WO2016157986A1 - リチウムイオン電池負極及びリチウムイオン電池 - Google Patents

リチウムイオン電池負極及びリチウムイオン電池 Download PDF

Info

Publication number
WO2016157986A1
WO2016157986A1 PCT/JP2016/052948 JP2016052948W WO2016157986A1 WO 2016157986 A1 WO2016157986 A1 WO 2016157986A1 JP 2016052948 W JP2016052948 W JP 2016052948W WO 2016157986 A1 WO2016157986 A1 WO 2016157986A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion battery
phase
active material
Prior art date
Application number
PCT/JP2016/052948
Other languages
English (en)
French (fr)
Inventor
昌宏 柳田
田中 秀明
境 哲男
正典 森下
徹 川合
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社村田製作所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201680018927.5A priority Critical patent/CN107534133A/zh
Priority to EP16771870.9A priority patent/EP3276708B1/en
Priority to US15/561,955 priority patent/US20180114975A1/en
Publication of WO2016157986A1 publication Critical patent/WO2016157986A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery negative electrode and a lithium ion battery.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-297757
  • an element such as Co which becomes a eutectic or hypereutectic, is added and rapidly solidified so that the minor axis particle size of the Si phase is 5 ⁇ m or less.
  • the cycle life is improved by forming a negative electrode active material layer by using a pulverized alloy as a negative electrode active material.
  • the silicide phase that does not occlude / release Li ions formed with the Si phase finely plays a role as a buffer material against the volume change that occurs when Li ions are occluded / released in the fine Si phase. It is presumed that the effect of relaxing the volume change is brought about, and it is thought that this leads to suppression of deterioration of the electrode structure.
  • the negative electrode obtained by sintering the negative electrode active material layer containing the active material composed of a material containing Si and the polyimide binder in a non-oxidizing atmosphere has a good charge. It has been found that it exhibits discharge cycle characteristics (see Patent Document 2 below). Further, it has been found that the cycle characteristics are further improved by changing the polyimide species (see Patent Document 3 below).
  • the problem to be solved by the present invention is to suppress the destruction of the negative electrode active material particles themselves during charge and discharge by appropriately arranging a eutectic structure composed of a fine Si phase and a silicide phase in the Si alloy.
  • a polyimide binder having a high binding property peeling between the negative electrode active materials and at the interface between the negative electrode active material and the negative electrode current collector is suppressed, and a lithium ion battery negative electrode excellent in high capacity and cycle characteristics and
  • the object is to provide a lithium ion battery. Therefore, the lithium ion battery negative electrode of the present invention can be used as a driving power source for portable devices and the like that are expected to be used for a long period of time.
  • the inventors have intensively developed, and as a result, found a material having a large charge / discharge capacity and excellent cycle life.
  • the Si content in the active material usually has to be large.
  • Si causes volume expansion of up to about 400% when Li ions are occluded, it is considered necessary to take measures to alleviate this expansion in order to extend the cycle life.
  • the first feature of the present invention is that Ti (titanium) is used as an additive element for obtaining a eutectic alloy.
  • Negative electrode active material particles used in the present invention in the Si phase or Si 2 Ti phase as a matrix phase, forming a eutectic structure Si 2 Ti phase without a reversible storage and release capacity of Li ions with Si phase Alloy.
  • the average minor axis width of the Si 2 Ti phase in the eutectic structure is preferably 1 ⁇ m or less.
  • the Si 2 Ti phase finely textured to an average minor axis width of 1 ⁇ m or less functions as a buffer material in the negative electrode, and the expansion and contraction of the volume repeated at the time of occlusion / release of Li ions in the Si phase is alleviated. This is because peeling from the current collector can be prevented.
  • the Si 2 Ti phase is co-crystallized with the Si phase, thereby forming an electrostatic capacitance between the Si phase and the Si 2 Ti phase.
  • the negative electrode active material in the negative electrode active material layer formed by repeated volume expansion / contraction associated with insertion / extraction of Li ions into / from the Si phase. Suppresses material layer peeling, improves rapid discharge capacity drop due to cycle caused by electrical isolation of Si, and obtains negative electrode suitable for next-generation power storage device with good charge / discharge capacity and cycle life be able to.
  • examples of the method for producing the alloy material that is the source of the negative electrode include arc melting, liquid quenching, mechanical alloying, sputtering, chemical vapor deposition, and firing.
  • the liquid quenching method includes various atomizing methods such as a single roll quenching method, a twin roll quenching method, a gas atomizing method, a water atomizing method, and a disk atomizing method.
  • the content ratio of the Ti component in the negative electrode active material particles used in the present invention is preferably 25% or less, more preferably, when the total atomic ratio of Si and Ti is 100 atomic%. Is 20% or less. However, if the atomic ratio of Ti is 10% or less, the Si content increases, and the volume change of Si that occurs during charge / discharge cannot be alleviated. Therefore, it is preferably 10% or more. When the Ti content is 25% or more, the Si amount in the whole negative electrode is reduced, and a sufficient charge / discharge capacity cannot be obtained. Therefore, the Ti content is preferably 25% or less.
  • the average particle diameter of the negative electrode active material particles used in the present invention is not particularly limited, but is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less for effective sintering.
  • the average particle size of the conductive powder used by adding to the negative electrode active material layer is not particularly limited, but is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and most preferably 0.5 ⁇ m. It is as follows.
  • the absolute amount of volume change of the negative electrode active material particles due to insertion and extraction of Li ions in the Si phase in the charge / discharge reaction is reduced.
  • the absolute amount of strain between the negative electrode active material particles in the electrode at the time of reaction is also reduced, so that a decrease in current collecting property in the electrode can be suppressed, and good charge / discharge characteristics can be obtained.
  • the binder used in the present invention is preferably one that remains without being completely decomposed even after heat treatment for sintering. Since the binder remains without being decomposed after the heat treatment, adhesion between the negative electrode active material particles and the current collector and the negative electrode active material particles by sintering can be enhanced. For this reason, it is possible to suppress the detachment of the negative electrode active material layer from the current collector due to the expansion / contraction of the volume of the negative electrode active material when Li ions are occluded / released, thereby obtaining good charge / discharge cycle characteristics. be able to.
  • a polyimide having a three-dimensional structure that has undergone an imidization reaction and an imination reaction is preferably used.
  • a polyimide can be obtained by heat-treating the polyamic acid precursor, for example, at a temperature of 300 ° C. or higher in an inert atmosphere.
  • a polyimide a thermoplastic polyimide and a thermosetting polyimide are mentioned.
  • the imidation ratio of polyimide is preferably 95% or more.
  • the imidation ratio is a mol% of the generated polyimide with respect to the polyimide precursor (polyamic acid).
  • an N-methyl-2-pyrrolidone (NMP) solution of a polyamic acid precursor is heat-treated at a temperature of 300 ° C. or more for 1 hour or more in an inert atmosphere to prevent oxidation.
  • NMP N-methyl-2-pyrrolidone
  • the imidation rate is 95% after 1 hour
  • heat treatment is performed at 350 ° C.
  • the imidation rate is 100% after 1 hour. Since it is more preferable that the polyimide binder used in the present invention has a high imidization rate, it is possible to perform a heat treatment for 1 hour in an inert atmosphere at 350 ° C.
  • the imidization reaction of the polyimide is completed. More preferred.
  • a three-dimensional structure polyimide resin having an imine bond can be obtained by a heat treatment at 350 ° C. or higher after the imidization for 0.5 hour or longer.
  • the polyamic acid precursor has a molar ratio of tetracarboxylic dianhydride and diamine, and the total of the diamine with respect to the tetracarboxylic dianhydride 100 is in the range of 100 to 120. preferable.
  • the tetracarboxylic dianhydride of the polyamic acid precursor in the present invention is preferably an aromatic tetracarboxylic dianhydride, more preferably pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetra anhydride.
  • Carboxylic anhydride or derivatives derived from two compounds are preferred.
  • the diamine is preferably an aliphatic diamine and an aromatic diamine, more preferably 4,4'-diaminodiphenyl ether, p-phenylenediamino, or a derivative derived from two compounds.
