4時間以下、好ましくは3時間以下、より好ましくは2時間以下である。
 上記範囲内であると、前駆体の融解等を抑制し、良質な中空糸炭素膜を製造し易くなる。
(炭化工程)
 炭化工程は、予備加熱工程を経た前駆体を450℃~850℃に加熱して炭化する工程であるが、雰囲気ガス、加熱装置、加熱温度、加熱時間等は、特に限定されず、公知の内容を適宜選択することができる。以下、具体例を挙げて説明する。
 炭化工程では、前駆体を「炭化」するために、通常、炭素を酸化してしまう物質が含まれない雰囲気で加熱する。具体的には不活性ガスの雰囲気下で加熱することが挙げられる。
 不活性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。
 炭素を酸化してしまう物質が含まれない雰囲気で加熱するため、加熱装置としては、密閉可能な回分式反応器や不活性ガス等を連続的に供給・排出できる連続式反応器を外部から加熱する装置が挙げられる。特に図3に示すような連続式管型反応器を外部から加熱する装置が好ましい。
 加熱温度は、450℃~850℃であるが、好ましくは550℃以上、より好ましく600℃以上であり、好ましくは750℃以下、より好ましくは700℃以下である。
 加熱時間は、通常5分以上、好ましくは10分以上、より好ましく20分以上、さらに好ましくは30分以上であり、通常4時間以下、好ましくは2時間以下、より好ましくは1時間以下である。
 炭化工程は、窒素原子を含んでいてもよい炭素数1~8の炭化水素ガス(以下、「炭化水素ガス」と略す場合がある。)の存在下で加熱することを含むことを特徴とするが、「窒素原子を含んでいてもよい」とは、炭化水素ガスが第1級アミノ基(-NH2)、シアノ基(-CN)のような窒素原子を含む官能基のほか、第2級アミノ基(-NH-)のような窒素原子を含む官能基を炭素骨格の内部に含んでいてもよいことを意味する。また、炭化水素ガスは、直鎖状の飽和炭化水素基に限らず、炭素-炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよく、特に炭素-炭素不飽和結合を有する炭化水素であることが好ましい。炭素-炭素不飽和結合を有する炭化水素であると、中空糸炭素膜の気体分子の透過速度や選択性をより簡易的に制御し易くなる。
 炭化水素ガスの炭素数は、好ましくは6以下、より好ましくは4以下、特に好ましくは3以下である。
 炭化水素ガスとしては、メタン、エタン、エチレン、アセチレン、アセトニトリル、n-プロパン、i-プロパン、プロピレン、n-ブタン、i-ブタン、1-ブテン、1,3-ブタジエン、n-ヘキサン、シクロヘキサン等が挙げられる。これらの中でも、プロピレン、エチレンが特に好ましい。
 炭化工程は、予備加熱工程を経た前駆体を450℃~850℃に加熱して炭化する工程であり、さらに炭化水素ガスの存在下で加熱することを含むものであるが、具体的な態様としては、予備加熱工程を経た前駆体を不活性ガス及び炭化水素ガスを供給しながら450℃~850℃に加熱して炭化する態様が挙げられる。なお、炭化工程を始める前の昇温時や炭化工程を終えた降温時も、通常不活性ガスの雰囲気下で行われるものであるが、昇温時や降温時においても不活性ガス及び炭化水素ガスを供給しながら行ってもよい。また、不活性ガス及び炭化水素ガスを常時同時に供給する必要はなく、例えば下記表1に示される供給方法1~6のような態様が挙げられる。
Figure JPOXMLDOC01-appb-T000004
 これらの中でも、特に供給方法3、供給方法5が好ましい。
 不活性ガス及び炭化水素ガスを同時に供給する場合の炭化水素ガスの濃度(炭化水素ガスの体積流量/不活性ガスの体積流量×100[体積%])は、通常1体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上であり、通常100体積%以下、好ましくは50体積%以下、より好ましくは20体積%以下である。
 炭化工程における加熱温度は、図4に示されるように途中で変更してもよく、加熱温度の組合せとしては、450℃~650℃(炭化工程前半)を600℃~750℃(炭化工程後半)に変更する態様、650℃~750℃(炭化工程前半)を500℃~650℃(炭化工程後半)に変更する態様等が挙げられる。
 炭化水素ガスを供給している期間の加熱温度としては、好ましくは550℃以上、より好ましく650℃以上であり、好ましくは800℃以下、より好ましくは750℃以下である。
 炭化水素ガスの供給時間としては、通常2分以上、好ましくは5分以上、より好ましくは10分以上であり、通常1時間以下、好ましくは30分以下、より好ましくは20分以下である。
