WO2016152517A1 - 熱収縮性ポリエステル系フィルムおよび包装体 - Google Patents

熱収縮性ポリエステル系フィルムおよび包装体 Download PDF

Info

Publication number
WO2016152517A1
WO2016152517A1 PCT/JP2016/057319 JP2016057319W WO2016152517A1 WO 2016152517 A1 WO2016152517 A1 WO 2016152517A1 JP 2016057319 W JP2016057319 W JP 2016057319W WO 2016152517 A1 WO2016152517 A1 WO 2016152517A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
shrinkage
longitudinal direction
less
Prior art date
Application number
PCT/JP2016/057319
Other languages
English (en)
French (fr)
Inventor
慎太郎 石丸
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016516108A priority Critical patent/JP6658513B2/ja
Priority to US15/559,030 priority patent/US10392485B2/en
Priority to CN201680016570.7A priority patent/CN107428965B/zh
Priority to KR1020177026998A priority patent/KR102459356B1/ko
Publication of WO2016152517A1 publication Critical patent/WO2016152517A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/34Coverings or external coatings
    • B65D25/36Coverings or external coatings formed by applying sheet material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/02Condition, form or state of moulded material or of the material to be shaped heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/002Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • Y10T428/1331Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a heat-shrinkable polyester film suitable for heat-shrinkable label applications, and a package.
  • stretched films made of polyvinyl chloride resin, polystyrene resin, polyester resin, etc., for label packaging, cap seals, integrated packaging, etc. that serve as protection for glass bottles or plastic bottles and display of products has been widely used.
  • the polyvinyl chloride film has problems such as low heat resistance and generation of hydrogen chloride gas during incineration and causing dioxins.
  • polystyrene film has poor solvent resistance and must use ink with a special composition during printing, and must be incinerated at a high temperature, and a large amount of black smoke is generated with an unpleasant odor during incineration. There is a problem of doing.
  • polyester-based heat-shrinkable films with high heat resistance, easy incineration, and excellent solvent resistance have been widely used as shrink labels, and PET (polyethylene terephthalate) bottles
  • PET polyethylene terephthalate
  • the conventional heat-shrinkable polyester film has been required to further improve its shrinkage characteristics.
  • shrinkage spots and wrinkles may occur when coating and shrinking containers such as PET bottles, polyethylene bottles, and glass bottles, and characters and designs printed on the film may be distorted. The user's request to reduce this distortion as much as possible was met.
  • the steam tunnel has a higher heat transfer efficiency than the hot air tunnel, can be more uniformly heated and shrunk, and can obtain a good finished appearance.
  • the polyester film has a problem that even if a steam tunnel is used, the finish is slightly inferior to a polyvinyl chloride film or a polystyrene film.
  • a polyester film is shrunk using a hot air tunnel that is more susceptible to temperature spots than a steam tunnel, shrinkage whitening, shrinkage unevenness, wrinkles, distortion, etc. are likely to occur. There was also a problem that the finish was inferior.
  • Patent Document 1 a method of incorporating a polyester elastomer in the polyester resin as a film raw material has been proposed.
  • an object of the present invention is to provide a heat-shrinkable polyester film that suppresses secondary shrinkage and improves shrinkage finish.
  • the present invention has the following configuration.
  • 100 mol% of all polyester resin components contain 18 mol% or more of structural units derived from one or more monomers that can be amorphous components, and 1 to 25 mol% of structural units derived from butanediol
  • a heat-shrinkable polyester film wherein the heat-shrinkable polyester film satisfies the following requirements (1) to (3): (1) After the film was inserted into a furnace previously kept at 100 ° C. and subjected to primary shrinkage, the secondary shrinkage when cooled to 25 ° C.
  • the reversible heat capacity difference before and after the glass transition temperature of the film measured by modulated DSC is 0.12 J / g ⁇ ° C. or more and 0.25 J / g ⁇ ° C. or less.
  • the absorbance ratio in the width direction is 0.4 or more and 0.75 or less
  • the absorbance ratio in the longitudinal direction is 0.35 or more and 0.55 or less.
  • the heat-shrinkable polyester film of the present invention is a polyester molecular chain constituting a film, particularly an amorphous molecular chain (hereinafter simply referred to as “shrinking”), which is considered to be involved in shrinkage, by forming a polyester having a specific composition by a specific manufacturing method. (Sometimes referred to as a molecular chain) is quickly relaxed at the time of heat shrinkage, so that secondary shrinkage can be suppressed and a package excellent in shrinkage finish can be obtained.
  • the heat-shrinkable polyester film of the present invention exhibits a characteristic that the molecular chain is hardly relaxed before heat shrinkage or during aging, so the performance degradation during aging is small, and even if a film after aging is used, the film shrinks. A package with excellent finish is obtained. Furthermore, since the heat-shrinkable polyester film of the present invention is produced by being stretched biaxially and vertically, it can be produced very efficiently and is suitable for applications such as cap seals and shrink wrapping. Can be used.
  • Raw material polyester of heat-shrinkable polyester film The polyester used for the heat-shrinkable polyester film of the present invention has an ethylene terephthalate unit.
  • the ethylene terephthalate unit is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 55 mol% or more in 100 mol% of the structural unit of polyester.
  • the structural unit means a monomer unit of polyhydric alcohol and polycarboxylic acid constituting the copolymer
  • the polyhydric alcohol component includes butanediol and ⁇ -caprolactone. Shall be.
  • the constituent unit derived from butanediol (1,4-butanediol) is 1 to 25 mol% and the constituent unit derived from ⁇ -caprolactone is 100 mol% of all polyester resin components. It is important that 1 to 25 mol% is contained.
  • the stress applied to the polyester molecular chain stretched to some extent by stretching before heat shrinkage is less likely to be relaxed even during aging. It was possible to provide a film in which the shrinkage rate (hereinafter referred to as “cold shrinkage”) is unlikely to decrease.
  • the molecular main chains of different lengths are oriented in the biaxial direction in the film plane by biaxial stretching, and the energy required for stress relaxation for each polyester molecular chain It is thought that distribution occurs in Even if the same amount of energy is applied to the heat-shrinkable polyester film of the present invention, the stress applied to a large number of molecular chains is not alleviated uniformly throughout the film. It is estimated that the relaxation will be moderate. By these mechanisms, even when heat-shrinking after aging, it is considered that the effect of excellent shrinkage finish is exhibited.
  • butanediol and ⁇ -caprolactone are each preferably 5 mol% or more.
  • ⁇ -caprolactone is preferably 20 mol% or less.
  • the total of both shall be 45 mol% or less. This is because it is possible to prevent the ethylene terephthalate unit from becoming too small and the heat resistance and strength from being lowered.
  • the unit (total amount) derived from one or more monomers that can be an amorphous component other than the unit derived from butanediol and ⁇ -caprolactone is 18 mol% or more out of 100 mol% of all polyester resin components. It is preferable that When the amorphous component is less than 18 mol%, the heat shrinkage property is inferior.
  • the monomer that can be an amorphous component is 100 mol% of the polyhydric alcohol component or 100 mol% of the polyvalent carboxylic acid component in all polyester resins, preferably 20 mol% or more and 25 mol% or less.
  • the monomer that can be an amorphous component examples include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,3-propanediol. 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di- Examples thereof include n-butyl-1,3-propanediol and hexanediol. Among these, neopentyl glycol, 1,4-cyclohexanedimethanol and isophthalic acid are preferable.
  • the constituent unit composed of isophthalic acid and butanediol is a constituent unit derived from butanediol and also a constituent unit derived from one or more monomers that can be an amorphous component. Therefore, in this invention, the content rate of the structural unit which consists of isophthalic acid and a butanediol is counted also as a structural unit derived from butanediol, and is counted also as a structural unit derived from 1 or more types of monomers which can become an amorphous component.
  • the content of the structural unit derived from butanediol is the total content of the content of the structural unit composed of isophthalic acid and butanediol and the content of the structural unit composed of terephthalic acid and butanediol.
  • the content rate of the structural unit derived from the 1 or more types of monomer which can become an amorphous component is the content rate of the structural unit which consists of isophthalic acid and butanediol, and the content rate of the structural unit which consists of isophthalic acid and ethylene glycol. It is the total content of the content of constituent units derived from one or more monomers that can be all amorphous components. The same applies to the relationship between the content of constituent units derived from ⁇ -caprolactone and the content of constituent units derived from one or more monomers that can be an amorphous component.
  • dicarboxylic acid components constituting the polyester of the present invention include aromatic dicarboxylic acids such as orthophthalic acid; aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid; and alicyclic dicarboxylic acids. Etc.
  • the aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
  • the content is preferably less than 3 mol% (in 100 mol% of the dicarboxylic acid component).
  • a heat-shrinkable polyester film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high-speed mounting.
  • the polyester does not contain a trivalent or higher polyvalent carboxylic acid (for example, trimellitic acid, pyromellitic acid, and anhydrides thereof).
  • a trivalent or higher polyvalent carboxylic acid for example, trimellitic acid, pyromellitic acid, and anhydrides thereof.
  • polyester examples include aromatic diols such as bisphenol A.
  • the polyester used in the present invention is preferably a polyester having a glass transition point (Tg) adjusted to 50 to 80 ° C. by appropriately selecting the amount of butanediol and ⁇ -caprolactone and the amount of monomer that can be an amorphous component.
  • Tg glass transition point
  • the polyester preferably does not contain a diol having 8 or more carbon atoms (for example, octanediol) or a trihydric or higher polyhydric alcohol (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.).
  • a diol having 8 or more carbon atoms for example, octanediol
  • a trihydric or higher polyhydric alcohol for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.
  • the most preferred polyester is 1 to 25 mol% of butylene terephthalate units, 1 to 25 mol% of units composed of ⁇ -caprolactone and terephthalic acid, and 2 to 50 mol% of these in total, in 100 mol% of all polyester constituting units.
  • This is a polyester in which a unit comprising a monomer that can be an amorphous component and terephthalic acid is 18 to 25 mol%, and the balance is an ethylene terephthalate unit.
  • an amorphous unit in which a part of terephthalic acid is replaced with isophthalic acid may be included.
  • various additives as required, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents, heat stability
  • An agent, a coloring pigment, an anti-coloring agent, an ultraviolet absorber and the like can be added.
  • fine particles as a lubricant for improving the workability (slidability) of the film.
  • the fine particles any one can be selected.
  • inorganic fine particles silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, etc.
  • organic fine particles for example, acrylic resin Examples thereof include particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter) and can be appropriately selected as necessary.
  • the above particles into the resin forming the heat-shrinkable polyester film for example, it can be added at any stage for producing the polyester resin, but it can be added at the esterification stage or transesterification reaction. After completion, it is preferable to add as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction, and proceed with the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin material, or a dried particle and a polyester resin material using a kneading extruder It is also preferable to carry out by a method of blending and the like.
  • the heat-shrinkable polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
  • the heat-shrinkable polyester film of the present invention (not placed under an aging atmosphere) is pre-heated in a furnace kept at 100 ° C. It is important that the secondary contraction rate measured when it is inserted and first contracted and then cooled to 25 ° C. is 2% or more and 5% or less. That is, the heat-shrinkable polyester film of the present invention exhibits a heat-shrinkage characteristic that hardly shrinks in the cooling step after heating by shrink finishing (Example 1 in FIG. 1). In FIG. 1, the horizontal axis represents the film temperature after starting cooling.
  • the film is inserted into a furnace kept at 100 ° C., and after the primary shrinkage, the film is cooled to 25 ° C.
  • the film temperature on the horizontal axis shows that the film is cooled by the previous cooling step as it goes farther from the origin.
  • the secondary shrinkage after cooling is 5%. It can be confirmed that this is the case.
  • the secondary shrinkage rate is more preferably 4.8% or less, and further preferably 4.6% or less. The smaller the secondary shrinkage rate, the better the finish and the better.
  • the secondary shrinkage is preferably 2.2% or more, and more preferably 2.4% or more.
  • the shrinkage ratio of hot water at 70 ° C. in the film width direction is less than 10%, the shrinkage of the film is insufficient when the coating shrinks to a mold or the like, and the film does not adhere well to the mold, resulting in poor appearance. Occur.