  • the polyimide binder in the present invention has a three-dimensional structure by imidization and iminization, the mechanical strength and flexibility of the binder can be increased as compared with a conventional polyimide binder composed only of a linear structure. . Since such a polyimide binder (having a three-dimensional structure) has many imide groups in the molecule, it can exhibit high adhesion. In addition, since the imide group has high polarity, it has high adhesion to Si alloy negative electrode active material particles and a metal foil as a current collector, such as a stainless steel foil. Further, since the three-dimensional structure has a branched structure extending in many directions, imide groups existing in the structure also extend in many directions.
  • a current collector that has been conventionally used for lithium ion batteries can be used, but a current collector formed of stainless steel, Ni-plated steel, or the like is preferably used. Can be used. Since these have high strength and no reduction in strength even after heat treatment at about 300 ° C., the initial strength can be maintained even after imidization and iminization treatment at a high temperature.
  • the thickness of the negative electrode current collector is not particularly limited, but when using a stainless steel foil or a Ni-plated steel plate as the negative electrode current collector, in order to achieve a higher energy density of the battery.
  • the thickness is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the negative electrode current collector in the present invention is not particularly limited to a sheet shape such as the above-described stainless steel foil or Ni-plated steel plate, and various shapes can be adopted.
  • the negative electrode current collector may be configured by using a three-dimensional base material such as foam metal, mesh, woven fabric, non-woven fabric, and expand and applying Ni plating on the three-dimensional base material.
  • voids can be secured in the electrode, so that volume changes caused by insertion and extraction of Li ions in the negative electrode active material can be mitigated, thereby improving the mechanical strength of the electrode. Therefore, the collapse of the negative electrode current collector due to the volume change that occurs during charge and discharge in the Si alloy is further suppressed, and good charge and discharge characteristics can be obtained.
  • the lithium ion battery of the present invention includes the above negative electrode. By adopting the negative electrode, a lithium ion battery excellent in high capacity and cycle characteristics can be obtained.
  • the present invention it is possible to provide a lithium ion battery negative electrode and a lithium ion battery excellent in high capacity and cycle characteristics by suppressing separation between negative electrode active materials and at the interface between the negative electrode active material and the negative electrode current collector. it can.
  • the lithium ion battery according to the present invention includes a lithium ion battery positive electrode and a lithium ion battery negative electrode capable of inserting and extracting Li ions, a separator between the positive electrode and the negative electrode, and an electrolyte containing Li ions in the void portion of the separator.
  • the negative electrode active material employed for the negative electrode of the lithium ion battery is a Si alloy composed of a eutectic structure of a Si phase and a silicide Si 2 Ti phase.
  • adopted as this negative electrode is a polyimide binder which has a three-dimensional structure
  • the negative electrode active material used in the present invention is an alloy composed of a microstructure in which a Si phase and a silicide Si 2 Ti phase are eutectic.
  • the negative electrode active material layer composed of such an alloy is less likely to drop off due to pulverization of the negative electrode active material caused by volume changes caused by repeated insertion and extraction of Li ions in the Si phase, and has a high capacity. Therefore, the life and capacity of the lithium ion battery of the present invention configured using the alloy as a negative electrode can be increased.
  • the average minor axis width of the Si 2 Ti phase contained is preferably 1 ⁇ m or less. Further, when the Si 2 Ti phase is used as the parent phase in the negative electrode active material, the average minor axis width of the contained Si phase is preferably 1 ⁇ m or less.
  • the negative electrode active material so that the average minor axis width is finely textured to 1 ⁇ m or less and the Si 2 Ti phase or Si phase is dispersed, charging / discharging in the Si phase, that is, Li ion It is possible to suppress the progress of dropout due to the pulverization of the negative electrode active material caused by the volume change caused by repeated occlusion / release.
  • FIG. 1 the transmission electron micrograph image of the negative electrode active material which concerns on this invention is shown.
  • the Si 2 Ti phase having an average minor axis width of 1 ⁇ m or less is dispersed in the Si phase (parent phase).
  • the content of the Ti component in the negative electrode active material used in the present invention is preferably such that the atomic ratio of Ti is 10% or more and 25% or less when the total atomic ratio of Si and Ti is 100 atomic%. More preferably, it is 10% or more and 20% or less.
  • the average particle diameter of the negative electrode active material used in the present invention is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less. There exists a tendency for a favorable cycle characteristic to be acquired, so that the particle diameter of a negative electrode active material is small.
  • the average particle size of the conductive powder used by adding to the negative electrode active material layer is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and most preferably 0.5 ⁇ m or less.
  • the negative electrode active material used in the present invention can further include carbon materials such as graphite, amorphous carbon, carbon nanotubes, carbon nanohorns, fullerenes, lithium titanate, titanium oxide, tin, tin oxide, and tin alloys. .
  • the negative electrode active material used in the present invention preferably contains 10 wt% or more, more preferably 50 wt% of alloy particles composed of a microstructure in which a Si phase and a silicide Si 2 Ti phase are eutectic. % Or more.
  • the mixing ratio of the alloy particles is 10 wt% or less, the Si content in the negative electrode active material decreases, and the capacity of the entire negative electrode decreases. Therefore, it is preferably 10 wt% or more.
  • the mixing ratio of the alloy particles is 50 wt% or more, the charge / discharge capacity of the entire negative electrode is more than three times that of graphite in practical use, and the entire negative electrode has a high capacity. Further preferred.
  • the negative electrode active material used in the present invention includes a compound represented by a LixSi phase (0 ⁇ x ⁇ 4.4) in the Si phase contained in the negative electrode active material after the initial charge of the lithium ion battery. It is preferable that the Si 2 Ti phase contains a compound represented by the LiySi 2 Ti phase (0 ⁇ y ⁇ 1.6).
  • the negative electrode active material made of a Si alloy has a remarkably large volume change due to the insertion and extraction of Li ions during the charge and discharge of the Si phase, so that cracking occurs in the negative electrode active material layer when charge and discharge are repeated. It becomes easy. As a result, a decrease in discharge capacity (cycle characteristics) after repeated charge / discharge has been a problem.
  • a polyimide resin having a three-dimensional structure that has undergone an imidization reaction and an imination reaction as a negative electrode binder the structure of the negative electrode active material layer deteriorates with repeated charge and discharge, and cracks are generated. Generation
  • a polyimide can be obtained by heat-treating a polyamic acid precursor at a temperature of 300 ° C. or higher.
  • the polyamic acid precursor used in the present invention has a molar ratio of tetracarboxylic dianhydride and diamine, and the total amount of the diamine with respect to the tetracarboxylic dianhydride 100 is in the range of 100 to 120.
  • the polyimide obtained by heat treatment of the polyamic acid precursor preferably has a polyimide imidation ratio of 95% or more.
  • an imidization ratio of 95% or more for example, an N-methyl-2-pyrrolidone (NMP) solution of a polyamic acid precursor is heat-treated at a temperature of 300 ° C. or more for 1 hour or more in an inert atmosphere to prevent oxidation.
  • NMP N-methyl-2-pyrrolidone
  • the imidation rate is 95% after 1 hour
  • heat treatment is performed at 350 ° C.
  • the imidation rate is 100% after 1 hour.
  • heat treatment is further performed for 0.5 hours or more at a temperature of 350 ° C. or higher after imidation.
  • the polyamic acid precursor used in the present invention has a molar ratio range of 100 to 120 of the diamine with respect to the tetracarboxylic dianhydride 100.
  • a polyimide having a three-dimensional structure is obtained through an imidization reaction dehydrated and condensed by heat treatment and an iminization reaction (C ⁇ N bond) in which a ketone group in a polyimide resin reacts with an excess amino group of a diamine. Since the polyimide binder in the present invention has a three-dimensional structure by imidization and iminization, the mechanical strength and flexibility of the binder can be increased as compared with a conventional polyimide binder composed only of a linear structure. .
  • Such a polyimide binder has many imide groups in a molecule
  • the polycarboxylic acid precursor tetracarboxylic dianhydride used in the present invention is preferably an aromatic tetracarboxylic dianhydride, more preferably pyromellitic anhydride, 3,3 ′, 4,4′- Biphenyltetracarboxylic anhydride or derivatives derived from two compounds are preferred.
  • the diamine is preferably an aliphatic diamine and an aromatic diamine, more preferably 4,4'-diaminodiphenyl ether, p-phenylenediamino, or a derivative derived from two compounds.
  • the negative electrode current collector used in the present invention is preferably a stainless steel foil or a Ni-plated steel plate.