 本発明の製造方法は、前述の準備工程、予備加熱工程、及び炭化工程を含むものであれば、その他については特に限定されず、公知の工程を含むものであってもよいが、炭化工程で得られた中空糸炭素膜を150℃~300℃に加熱する後処理工程を含むことが挙げられる。例えば、後処理工程を含むことによって、中空糸炭素膜の柔軟性を改善することができる。
 本発明の製造方法によって製造された中空糸炭素膜の物性や寸法等は、特に限定されないが、下記条件を満たす中空糸炭素膜であることが好ましい。
(条件)中空糸炭素膜を円柱に180°以上巻き付けた時に中空糸炭素膜が破断しない円柱の半径(曲げ半径)が5mm以下である。
 中空糸炭素膜の曲げ半径は、好ましくは10mm以下、より好ましくは7mm以下、さらに好ましくは5mm以下であり、通常2mm以上である。
 上記範囲内であると、中空糸炭素膜を容器内にコンパクトに充填した膜モジュールの作製において膜の破損を低減することができる。
 中空糸炭素膜の外径は、通常0.08mm以上、好ましくは0.1mm以上、より好ましくは0.15mm以上であり、通常0.5mm以下、好ましくは0.35mm以下、より好ましくは0.25mm以下である。中空糸炭素膜の内径は、通常0.06mm以上、好ましくは0.08mm以上、より好ましくは0.13mm以上であり、通常0.48mm以下、好ましくは0.33mm以下、より好ましくは0.23mm以下である。
 本発明の製造方法によって製造された中空糸炭素膜の用途は、特に限定されないが、気体分離膜として有用である。分離する気体の組合せとしては、ヘリウムガス(He)と窒素ガス(N2)、水素ガス(H2)と窒素ガス(N2)、二酸化炭素ガス(CO2)と窒素ガス(N2)、酸素ガス(O2)と窒素ガス(N2)、水素ガス(H2)とメタンガス(CH4)、二酸化炭素ガス(CO2)とメタンガス(CH4)、窒素ガス(N2)とメタンガス(CH4)、ヘリウムガス(He)とメタンガス(CH4)等が挙げられる。
<分離膜モジュール>
 前述のように本発明の製造方法は、中空糸炭素膜の気体分子の透過速度や選択性を簡易的に制御することができる方法であるが、本発明の製造方法によって製造された中空糸炭素膜を備える分離膜モジュール(以下、「本発明の分離膜モジュール」と略す場合がある。)も本発明の一態様である。
 本発明の分離膜モジュールの具体的構造、中空糸炭素膜の数等は、特に限定されず、目的に応じて適宜選択することができる。以下、具体例を挙げて説明する。
 本発明の分離膜モジュールとしては、図5に示す構造を有するものが挙げられる。
 図5の分離膜モジュール1は、容器2および分離膜エレメント3を有している。
 分離膜エレメント3は、複数の中空糸炭素膜(分離膜)を束ねて構成された分離膜部31と、分離膜部31の一方を固定する固定部32とを含んで構成されており、容器2の内部空間を第1の空間8と第2の空間9に分割するように配置されている。中空糸炭素膜は、固定部32側の一端が開口し、他端は閉口した構造となっており、当該開口は第1の空間8と通じている。従って、第1の空間8と第2の空間9とは中空糸炭素膜を介して連通していることになる。なお、分離膜エレメント3は、容器2に固定されている。
 容器2は、ガス供給口4と、ガス排出口5と、ガス排出口6とを備えており、本実施形態では円筒状である。ガス供給口4は、第2の空間9に供給物質(例えば脱水素反応物)を供給するためのものであり、本実施形態では容器2の周面に設けられている。ガス排出口5は、分離膜部31を透過しなかった非透過物質(例えば脱水素化物)を第2の空間9から容器2外に排出するためのものであり、本実施形態では容器2の一端部に設けられている。ガス排出口6は、分離膜部31を透過した透過物質(例えば水素分子)を第1の空間8から容器2外へ排出するためのものであり、本実施形態では容器2の他端部に設けられている。
 なお、分離膜モジュール1に備えられる中空糸炭素膜の数は、中空糸炭素膜の性能や必要とされる高純度水素量等に応じて適宜選択される。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1>
(準備工程)
 式(b)で表される構造の比率が28%のスルホン化ポリフェニレンオキシド8.0gをメタノール10.3gとN,N-ジメチルアセトアミド10.3gの混合溶液に溶解させて、28重量%の有機高分子化合物溶液を調製した。外管の外径が0.4mm、内径が0.18mmである二重管環状構造の中空糸紡糸ノズルの外管から得られた有機高分子化合物溶液を、同ノズルの内管から芯液として20重量%硝酸アンモニウム水溶液を、それぞれ同時に水凝固浴中に押し出し、これを室温で風乾して前駆体を準備した。