  • the hot water heat shrinkage rate at 70 ° C. in the film width direction exceeds 30%, the secondary shrinkage rate is increased, which is not preferable.
  • the hot water heat shrinkage at 70 ° C. is preferably 12% or more, more preferably 14% or more, preferably 28% or less, and more preferably 26% or less.
  • the heat-shrinkable polyester film of the present invention is an index of the movable amorphous amount before and after the glass transition temperature (Tg) of the heat-shrinkable polyester film measured in a heat-only mode by temperature-modulated DSC.
  • the reversible heat capacity difference must be 0.12 J / g ⁇ ° C. or more and 0.25 J / g ⁇ ° C. or less.
  • the heat shrinkable film described in Patent Document 3 does not show an increase in shrinkage ratio commensurate with the increased amount even when the amount of amorphous component is increased. Furthermore, as a result of studies by the present inventors, it has been found that there is almost no correlation between the degree of crystallinity and the heat shrinkage rate, or the heat of fusion and the heat shrinkage rate. From these facts, it is thought that polyester is not divided into two phases of crystalline phase and amorphous phase, but is divided into three phases of crystalline phase, movable amorphous phase and rigid amorphous phase. It was.
  • This rigid amorphous is an intermediate state between a crystal and a mobile amorphous (conventional completely amorphous), and its molecular motion is frozen at Tg or higher, and it is in a fluid state at a temperature higher than Tg.
  • the rigid amorphous amount (rate) can be expressed as 100% ⁇ crystallinity ⁇ movable amorphous amount (for example, P. G. Karagiannidis, a. C. Stergiou and G. P. Karayannidis, Eur. Polym. J. 44 , 1475-1486 (2008)).
  • the present inventors have completed the present invention by finding transverse stretching, relaxation after transverse stretching, and final heat treatment conditions so that the ratio of change of movable amorphous to rigid amorphous is appropriate. It was.
  • the movable amorphous amount can be obtained from a reversible heat capacity curve obtained from the temperature modulation DSC measurement shown in FIG. In FIG. 2, the baseline shifts at a temperature corresponding to the glass transition of the film.
  • the difference between the values before and after the shift is referred to as a heat capacity difference ⁇ C p, and this corresponds to the movable amorphous amount.
  • ⁇ C p is smaller than 0.12 J / (g ⁇ ° C.), the amount of movable amorphous material is small, so that the heat shrinkage rate necessary for shrink finishing cannot be achieved.
  • ⁇ C p is preferably 0.13 J / (g ⁇ ° C.) or more, and more preferably 0.14 J / (g ⁇ ° C.) or more.
  • ⁇ C p exceeds 0.25 J / (g ⁇ ° C.)
  • secondary shrinkage after shrinkage finishing becomes large, which is not preferable.
  • ⁇ C p is preferably 0.23 J / (g ⁇ ° C.) or less, and more preferably 0.21 J / (g ⁇ ° C.) or less.
  • Hot-shrinkage rate of hot water at 70 ° C. in the longitudinal direction of the film The heat-shrinkable polyester film of the present invention is immersed in hot water at 70 ° C. for 10 seconds under no load, and the film is immediately cooled to 25 ° C. ⁇ 0.5
  • the heat shrinkage rate in the longitudinal direction of the film calculated by the above formula 1 from the length before and after shrinkage is ⁇ 1% or more and 5% or less.
  • the heat shrinkage rate in the longitudinal direction of the film is ⁇ 1% or more and 5% or less.
  • thermal shrinkage rate in the longitudinal direction is smaller than 0% (minus), it means that the film stretches along the circumferential direction of the container, and when it exceeds -1%, wrinkles occur when shrink finishing is performed. This is not preferable because poor appearance tends to occur. On the other hand, if it exceeds 5%, distortion tends to occur during shrinkage, which is not preferable.
  • a more preferable range of hot water heat shrinkage at 70 ° C. in the longitudinal direction of the film is ⁇ 0.5% to 4.5%, and more preferably 0% to 4%.
  • absorbance ratio 2.5 shrinkable polyester absorbance ratio invention films, polarization ATR-FTIR method in absorbance at 1340 cm -1 of the heat-shrinkable polyester film was measured A1 and the ratio between the absorbance A2 at 1410 cm -1 A1 / A2 (hereinafter, absorbance ratio) is 0.5 to 0.75 in the film main shrinkage direction (width direction) and 0.35 to 0.55 in the direction orthogonal to the main shrinkage direction (longitudinal direction). It is preferable.
  • the absorbance ratio represents a trans conformation ratio of molecular orientation.
  • the trans conformation is considered to represent the orientation state of the molecular chain, and when the trans conformation ratio is high, the orientation state of the molecular chain is also high.
  • the film is stretched in the film width direction after being stretched in the film longitudinal direction.
  • a conventional heat-shrinkable film is generally a uniaxially stretched film in the width direction, and in such a uniaxially stretched film, only the orientation in the stretch direction, that is, the trans-conformation ratio (absorbance ratio) in the width direction is high.
  • the strength in the direction and tearability when used as a package were insufficient.
  • the trans conformation ratio of both directions becomes a high value, and it becomes a film with high tearability when it is set as the intensity
  • a high ratio of trans conformation is synonymous with the fact that the molecular chain is stretched well and the tension is strong.
  • the tension state of the molecular chain is strong, the molecular chain can exist stably even during aging, so that the shrinkage rate decreases less.
  • the tension state of the molecular chain is high, the molecular chain is alleviated at a time during thermal contraction, so that secondary contraction after contraction is unlikely to occur.
  • the absorbance ratio is preferably 0.4 or more and 0.75 or less. If the absorbance ratio in the film width direction is less than 0.4, the molecular orientation is low, so the hot shrinkage rate of hot water at 70 ° C. in the film width direction after aging is lowered, and the secondary shrinkage is further undesirably increased.
  • the absorbance ratio in the width direction is more preferably 0.42 or more, and further preferably 0.44 or more. On the other hand, if the absorbance ratio in the film width direction exceeds 0.75, the molecular orientation becomes too high, and breakage occurs during the film forming process, which is not preferable.
  • the absorbance ratio in the width direction is more preferably 0.73 or less, and even more preferably 0.71 or less.
  • the absorbance ratio is preferably 0.35 or more and 0.55 or less.
  • the absorbance ratio in the film width direction is less than 0.35, the molecular orientation is low, so that the tensile fracture strength in the longitudinal direction is reduced and the right-angle tear strength is increased.
  • the absorbance ratio in the width direction is more preferably 0.37 or more, and further preferably 0.39 or more.
  • the absorbance ratio in the longitudinal direction of the film is higher than 0.55, since the molecular orientation is high, the tensile fracture strength in the longitudinal direction is also increased, which is preferable in this respect, but the 70 ° C. hot water shrinkage in the longitudinal direction of the film is too high, It is not preferable.
  • the absorbance ratio in the longitudinal direction is more preferably 0.53 or less, and further preferably 0.51 or less.
  • the heat-shrinkable polyester film of the present invention has an enthalpy relaxation amount of 4.0 J / g or less after aging for 672 hours in an atmosphere of 30 ° C. and 85% RH. It is preferable.
  • Patent Document 3 and Satoshi Toki's paper (“DSC (3)-Glass Transition Behavior of Polymers”, Textile and Industry, Vol. 65, No. 10, 2009, p385-393)
  • DSC (3)-Glass Transition Behavior of Polymers Textile and Industry, Vol. 65, No. 10, 2009, p385-393
  • Enthalpy relaxation is a result of a decrease in the free volume of the amorphous part, and the molecular chain is less likely to move by that amount, and thus appears as an endothermic peak in the DSC temperature rising process.
  • the enthalpy relaxation amount after aging is 4.0 g / J or less.
  • the amount of enthalpy relaxation after aging is more preferably 3.8 g / J or less, and further preferably 3.5 g / J or less.
  • the enthalpy relaxation amount of the film not subjected to aging under the above conditions is 0.1 g / J or less.
  • the heat-shrinkable polyester film of the present invention preferably has a tensile fracture strength in the longitudinal direction of the film of 80 MPa or more and 200 MPa or less.
  • the measuring method of tensile fracture strength is demonstrated in an Example.
  • the tensile fracture strength is less than 80 MPa, the “waist” (stiffness) when attached to a bottle or the like as a label becomes weak, which is not preferable.
  • the tensile fracture strength is more preferably 90 MPa or more, and further preferably 100 MPa or more. The higher the tensile fracture strength, the stronger the “waist” of the label, but this is preferable.
  • the upper limit is set to 200 MPa.
  • the heat-shrinkable polyester film of the present invention is subjected to 10% shrinkage in the width direction in warm water at 80 ° C., and then perpendicular tear per unit thickness in the longitudinal direction of the film.
  • the right-angled tear strength in the longitudinal direction is preferably 180 N / mm or more and 330 N / mm or less.
  • the measuring method of the perpendicular tear strength of a longitudinal direction is demonstrated in an Example. If the right-angled tear strength is smaller than 180 N / mm, it is not preferable since it may be easily broken by an impact such as dropping during transportation when used as a label.
  • the right angle tear strength is more preferably 185 N / mm or more, and further preferably 190 N / mm or more. Further, the right-angle tear strength is more preferably 325 N / mm or less, and further preferably 320 N / mm or less.
  • the heat-shrinkable polyester film of the present invention is not particularly limited, but the thickness is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m.
  • the haze value is preferably 2% or more and 13% or less. If the haze value exceeds 13%, the transparency is poor, and the appearance may be deteriorated during label production.
  • the haze value is more preferably 11% or less, and particularly preferably 9% or less. Further, the smaller the haze value is, the more preferable, but in consideration of the necessity of adding a predetermined amount of lubricant to the film for the purpose of imparting practically necessary slipperiness, the lower limit is about 2%.
  • the heat-shrinkable polyester film of the present invention is a predetermined method for forming the unstretched film by melting and extruding the above-described polyester raw material with an extruder, and showing the unstretched film below. Can be obtained by biaxial stretching and heat treatment.
  • the polyester can be obtained by polycondensing the above-described preferred dicarboxylic acid component and diol component by a known method. Usually, two or more kinds of chip-like polyester are mixed and used as a raw material for the film.
  • the intrinsic viscosity of the polyester constituting the chip is not particularly limited, but is usually 0.50 to 1.30 dl / g.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder. In extruding, any existing method such as a T-die method or a tubular method can be employed.
  • an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it can be suitably employed.
  • the obtained unstretched film is stretched in the longitudinal direction under a predetermined condition and then annealed, then subjected to an intermediate heat treatment, and after cooling the film after the intermediate heat treatment, the width is determined under a predetermined condition.
  • the heat-shrinkable polyester film of the present invention can be obtained by stretching in the direction and performing the final heat treatment again.
  • the preferable film forming method for obtaining the heat-shrinkable polyester film of the present invention will be described.
  • a heat-shrinkable polyester film is usually produced by stretching only in a direction in which an unstretched film is desired to be shrunk (that is, the main shrinkage direction, usually the width direction).
  • the alcohol component constituting the raw material polyester has a relatively short carbon number of up to 3, and an amorphous molecular chain.
  • the polyesters having the same length are used, the molecular orientation after stretching has a relatively simple structure, so that the stress applied to the molecular chain is easily relaxed by aging.
  • the film shrinkage rate the higher the film shrinkage rate, the higher the versatility with respect to the package, so the final heat treatment temperature after transverse stretching is set low to keep the shrinkage rate high. It was like that.
  • the shrinkage rate is high, versatility is high, but for applications where the required shrinkage rate is relatively low, such as a preform, shrinkage is excessive (so-called overspec), causing secondary shrinkage.
  • the present inventors have obtained a heat-shrinkable polyester film having good aging resistance and no secondary shrinkage.
  • the following findings were obtained.
  • In order to improve the aging resistance it is considered necessary to orient molecular chains of different lengths to some extent in the width direction and the longitudinal direction.
  • Control of longitudinal stretching conditions (2) Intermediate heat treatment after longitudinal stretching (3) Natural cooling (interruption of heating) between intermediate heat treatment and transverse stretching (4) Forced cooling of the film after natural cooling (5) Control of transverse stretching conditions (6) Heat treatment after transverse stretching (7) A step of relaxing in the longitudinal direction is provided during the above manufacturing process.