  • conventional mechanical strength will reduce mechanical strength when exposed to 300 degreeC or more environment, it cannot follow the volume change repeated in the negative electrode active material which consists of Si alloys, and is not preferable.
  • the shape of the current collector is not particularly limited, and is not limited to a sheet shape such as the above-described stainless steel foil or Ni-plated steel plate.
  • a three-dimensional base material such as foam metal, mesh, woven fabric, non-woven fabric, and expanded It is possible to use a three-dimensional shape formed by applying Ni plating on the three-dimensional substrate.
  • an electrode having a high capacity density can be obtained even with a binder that lacks adhesion to the current collector.
  • high rate charge / discharge characteristics are also improved.
  • a conductive additive, a polyamideimide binder, and NMP are added to the negative electrode active material made of the above-described Si alloy to form a paste, and this is applied onto the negative electrode current collector.
  • the amount of the conductive aid used for example, it may be about 2.5% to 10% by mass ratio with respect to the negative electrode active material 100 made of the Si alloy.
  • the amount of the polyamide-imide binder having a three-dimensional structure is not particularly limited.
  • the mass ratio is set to about 15% to 22.5% with respect to the negative electrode active material 100 made of the Si alloy. Can do.
  • the lithium ion battery positive electrode can be configured by forming a positive electrode active material conventionally used in the technical field of lithium ion batteries in a layered manner on the positive electrode current collector.
  • a positive electrode active material for example, a Li-containing metal oxide can be suitably used.
  • the Li-containing metal oxide at least one selected from the group consisting of a layered compound, a spinel structure compound, and a polyanion compound can be used.
  • Examples of the layered compound include lithium cobalt oxide composite oxide (LiCoO 2 ; hereinafter sometimes referred to as LCO), lithium manganate composite oxide (LiMnO 2 ), lithium nickelate composite oxide (LiNiO 2 ), lithium niobate composite oxide (LiNbO2), ferrate lithium composite oxide (LiFeO 2), magnesium lithium composite oxide (Li 2 MgO 2), lithium composite oxide of calcium acid (Li 2 CaO 2), cuprate lithium Complex oxide (LiCuO 2 ), lithium zincate complex oxide (LiZnO 2 ), lithium molybdate complex oxide (LiMoO 2 ), lithium tantalate complex oxide (LiTaO 2 ), lithium tungstate complex oxide (LiWO 2) ), Lithium-nickel-cobalt-aluminium Beam composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2; hereinafter, may be referred to as LNCAO), lithium - nickel - cobalt - manganese composite
  • spinel structure compound examples include spinel-type lithium manganate composite oxide (LiMn 2 O 4 ; hereinafter referred to as LMO), spinel-type lithium-manganese-nickel composite oxide (LiNi 0.5 Mn 1). .5 O 4 ; hereinafter may be referred to as LNMO).
  • LMO spinel-type lithium manganate composite oxide
  • LNMO spinel-type lithium-manganese-nickel composite oxide
  • LNMO lithium-manganese-nickel composite oxide
  • lithium iron phosphate LiFePO 4 ; hereinafter sometimes referred to as LFP
  • lithium manganese phosphate LiMnPO 4
  • lithium cobalt phosphate LiCoPO 4
  • the like can be preferably exemplified.
  • manganese dioxide MnO 2
  • vanadium-based materials sulfur-based materials
  • silicate-based materials and the like are also preferably used.
  • the lithium ion battery using the negative electrode of the present invention needs to contain Li ions, it is preferable to use a lithium salt as the electrolyte salt.
  • the lithium salt is not particularly limited, and specific examples include lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium trifluoromethanesulfonate. . These lithium salts can be used singly or in combination of two or more. Since the above lithium salt has high electronegativity and is easily ionized, when it is adopted as a negative electrode material, a battery having excellent cycle characteristics and a large charge / discharge capacity can be provided.
  • the solvent for the electrolyte for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, and the like can be used, and these solvents can be used alone or in combination of two or more.
  • propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or ⁇ -butyrolactone alone is preferred.
  • the mixing ratio of the mixture of ethylene carbonate and diethyl carbonate can be arbitrarily adjusted in a range where one component is 10% or more and 90% or less in volume fraction.
  • the electrolyte of the lithium battery of the present invention may be a solid electrolyte or an ionic liquid.
  • the lithium ion battery adopting the above-described structure can function as a battery having high capacity and excellent cycle performance.
  • the structure of the lithium ion battery is not particularly limited, but can be applied to existing battery forms and structures such as a stacked battery and a wound battery.
  • PAA Polyamic acid
  • AB acetylene black
  • the obtained slurry was applied onto a stainless steel foil having a thickness of 10 ⁇ m as a negative electrode current collector, dried at 80 ° C. in the air, passed between a pair of rotating rollers, and an electrode sheet was obtained from a roll press. .
  • This electrode sheet was punched into a disk shape having a diameter of 12 mm with an electrode punching machine, and was subjected to heat treatment for 1 hour 30 minutes in an Ar gas atmosphere at 350 ° C. to obtain a negative electrode plate.
  • the thickness of the slurry applied on the stainless steel foil is 10 ⁇ m.
  • the thickness of the slurry applied on the Al foil is 25 ⁇ m.
  • a SUS316 can was used as a 2032 type coin cell member, and PFA was used as a gasket.
  • a 16 mm diameter glass filter (trade name “Advantech GA-100” having a thickness of 0.44 mm and a porosity of 90%, which has been subjected to a vacuum drying treatment at 120 ° C. for 24 hours, is compressed to a thickness of 0.
  • 1M LiPF6 EC ethylene carbonate
  • DEC diethyl carbonate
  • the test battery was assembled in an environment with a dew point temperature of ⁇ 60 ° C. or lower.
  • a coin cell (CR2032) was produced under the same conditions as in Example 1 except that the Si alloy powder constituted by the above was used as the negative electrode active material.
  • Example 3 A coin cell (CR2032) was produced under the same conditions as in Example 1 except that 40 ⁇ m electrolytic Cu foil was used as the negative electrode current collector.
  • Example 1 A coin cell (CR2032) was produced under the same conditions as in Example 1 except that Si alone was used as the negative electrode active material.
  • a coin cell (CR2032) was manufactured under the same conditions.
  • FIG. 2 is a graph showing the cycle characteristics of each coin cell of Examples 1, 2, and 3 and Comparative Examples 1 and 2.
  • the vertical axis represents capacity (mAh / g) and the horizontal axis represents the number of cycles (times).
  • the capacity after 1500 cycles is reduced by 90% or more with respect to the initial capacity, as can be seen from the graph of FIG. Since the negative electrode active material undergoes a large volume change during insertion and extraction of Li ions, the active material is finely powdered with repeated charging and discharging, or the active material is separated from the current collector, resulting in a decrease in current collection performance. However, it is considered that the charge / discharge cycle characteristics deteriorated.
  • PAA polyamic acid
  • the lithium ion batteries shown in Example 1 and Example 2 each having a negative electrode active material layer including a polyimide binder having a three-dimensional structure by heat treatment of polyamic acid (PAA) having an acid dianhydride) of 1.2 are shown in FIG. As can be seen from FIG.
  • the capacity after 1500 cycles is Ti.
  • the change with respect to the initial capacity is smaller, so that the pulverization due to the volume change at the time of charge / discharge of the Si alloy and the electrical isolation of the Si particles are suppressed, and the charge / discharge cycle characteristics are good. I understand that.
  • the battery of Example 3 using 40 ⁇ m electrolytic Cu foil as the negative electrode current collector gives better results than the coin cell of Comparative Example 1, as can be seen from the graph of FIG.
  • the capacity after 1500 cycles is reduced by 22% with respect to the initial capacity, and the capacity attenuation becomes larger than that of the coin cell in the first and second embodiments.
  • the cycle characteristics have deteriorated.
  • the mechanical strength of the Cu foil was lowered by the heat treatment applied to the binder, so that the volume change accompanying the charge and discharge of the Si phase as the negative electrode active material could not be followed, and the electrode structure deteriorated.
  • the negative electrode current collector is preferably formed of a material such as stainless steel or Ni-plated steel, the mechanical strength of which is not easily lowered by heat treatment.
  • a negative electrode for a lithium ion battery excellent in high capacity and cycle characteristics by suppressing peeling between negative electrode active materials and at the interface between the negative electrode active material and the negative electrode current collector, and a lithium ion battery using the negative electrode can be provided.
  • the lithium ion battery of the present invention is suitably used as a main power source for mobile communication devices, portable electronic devices, electric bicycles, electric motorcycles, electric vehicles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Silicon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 負極活物質間及び負極活物質と負極集電体との界面での剥離を抑制して、高容量およびサイクル特性に優れるリチウムイオン電池負極及びリチウムイオン電池を提供する。 リチウムイオン電池に用いられるリチウムイオン電池負極であって、Si相とSiTi相との共晶組織により構成されるSi合金である負極活物質と、三次元構造を有するバインダーとを含む負極活物質層が、負極集電体に形成されていることを特徴とするリチウムイオン電池負極。