(予備加熱工程)
 得られた前駆体をマッフル炉内にて、空気雰囲気中、8℃/分の速度で320℃まで昇温させ、この温度で1時間加熱した後放冷した。
(炭化工程)
 予備加熱を行った前駆体を、連続式管型反応器を用いて、不活性ガスとして高純度窒素ガスを3.0リットル/分の流量で供給しながら炭化処理を行った。この際の操作は、まず120℃に保持して1時間脱水処理を行い、10℃/分の速度で650℃まで昇温させ、この温度で55分間加熱した後、窒素ガスの供給を停止するのと同時に高純度プロピレンガスを3.0リットル/分の流量で供給(炭化水素ガスの濃度:100体積%(プロピレン))して5分間加熱した。その後、プロピレンガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法6)。
<比較例1>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給(炭化水素ガスの濃度:0体積%)しながら、まず120℃に保持して1時間脱水処理を行い、10℃/分の速度で650℃まで昇温させた。この温度で1時間加熱した後、放冷し、中空糸炭素膜を得た。
<実施例2>
 高純度プロピレンガスを工業用プロピレンガス(プロピレン濃度:76体積%)に変更した以外(炭化水素ガスの濃度:76~100体積%(プロピレン等))、実施例1と同様の方法により中空糸炭素膜を得た。なお、工業用プロピレンに含まれる不純物は、プロパン等の炭化水素化合物であり、水分濃度は1000PPM以下である。
<実施例3>
 高純度プロピレンガスを高純度エチレンガスに変更した以外(炭化水素ガスの濃度:100体積%(エチレン))、実施例1と同様の方法により中空糸炭素膜を得た。
<実施例4>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、10℃/分の速度で650℃まで昇温させた。ここで供給ガスを窒素ガスから14体積%アセトニトリル/窒素混合ガスに切り替えて3.4リットル/分の流量で供給(炭化水素ガスの濃度:14体積%(アセトニトリル))し、この温度で1時間加熱した。その後、アセトニトリル/窒素混合ガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法3)。
<実施例5>
 14体積%アセトニトリル/窒素混合ガスを16体積%シクロヘキサン/窒素混合ガスに変更した以外(炭化水素ガスの濃度:16体積%(シクロヘキサン))、実施例4と同様の方法により中空糸炭素膜を得た。
<実施例6>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、10℃/分の速度で650℃まで昇温させた。この温度で1時間加熱した後、10℃/分の速度で600℃まで降温させ、窒素ガスの供給を停止するのと同時に高純度プロピレンガスを3.0リットル/分の流量で供給(炭化水素ガスの濃度:100体積%(プロピレン))して10分間加熱した。その後、プロピレンガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法6)。
<実施例7>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、20℃/分の速度で700℃まで昇温させた。この温度で15分間加熱した後、窒素ガスの供給を停止するのと同時に高純度プロピレンガスを3.0リットル/分の流量で供給(炭化水素ガスの濃度:100体積%(プロピレン))して5分間加熱した。その後、プロピレンガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法6)。
<比較例2>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給(炭化水素ガスの濃度:0体積%)しながら、まず120℃に保持して1時間脱水処理を行い、20℃/分の速度で700℃まで昇温させた。この温度で20分間加熱した後、放冷し、中空糸炭素膜を得た。
<実施例8>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、20℃/分の速度で700℃まで昇温させた。ここで供給ガスを窒素ガスから10体積%プロピレン/窒素混合ガスに切り替えて3.0リットル/分の流量で供給(炭化水素ガスの濃度:10体積%(プロピレン))し、この温度で20分間加熱した。その後、プロピレン/窒素混合ガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法3)。