  • the upper limit of the longitudinal draw ratio is more preferably 4.5 times, and even more preferably 4.4 times.
  • the lower limit of the longitudinal draw ratio is more preferably 3.3 times, and even more preferably 3.4 times.
  • Patent Document 1 as a heat-shrinkable polyester film that hardly causes shrinkage whitening, ⁇ -caprolactone is 1 to 30 mol%, neopentyl glycol is 1 mol% or more, and butanediol is contained.
  • the importance of molecular orientation in the longitudinal direction is not considered at all, and the draw ratio in the longitudinal direction is at most 1.05 to 1.2 times. (Paragraph number [0072] of Patent Document 1). With this technique, it is not possible to obtain a heat-shrinkable polyester film having a small performance degradation during aging in which molecules are properly oriented in the longitudinal direction, which is important in the present invention.
  • longitudinal stretching is performed under certain conditions
  • intermediate heat treatment is performed under predetermined conditions according to the state of the film after the longitudinal stretching, and further, the state of the film after the intermediate heat treatment is obtained.
  • transverse stretching under predetermined conditions, molecular chains that do not contribute to shrinkage while being oriented in the longitudinal direction can be present in the film without causing breakage during transverse stretching.
  • the temperature of the intermediate heat treatment is more preferably Tg + 45 ° C. or more, further preferably Tg + 50 ° C. or more, more preferably Tg + 85 ° C. or less, and further preferably Tg + 80 ° C. or less. Further, it is preferable to appropriately adjust the temperature of the intermediate heat treatment depending on the raw material composition and the stretching ratio in the longitudinal direction.
  • the degree of molecular orientation in the longitudinal direction can be kept large to some extent, so that the tensile fracture strength in the longitudinal direction can be kept large while keeping the right-angled tear strength small.
  • Tg + 90 ° C. or less it is possible to suppress the crystallization of the film and maintain the stretchability in the longitudinal direction, and to suppress troubles due to breakage, while at the same time the thickness in the longitudinal direction. It is also possible to make the spots smaller.
  • what is necessary is just to adjust suitably the time of intermediate heat processing in the range of 3.0 second or more and 12.0 second or less according to a raw material composition.
  • the amount of heat given to the film is important. If the temperature of the intermediate heat treatment is low, a long-term intermediate heat treatment is required. However, if the intermediate heat treatment time is too long, the equipment becomes too large, so it is preferable to adjust the temperature and time appropriately.
  • the molecules are oriented in the width direction while maintaining the molecules that do not contribute to the shrinkage force while being oriented in the longitudinal direction formed in the film. It is possible to develop a contracting force in the width direction.
  • the intermediate zone when the strip-shaped paper piece is hung in a state where the film is not passed through, the accompanying flow and the cooling zone accompanying the running of the film so that the paper piece hangs down almost completely in the vertical direction. It is preferable to block the hot air from. If the time for passing through the intermediate zone is less than 0.5 seconds, the transverse stretching becomes high-temperature stretching, and the shrinkage rate in the transverse direction cannot be sufficiently increased. On the contrary, the time for passing through the intermediate zone is sufficient if it is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment.
  • the time for passing through the intermediate zone is more preferably 0.7 seconds or more, further preferably 0.9 seconds or more, more preferably 2.8 seconds or less, and further preferably 2.6 seconds or less.
  • the naturally cooled film is not stretched as it is, but the film temperature is Tg + 5 ° C. or more and Tg + 40 ° C. or less. It is necessary to rapidly cool so that By performing such a rapid cooling treatment, it becomes possible to increase the thickness accuracy of the film.
  • the temperature of the rapidly cooled film is more preferably Tg + 10 ° C. or higher, more preferably Tg + 15 ° C. or higher, more preferably Tg + 35 ° C. or lower, and further preferably Tg + 30 ° C. or lower.
  • the thickness accuracy of the film decreases, and when the film is wound on a roll, the film is wrinkled. Problems arise.
  • the temperature of the film after quenching is Tg + 40 ° C. or less, the thickness accuracy of the film can be increased.
  • the temperature of the film after quenching is lower than Tg + 5 ° C., the stretching stress at the time of transverse stretching increases and the secondary shrinkage rate of the film increases, which is not preferable.
  • the transverse stretching temperature is more preferably Tg + 12 ° C. or more, further preferably Tg + 14 ° C. or more, more preferably Tg + 28 ° C. or less, and further preferably Tg + 26 ° C. or less.
  • the transverse stretching ratio is more preferably 3.5 times or more, further preferably 3.7 times or more, more preferably 5.5 times or less, and still more preferably 5 times or less.
  • the stretching temperature exceeds Tg + 30 ° C., the thickness accuracy of the film tends to be low, but by controlling the stretching temperature to Tg + 30 ° C. or less, the thickness accuracy of the film can be increased. .
  • the stretching temperature is lower than Tg + 10 ° C.
  • the secondary shrinkage rate becomes high and the orientation in the width direction becomes too large, and it is easy to break at the time of transverse stretching, but by controlling the stretching temperature to Tg + 10 ° C. or more.
  • the present inventors lowered the molecular orientation in the longitudinal direction of the film to a level that satisfies the right-angle tear strength and tensile fracture strength, and reduced the difference in shrinkage in the width direction and the shrinkage stress, and the right-angled tear strength and tensile fracture strength in the longitudinal direction.
  • the said control could be performed by relaxing a film in a longitudinal direction (relaxing) by performing one or more processes shown below.
  • the film after longitudinal stretching is heated at a temperature of not less than Tg and not more than Tg + 90 ° C., and using a roll having a speed difference, not less than 10% and not more than 60% in the longitudinal direction in a time of 0.05 to 5 seconds.
  • the process of performing relaxation As the heating means, any of temperature control rolls, near infrared rays, far infrared rays, hot air heaters and the like can be used.
  • the film temperature during relaxation after longitudinal stretching is preferably Tg + 10 ° C. or higher and Tg + 80 ° C. or lower, and more preferably Tg + 20 ° C. or higher and Tg + 70 ° C. or lower.
  • the time for relaxing in the longitudinal direction of the film after longitudinal stretching is preferably from 0.05 seconds to 5 seconds. If it is less than 0.05 seconds, relaxation will be short, and if the temperature is not raised above Tg + 90 ° C., uneven relaxation will occur, which is not preferable. If the relaxation time is longer than 5 seconds, the film can be relaxed at a low temperature and there is no problem as a film. However, since the equipment becomes large, it is preferable to appropriately adjust the temperature and time.
  • the relaxation time is more preferably 0.1 seconds to 4.5 seconds, and still more preferably 0.5 seconds to 4 seconds.
  • the relaxation rate in the longitudinal direction of the film after longitudinal stretching is less than 10%, the molecular orientation in the longitudinal direction cannot be sufficiently relaxed, the shrinkage rate in the longitudinal direction increases, and the thermal shrinkage rate at 70 ° C. is 4%. It is not preferable because it exceeds the range. Further, if the relaxation rate in the longitudinal direction of the film after longitudinal stretching is more than 60%, the perpendicular tear strength in the longitudinal direction increases and the tensile fracture strength decreases, which is not preferable.
  • the relaxation rate of the film after longitudinal stretching is more preferably 15% or more and 55% or less, and further preferably 20% or more and 50% or less.
  • a heating device heating furnace
  • any of temperature control rolls, near infrared heaters, far infrared heaters, hot air heaters and the like can be used.
  • the distance between the gripping clips in the tenter is reduced to 5% or more and 20% or less in the longitudinal direction in a time of 0.1 second to 12 seconds. It is desirable to perform relaxation. When the relaxation rate is less than 5%, the longitudinal molecular orientation cannot be sufficiently relaxed, the longitudinal shrinkage rate increases, and the thermal shrinkage rate at 70 ° C. exceeds 4%, which is not preferable. If the relaxation rate is greater than 20%, the film physical properties can be adjusted. However, since 20% is the limit in terms of equipment, 20% was made the upper limit.
  • the relaxation rate is more preferably 8% or more, and further preferably 11% or more.
  • the time for relaxing in the longitudinal direction in the intermediate heat treatment step is preferably 0.1 second or more and 12 seconds or less. If the time is less than 0.1 seconds, the relaxation time becomes short, and if the temperature is not higher than Tg + 90 ° C., relaxation unevenness occurs, which is not preferable. If the relaxation time is longer than 12 seconds, there is no problem as a film, but the equipment becomes large. Therefore, it is preferable to adjust the temperature and time appropriately.
  • the relaxation time is more preferably 0.3 seconds or more and 11 seconds or less, and further preferably 0.5 seconds or more and 10 seconds or less.
  • (iii) Relaxation in the final heat treatment step In the final heat treatment step, by reducing the distance between the gripping clips in the tenter, 5% or more and 20% or less in the longitudinal direction in a time of 0.1 second or more and 9 seconds or less. It is desirable to perform relaxation. When the relaxation rate is less than 5%, the molecular orientation in the longitudinal direction cannot be sufficiently relaxed, the longitudinal shrinkage rate increases, and the thermal shrinkage rate at 98 ° C. exceeds 15%, which is not preferable. If the relaxation rate is greater than 20%, the film physical properties can be adjusted. However, since 20% is the limit in terms of equipment, 20% was made the upper limit.
  • the relaxation rate is more preferably 8% or more, and further preferably 11% or more.
  • the time for relaxing in the longitudinal direction in the final heat treatment step is preferably 0.1 seconds or more and 9 seconds or less. If the time is less than 0.1 seconds, relaxation becomes short, and if the temperature is not higher than Tg + 50 ° C., relaxation unevenness occurs, which is not preferable. If the relaxation time is longer than 9 seconds, there is no problem as a film. However, since the equipment becomes large, it is preferable to appropriately adjust the temperature and time.
  • the relaxation time is more preferably 0.3 seconds or more and 8 seconds or less, and further preferably 0.5 seconds or more and 7 seconds or less.
  • Packaging Body The packaging body of the present invention is formed by covering at least a part of the outer periphery of an object to be packaged with the heat-shrinkable film of the present invention and then thermally shrinking.
  • packaging objects include plastic bottles for food preservation, polyethylene containers used for shampoos and conditioners, various bottles, cans, plastic containers for confectionery and lunch boxes, paper boxes, etc. Can do.
  • the label obtained from the heat-shrinkable polyester film may be partially covered like a form (cap seal) that covers the lid of the bottle, for example, not the entire container, and before the container is completely adhered to the container. It may be a preformed product (preform).
  • an organic solvent is applied slightly inside from one end of a rectangular film, and the film is immediately rolled and the ends are overlapped and bonded to form a label, or a roll Apply the organic solvent slightly inside from the edge of one side of the film wound up in the shape of a film, immediately roll up the film, overlap the edges and adhere, cut the tube to make a label .
  • the organic solvent for adhesion cyclic ethers such as 1,3-dioxolane or tetrahydrofuran are preferable.
  • aromatic hydrocarbons such as benzene, toluene, xylene and trimethylbenzene
  • halogenated hydrocarbons such as methylene chloride and chloroform
  • phenols such as phenol, and mixtures thereof
  • [Secondary shrinkage] Main shrinkage direction from heat-shrinkable film not in an aging environment (hereinafter, unless otherwise specified, simply referred to as a heat-shrinkable film refers to a heat-shrinkable film not in an aging environment)
  • a sample having a length of 25 mm and a width of 2 mm was cut out and measured using a thermomechanical analyzer (TMA; manufactured by Seiko Instruments Inc.). The sample was attached to the probe using a dedicated chuck. The distance between chucks (distance between probes) was 15 mm.
  • the sample was inserted into a furnace previously kept at 100 ° C., kept at 100 ° C. for 36 seconds, and then blown into the furnace to cool the sample to 25 ° C.
  • Heat shrinkage hot water heat shrinkage
  • the above inflection point refers to a point where the value when the reversible heat capacity curve is second-order differentiated is 0 when the reversible heat capacity curve is an ideal curve without irregularities.
  • Reversible heat capacity difference (heat capacity on the high temperature side)-(heat capacity on the low temperature side) Equation 3
  • a base line extension of the heat capacity curve on the higher temperature side than Tg is drawn in the heat capacity curve.