Description

リチウムイオン電池負極及びリチウムイオン電池
 本発明は、リチウムイオン電池負極及びリチウムイオン電池に関する。
 リチウムイオン電池の負極活物質には従来より炭素材料からなる粉末が用いられているが、炭素材料は理論容量が372mAh/gと低く、更なる高容量化には限界がある。これに対し、近年ではSn系、Al系、Si系など炭素材料よりも理論容量の高い金属材料の適用が検討されている。特に、Siは4000mAh/gを超える理論容量があるとされ、有望な材料と考えられている。しかしながら、Siを負極活物質として負極活物質層を形成する場合、Siは充放電時にその内部にLiイオンを吸蔵・放出し大きな体積変化を伴うことから、これが繰り返されると、負極活物質粒子の微粉化による負極活物質層からの脱落、および集電体からの負極活物質層の剥離が進行する。このため、集電性が低下し、延いては充放電サイクル特性が低下するという問題がある。
 このような課題に対し、Siに種々の元素を添加し、純SiではなくSi合金の粉末とし、微細な組織を得ることで改善する方法が提案されている。例えば、特開2001-297757号公報(特許文献1)では、共晶もしくは過共晶となる量のCoなどの元素を添加し、急冷凝固させることによって、Si相の短軸粒径が5μm以下となる合金を得、これを粉砕したものを負極活物質として用いて負極活物質層を形成することで、サイクル寿命を改善している。すなわち、Si相とともに微細に形成させたLiイオンを吸蔵・放出しない珪化物相が、微細Si相においてLiイオンの吸蔵・放出時に生じる体積変化に対して緩衝材的役割を果たし、電極全体としての体積変化を緩和する効果をもたらしていると推察され、延いては電極構造の劣化の抑制につながっていると考えられる。
 さらに負極内の集電性を維持するため、Siを含む材料から成る活物質とポリイミドバインダーとを含む負極活物質層を非酸化性雰囲気下で焼結することによって得た負極が、良好な充放電サイクル特性を示すことが見出されている(下記特許文献2参照)。また、ポリイミド種の変更を行うことにより、更にサイクル特性が改善されることが見出されている(下記特許文献3参照)
特開2001-297757号公報 特開2002-260637号公報 特開2011-204592号公報
 しかしながら、Si相と珪化物相より形成される共晶組織を含む合金の作製を種々の添加元素により試みたところ、添加元素の種類によっては必ずしも微細な共晶組織は得られないことが分かった。さらに、高温で焼成したポリイミドバインダーは剛直で強固な分子構造をとるためにSi相におけるLiイオンの吸蔵・放出時に生じる体積変化に追従することができず、負極部材間の密着性が低下し、延いては満足するサイクル特性が得られないことも分かった。
 そこで、本発明が解決しようとする課題は、Si合金中に微細なSi相と珪化物相よりなる共晶組織を適切に配することで、充放電時の負極活物質粒子自体の破壊を抑制し、さらに高結着性のポリイミドバインダーとの併用により負極活物質間及び負極活物質と負極集電体との界面での剥離を抑制して、高容量およびサイクル特性に優れるリチウムイオン電池負極及びリチウムイオン電池を提供することにある。よって、本発明のリチウムイオン電池負極は、長期間使用が見込まれる携帯機器などの駆動電源として用いることができる。
 上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、充放電容量が大きく、サイクル寿命にも優れた材料を見出した。充放電容量が大きくあるためには通常、活物質中のSi含有量が多くなければならない。しかしながら、SiはLiイオンの吸蔵時に最大約400%もの体積膨脹を引き起こすため、サイクル寿命を延ばすためにはこの膨脹を緩和する対策を施す必要があると考え、Si合金におけるSi含有量の削減のほか、Si相を珪化物相で取り囲む試みに取り組んだ。本発明における第1の特徴は、共晶合金を得るための添加元素としてTi(チタン)を用いたことである。
 Si相と珪化物相の共晶を得るために必要な添加元素量は、元素の種類により決まっている。例えばTiの場合、SiとTiとの原子比の合計を100原子%とした場合、Tiの原子比率は16.2%となる(すなわち、Si:Ti=83.8:16.2)。このことは、SiとTiとの二元系状態図から読み取ることができる。共晶を得るためにTiのように比較的多くの添加量が必要な場合は、Si相およびSi-Ti金属間化合物相は粗大化し易く、Liイオンの吸蔵・放出の繰り返しに伴う粒子の微粉化が進むため、良好な充放電特性は得られない。
 本発明において用いる負極活物質粒子は、母相であるSi相もしくはSiTi相中において、Liイオンの可逆的吸蔵・放出能力を有さないSiTi相がSi相とともに共晶組織を形成した合金である。その共晶組織中のSiTi相の平均短軸幅は、1μm以下であることが好ましい。平均短軸幅が1μm以下まで微細組織化したSiTi相が負極において緩衝材として機能し、Si相へのLiイオンの吸蔵・放出時に繰り返される体積の膨脹・収縮が緩和され、微粉化や集電体からの剥離を防ぐことができるためである。
 また、母相中に微細化させたSiTi相を単に配置するだけでなく、SiTi相をSi相とともに共晶組織化することでSi相とSiTi相との相間に静電的結合を形成し、Si相中へのLiイオンの吸蔵・放出時に伴う体積膨脹・収縮の繰り返しにより進行する負極活物質層中の負極活物質の微粉化による脱落や集電体からの負極活物質層の剥離を抑制し、Siの電気的孤立が引き起こすサイクルに伴う急激な放電容量低下を改善し、充放電容量とサイクル寿命のいずれもが良好である次世代蓄電デバイスに好適な負極を得ることができる。また、負極の元となる合金材料を製造する方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などが挙げられる。うち液体急冷法としては、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法が挙げられる。
 本発明において用いる負極活物質粒子中のTi成分の含有率は、SiとTiとの原子比の合計を100原子%とした場合、Tiの原子比率は25%以下であることが好ましく、さらに好ましくは20%以下である。ただ、Tiの原子比率が同10%以下ではSi含有量が多くなり、充放電時に生じるSiの体積変化を緩和しきれないため、同10%以上であることが好ましい。なお、Ti含有量が同25%以上になると負極全体におけるSi量が少なくなり、十分な充放電容量が得られなくなるため、同25%以下であることが好ましい。
 本発明において用いる負極活物質粒子の平均粒子径は特に限定されないが、効果的な焼結を行うためには30μm以下であることが好ましく、さらに好ましくは10μm以下、最も好ましくは5μm以下である。なお、負極活物質粒子の粒子径が小さいほど、反応むらが生じにくく、良好なサイクル特性が得られる傾向にある。また、負極活物質層に添加して用いる導電性粉末の平均粒子径も特に限定されるものではないが、5μm以下であることが好ましく、さらに好ましくは1μm以下であり、最も好ましくは0.5μm以下である。
 また、平均粒子径の小さい負極活物質粒子を用いることにより、充放電反応におけるSi相中でのLiイオンの吸蔵・放出に伴う負極活物質粒子の体積変化の絶対量が小さくなるため、充放電反応時の電極内での負極活物質粒子間の歪みの絶対量も小さくなり、電極内の集電性の低下を抑制することができ、良好な充放電特性を得ることができる。
 本発明において用いるバインダーは、焼結のための熱処理後も完全に分解せずに残存しているものが好ましい。熱処理後もバインダーが分解せずに残存していることにより、焼結による負極活物質粒子と集電体間及び負極活物質粒子間の密着性を高めることができる。このため、Liイオンが吸蔵・放出される際の負極活物質の体積の膨脹・収縮による集電体からの負極活物質層の脱離を抑制することができ、良好な充放電サイクル特性を得ることができる。
 本発明におけるバインダーとしては、イミド化反応及びイミン化反応を経た三次元構造を有するポリイミドが好ましく用いられる。このようなポリイミドは、ポリアミック酸前駆体を例えば不活性雰囲気下で300℃以上の温度で熱処理することによって得ることができる。なお、ポリイミドとしては、熱可塑性ポリイミド、熱硬化性ポリイミドが挙げられる。