<実施例9>
 10体積%プロピレン/窒素混合ガスを5体積%プロピレン/窒素混合ガスに変更した以外(炭化水素ガスの濃度:5体積%(プロピレン))、実施例8と同様の方法により中空糸炭素膜を得た。
<実施例10>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、20℃/分の速度で700℃まで昇温させた。この温度で10分間加熱した後、供給ガスを窒素ガスから10体積%プロピレン/窒素混合ガスに切り替えて3.0リットル/分の流量で供給(炭化水素ガスの濃度:10体積%(プロピレン))し、この温度でさらに10分間加熱した。その後、プロピレン/窒素混合ガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法5)。
<実施例11>
 10体積%プロピレン/窒素混合ガスを20体積%プロピレン/窒素混合ガスに変更した以外(炭化水素ガスの濃度:20体積%(プロピレン))、実施例10と同様の方法により中空糸炭素膜を得た。
<実施例12>
 10体積%プロピレン/窒素混合ガスを5体積%プロピレン/窒素混合ガスに変更した以外(炭化水素ガスの濃度:5体積%(プロピレン))、実施例10と同様の方法により中空糸炭素膜を得た。
<実施例13>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、20℃/分の速度で700℃まで昇温させた。ここで供給ガスを窒素ガスから16体積%シクロヘキサン/窒素混合ガスに切り替えて3.4リットル/分の流量で供給(炭化水素ガスの濃度:16体積%(シクロヘキサン))し、この温度で20分間加熱した。その後、シクロヘキサン/窒素混合ガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法3)。
<実施例14>
 炭化処理において、高純度窒素ガスを3.0リットル/分の流量で供給しながら、まず120℃に保持して1時間脱水処理を行い、20℃/分の速度で750℃まで昇温させた。この温度で5分間加熱した後、供給ガスを窒素ガスから10体積%プロピレン/窒素混合ガスに切り替えて3.0リットル/分の流量で供給(炭化水素ガスの濃度:10体積%(プロピレン))し、この温度でさらに5分間加熱した。その後、プロピレン/窒素混合ガスの供給を停止して、窒素ガスに切り替えてから放冷し、中空糸炭素膜を得た(供給方法5)。
<中空糸炭素膜の気体分離性能の評価>
 試験ガス(He、H2、CO2、O2、N2、CH4)を用いて、実施例1~14及び比較例1~2の中空糸炭素膜の気体分離性能を調べた。その方法は次のとおりである。
 中空糸用気体透過速度測定装置に装着した中空糸モジュールの外面に90℃にて一定圧力で試験ガスを供給し、透過してくる気体流量を流量計で測定した。この際に、下記式で求められる気体透過速度Qにより気体分離性能を評価した。
 Q={ガス透過流量(cm3・STP)}÷{膜面積(cm2)×時間(秒)×圧力差(cmHg)}
 単位はcm3(STP)/(cm2・sec・cmHg)である。
 また、ガスBに対するガスAの膜の理想分離係数αA/Bは、下記式のように定められ、ガスBに対するガスAの選択性を表す。
 αA/B=QA/QB
 上記式において、QAおよびQBは、それぞれガスA及びガスBについての気体透過速度である。
 結果を表3に示す。
<膜の柔軟性の評価>
 前述の実施例1~14、及び比較例1~2の中空糸炭素膜について、種々の直径の円柱に180°以上巻きつけて、中空糸膜が破断するかどうかを観測した。曲げ半径は、中空糸膜が破断しない円柱において最小の半径を有する円柱を求め、その円柱の半径の値で示すことにより、膜の柔軟性を評価した。
その結果すべての炭素膜において、曲げ半径は5mm以下であった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明の製造方法によって製造された中空糸炭素膜は、水素製造、二酸化炭素分離回収、排気ガス分離回収、天然ガス分離、ガスの除湿、アルコールの脱水装置、空気からの酸素の製造等の分野に利用することができる。
  1           分離膜モジュール
  2           容器
  3           分離膜エレメント
  4           ガス供給口
  5,6         ガス排出口
  8           第1の空間
  9           第2の空間