  • the base line of the heat capacity curve in the range of Tg + 5 ° C. to Tg + 15 ° C. which is linearly fitted by the least square method, is taken as an extension of the base line of the heat capacity curve on the higher temperature side than the Tg.
  • T g the intersection point with the tangent at the inflection point
  • T Y axis reverseversible heat capacity
  • the base line of the heat capacity curve in the range of T g ⁇ 15 ° C. to T g ⁇ 5 ° C., obtained by linear fitting by the least square method, is the extension of the base line of the heat capacity curve at the lower temperature side than the T g. To do. Then, the intersection with the tangent at the inflection point (T g ) is obtained, the value of the Y axis (reversible heat capacity) at this intersection is read, and the heat capacity on the low temperature side is taken, and the difference between the heat capacity on the high temperature side and the heat capacity on the low temperature side was the heat capacity difference ⁇ C p . Further, in the above reversible heat capacity curve, since it occurs not disturbed baseline shift near T g, it was confirmed that successfully performed measurement.
  • the temperature range for obtaining the peak area was a point where the differential value of the non-reverse heat flow before and after the peak was zero, that is, the point where the slope of the non-reverse heat flow was zero.
  • a measurement example is shown in FIG. Further, in a reverse heat flow obtained by measuring in the same manner as described above for non-reverse heat flow, since the resulting not disturbed baseline shift near T g, that the measurement of non-reverse heat flow was also performed normally confirmed.
  • Tg Using a temperature-modulated differential scanning calorimeter (DSC) “Q100” (TA Instruments), 5.0 mg of a film sample after aging for 672 hours in an atmosphere of 30 ° C. and 85% RH was weighed in a hermetic aluminum pan. The reverse heat flow obtained by measuring at an average temperature rising rate of 2.0 ° C./min and a modulation period of 60 seconds in an MDSC (registered trademark) heat-only mode was measured. A tangent line is drawn before and after the inflection point of the obtained reverse heat flow, and the temperature at the intersection point of the base line extension below the glass transition temperature and the tangent line showing the maximum inclination at the transition portion is defined as the glass transition point (T g ; ° C. ).
  • DSC temperature-modulated differential scanning calorimeter
  • the film is attached to a rectangular frame having a predetermined length in a state of being loosened in advance (that is, both ends of the film are gripped by the frame). Then, the film was contracted by 10% in the width direction by immersing in warm water at 80 ° C. for about 5 seconds until the slack film became a tension state in the frame (until the slack disappeared).
  • a test piece having the shape shown in FIG. 4 was cut out from the film after 10% shrinkage in accordance with JIS K7128-3. In addition, when cutting out the test piece, the longitudinal direction of the film was set to be the tearing direction.
  • the required shrinkage rate (folded part at the upper part of the mold) at this time was about 10%.
  • the contracted label was quickly removed from the mold and left at room temperature of 25 ° C. for 10 minutes.
  • the shrinkage finishing property of the label was visually evaluated in five levels according to the following criteria. 5: Best finish (no defects) 4: Finished quantity (with one defect) 3: There are two defects 2: There are three to five defects 1: Many defects (more than six) Note that the defects include jumping, wrinkles, insufficient shrinkage, label edge folding, shrinkage whitening, sink marks, undulations, and the like.
  • Synthesis example 1 In a stainless steel autoclave equipped with a stirrer, a thermometer and a partial reflux condenser, 100 mol% of dimethyl terephthalate (DMT) as a dicarboxylic acid component and 100 mol% of ethylene glycol (EG) as a polyhydric alcohol component, Charge ethylene glycol to a molar ratio 2.2 times that of dimethyl terephthalate, 0.05 mol% of zinc acetate (based on the acid component) as a transesterification catalyst, 0.225 mol of antimony trioxide as a polycondensation catalyst % (Based on the acid component) was added, and the ester exchange reaction was carried out while distilling off the produced methanol out of the system.
  • DMT dimethyl terephthalate
  • EG ethylene glycol
  • polyester A having an intrinsic viscosity of 0.75 dl / g.
  • the composition is shown in Table 1.
  • Synthesis Examples 2-7 By the same method as in Synthesis Example 1, polyesters B to G shown in Table 1 were obtained.
  • SiO2 Siliconicia 266 manufactured by Fuji Silysia Co., Ltd .; average particle size 1.5 ⁇ m
  • IPA is isophthalic acid
  • NPG is neopentyl glycol
  • CHDM is 1,4-cyclohexanedimethanol
  • BD is 1,4-butanediol
  • ⁇ -CL is ⁇ -caprolactone
  • DEG is a by-product diethylene glycol. It is.
  • Intrinsic viscosities of the respective polyesters are as follows: B: 0.72 dl / g, C: 0.80 dl / g, D: 1.20 dl / g, E: 0.77 dl / g, F: 0.75 dl / g, G : 0.78 dl / g. Each polyester was appropriately formed into a chip shape.
  • Example 1 The above-mentioned polyester A, polyester B, polyester E and polyester F were mixed at a mass ratio of 5: 75: 15: 5 and charged into an extruder. This mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 450 ⁇ m. The Tg of the unstretched film was 60 ° C.
  • the obtained unstretched film is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated until the film temperature reaches 80 ° C. with a preheating roll, and then rotated at a low speed set at a surface temperature of 86 ° C. Between the roll and a high-speed rotating roll set at a surface temperature of 86 ° C., the film was stretched 4.1 times in the machine direction by utilizing the difference in rotational speed.
  • the film immediately after longitudinal stretching was passed through a heating furnace.
  • the inside of the heating furnace was heated with a hot air heater, and the set temperature was 95 ° C.
  • 45% relaxation treatment was performed in the longitudinal direction using the difference in speed between the heating furnace inlet and outlet rolls.
  • the relaxation time was 0.6 seconds.
  • the film after the relaxation treatment was guided to a transverse stretcher (tenter) and subjected to an intermediate heat treatment at 123 ° C.
  • the film after the intermediate heat treatment was guided to the first intermediate zone and allowed to pass through in 1.0 second for natural cooling.
  • the first intermediate zone of the tenter when the strip-shaped paper piece is hung in a state where no film is passed, the hot air from the intermediate heat treatment zone is cooled so that the paper piece hangs almost completely in the vertical direction. Cooling air from the zone was shut off.
  • the distance between the film and the shielding plate is adjusted so that most of the accompanying flow accompanying the film running is blocked by the shielding plate provided between the intermediate heat treatment zone and the first intermediate zone when the film is running. did.
  • the distance between the film and the shielding plate was adjusted so that most of the accompanying flow accompanying the traveling of the film was blocked by the shielding plate at the boundary between the first intermediate zone and the cooling zone.
  • the film after natural cooling was guided to the cooling zone and rapidly cooled by blowing low-temperature air until the film surface temperature reached 87 ° C.
  • the film was naturally cooled again by passing through the second intermediate zone in 1.0 second.
  • the film was stretched 4.0 times in the width direction (lateral direction) at 86 ° C.
  • the laterally stretched film is guided to the final heat treatment zone, and after heat treatment at 100 ° C. in the final heat treatment zone, the film is cooled, both edges are cut and removed, and wound into a roll with a width of 500 mm to obtain a thickness of 55 ⁇ m.
  • a biaxially stretched film was continuously produced over a predetermined length.
  • the relaxation rate during the intermediate heat treatment and the final heat treatment was set to 0%.
  • the properties of the obtained film were evaluated by the method described above.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • FIG. 1 shows the secondary contraction rate
  • FIG. 2 shows the reversible heat capacity obtained from the temperature modulation DSC
  • FIG. 3 shows the irreversible heat flux and reversible heat flux obtained from the temperature modulation DSC.
  • the unmarked in FIG. 1 and the unmarked in FIG. 2 are those of Example 1, and the unmarked and ⁇ in FIG. 3 are the irreversible heat flux and reversible heat flux of Example 1, respectively.
  • a clear endothermic peak is observed in the irreversible heat flux, indicating that enthalpy relaxation is performed.
  • the reversible heat flux curve and the reversible heat capacity curve since the baseline was shifted near Tg, it was confirmed that the DSC measurement could be performed normally.
  • Example 2 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. The film was introduced into the intermediate heat treatment zone as it was without performing a relaxation treatment in the longitudinal direction of the film after longitudinal stretching. At the same time as the intermediate heat treatment at 123 ° C., 30% relaxation treatment was performed in the longitudinal direction. Thereafter, transverse stretching was performed in the same manner as in Example 1, and 25% relaxation treatment was performed at 100 ° C. in the film longitudinal direction in the final heat treatment step. Therefore, the relaxation rate in the film longitudinal direction is 48% in total. A biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was obtained. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 3 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. Thereafter, natural cooling, forced cooling, transverse stretching, and final heat treatment were carried out except that 50% relaxation treatment was performed in a heating furnace at 95 ° C. in the longitudinal direction of the film and 20% relaxation treatment was performed during the subsequent intermediate heat treatment. 1 was performed. Therefore, the relaxation rate in the longitudinal direction of the film is 60% in total. A biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was obtained. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 4 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. Thereafter, a biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was continuously produced in the same manner as in Example 1 except that the temperature in the final heat treatment was 95 ° C.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 5 Polyester B, polyester E, and polyester F were mixed at a mass ratio of 65: 30: 5 and charged into an extruder.
  • the mixed resin was melt extruded under the same conditions as in Example 1 to form an unstretched film.
  • the unstretched film had a Tg of 55 ° C.
  • This unstretched film had a width of 500 mm and a thickness of the same as in Example 1 except that the film temperature during longitudinal stretching was 80 ° C., the intermediate heat treatment temperature was 140 ° C., and the film temperature in the transverse stretching zone was 83 ° C.
  • a biaxially stretched film having a thickness of 55 ⁇ m was continuously produced.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 6 Polyester B, polyester C, polyester E, and polyester F were mixed at a mass ratio of 18: 62: 15: 5 and charged into an extruder.
  • the mixed resin was melt extruded under the same conditions as in Example 1 to form an unstretched film having a thickness of 450 ⁇ m.
  • the unstretched film had a Tg of 61 ° C.
  • a biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was continuously produced from this unstretched film in the same manner as in Example 1 except that the temperature of the intermediate heat treatment was 140 ° C.
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 7 Same as Example 1 except that polyester A, polyester C, polyester E and polyester F were changed to a mass ratio of 5: 80: 10: 5, the intermediate heat treatment temperature was changed to 140 ° C., and the final heat treatment temperature was changed to 110 ° C. In this way, a biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was continuously produced. In addition, Tg of the unstretched film was 61 degreeC. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 8 A biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was continuously produced in the same manner as in Example 1 except that polyester A, polyester E, polyester F and polyester G were changed to a mass ratio of 5: 15: 5: 75. Manufactured. The Tg of the unstretched film was 59 ° C. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 9 The same polyester raw material as in Example 1 was melt-extruded in the same manner as in Example 1, and longitudinal stretching and relaxation treatment were performed in the same manner as in Example 1. Subsequently, the film after the relaxation treatment after longitudinal stretching was subjected to transverse stretching in the same manner as in Example 1 except that the transverse stretching ratio was 3.0 times and the transverse stretching temperature was 90 ° C., and the width was 500 mm. A biaxially stretched film having a thickness of 55 ⁇ m was continuously produced. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 10 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinal stretching and relaxation treatment were performed in the same manner as in Example 1 except that the longitudinal stretching ratio was 3.5 times. Subsequently, the film after relaxation treatment after longitudinal stretching was subjected to transverse stretching in the same manner as in Example 9 except that the transverse stretching temperature was 83 ° C., and a biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was continuously formed. Manufactured. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Example 1 When the same polyester raw material as in Example 6 was melt extruded in the same manner as in Example 6, the discharge rate of the extruder was adjusted so that the thickness of the unstretched film was 220 ⁇ m. Otherwise, an unstretched film was obtained in the same manner as in Example 6. Thereafter, without pre-stretching, it was preheated to 76 ° C. in a tenter, then stretched 4.0 times at 67 ° C., subjected to final heat treatment at 76 ° C., cooled, and both edges were cut and removed to obtain a width of 500 mm. The uniaxially stretched film having a thickness of 55 ⁇ m was continuously manufactured over a predetermined length. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Comparative Example 2 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinally stretched in the same manner as in Example 1. Thereafter, a biaxially stretched film having a width of 500 mm and a thickness of 55 ⁇ m was continuously produced in the same manner as in Example 1 except that transverse stretching was performed in the same manner as in Example, and the temperature in the final heat treatment was changed to 86 ° C. .