 本発明におけるポリアミック酸前駆体の熱処理により得られるポリイミドは、ポリアミド酸が熱処理により脱水縮合するイミド化反応と、ポリイミド樹脂におけるケトン基と過剰なジアミンのアミノ基が反応してイミン化反応(C=N結合)を経て、三次元構造のポリイミドとなる。ポリイミドのイミド化率は95%以上のものが好ましい。イミド化率とは、ポリイミド前駆体(ポリアミド酸)に対する生成したポリイミドのモル%である。イミド化率95%以上のものは、例えば、ポリアミック酸前駆体のN-メチル-2-ピロリドン(NMP)溶液を酸化防止のため不活性雰囲気下で300℃以上の温度で1時間以上熱処理することにより得ることができる。例えば、300℃で熱処理する場合、熱処理時間が1時間でイミド化率95%となり、350℃で熱処理する場合、熱処理時間が1時間でイミド化率100%となる。本発明に用いられるポリイミドバインダーとしては、高いイミド化率を有していることがより好ましいため、ポリイミドのイミド化反応が完結する350℃で不活性雰囲気下において1時間の加熱処理を行うことがより好ましい。また、イミン結合を有する三次元構造のポリイミド樹脂は、イミド化後に350℃以上の温度でさらに0.5時間以上の熱処理により得ることができる。ここで、ポリアミック酸前駆体は、テトラカルボン酸二無水物と、ジアミンとがモル比で、該テトラカルボン酸二無水物100に対して、該ジアミンの合計が100~120の範囲であるものが好ましい。
 本発明におけるポリアミック酸前駆体のテトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物であることが好ましく、さらに好ましくは無水ピロメリト酸、3,3’,4,4’-ビフェニルテトラカルボン酸無水物、または2種の化合物から派生する誘導体が好ましい。ジアミンは脂肪族ジアミン及び芳香族ジアミンであることが好ましく、さらに好ましくは4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミノ、または2種の化合物から派生する誘導体が好ましい。
 本発明におけるポリイミドバインダーは、イミド化およびイミン化により三次元構造を有することにより、直鎖構造だけで構成されている従来のポリイミドバインダーに比べ、バインダーの機械的強度および柔軟性を高めることができる。このようなポリイミドバインダー(三次元構造を有する)は、分子内にイミド基が多く存在しているので、高い密着性を発現することができる。また、イミド基は高い極性を有するので、Si合金負極活物質粒子や、集電体である金属箔、例えばステンレス鋼箔との密着性が高い。さらに、三次元構造は、多くの方向に広がった分岐構造を有しているので、構造内に存在するイミド基も多くの方向に広がっている。これにより、負極活物質粒子や集電体の表面の凹凸にも高い極性を有するイミド基が多く接することになるので、ポリイミドバインダー全体として負極活物質粒子や集電体との高い密着性を発現することができる。
 本発明における負極集電体としては、従来からリチウムイオン電池用として用いられている集電体を使用すること可能であるが、ステンレス鋼やNiめっき鋼等から形成される集電体を好適に用いることができる。これらは、高強度で、且つ300℃程度の熱処理でも強度低下が無いため、高温下でのイミド化およびイミン化処理後においても初期の強度を保持することができる。
 本発明において負極集電体の厚さは特に限定されるものではないが、ステンレス鋼箔やNiめっき鋼板を負極集電体として使用する場合には、電池の高エネルギー密度化を達成するために、厚みが15μm以下であることが好ましく、さらには、厚みが10μm以下であることが好ましい。
 なお、本発明における負極集電体は、上述のステンレス鋼箔やNiめっき鋼板といったシート状に特に限定されるものではなく、種々の形状を採用することができる。例えば、発泡メタル、メッシュ、織布、不織布、エキスパンド等といった三次元状基材などを用い、当該三次元状基材上にNiめっきを施す等により負極集電体を構成してもよい。三次元状基材を用いると電極内に空隙を確保できるため、負極活物質におけるLiイオンの吸蔵・放出に伴って生じる体積変化を緩和することができ、これにより電極の機械的強度が向上するため、Si合金において充放電時に生じる体積変化による負極集電体の崩壊がより一層抑制され、良好な充放電特性を得ることができる。
 本発明のリチウムイオン電池は、上記負極を具備する。該負極を採用することにより、高容量およびサイクル特性に優れるリチウムイオン電池とすることができる。
 本発明によれば、負極活物質間及び負極活物質と負極集電体との界面での剥離を抑制して、高容量およびサイクル特性に優れるリチウムイオン電池負極及びリチウムイオン電池を提供することができる。
本発明に係る負極活物質の電子顕微鏡写真画像である。 実施例1、実施例2、実施例3、比較例1及び比較例2に示した各コインセルのサイクル特性を示すグラフである。
 以下、本発明のリチウムイオン電池用の負極、この負極を具備するリチウムイオン電池について説明する。
 本発明に係るリチウムイオン電池は、Liイオンを吸蔵・放出できるリチウムイオン電池正極とリチウムイオン電池負極、該正極と負極との間にセパレータを備え、該セパレータにおける空隙部分にLiイオンを含む電解質を満たした構造のリチウムイオン電池であって、リチウムイオン電池負極に採用される負極活物質は、Si相と珪化物SiTi相との共晶組織より構成されるSi合金である。また、該負極に採用されるバインダーは三次元構造をもつポリイミドバインダーであり、該負極に採用される集電体(負極集電体)はステンレス鋼箔またはNiめっき鋼板である。
 本発明において用いられる負極活物質は、Si相と珪化物SiTi相が共晶化した微細組織より構成される合金である。このような合金により構成される負極活物質層は、Si相におけるLiイオンの吸蔵・放出の繰り返しに伴って生じる体積変化がもたらす負極活物質の微粉化による脱落等が進行しにくく、且つ高容量であるため、該合金を負極として用いて構成される本発明のリチウムイオン電池を長寿命化および高容量化することができる。
 ここで、上記負極活物質においてSi相を母相とする場合、含有されるSiTi相の平均短軸幅は、1μm以下であることが好ましい。また、上記負極活物質においてSiTi相を母相とする場合、含有されるSi相の平均短軸幅は、1μm以下であることが好ましい。このように、平均短軸幅が1μm以下まで微細組織化されたSiTi相、若しくは、Si相が分散するように負極活物質を構成することにより、Si相における充放電、すなわちLiイオンの吸蔵・放出の繰り返しに伴って生じる体積変化がもたらす負極活物質の微粉化による脱落等の進行を抑制することができる。また、Si相とSiTi相との相間に静電的結合が形成されることによって、負極活物質粒子の微粉化脱落により電気的孤立が生じることに起因する放電容量の急激な低下を改善することができる。なお、図1に、本発明に係る負極活物質の透過電子顕微鏡写真画像を示す。この図1に示す画像においては、平均短軸幅が1μm以下であるSiTi相がSi相(母相)に分散している。
 本発明において用いられる負極活物質中のTi成分の含有率は、SiとTiとの原子比の合計を100原子%とした場合、Tiの原子比率が10%以上25%以下であることが好ましく、さらに好ましくは10%以上20%以下である。 
 本発明において用いられる負極活物質の平均粒子径は30μm以下であることが好ましく、さらに好ましくは10μm以下、最も好ましくは5μm以下である。負極活物質の粒子径が小さいほど、良好なサイクル特性が得られる傾向にある。また、負極活物質層に添加して用いる導電性粉末の平均粒子径は5μm以下であることが好ましく、さらに好ましくは1μm以下であり、最も好ましくは0.5μm以下である。
 本発明において用いられる負極活物質には、さらに黒鉛、非結晶炭素、カーボンナノチューブ、カーボンナノホーン、フラーレンなどの炭素材料、チタン酸リチウム、酸化チタン、スズ、スズ酸化物、スズ合金も含むこともできる。