Claims (5)

  1.  有機高分子化合物を中空糸状に成形した前駆体を準備する準備工程、前記前駆体を酸素ガスを含む雰囲気下で150℃~400℃に加熱する予備加熱工程、及び前記予備加熱工程を経た前駆体を450℃~850℃に加熱して炭化する炭化工程を含む中空糸炭素膜の製造方法であって、
     前記炭化工程が、窒素原子を含んでいてもよい炭素数1~8の炭化水素ガスの存在下で加熱することを含む、中空糸炭素膜の製造方法。
  2.  前記炭化水素ガスが、炭素-炭素不飽和結合を有する炭化水素である、請求項1に記載の中空糸炭素膜の製造方法。
  3.  前記有機高分子化合物が、ポリフェニレンオキシド、並びに下記式(a)及び(b)で表される構造を有するポリフェニレンオキシド誘導体からなる群より選択される少なくとも1種を含むものである、請求項1又は2に記載の中空糸炭素膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(b)中、Rはそれぞれ独立して水素原子、-SO3H、又は-SO3NH4を表す。但し、Rが共に水素原子であることはない。)
  4.  下記条件を満たす中空糸炭素膜を製造する方法である、請求項1~3の何れか1項に記載の中空糸炭素膜の製造方法。
    (条件)中空糸炭素膜を円柱に180°以上巻き付けた時に中空糸炭素膜が破断しない円柱の半径(曲げ半径)が5mm以下である。
  5.  請求項1~4の何れか1項に記載の中空糸炭素膜の製造方法によって製造された中空糸炭素膜を備える分離膜モジュール。
PCT/JP2016/056497 2015-03-27 2016-03-02 中空糸炭素膜の製造方法及び分離膜モジュール WO2016158183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680019127.5A CN107405582B (zh) 2015-03-27 2016-03-02 中空纤维碳膜的制造方法以及分离膜组件
JP2017509432A JP6572512B2 (ja) 2015-03-27 2016-03-02 中空糸炭素膜の製造方法及び分離膜モジュール
US15/562,150 US10456751B2 (en) 2015-03-27 2016-03-02 Method for producing hollow fiber carbon membrane and separation membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-067385 2015-03-27
JP2015067385 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158183A1 true WO2016158183A1 (ja) 2016-10-06