  • the production conditions are shown in Table 2, and the evaluation results are shown in Table 3. Further, the secondary contraction rate is shown in FIG. 1, and the reversible heat capacity obtained from the temperature modulation DSC is shown in FIG. The circles in FIG. 1 and the circles in FIG. In the reversible heat capacity curve, since the baseline was shifted near Tg, it was confirmed that the DSC measurement could be performed normally.
  • Comparative Example 3 An unstretched film was obtained in the same manner as in Example 1 except that polyester A, polyester B, polyester D, and polyester F were changed to a mass ratio of 10: 75: 10: 5, and this was the same as in Example 1. Longitudinal stretching was performed by this method. In addition, Tg of the unstretched film was 70 degreeC. The film after longitudinal stretching was passed through a heating furnace at a temperature of 105 ° C. and subjected to a 40% relaxation treatment in the longitudinal direction.
  • Comparative Example 4 When the same polyester raw material as in Comparative Example 3 was melt-extruded in the same manner as in Example 1, the discharge rate of the extruder was adjusted so that the thickness of the unstretched film was 220 ⁇ m. Other than that was carried out similarly to Example 1, and obtained the unstretched film. Thereafter, without pre-stretching, preheating to 95 ° C. in a tenter, 4.0 times stretching at 90 ° C., and finally heat treatment at 91 ° C., cooling, cutting and removing both edges, width 500 mm The uniaxially stretched film having a thickness of 55 ⁇ m was continuously manufactured over a predetermined length. The production conditions are shown in Table 2, and the evaluation results are shown in Table 3. FIG.
  • FIG. 3 shows the irreversible heat flux and the reversible heat flux obtained from the temperature modulation DSC.
  • the ⁇ and ⁇ marks in FIG. 3 are the irreversible heat flux and the reversible heat flux of Comparative Example 4, respectively.
  • a clean endothermic peak is observed in the irreversible heat flux curve, indicating that enthalpy relaxation is performed.
  • the reversible heat flux curve since the baseline was shifted near Tg, it was confirmed that the DSC measurement could be performed normally.
  • the heat-shrinkable film of the example of the present invention is a biaxially stretched film that uses a predetermined amount of butanediol and ⁇ -caprolactone and has undergone a predetermined relaxation process, has a small amount of secondary shrinkage, and deteriorates heat-shrinkage characteristics during aging. And the shrinkage finish of the label after aging was excellent.
  • Comparative Examples 1, 2, and 4 since the heat setting temperature was low, the secondary shrinkage rate was as high as 5.8%, resulting in poor shrinkage finish.
  • Comparative Examples 1 and 4 since the molecular chain was not oriented in the longitudinal direction, the absorbance ratio and tensile fracture strength in the longitudinal direction did not satisfy the specified range of the present invention.
  • Comparative Example 4 does not use ⁇ -caprolactone and does not perform longitudinal stretching and relaxation in the longitudinal direction, so the absorbance ratio in the width direction is too high, and the heat shrinkage characteristics during aging are greatly deteriorated.
  • the label was inferior in shrinkage finish after aging.
  • Comparative Example 3 is a system that has undergone biaxial stretching and relaxation steps using ⁇ -caprolactone, but the heat setting temperature is extremely high at 140 ° C.
  • the heat setting temperature exceeded Tg + 60 ° C.
  • the shrinkage ratio in the width direction at 70 ° C. was 10% or less even before aging, and the shrinkage finish was inferior.
  • the heat-shrinkable polyester film of the present invention has excellent properties as described above, it can be suitably used for labeling applications such as bottles.
  • a packaging body such as a bottle obtained by using the heat-shrinkable polyester film of the present invention as a label has a beautiful appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】 二次収縮を抑制して収縮仕上がり性を向上させた熱収縮性ポリエステル系フィルムを提供すること。 【解決手段】 エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上、ブタンジオール由来の構成ユニットが1~25モル%以上含まれている熱収縮性ポリエステル系フィルムであって、二次収縮率、温湯熱収縮率、ガラス転移温度前後の可逆熱容量差が特定の範囲を満足する熱収縮性ポリエステル系フィルム。

Description

熱収縮性ポリエステル系フィルムおよび包装体
 本発明は、熱収縮性ラベル用途に好適な熱収縮性ポリエステル系フィルム、および包装体に関する。
 近年、ガラス瓶またはプラスチックボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(いわゆる、熱収縮性フィルム)が広範に使用されるようになってきている。このような熱収縮性フィルムのうち、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。このため、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広範に利用されるようになってきており、PET(ポリエチレンテレフタレート)ボトル等の流通量の増大に伴って、使用量が増加している傾向にある。
 しかし、従来の熱収縮性ポリエステル系フィルムは、その収縮特性においてさらなる改良が求められていた。特に、熱収縮性ポリスチレン系フィルムと比較すると、PETボトルやポリエチレンボトル、あるいはガラス瓶等の容器へ被覆収縮させる際、収縮斑やシワが発生して、フィルムに印刷した文字や図柄が歪むことがあり、この歪みを可及的に小さくしたいというユーザーサイドの要望が合った。
 ところで、容器の被覆加工に熱収縮性フィルムを用いる際、必要に応じて図柄等をフィルムへ印刷した後、ラベルや袋等の形態に加工して容器に装着し、収縮トンネルと呼ばれる加熱装置でラベル等を熱収縮させて容器に密着させている。この収縮トンネルには、スチームを吹き付けて熱収縮させるスチームトンネルと、熱風を吹き付けて熱収縮させる熱風トンネルがある。
 スチームトンネルは熱風トンネルよりも伝熱効率がよく、より均一に加熱収縮させることが可能であり、良好な仕上がり外観を得ることができる。ただし、ポリエステル系フィルムは、スチームトンネルを使用しても、ポリ塩化ビニル系フィルムやポリスチレン系フィルムと比べると、仕上がり性が若干劣るという問題があった。
 さらに、スチームトンネルよりも温度斑が生じやすい熱風トンネルを使用してポリエステル系フィルムを収縮させると、収縮白化、収縮ムラ、シワ、歪み等が発生し易く、ポリ塩化ビニル系フィルムやポリスチレン系フィルムよりも仕上がり性に劣るという問題もあった。
 こういったことから、熱収縮性ポリエステル系フィルムの収縮仕上がり性を改善するために、フィルム原料であるポリエステル樹脂の中に、ポリエステル系エラストマーを含有させる方法等が提案されている(特許文献1)。
 しかしながら、特許文献1に記載の熱収縮性ポリエステル系フィルムは、ポリエチレン製等の熱膨張し易いボトルのラベルとして用いると、加熱収縮時にラベルがボトルに密着していても、ボトルが室温程度に冷却されて、加熱時に膨張していたボトルが通常の大きさに戻るため、ラベルに弛みが生じて、性能上も外観上も好ましくないという問題があった。また、特許文献1の熱収縮性ポリエステル系フィルムは、主収縮方向である幅方向に対し直交する方向である長手方向については、ほとんど延伸されないため、長手方向の機械的強度が低く、またミシン目開封性が悪いという問題もある。
 ミシン目開封性については、特許文献1の出願後、本願出願人らによって引き続き検討が行われ、特許文献2に示すようなミシン目開封性に優れる熱収縮性ポリエステル系フィルムの提供に成功している。
 しかしながら、収縮仕上がり性においてはさらに改良の余地が残っている。キャップシール用のプレフォームに用いる熱風トンネルはその仕様上、機器のサイズが比較的小さいことが多く、トンネル通過後の冷却工程において金型が十分に冷却されないことに起因して仕上がり性が悪くなる問題があった。すなわち、特許文献2の熱収縮性フィルムを用いた場合、金型の余熱によってフィルムが収縮し続ける(以下、この現象を二次収縮と記載する)ため、プレフォームの型崩れが発生していた。
特開2005-335111号公報 国際公開第2014/185442号 特許第4752360号公報
 本発明は上記問題点に鑑み、二次収縮を抑制して収縮仕上がり性を向上させた熱収縮性ポリエステル系フィルムを提供することを課題としている。
 すなわち、本発明は以下の構成よりなる。
1. エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上、ブタンジオール由来の構成ユニットが1~25モル%含まれている熱収縮性ポリエステル系フィルムであって、下記要件(1)~(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