 本発明において用いられる負極活物質には、Si相と珪化物SiTi相とが共晶化した微細組織より構成される合金粒子が10wt%以上含まれていることが好ましく、さらに好ましくは50wt%以上である。合金粒子の混合比が10wt%以下では負極活物質中のSi含有量が少なくなり、負極全体の容量が減少するため、同10wt%以上であることが好ましい。なお、合金粒子の混合比が同50wt%以上になると負極全体における充放電容量が実用化されている黒鉛の3倍以上となり、負極全体が高容量となるため、同50wt%以上であることがさらに好ましい。
 また、本発明において用いられる負極活物質には、リチウムイオン電池の初回充電後において、負極活物質に含まれるSi相にLixSi相(0≦x≦4.4)で表される化合物が含まれていることが好ましく、また、SiTi相にLiySiTi相(0≦y≦1.6)で表される化合物が含まれていることが好ましい。
 また、Si合金よりなる該負極活物質は、Si相の充放電時におけるLiイオンの吸蔵・放出に起因する体積変化が著しく大きいため、充放電を繰り返した際に負極活物質層に亀裂が生じ易くなる。結果的に、充放電を繰り返した後の放電容量(サイクル特性)の低下が問題となっていた。本発明においては、負極バインダーとして、イミド化反応及びイミン化反応を経た三次元構造を有するポリイミド樹脂を採用することにより、充放電の繰り返しに伴って負極活物質層の構造が劣化して亀裂が生じることを緩和することができ、延いては放電容量の低下を抑制することができる。ポリイミドは、ポリアミック酸前駆体を300℃以上の温度で熱処理することによって得ることができる。
 本発明において用いられるポリアミック酸前駆体は、テトラカルボン酸二無水物とジアミンとがモル比で、該テトラカルボン酸二無水物100に対して、該ジアミンの合計が100~120の範囲である。
 ポリアミック酸前駆体の熱処理により得られるポリイミドは、ポリイミドのイミド化率が95%以上のものが好ましい。イミド化率95%以上のものは、例えば、ポリアミック酸前駆体のN-メチル-2-ピロリドン(NMP)溶液を酸化防止のため不活性雰囲気下で300℃以上の温度で1時間以上熱処理することにより得ることができる。例えば、300℃で熱処理する場合、熱処理時間が1時間でイミド化率95%となり、350℃で熱処理する場合、熱処理時間が1時間でイミド化率100%となる。また、イミン化のためには、イミド化後に350℃以上の温度でさらに0.5時間以上の熱処理を行う。
 本発明において用いられるポリアミック酸前駆体は、該テトラカルボン酸二無水物100に対して、該ジアミンの合計が100~120のモル比範囲であることにより、熱処理により得られるポリイミドは、ポリアミド酸が熱処理により脱水縮合したイミド化反応と、ポリイミド樹脂におけるケトン基と過剰なジアミンのアミノ基が反応したイミン化反応(C=N結合)を経て、三次元構造のポリイミドとなる。本発明におけるポリイミドバインダーは、イミド化およびイミン化により三次元構造を有することにより、直鎖構造だけで構成されている従来のポリイミドバインダーに比べ、バインダーの機械的強度および柔軟性を高めることができる。このようなポリイミドバインダーは分子内にイミド基が多く存在しているので、高い密着性を発現することができる。イミド基は高い極性を有するので、Si合金負極活物質粒子や、集電体である金属箔、例えばステンレス箔との密着性が高い。さらに、この三次元構造は多くの方向に広がった分岐構造を有しているので、構造内に存在するイミド基も多くの方向に広がっている。
 本発明において用いられるポリアミック酸前駆体のテトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物であることが好ましく、さらに好ましくは無水ピロメリト酸、3,3’,4,4’-ビフェニルテトラカルボン酸無水物、または2種の化合物から派生する誘導体が好ましい。ジアミンは脂肪族ジアミン及び芳香族ジアミンであることが好ましく、さらに好ましくは4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミノ、または2種の化合物から派生する誘導体が好ましい。
 本発明において用いられる負極集電体は、ステンレス鋼箔もしくはNiめっき鋼板が好ましい。なお、従来のCu箔は300℃以上の環境下に曝露すると機械的強度が低下するため、Si合金よりなる負極活物質において繰り返される体積変化に追従できず、好ましくない。該ステンレス箔もしくはNiめっき鋼板は薄くても非常に高強度であり、且つ300℃程度の環境下でも強度の低下が生じないため、高温下でのイミド化およびイミン化処理後においても初期の強度を保持することができる。
 集電体の形状には特に制約はなく、上述のステンレス鋼箔やNiめっき鋼板といったシート状に限定されず、例えば、発泡メタル、メッシュ、織布、不織布、エキスパンド等といった三次元状基材などを用い、当該三次元状基材上にNiめっきを施す等により形成した三次元状の形態を有するものでも構わない。このような三次元状基材を用いると、集電体との密着性に欠けるようなバインダーであっても、高い容量密度の電極が得られる。加えて、高率充放電特性も良好になる。
 負極を作製するには、例えば、上述のSi合金よりなる負極活物質に対して導電助剤、ポリアミドイミドバインダーおよびNMPを加えてペースト状とし、これを負極集電体上に塗布することによって行う。導電助剤の使用量については特に限定されないが、例えば、上記Si合金よりなる負極活物質100に対して、質量比で2.5%以上10%以下程度とすることができる。また、三次元構造を有するポリアミドイミドバインダーの使用量についても特に限定されないが、例えば、上記Si合金よりなる負極活物質100に対して、質量比で15%以上22.5%以下程度とすることができる。
 また、リチウムイオン電池正極としては、従来からリチウムイオン電池の技術分野で使用される正極活物質を正極集電体上に層状に形成して構成することができる。正極活物質としては、例えば、Li含有金属酸化物が好適に用いることができる。Li含有金属酸化物としては、層状化合物、スピネル構造化合物及びポリアニオン化合物からなる群から選ばれる少なくともいずれか一つを使用できる。
 層状化合物としては、例えば、コバルト酸リチウム複合酸化物(LiCoO;以降、LCOと表記する場合がある)、マンガン酸リチウム複合酸化物(LiMnO)、ニッケル酸リチウム複合酸化物(LiNiO)、ニオブ酸リチウム複合酸化物(LiNbO2)、鉄酸リチウム複合酸化物(LiFeO)、マグネシウム酸リチウム複合酸化物(LiMgO)、カルシウム酸リチウム複合酸化物(LiCaO)、銅酸リチウム複合酸化物(LiCuO)、亜鉛酸リチウム複合酸化物(LiZnO)、モリブデン酸リチウム複合酸化物(LiMoO)、タンタル酸リチウム複合酸化物(LiTaO)、タングステン酸リチウム複合酸化物(LiWO)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05;以降、LNCAOと表記する場合がある)、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi1/3Co1/3Mn1/3;以降、LNCMOと表記する場合がある)、Li過剰系ニッケル-コバルト-マンガン複合酸化物(LiNiCoMnCO固溶体;以降、Li rich NCMと表記する場合がある)等を好適に例示できる。
 スピネル構造化合物としては、例えば、スピネル型マンガン酸リチウム複合酸化物(LiMn;以降、LMOと表記する場合がある)、スピネル型リチウム-マンガン-ニッケル複合酸化物(LiNi0.5Mn1.5;以降、LNMOと表記する場合がある)等を好適に例示できる。
 ポリアニオン化合物としては、例えば、リン酸鉄リチウム(LiFePO;以降、LFPと表記する場合がある)、リン酸マンガンリチウム(LiMnPO)、リン酸コバルトリチウム(LiCoPO)等を好適に例示できる。
 上記の他、二酸化マンガン(MnO2)、バナジウム系材料、硫黄系材料、シリケート系材料等も好適に使用される。
 また、本発明の負極を用いるリチウムイオン電池は、Liイオンを含有する必要があることから、電解質塩としてはリチウム塩を用いるのが好ましい。このリチウム塩としては特に制限されないが、具体例としては、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸イミドリチウムなどを挙げることができる。これらのリチウム塩は、1種単独または2種以上混合して用いることができる。上記のリチウム塩は電気的陰性度が高く、電離し易いことから、負極材料として採用した場合、サイクル特性に優れ、且つ充放電容量の大きい電池を提供することができる。