Family

ID=57005622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056497 WO2016158183A1 (ja) 2015-03-27 2016-03-02 中空糸炭素膜の製造方法及び分離膜モジュール

Country Status (4)

Country Link
US (1) US10456751B2 (ja)
JP (1) JP6572512B2 (ja)
CN (1) CN107405582B (ja)
WO (1) WO2016158183A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093357A1 (ja) * 2014-12-12 2016-06-16 Nok株式会社 炭素中空糸膜の製造方法
DE102016012730A1 (de) * 2016-10-24 2018-04-26 Fresenius Medical Care Deutschland Gmbh Verfahren zur Bestimmung einer Permeationseigenschaft von Hohlfasermembranen
US11446610B2 (en) * 2019-04-03 2022-09-20 Generon Igs, Inc. Gas separation membrane module with enhanced performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221518A (ja) * 1988-02-29 1989-09-05 Mitsubishi Rayon Co Ltd 中空炭素膜繊維及びその製造方法
JP2002355538A (ja) * 2001-05-30 2002-12-10 Asahi Medical Co Ltd 炭素繊維中空糸膜用セルロース中空糸膜およびその製造方法
JP2009034614A (ja) * 2007-08-02 2009-02-19 National Institute Of Advanced Industrial & Technology 中空糸炭素膜とその製造方法
JP2012081375A (ja) * 2010-10-07 2012-04-26 Nok Corp 中空糸炭素膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL105142A (en) * 1993-03-23 1997-01-10 Aga Ab Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
US5288304A (en) * 1993-03-30 1994-02-22 The University Of Texas System Composite carbon fluid separation membranes
JP2006231095A (ja) 2005-02-21 2006-09-07 National Institute Of Advanced Industrial & Technology 炭化膜及びその製造法
CN104125855B (zh) * 2011-12-20 2017-05-17 佐治亚科技研究公司 高性能碳分子筛中空纤维膜的多孔形态的稳定化
US9795927B2 (en) * 2014-12-31 2017-10-24 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Manufacturing carbon molecular sieve membranes using a pyrolysis atmosphere comprising sulfur-containing compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221518A (ja) * 1988-02-29 1989-09-05 Mitsubishi Rayon Co Ltd 中空炭素膜繊維及びその製造方法
JP2002355538A (ja) * 2001-05-30 2002-12-10 Asahi Medical Co Ltd 炭素繊維中空糸膜用セルロース中空糸膜およびその製造方法
JP2009034614A (ja) * 2007-08-02 2009-02-19 National Institute Of Advanced Industrial & Technology 中空糸炭素膜とその製造方法
JP2012081375A (ja) * 2010-10-07 2012-04-26 Nok Corp 中空糸炭素膜の製造方法

Also Published As

Publication number Publication date
CN107405582B (zh) 2020-09-18
US20180078907A1 (en) 2018-03-22
CN107405582A (zh) 2017-11-28
US10456751B2 (en) 2019-10-29
JP6572512B2 (ja) 2019-09-11
JPWO2016158183A1 (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5339324B2 (ja) 中空糸炭素膜とその製造方法
JP6054318B2 (ja) エチレン/エタン分離のためのポリイミド系炭素分子ふるい膜
Salleh et al. Effects of carbonization heating rate on CO2 separation of derived carbon membranes
Salleh et al. Fabrication and characterization of PEI/PVP‐based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation
Favvas et al. High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes
US20140137735A1 (en) Polyimide membranes and method of production
JP6572512B2 (ja) 中空糸炭素膜の製造方法及び分離膜モジュール
JP2673846B2 (ja) 非対称性中空糸炭素膜及びその製法
EP0459623A1 (en) Asymmetric hollow filamentary carbon membrane and process for producing same
JP2010269229A (ja) 金属イオンを導入した中空糸炭素膜及びそれを用いたアルコール水溶液の脱水方法
CN107596925B (zh) 聚4-甲基-1-戊烯径向异质中空纤维膜及其制备方法
Matveev et al. Effect of draw ratio on the morphology of polysulfone hollow fiber membranes
KR20160116466A (ko) 세미 열유도 상분리법을 이용한 기체분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 기체분리용 비대칭 중공사막
JP5516951B2 (ja) ガス精製方法
JP2016185895A (ja) 水素製造システム
JP2626837B2 (ja) 非対称性中空糸炭素膜の製法
JP6358337B2 (ja) 炭素膜用製膜原液およびこれを用いた炭素中空糸膜の製造方法
JP2018508342A (ja) 硫黄含有化合物を含む熱分解雰囲気を用いた、カーボンモレキュラーシーブ膜の製造
Caralin et al. Annealing treatment for enhancing of H2/C3H8 separation performance on polysulfone membrane
JP6493872B2 (ja) 中空糸炭素膜の製造方法、分離膜モジュール、並びに膜分離器
JPH07121344B2 (ja) 非対称性中空糸炭素膜及びその製法
WO2014196601A1 (ja) 炭素膜及び炭素膜の製造方法
Sazali The Effect of Different Pyrolysis Environment towards Carbon Membrane Performances
JPWO2012105335A1 (ja) 炭素膜用製膜原液およびこれを用いた炭素中空糸膜の製造方法
JP2023529473A (ja) 炭素中空糸膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509432

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772067

Country of ref document: EP

Kind code of ref document: A1