(1)予め100℃に保温した炉内へフィルムを挿入して一次収縮させた後、そこから25℃まで冷却したときの二次収縮率が2%以上5%以下
(2)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が10%以上30%以下
(3)温度変調DSCで測定した上記フィルムのガラス転移温度前後の可逆熱容量差が0.12J/g・℃以上0.25J/g・℃以下
2. 全ポリエステル樹脂成分100モル%中、ε-カプロラクトン由来の構成ユニットが1~25モル%、ブタンジオールとε-カプロラクトン由来の構成ユニット以外の非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上含まれていることを特徴とする上記第1.に記載の熱収縮性ポリエステル系フィルム。
3. 70℃の温水中に10秒間浸漬したときの長手方向の温湯熱収縮率が-1%以上5%以下である上記第1.又は第2.に記載の熱収縮性ポリエステル系フィルム。
4. 偏光ATR-FTIR法で測定した1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(吸光度比)について、幅方向の吸光度比が0.4以上0.75以下、長手方向の吸光度比が0.35以上0.55以下である上記第1.~第3.のいずれかに記載の熱収縮性ポリエステル系フィルム。
5. 長手方向の引張破壊強さが80MPa以上200MPa以下である上記第1.~第4.のいずれかに記載の熱収縮性ポリエステル系フィルム。
6. 80℃の温水中で幅方向に10%収縮させた後のフィルム長手方向の単位厚み当たりの直角引裂強度が180N/mm以上330N/mm以下である上記第1.~第5.のいずれかに記載の熱収縮性ポリエステル系フィルム。
7. 包装対象物の外周の少なくとも一部を上記第1.~第6.のいずれかに記載の熱収縮性フィルムによって被覆し、次いで熱収縮させることによって得られる包装体。
 本発明の熱収縮性ポリエステル系フィルムは、特定組成のポリエステルを特定の製造方法でフィルム化したことで、フィルムを構成するポリエステル分子鎖、特に収縮に関与すると考えられる非晶分子鎖(以下、単に分子鎖ということがある)が熱収縮時に速やかに緩和されるため、二次収縮を抑制することができ、収縮仕上がり性に優れた包装体を得ることができる。
 また、本発明の熱収縮性ポリエステル系フィルムは、分子鎖が熱収縮前やエージング中にはほとんど緩和されない特性を示すため、エージング中の性能低下が小さく、エージング後のフィルムを用いても、収縮仕上がり性が優れた包装体が得られる。さらに、本発明の熱収縮性ポリエステル系フィルムは、縦横の二軸に延伸されて製造されるものであるので、非常に効率よく生産することができ、キャップシール、収縮包装等の用途に好適に用いることができる。
実施例1と比較例2のフィルムの二次収縮曲線である。 実施例1と比較例2のフィルムの温度変調DSCで測定した可逆熱容量曲線である。 実施例1と比較例4のフィルムの温度変調DSCで測定したリバースヒートフローとノンリバースヒートフローである。 実施例1のフィルムの温度変調DSCで測定したノンリバースヒートフローとその微分曲線である。 直角引裂強度の測定における試験片の形状を示す説明図である(なお、図中における試験片の各部分の長さの単位はmmであり、Rは半径を意味する)。 熱収縮性フィルムで作成したラベルを、金型に装着(収縮前)したときの模式図である。
 1.熱収縮性ポリエステル系フィルムの原料ポリエステル
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、エチレンテレフタレートユニットを有するものである。エチレンテレフタレートユニットは、ポリエステルの構成ユニット100モル%中、40モル%以上が好ましく、50モル%以上がより好ましく、55モル%以上がさらに好ましい。
 尚、本明細書において構成ユニットとは、共重合体を構成する多価アルコール及び多価カルボン酸の単量体単位を意味するものとし、多価アルコール成分にはブタンジオール、ε-カプロラクトンが含まれるものとする。
 また、本発明の熱収縮性ポリエステル系フィルムは、全ポリエステル樹脂成分100モル%中、ブタンジオール(1,4-ブタンジオール)由来の構成ユニットが1~25モル%、ε-カプロラクトン由来の構成ユニットが1~25モル%含まれていることが重要である。ブタンジオールとε-カプロラクトンの併用と後述する延伸方法の採用によって、熱収縮前の延伸によってある程度引き伸ばされたポリエステル分子鎖にかかっている応力が、エージング中でも緩和しにくくなったため、低温領域での熱収縮率(以下、「低温収縮性」と表記する)が低下しにくいフィルムを提供することができた。
 従来、低温収縮性を確保するためにポリエステル中の非晶質成分の量を多くすると、エージング中のフィルムの収縮性能が低下するという問題があったが、本発明の熱収縮性フィルムは、熱収縮前の非晶分子鎖にかかっている応力がほとんど緩和を起こさないという特徴を有しているため、低温収縮率を確保することができた。
 上記の諸効果は、多価アルコール成分として、エチレングリコール以外に、ブタンジオールやε-カプロラクトンといった分子主鎖の炭素数が異なる成分を混在させたことと、二軸延伸法による製膜を行うことにより、発現したものと考えられる。熱収縮性ポリエステル系フィルムでは、ポリエステルの2個のエステル結合の間の分子主鎖が多数存在して、この分子主鎖が、延伸によって引き伸ばされたり、応力がかかった状態となったり、その応力が緩和したりするのであるが、ブタンジオールやε-カプロラクトンはエチレングリコールよりも分子主鎖が長くなっているため、これらの長さの異なる分子主鎖が延伸や応力緩和に際しそれぞれ異なる挙動を取ると考えられ、また二軸延伸することによって、フィルム面内で長さの異なる分子主鎖が二軸方向へ配向しており、ポリエステル分子鎖1本1本について応力が緩和するのに必要なエネルギーに分布が生じると考えられる。こういった本発明の熱収縮性ポリエステル系フィルムに対し、同じ量のエネルギーを与えても、フィルム全体では、多数の分子鎖にかかる応力が一様に緩和するわけではないため、エージング中のエンタルピー緩和が緩やかになると推測される。これらのメカニズムによって、エージング後に熱収縮させたときでも、収縮仕上がり性に優れているという効果を発揮するものと考えられる。
 ブタンジオールとε-カプロラクトンが、それぞれアルコール成分100モル%中1モル%より少ないと、上記の緩和抑制効果が発現せず、収縮不足や収縮仕上がり性不良が起こる。また、それぞれが25モル%を超えると、物理的強度を担うエチレンテレフタレートユニットが相対的に少なくなるため、耐破れ性、フィルム強度、耐熱性等が不充分となって好ましくない。ブタンジオールとε-カプロラクトンは、それぞれ5モル%以上とすることが好ましい。ε-カプロラクトンは20モル%以下とすることが好ましい。また、両者の合計は、45モル%以下とすることが好ましい。エチレンテレフタレートユニットが少なくなり過ぎて、耐熱性や強度が低下するのを防止できるからである。
 本発明のポリエステルは、さらに、ブタンジオールとε-カプロラクトン由来のユニット以外の非晶質成分となり得る1種以上のモノマー由来のユニット(合計量)が全ポリエステル樹脂成分100モル%中18モル%以上であることが好ましい。非晶質成分が18モル%より少ないと、熱収縮特性が劣ったものとなる。非晶質成分となり得るモノマーは、全ポリエステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中、好ましくは20モル%以上、25モル%以下である。
 非晶質成分となり得るモノマーの具体例としては、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることができる。これらの中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸が好ましい。
 非晶質成分となり得るモノマーがイソフタル酸であって、ジカルボン酸成分としてテレフタル酸とイソフタル酸を併用し、ジオール成分としてエチレングリコール、ブタンジオールおよびε-カプロラクトンを併用する場合、フィルムを構成するポリエステル樹脂中には、テレフタル酸とブタンジオールからなる構成ユニット、イソフタル酸とブタンジオールからなる構成ユニット、イソフタル酸とエチレングリコールからなる構成ユニット等が混在することになる。
 ここで、イソフタル酸とブタンジオールからなる構成ユニットは、ブタンジオール由来の構成ユニットであり、かつ、非晶質成分となり得る1種以上のモノマー由来の構成ユニットでもある。よって、本発明では、イソフタル酸とブタンジオールからなる構成ユニットの含有率は、ブタンジオール由来の構成ユニットとしてもカウントし、非晶質成分となり得る1種以上のモノマー由来の構成ユニットとしてもカウントするものとする。したがって、ブタンジオール由来の構成ユニットの含有率とは、イソフタル酸とブタンジオールからなる構成ユニットの含有率と、テレフタル酸とブタンジオールからなる構成ユニットの含有率の合計含有率のこととなる。そして、非晶質成分となり得る1種以上のモノマー由来の構成ユニットの含有率は、イソフタル酸とブタンジオールからなる構成ユニットの含有率と、イソフタル酸とエチレングリコールからなる構成ユニットの含有率とを含む全ての非晶質成分となり得る1種以上のモノマー由来の構成ユニットの含有率の合計含有率のこととなる。同様のことが、ε-カプロラクトン由来の構成ユニットの含有率と、非晶質成分となり得る1種以上のモノマー由来の構成ユニットの含有率の関係にも当てはまる。
 本発明のポリエステルを構成する上記以外のジカルボン酸成分としては、オルトフタル酸等の芳香族ジカルボン酸;アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸;および脂環式ジカルボン酸等を挙げることができる。
 脂肪族ジカルボン酸(例えば、アジピン酸、セバシン酸、デカンジカルボン酸等)をポリエステルに含有させる場合、含有率は3モル%未満(ジカルボン酸成分100モル%中)であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不充分である。
 また、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)をポリエステルに含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 ポリエステルを構成する上記以外の多価アルコール成分としては、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
 本発明で用いるポリエステルは、ブタンジオールとε-カプロラクトン量や、非晶質成分となり得るモノマー量を適宜選択して、ガラス転移点(Tg)を50~80℃に調整したポリエステルが好ましい。
 ポリエステルには、炭素数8個以上のジオール(例えば、オクタンジオール等)、または3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。また、ポリエステルには、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないことも好ましい。
 最も好ましいポリエステルは、全ポリエステル構成ユニット100モル%中、ブチレンテレフタレートユニットが1~25モル%、ε-カプロラクトンとテレフタル酸からなるユニットが1~25モル%、これらの合計が2~50モル%、非晶質成分となり得るモノマーとテレフタル酸からなるユニットが18~25モル%、残部がエチレンテレフタレートユニットであるポリエステルである。なお、テレフタル酸の一部がイソフタル酸に置き換わった非晶ユニットが含まれていてもよい。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、フィルムの作業性(滑り性)を良好にする滑剤としての微粒子を添加することが好ましい。微粒子としては、任意のものを選択することができるが、例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等、有機系微粒子としては、例えば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、例えば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
 本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
 2.本発明の熱収縮性ポリエステル系フィルムの特性
 2.1 二次収縮率
 本発明の熱収縮性ポリエステル系フィルム(エージング雰囲気下に置かれていないもの)は、予め100℃に保温した炉内にフィルムを挿入して一次収縮させた後、そこから25℃まで冷却したときに測定した二次収縮率が2%以上5%以下であることが重要である。すなわち、本発明の熱収縮性ポリエステル系フィルムは、収縮仕上げによる加熱後の冷却工程において、ほとんど収縮しない熱収縮特性を示す(図1の実施例1)。尚、図1において横軸は冷却を開始してからのフィルム温度を表す。前記説明の通り、100℃に保温した炉内にフィルムを挿入し一次収縮後、25℃までフィルムを冷却する工程を行う。ここで、図1では横軸のフィルム温度については原点から右に離れるほど、前期冷却工程によりフィルムが冷却されることを表しており、比較例2においては冷却後の二次収縮率が5%以上になる事が確認できる。この二次収縮率が5%を超えると、フィルムを加熱収縮させた後の冷却時においても収縮し続け、プレフォームを金型から外した後も収縮して型崩れが発生してしまう。上記の二次収縮率は、4.8%以下がより好ましく、4.6%以下がさらに好ましい。二次収縮率は小さい方ほど仕上がり性が良好となるため好ましいが、2%より小さくなると、収縮仕上げのために必要な収縮特性を達成することが困難となるため好ましくない。二次収縮率は、2.2%以上が好ましく、2.4%以上がさらに好ましい。
 2.2 エージング後のフィルム幅方向の70℃の温湯熱収縮率
 本発明の熱収縮性ポリエステル系フィルムは、エージング中の性能低下が小さいため、30℃、85%RH雰囲気下で672時間エージングした後、このエージング後のフィルムを70℃の温湯中に無荷重状態で10秒間浸漬し、フィルムを直ちに25℃±0.5℃の水中に10秒間浸漬させた後、収縮前後の長さから、下記式1により算出したフィルム幅方向(主収縮方向)の熱収縮率(すなわち、70℃の温湯熱収縮率)が、10%以上30%以下である。