 上記電解質の溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン等を用いることができ、これらの溶媒を1種単独または2種以上混合して用いることができる。特に、プロピレンカーボネート単体、エチレンカーボネートとジエチルカーボネートとの混合物、またはγ-ブチロラクトン単体が好適である。なお、上記エチレンカーボネートとジエチルカーボネートとの混合物の混合比は、一方の成分が体積分率において10%以上90%以下となる範囲で、任意に調整することができる。また、本発明のリチウム電池の電解質は、固体電解質やイオン性液体であっても差し支えない。
 上述の構造を採用したリチウムイオン電池は、高容量およびサイクル性に優れたものとして機能することができる。リチウムイオン電池の構造としては特に限定されないが、積層式電池、捲回式電池などの既存の電池形態・構造に適用できる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(実施例1)
<負極の作製>
 SiとTiとを構成原子比率がSi:Ti=90:10となるように混合した後、熔融状態とし、当該熔融金属を急冷凝固させ、Si相と珪化物SiTi相との共晶組織により構成されるSi合金の粉末(負極活物質粉末)に対し、テトラカルボン酸二無水物とジアミンとがモル比(=ジアミン/テトラカルボン酸二無水物)1.2であるバインダー前駆体であるポリアミック酸(PAA)、導電性物質としてのアセチレンブラック(AB)を、負極活物質粉末:PAA:導電性物質=80:2:18(質量比)の割合となるように秤量し、N-メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。得られたスラリーを負極集電体である厚み:10μmのステンレス鋼箔上に塗布し、大気下において80℃で乾燥後、一対の回転ローラー間に通し、ロールプレス機によりより電極シートを得た。この電極シートを電極打ち抜き機で直径12mmの円板状に打ち抜き、350℃のArガス雰囲気下において1時間30分の加熱処理を行い、負極板を得た。ここで、ステンレス箔上に塗布したスラリーの厚みは10μmである。
<正極の作製>
 リン酸鉄リチウム(LFP、正極活物質):CMCバインダー:AB=90:4:6(質量比)の原料を混合して、スラリー状の合剤を調製した。正極集電体である厚さ20μmのAl箔上にスラリーを塗布し、80℃にて乾燥後、一対の回転ローラー間に通してロールプレス機によりより電極シートを得た。この電極を電極打ち抜き機で直径11mmの円板状に打ち抜き、加熱処理(減圧中、150℃、5時間)して正極板を得た。ここで、Al箔上に塗布したスラリーの厚みは25μmである。
 (2)電池の作製
 電池外装には、2032型コインセル部材としてSUS316の缶を用い、ガスケットにはPFAを用いた。セパレータとしては120℃下で24時間の減圧乾燥処理を施した直径16mmのガラスフィルター(商品名「アドバンテックGA-100」、厚み0.44mm、空隙率90%のものを圧縮して、厚み0.35mm、空隙率88%としたもの)、電解液としては、1M LiPF6 EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1(体積比)を用いた。コインセルの下蓋に上記正極のAl箔面を下に向けて載置し、その上にガラスフィルターからなるセパレータ、さらに上記負極の負極活物質層を塗布した面を下に向けて積層し、試験電池を作製した。なお、試験電池の組み立ては露点温度-60℃以下の環境で行った。
(実施例2)
 SiとTiとを構成原子比率がSi:Ti=80:20となるように混合した後、熔融状態とし、当該熔融金属を急冷凝固させ、Si相と珪化物SiTi相との共晶組織により構成されるSi合金の粉末を負極活物質として用いたこと以外は実施例1と同じ条件で、コインセル(CR2032)を作製した。
(実施例3)
 負極集電体として40μmの電解Cu箔を用いたこと以外は実施例1と同じ条件で、コインセル(CR2032)を作製した。
 (比較例1)
 負極活物質としてSi単体を用いたこと以外は実施例1と同じ条件で、コインセル(CR2032)を作製した。
(比較例2)
 負極バインダー前駆体として、テトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が0.9であるポリアミック酸(PAA)を用いたこと以外は実施例1と同じ条件で、コインセル(CR2032)を作製した。
(電池性能試験)
 実施例1、2並びに、比較例1、2、3のコインセルに対して、それぞれ30℃において、充放電電流値3CAで1500サイクルまで試験を行った。
 図2は、実施例1、2、3、並びに、比較例1、2の各コインセルのサイクル特性を示すグラフである。このグラフにおいて、縦軸は容量(mAh/g)を、横軸はサイクル数(回)を表している。
 負極活物質としてSi単体を用いた比較例1の電池は、図2のグラフからも分かるように、1500サイクル後の容量が初期容量に対して90%以上減少している。該負極活物質ではLiイオンの吸蔵・放出時に大きな体積変化が生じるため、充放電の繰り返しに伴い活物質の微粉化が進行、あるいは活物質が集電体から剥離するために集電性が低下し、充放電サイクル特性が劣化したと考えられる。
 負極バインダー前駆体として、テトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が0.9であるポリアミック酸(PAA)を用いた比較例2の電池は、図2のグラフからも分かるように、1500サイクル後の容量が初期容量に対して40%以上減少している。乃ち、サイクル特性が劣化している。これは、バインダーが直鎖構造物質のみで構成されているために機械的強度および柔軟性が低下し、さらに充放電に伴うSi相の体積変化が加わり、負極活物質層の構造劣化が進行したことによると考えられる。
 これに対し、Si相と珪化物SiTi相から構成される共晶組織を有するSi合金と、負極バインダー前駆体であるテトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が1.2であるポリアミック酸(PAA)の熱処理による三次元構造をもつポリイミドバインダーとを含む負極活物質層を有する実施例1及び実施例2に示すリチウムイオン電池は、図2からも分かるように、1500サイクル後の容量が初期容量に対して約5%以下の減少にとどまり、比較例1、2におけるリチウムイオン電池と比べて初期容量に対する容量減衰が穏やかとなり、サイクル特性の劣化が抑制されていることが分かる。
 また、図2に示す実施例2のコインセルのサイクル特性からも分かるように、Si相と珪化物SiTi相から構成される共晶組織を有するSi合金において、1500サイクル後の容量はTiの含有比率が高いほど初期容量に対して変化が少ないことから、Si合金の充放電時の体積変化による微粉化およびSi粒子の電気的孤立化が抑制され、良好な充放電サイクル特性を有していることが分かる。
 また、負極集電体として40μmの電解Cu箔を用いた実施例3の電池では、図2のグラフからも分かるように、比較例1のコインセルよりも良好な結果とはなる。しかしながら1500サイクル後の容量が初期容量に対して22%減少し、実施例1、2におけるコインセルよりも容量減衰が大きくなる。乃ち、サイクル特性が劣化している。これは、バインダーに施した熱処理によりCu箔の機械的強度が低下したために、負極活物質であるSi相の充放電に伴う体積変化に追従できず、電極構造の劣化が進行したことによるものと考えられ、負極集電体としては、熱処理によって機械的強度が低下しにくい、ステンレス鋼やNiめっき鋼等の材料により形成することが好ましいことが分かる。
 本発明により、負極活物質間及び負極活物質と負極集電体との界面での剥離を抑制して、高容量およびサイクル特性に優れるリチウムイオン電池用負極及び当該負極を用いたリチウムイオン電池を提供することができる。本発明のリチウムイオン電池は、移動体通信機器、携帯用電子機器、電動自転車、電動二輪車、電気自動車等の主電源として好適に利用されるものである。
 