 温湯熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
 上記フィルム幅方向の70℃での温湯熱収縮率が10%未満であると、金型等に被覆収縮させる際に、フィルムの収縮力が不足して金型にきれいに密着せず、外観不良が起こる。一方、フィルム幅方向の70℃での温湯熱収縮率が30%を超えると、二次収縮率が高くなるため好ましくない。70℃での温湯熱収縮率は、12%以上が好ましく、14%以上がより好ましく、28%以下が好ましく、26%以下がより好ましい。
  2.3 可動非晶量
 本発明の熱収縮性ポリエステル系フィルムは、温度変調DSCによるヒートオンリーモードで測定した熱収縮性ポリエステル系フィルムのガラス転移温度(Tg)前後の可動非晶量の指標となる可逆熱容量差が0.12J/g・℃以上0.25J/g・℃以下でなければならない。以下、可動非晶の概念について説明する。
 従来、フィルムを構成する分子の高次構造は結晶と非晶に分かれていると考えられており、フィルムの収縮に関与するのは非晶構造と考えられてきた。そのため、熱収縮性フィルムの収縮特性をコントロールするためには、非晶構造となりうるユニットを構成するモノマー成分(以下、単に非晶成分)量を調整するという手段がとられてきた。従来の熱収縮性フィルムの製膜方式である一軸延伸法で得られるフィルムでは、非晶成分量を増やすことで、それに見合った収縮率の増加が認められていた。しかし、例えば特許文献3に記載されている熱収縮性フィルムは、非晶成分量を増やしても、増量分に見合った収縮率の増大が見られないということが判明した。さらに本発明者等が検討したところ、結晶化度と熱収縮率、あるいは、融解熱と熱収縮率には、ほとんど相関がないことも判明した。これらのことから、ポリエステルが結晶相と非晶相との2相に分かれているのではなく、結晶相と、可動非晶相と剛直非晶相の3相に分かれているのではないかと考えた。
 この剛直非晶(Rigid amorphous)とは、結晶と可動非晶(Mobile amorphous;従来の完全非晶)の中間状態で、Tg以上でも分子運動が凍結しており、Tgよりも高い温度で流動状態となる非晶のことである(例えば、十時 稔,「DSC(3)-高分子のガラス転移挙動編-」,繊維学会誌(繊維と工業),Vol.65,No.10(2009))。剛直非晶量(率)は、100%-結晶化度-可動非晶量で表せる(例えば、P. G. Karagiannidis, a. C. Stergiou and G. P. Karayannidis, Eur. Polym. J. 44, 1475-1486 (2008))。
 そして、可動非晶量と二次収縮率との関係を検討したところ、両者には相関があることがわかった。さらに、未延伸シート、横延伸後のフィルム、最終熱処理後のフィルム等について可動非晶量を測定したところ、横延伸後のフィルム、最終熱処理後のフィルムのうち、可動非晶量が未延伸フィルムから変化しなかったフィルムは高い二次収縮率を有しており、可動非晶が剛直非晶に変化していないことが示唆された。例えば特許文献1に記載されている熱収縮性ポリエステル系フィルムは、未延伸シートから最終熱処理後のフィルムとなったときの可動非晶量にあまり変化がないため、高収縮率は達成しやすいが、収縮仕上げを行った後の二次収縮率は大きくなるという問題点があった。
 そこで、本発明者等は、可動非晶が剛直非晶へ変化する割合が適切となるような、横延伸、横延伸後の弛緩や最終熱処理条件を見出すことにより、本発明を完成するに至ったのである。なお、可動非晶量は、図2に示した温度変調DSC測定から得られた可逆熱容量曲線より求めることができる。図2では、フィルムのガラス転移に相当する温度でベースラインがシフトする。シフト前後の値の差を熱容量差ΔCpといい、これが可動非晶量に相当するとされている。ΔCpが0.12J/(g・℃)よりも小さいと、可動非晶量が少ないため収縮仕上げに必要な熱収縮率を達成できなくなる。ΔCpは0.13J/(g・℃)以上が好ましく、0.14J/(g・℃)以上がより好ましい。また、ΔCpが0.25J/(g・℃)を超えると収縮仕上げ後の二次収縮が大きくなるため好ましくない。ΔCpは0.23J/(g・℃)以下が好ましく、0.21J/(g・℃)以下がより好ましい。
  2.4 フィルム長手方向の70℃での温湯熱収縮率
 本発明の熱収縮性ポリエステル系フィルムは、70℃の温湯中に無荷重状態で10秒間浸漬し、フィルムを直ちに25℃±0.5℃の水中に10秒間浸漬させた後、収縮前後の長さから、前記式1により算出したフィルム長手方向(主収縮方向に直交する方向)の熱収縮率が、-1%以上5%以下であることが好ましい。この長手方向の熱収縮率が0%より小さい(マイナス)とは、容器の周方向に沿ってフィルムが伸びることを意味し、-1%を超えると収縮仕上げを行った際にシワが発生して外観不良が起こりやすくなるため好ましくない。また、5%を超えると、収縮時に歪みが発生し易くなるため好ましくない。フィルム長手方向の70℃での温湯熱収縮率のより好ましい範囲は-0.5%以上4.5%以下であり、0%以上4%以下がさらに好ましい。
  2.5 吸光度比
 本発明の熱収縮性ポリエステル系フィルムは、偏光ATR-FTIR法で測定した熱収縮性ポリエステル系フィルムの1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(以下、吸光度比)について、フィルム主収縮方向(幅方向)で0.5以上0.75以下、主収縮方向に直交する方向(長手方向)で0.35以上0.55以下であることが好ましい。
 上記吸光度比は、分子配向のトランスコンフォメーション比率を表す。トランスコンフォメーションは分子鎖の配向状態を表すものと考えられ、トランスコンフォメーション比率が高いと分子鎖の配向状態も高い。本発明では、文献{Atlas of polymer and plastic analysis:Vch verlagsgesellschaft mbh, 370(1991)}を参考にして、複数の吸光度比からトランスコンフォメーション指数を求めた結果、1340cm-1と1410cm-1の吸光度比が最も値の差が大きかったので、トランスコンフォメーション比率をこの吸光度比で求めた。
 本発明では後述するように、フィルム長手方向に延伸した後に、フィルム幅方向に延伸する。従来の熱収縮性フィルムは、一般に幅方向の一軸延伸フィルムであり、このような一軸延伸フィルムでは、延伸方向の配向、すなわち幅方向のトランスコンフォメーション比率(吸光度比)しか高くならないため、未延伸方向の強度や包装体としたときの引裂性が不充分であった。本発明では、長手方向と幅方向に延伸しているため、両方向のトランスコンフォメーション比率が高い値となり、両方向の強度や包装体としたときの引裂性の高いフィルムとなる。
 また、トランスコンフォメーションの比率が高いことは、分子鎖がよく引き伸ばされて緊張状態が強くなっていることと同義である。分子鎖の緊張状態が強いと、エージング中においても分子鎖が安定して存在できるため、収縮率の低下が少なくなる。さらに、分子鎖の緊張状態が高いと、熱収縮時に分子鎖が一気に緩和されるため、収縮後の二次収縮が発生しにくくなると考えられる。
 フィルム幅方向においては、吸光度比は0.4以上0.75以下であることが好ましい。フィルム幅方向の吸光度比が0.4未満では分子配向が低いため、エージング後のフィルム幅方向の70℃の温湯熱収縮率が低下してしまい、さらに二次収縮が大きくなるため好ましくない。幅方向の吸光度比は、0.42以上がより好ましく、0.44以上がさらに好ましい。一方、フィルム幅方向の吸光度比が0.75を超えると、分子配向が高くなり過ぎるため、製膜工程中で破断が発生するため好ましくない。幅方向の吸光度比は、0.73以下がより好ましく、0.71以下がさらに好ましい。
 フィルム長手方向においては、吸光度比は0.35以上0.55以下であることが好ましい。フィルム幅方向の吸光度比が0.35未満では分子配向が低いため、長手方向の引張破壊強さが小さくなり、直角引裂強度が大きくなる。幅方向の吸光度比は、0.37以上がより好ましく、0.39以上がさらに好ましい。またフィルム長手方向の吸光度比が0.55より高くなると分子配向が高いため、長手方向の引張破壊強さも大きくなってこの点では好ましいが、フィルム長手方向の70℃温湯収縮率も高くなり過ぎ、好ましくない。長手方向の吸光度比は、0.53以下がより好ましく、0.51以下がさらに好ましい。
 2.6 エージング後のエンタルピー緩和量の差
 本発明の熱収縮性ポリエステル系フィルムは、30℃、85%RH雰囲気下で672時間エージングした後のエンタルピー緩和量が、4.0J/g以下であることが好ましい。特許文献3や、十時 稔氏の論文(「DSC(3)-高分子のガラス転移挙動編-」、繊維と工業、第65巻、第10号、2009年、p385-393)によれば、図3に示した温度変調DSC測定から得られたノンリバースヒートフローにおいて、ガラス転移点付近に見られる吸熱ピークがエンタルピー緩和を示していることがわかる。エンタルピー緩和量は、ピーク面積を積分することによって求めることができる。詳細な測定方法は後述する。エンタルピー緩和は、非晶部の自由体積が減少した結果であり、その分だけ分子鎖が動きにくくなるため、DSC昇温過程において吸熱ピークとして現れる。熱収縮性ポリエステル系フィルムにおいては、エンタルピー緩和量が大きいほど、収縮に寄与する非晶分子鎖が動きにくくなると考えられ、収縮特性は劣化する傾向にある。このため、本発明では、エージング後のエンタルピー緩和量が4.0g/J以下であることが好ましい。エージング後のエンタルピー緩和量は3.8g/J以下がより好ましく、3.5g/J以下がさらに好ましい。なお、上記条件のエージングを行っていないフィルムのエンタルピー緩和量は0.1g/J以下となる。
 2.7 フィルム長手方向の引張破壊強さ
 本発明の熱収縮性ポリエステル系フィルムは、フィルム長手方向の引張破壊強さが80MPa以上200MPa以下であることが好ましい。なお、引張破壊強さの測定方法は実施例で説明する。上記引張破壊強さが80MPaを下回ると、ラベルとしてボトル等に装着する際の“腰”(スティフネス)が弱くなるので好ましくない。引張破壊強さは、90MPa以上がより好ましく、100MPa以上がさらに好ましい。引張破壊強さは高いほどラベルの“腰”が強くなるため好ましいが、本発明の分子設計のフィルムでは200MPaを超えることは難しいため、200MPaを上限としている。
 2.8 エージング前のフィルム長手方向の直角引裂強度
 本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で幅方向に10%収縮させた後に、フィルム長手方向の単位厚み当たりの直角引裂強度を求めたときに、その長手方向の直角引裂強度が180N/mm以上330N/mm以下であることが好ましい。なお、長手方向の直角引裂強度の測定方法は実施例で説明する。
 上記直角引裂強度が180N/mmより小さいと、ラベルとして使用した場合に、運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる可能性があるので好ましくなく、反対に、直角引裂強度が330N/mmより大きいと、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるため好ましくない。直角引裂強度は、185N/mm以上であるとより好ましく、190N/mm以上であるとさらに好ましい。また、直角引裂強度は、325N/mm以下であるとより好ましく、320N/mm以下であるとさらに好ましい。
 2.9 その他の特性
 本発明の熱収縮性ポリエステル系フィルムは、特に限定されないが、厚みが10μm以上200μm以下が好ましく、20μm以上100μmがより好ましい。また、ヘイズ値が2%以上13%以下であることが好ましい。ヘイズ値が13%を超えると、透明性が不良となり、ラベル作成の際に見栄えが悪くなる可能性があるので好ましくない。なお、ヘイズ値は、11%以下であるとより好ましく、9%以下であると特に好ましい。また、ヘイズ値は小さいほど好ましいが、実用上必要な滑り性を付与する目的でフィルムに所定量の滑剤を添加せざるを得ないこと等を考慮すると、2%程度が下限になる。
 3.熱収縮性ポリエステル系フィルムの製造方法
 本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により、二軸延伸して熱処理することによって得ることができる。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分とを公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルを2種以上混合してフィルムの原料として使用する。チップを構成するポリエステルの固有粘度は特に限定されないが、通常、0.50~1.30dl/gである。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200~300℃の温度で溶融しフィルム状に押し出す。押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 さらに、得られた未延伸フィルムを、後述するように、所定の条件で長手方向に延伸した後アニール処理し、次いで中間熱処理し、その中間熱処理後のフィルムを冷却した後に、所定の条件で幅方向に延伸し、再度、最終熱処理することによって、本発明の熱収縮性ポリエステル系フィルムが得ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい製膜方法について説明する。
 上述したように、熱収縮性ポリエステル系フィルムは、通常、未延伸フィルムを収縮させたい方向(すなわち主収縮方向、通常は幅方向)のみに延伸することによって製造される。本発明者らが従来の製造方法について検討した結果、従来の熱収縮性ポリエステル系フィルムの製造においては、原料ポリエステルを構成するアルコール成分の炭素数が3つまでと比較的短く、非晶分子鎖の長さの揃ったポリエステルを用いた場合、延伸後の分子配向が比較的単純な構造となるため、エージングによって分子鎖にかかる応力が緩和しやすくなる。さらに、単純に幅方向に延伸しただけであると、分子鎖の配向は幅方向のみにしか生まれないため、上記の固定効果が不充分となり、エージングによる分子鎖の緩和が大きくなる。また、従来の熱収縮性ポリエステル系フィルムの製造では、フィルムが高い収縮率を有するほど被包装物に対する汎用性が高くなるため、横延伸後の最終熱処理温度を低く設定して収縮率を高く保つようにしていた。収縮率が高い場合、汎用性は高くなるが、プレフォームのような必要収縮率が比較的低い用途に対しては、収縮が過剰(いわゆるオーバースペック)となり、二次収縮を引き起こしていた。