 

Claims (8)

  1.  リチウムイオン電池に用いられるリチウムイオン電池負極であって、
     Si相とSiTi相との共晶組織により構成されるSi合金である負極活物質と、三次元構造を有するバインダーとを含む負極活物質層が、負極集電体に形成されていることを特徴とするリチウムイオン電池負極。
  2.  前記Si合金は、混合・熔融状態にあるSiおよびTiの金属原料を急冷凝固し、母相であるSi相もしくはSiTi相中に、平均短軸幅が1μm以下まで微細化したSiTi相もしくはSi相が分散していることを特徴とする、請求項1に記載のリチウムイオン電池負極。
  3.  前記Si合金において、SiとTiとの原子比の合計を100原子%とした場合、Tiの原子分率が10%以上25%以下であることを特徴とするリチウムイオン電池負極。
  4.  前記バインダーがポリイミドであることを特徴とする、請求項1に記載のリチウムイオン電池負極。
  5.  前記ポリイミドは、ポリアミック酸前駆体をイミド化およびイミン化を通じて得られる三次元構造を有することを特徴とする、請求項4に記載のリチウムイオン電池負極。
  6.  前記ポリイミドは、前記ポリアミック酸前駆体が、テトラカルボン酸二無水物とジアミンとをモル比で、該テトラカルボン酸二無水物100に対して、該ジアミンの合計が100~120の範囲でイミド化およびイミン化して得られる、請求項5に記載のリチウムイオン電池負極。
  7.  前記負極集電体は、厚みが15μm以下のステンレス鋼箔もしくはNiめっき鋼板であることを特徴とする、請求項1から6のいずれかに記載のリチウムイオン電池負極。
  8.  請求項1から7のいずれかに記載のリチウムイオン電池負極を備えるリチウムイオン電池。

     
PCT/JP2016/052948 2015-03-27 2016-02-01 リチウムイオン電池負極及びリチウムイオン電池 WO2016157986A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680018927.5A CN107534133A (zh) 2015-03-27 2016-02-01 锂离子电池负极及锂离子电池
EP16771870.9A EP3276708B1 (en) 2015-03-27 2016-02-01 Lithium ion battery negative electrode and lithium ion battery
US15/561,955 US20180114975A1 (en) 2015-03-27 2016-02-01 Lithium ion battery negative electrode and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066466A JP2016186881A (ja) 2015-03-27 2015-03-27 リチウムイオン電池負極及びリチウムイオン電池
JP2015-066466 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016157986A1 true WO2016157986A1 (ja) 2016-10-06

Family

ID=57006971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052948 WO2016157986A1 (ja) 2015-03-27 2016-02-01 リチウムイオン電池負極及びリチウムイオン電池

Country Status (5)

Country Link
US (1) US20180114975A1 (ja)
EP (1) EP3276708B1 (ja)
JP (1) JP2016186881A (ja)
CN (1) CN107534133A (ja)
WO (1) WO2016157986A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042144B2 (ja) * 2018-04-04 2022-03-25 日産自動車株式会社 電極活物質スラリーの製造方法
EP3905387A4 (en) * 2018-12-26 2022-09-28 Ube Industries, Ltd. ELECTRODE FOR FULLY SOLID SECONDARY BATTERIES, FULL SOLID SECONDARY BATTERY AND METHOD FOR PRODUCING FULL SOLID SECONDARY BATTERY
CN113013397A (zh) * 2019-12-20 2021-06-22 四川大学 利用硅废料和含钛渣制备钛硅合金负极材料的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料およびその製造方法
JP2013069681A (ja) * 2011-09-07 2013-04-18 Iwate Univ リチウム二次電池負極およびその製造方法
JP2013197069A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology リチウム二次電池用負極材料及びその製造方法、リチウム二次電池用負極及びその製造方法、リチウム二次電池及びこれを用いた電気機器
JP2014032909A (ja) * 2012-08-06 2014-02-20 Jsr Corp 蓄電デバイスの負極用バインダー組成物
JP2014038832A (ja) * 2012-07-20 2014-02-27 Sanyo Special Steel Co Ltd 蓄電デバイスの負極材料
JP2014096311A (ja) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology 固体電解質シート、電極シート、及び全固体二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070069188A (ko) * 2005-03-31 2007-07-02 마쯔시다덴기산교 가부시키가이샤 리튬 2차 전지
US20070269718A1 (en) * 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
JP2008210576A (ja) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd 非水電解質二次電池用負極極板及びその負極極板を用いた非水電解質二次電池
JP5429529B2 (ja) * 2008-05-15 2014-02-26 株式会社アイ.エス.テイ 電極用バインダー組成物および電極用合剤スラリー
JP2011048921A (ja) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料およびその製造方法
JP2013069681A (ja) * 2011-09-07 2013-04-18 Iwate Univ リチウム二次電池負極およびその製造方法
JP2013197069A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology リチウム二次電池用負極材料及びその製造方法、リチウム二次電池用負極及びその製造方法、リチウム二次電池及びこれを用いた電気機器
JP2014038832A (ja) * 2012-07-20 2014-02-27 Sanyo Special Steel Co Ltd 蓄電デバイスの負極材料
JP2014032909A (ja) * 2012-08-06 2014-02-20 Jsr Corp 蓄電デバイスの負極用バインダー組成物
JP2014096311A (ja) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology 固体電解質シート、電極シート、及び全固体二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOO-SUNG LEE ET AL.: "Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries", ELECTROCHIMICA ACTA, vol. 52, 2006, pages 1523 - 1526, XP028027862 *

Also Published As

Publication number Publication date
EP3276708A1 (en) 2018-01-31
EP3276708A4 (en) 2018-03-21
JP2016186881A (ja) 2016-10-27
EP3276708B1 (en) 2020-07-22
CN107534133A (zh) 2018-01-02
US20180114975A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP5884573B2 (ja) リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
JP5790282B2 (ja) リチウム二次電池用負極活物質およびリチウム二次電池用負極
WO2017169616A1 (ja) 非水電解質二次電池用負極活物質
JP4963330B2 (ja) リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
US20100009258A1 (en) Negative electrode for lithium ion secondary battery, method for producing the same, lithium ion secondary battery and method for producing the same
KR101009625B1 (ko) 리튬 이차 전지용 음극 재료 및 이를 포함하는 리튬 이차전지
JP2007149604A (ja) リチウム二次電池用負極及びリチウム二次電池
JP5838934B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP3868231B2 (ja) 炭素材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2008117761A (ja) 非水電解質電池
JP6108520B2 (ja) リチウムイオン二次電池正極およびこれを用いたリチウムイオン二次電池
WO2011061825A1 (ja) リチウム二次電池およびその製造方法
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
JP6414058B2 (ja) 電極用バインダー組成物および電極
WO2016157986A1 (ja) リチウムイオン電池負極及びリチウムイオン電池
JP5490510B2 (ja) リチウムイオン二次電池用負極活物質
JP6500578B2 (ja) 非水電解質二次電池用電極活物質及びその製造方法、並びに非水電解質二次電池
WO2020065832A1 (ja) 導電性物質、正極および二次電池
WO2016152505A1 (ja) リチウムイオン二次電池
JP5189466B2 (ja) リチウム二次電池
JP2016028383A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6184385B2 (ja) 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池および電池パック
JP3984184B2 (ja) 非水電解質二次電池
KR102218030B1 (ko) 리튬이차전지용 음극활물질 제조방법, 리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지
WO2020065833A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016771870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561955

Country of ref document: US