 さらに、上記従来の熱収縮性ポリエステル系フィルムの製造における問題点に基づいて、本発明者らが、耐エージング性が良好であり、二次収縮が生じない熱収縮性ポリエステル系フィルムを得ることについてさらなる考察を進めた結果、次のような知見を得るに至った。
・耐エージング性を良好なものとするためには、長さの異なる分子鎖を幅方向と長手方向へある程度配向させておく必要があると考えられる。
・ラベルとした際の収縮装着後の仕上りを良好なものとするためには、冷却時の二次収縮を起こさないことが重要であり、そのためには幅方向へ配向した分子の収縮能を必要最低限まで低減する必要があると考えられる。
 本発明者らは上記知見から、耐エージング性と収縮仕上り性を獲得するためには、長さの異なる分子鎖を幅方向と長手方向に配向させることと、幅方向に配向した分子鎖が過剰に収縮しないようにさせる必要がある、と考えるに至った。その結果、長手方向に延伸した後に幅方向に延伸する、いわゆる縦-横延伸法によるフィルム製造が適していると考え、以下の手段を講じることにより、耐エージング性、良好な収縮仕上り性を満たす熱収縮性ポリエステル系フィルムを得ることが可能となり、本発明を完成するに至った。
(1)縦延伸条件の制御
(2)縦延伸後における中間熱処理
(3)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
(4)自然冷却後のフィルムの強制冷却
(5)横延伸条件の制御
(6)横延伸後の熱処理
(7)上記の製造工程中、長手方向にリラックスする工程を設ける
 以下、上記した各手段について順次説明する。
 (1)縦延伸条件の制御
 本発明の縦-横延伸法によるフィルムの製造においては、実質的に未配向のフィルムを、Tg以上Tg+30℃以下とし、3.0倍以上4.5倍以下となるように縦延伸するのが必要である。縦延伸は一段延伸でも二段以上の多段延伸でも、どちらも用いることができる。
 縦方向に延伸する際に、トータルの縦延伸倍率が大きくなると、長手方向の収縮率が大きくなってしまう傾向にあるが、縦延伸後の中間熱処理や長手方向へのリラックスにより長手方向の分子配向のコントロールは可能である。しかし、縦延伸倍率が大きすぎると、縦延伸後フィルムの配向結晶化が進み、横延伸工程で破断が生じ易くなり好ましくない。縦延伸倍率の上限は4.5倍がより好ましく、4.4倍がさらに好ましい。一方、縦延伸倍率が小さすぎると、長手方向の収縮率は小さくなるが、長手方向の分子配向度合いも小さくなって、長手方向の直角引裂き強度が大きくなり、引張破壊強さが小さくなるため好ましくない。縦延伸倍率の下限は3.3倍がより好ましく、3.4倍がさらに好ましい。
 なお、例えば、特許文献1には、収縮白化を起こしにくい熱収縮性ポリエステル系フィルムとして、ε-カプロラクトンが1~30モル%で、ネオペンチルグリコールが1モル%以上であり、ブタンジオールを含んでいてもよいフィルムが開示されているが、この技術では、長手方向への分子配向の重要性が全く考慮されておらず、縦方向への延伸倍率はせいぜい1.05~1.2倍にとどまっている(特許文献1の段落番号[0072])。この技術では、本発明で重要視する長手方向へ適度に分子が配向したエージング中の性能低下が小さい熱収縮性ポリエステル系フィルムを得ることはできない。
 (2)縦延伸後における中間熱処理 
 フィルムを縦延伸した後は分子鎖が長手方向へ配向しているため、このまま次の横延伸工程を行っただけでは長手方向の収縮率が高くなってしまう。そこで、長手方向に配向しつつ収縮に寄与しない分子鎖をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、縦-横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、長手方向に配向しつつ収縮力に寄与しない分子鎖をフィルム内に存在させることができる。
 本発明の縦-横延伸法によるフィルムの製造においては、未延伸フィルムを縦延伸した後に、テンター内で幅方向の両端際をクリップによって把持した状態で、Tg+40℃以上Tg+90℃以下の温度で熱処理(以下、中間熱処理という)することが必要である。中間熱処理温度がTg+40℃より低いと、フィルムの長手方向の収縮力が残り、横延伸後、フィルムの長手方向収縮率が高くなって好ましくない。また、中間熱処理温度がTg+90℃より高いと、フィルム表層が荒れ、透明性が損なわれるため好ましくない。中間熱処理の温度は、Tg+45℃以上がより好ましく、Tg+50℃以上がさらに好ましく、Tg+85℃以下がより好ましく、Tg+80℃以下がさらに好ましい。また、原料組成や縦方向の延伸倍率によっても中間熱処理の温度を適宜調整することが好ましい。
 中間熱処理の温度をTg+40℃以上にすることにより、長手方向の分子配向度合いをある程度大きく維持できるので、直角引き裂き強度を小さく保ちつつ、長手方向の引張破壊強さを大きく保つことが可能となる。一方、中間熱処理の温度をTg+90℃以下にコントロールすることによって、フィルムの結晶化を抑えて長手方向への延伸性を維持し、破断によるトラブルを抑制することが可能となると同時に、長手方向の厚み斑を小さくすることも可能となる。なお、中間熱処理の時間は3.0秒以上12.0秒以下の範囲内で原料組成に応じて適宜調整すればよい。中間熱処理はフィルムへ与える熱量が重要であり、中間熱処理の温度が低いと長時間の中間熱処理が必要となる。しかし、中間熱処理時間が余りに長いと設備も巨大化するので、温度と時間で適宜調整するのが好ましい。
 かかる中間熱処理を行うことによって、長手方向に配向しつつ収縮に寄与しない分子鎖をフィルム内に存在させることが可能となり、この長手方向に配向した分子鎖が幅方向の分子鎖を固定する作用を有するため、エージング中に、特に幅方向に延伸された分子鎖にかかる応力が緩和することがなく、耐エージング性に優れたフィルムを得ることが可能となる。なお、どのような縦延伸を行った場合でも、長手方向に配向しつつ収縮に寄与しない分子鎖をフィルム内に存在させることが可能となるわけではなく、前述した所定の縦延伸を実施することによって、中間熱処理後に初めて可能となる。そして、後述する所定の自然冷却、強制冷却、横延伸を施すことによって、フィルム内に形成された長手方向に配向しつつ収縮力に寄与しない分子を保持したまま、幅方向へ分子を配向させて幅方向への収縮力を発現させることが可能となる。
 (3)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
 本発明の縦-横延伸法によるフィルムの製造においては、縦延伸後に中間熱処理を施す必要があるが、その縦延伸と中間熱処理の後において、0.5秒以上3.0秒以下の時間にわたって、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させる必要がある。すなわち、横延伸用のテンターの横延伸ゾーンの前方に中間ゾーンを設けておき、縦延伸後の中間熱処理後のフィルムをテンターに導き、所定時間をかけてこの中間ゾーンを通過させた後に、横延伸を実施するのが好ましい。加えて、その中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流および冷却ゾーンからの熱風を遮断するのが好ましい。なお、中間ゾーンを通過させる時間が0.5秒を下回ると、横延伸が高温延伸となり、横方向の収縮率を充分に高くすることができなくなるので好ましくない。反対に中間ゾーンを通過させる時間は3.0秒もあれば充分であり、それ以上の長さに設定しても、設備の無駄となるので好ましくない。なお、中間ゾーンを通過させる時間は、0.7秒以上がより好ましく、0.9秒以上がさらに好ましく、2.8秒以下がより好ましく、2.6秒以下がさらに好ましい。
 (4)自然冷却後のフィルムの強制冷却
 本発明の縦-横延伸法によるフィルムの製造においては、自然冷却したフィルムをそのまま横延伸するのではなく、フィルムの温度がTg+5℃以上Tg+40℃以下となるように急冷することが必要である。かかる急冷処理を施すことによって、フィルムの厚み精度を高くすることが可能となる。なお、急冷後のフィルムの温度は、Tg+10℃以上がより好ましく、Tg+15℃以上がさらに好ましく、Tg+35℃以下がより好ましく、Tg+30℃以下がさらに好ましい。
 フィルムを急冷する際に、急冷後のフィルムの温度がTg+40℃を上回ったままであると、フィルムの厚み精度が低下してしまい、フィルムをロールへ巻き取ったときに、フィルムにシワが発生する等の問題が起こる。急冷後のフィルムの温度をTg+40℃以下となるようにコントロールすることによって、フィルムの厚み精度を高くすることが可能となる。また、急冷後のフィルムの温度がTg+5℃を下回ると、横延伸時の延伸応力が大きくなり、フィルムの二次収縮率が大きくなるので好ましくない。
 (5)横延伸条件の制御
 本発明の縦-横延伸法によるフィルムの製造においては、縦延伸、中間熱処理、自然冷却、急冷後のフィルムを所定の条件で横延伸することが必要である。横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、Tg+10℃以上Tg+30℃以下の温度で3倍以上6倍以下の倍率となるように行う。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱処理によって形成された長手方向に配向しつつ収縮力に寄与しない分子を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、長手方向の強度も良好なフィルムを得ることが可能となる。なお、横延伸の温度は、Tg+12℃以上がより好ましく、Tg+14℃以上がさらに好ましく、Tg+28℃以下がより好ましく、Tg+26℃以下がさらに好ましい。一方、横延伸の倍率は、3.5倍以上がより好ましく、3.7倍以上がさらに好ましく、5.5倍以下がより好ましく、5倍以下がさらに好ましい。
 横方向に延伸する際に、延伸温度がTg+30℃を上回ると、フィルムの厚み精度が低くなりやすいが、延伸温度をTg+30℃以下にコントロールすることによって、フィルムの厚み精度を高くすることができ好ましい。
 一方、延伸温度がTg+10℃を下回ると、二次収縮率が高くなるとともに幅方向への配向が大きくなりすぎて、横延伸時に破断し易くなるが、延伸温度をTg+10℃以上にコントロールすることによって、二次収縮率の低減や横延伸時におけるフィルムの破断の低減が可能となる。
 (6)横延伸後の熱処理
 横延伸後のフィルムは、テンター内で幅方向の両端際をクリップで把持した状態で、Tg+30℃以上Tg+60℃以下の温度で1秒以上9秒以下の時間にわたって最終的に熱処理されることが必要である。熱処理温度がTg+60℃より高いと、幅方向の収縮率が低下し、70℃の幅方向における熱収縮率が10%より小さくなって好ましくない。また、熱処理温度がTg+30℃より低いと、二次収縮率が大きくなり好ましくない。また、熱処理時間は長いほど好ましいが、あまりに長いと設備が巨大化するので、9秒以下とすることが好ましい。
 (7)長手方向への弛緩(リラックス)工程
 上述の如く、長手方向に配向しつつ収縮力に寄与しない分子をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましい。縦延伸後のフィルムの長手方向の残留収縮応力が大きいと、横延伸後のフィルム長手方向の温湯熱収縮率が大きくなり、収縮仕上り性が悪くなる欠点がある。横延伸工程で熱処理を加えることが、フィルム長手方向の温湯熱収縮率を下げるのに有効であるが、熱による緩和だけでは充分にフィルム長手方向の温湯熱収縮率を下げることができるとはいえず、大きい熱量が必要となる。しかし、熱による緩和の際に大きい熱量にすると、フィルムが結晶化し、フィルムを幅方向に延伸する際の延伸応力が大きくなり、横延伸時にフィルムが破断するおそれがある。
 そこで本発明者らは、フィルム長手方向の分子配向を直角引裂強度や引張破壊強さを満足する程度まで下げ、幅方向の収縮率の差と収縮応力、長手方向の直角引裂強度と引張破壊強さをコントロールする手段を検討した。そして、以下に示す工程を1つ以上行うことでフィルムを長手方向に弛緩(リラックス)させて、上記コントロールが行えることを見出した。
 (i)縦延伸後のフィルムをTg以上Tg+90℃以下の温度で加熱し、速度差のあるロールを用いて、0.05秒以上5秒以下の時間で長手方向に10%以上60%以下のリラックスを実施する工程。加熱手段は、温調ロール、近赤外線、遠赤外線、熱風ヒータ等のいずれも用いることができる。
 (ii)中間熱処理工程において、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上12秒以下の時間で長手方向に5%以上20%以下リラックスを実施する工程。
 (iii)最終熱処理工程において、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上9秒以下の時間で長手方向に5%以上20%以下リラックスを実施する工程。
 上記(i)~(iii)の中でも、(i)の縦延伸後のリラックスを行うことが最も好ましく、(i)に(ii)または(iii)を組み合わせてもよい。以下、各工程を説明する。
 (i)縦延伸後のリラックス
 縦延伸後のフィルムをTg以上Tg+90℃以下の温度で加熱し、速度差のあるロールを用いて、0.05秒以上5.0秒以下の時間で長手方向に10%以上60%以下のリラックスを実施することが望ましい。温度がTgより低いと縦延伸後のフィルムが収縮せずリラックスを実施できないため、好ましくない。一方、Tg+90℃より高いと、フィルムが結晶化し、透明性等が悪くなるため、好ましくない。縦延伸後のリラックス時のフィルム温度は、Tg+10℃以上Tg+80℃以下が好ましく、Tg+20℃以上Tg+70℃以下がより好ましい。
 また縦延伸後のフィルムの長手方向のリラックスを行う時間は0.05秒以上5秒以下が好ましい。0.05秒未満であるとリラックスが短時間になってしまい、温度をTg+90℃より高くしないとリラックスムラが生じるので好ましくない。またリラックスの時間が5秒より長くなると低い温度でリラックスができフィルムとしては問題無いが、設備が巨大化するので、温度と時間を適宜調整するのが好ましい。リラックス時間は、より好ましくは0.1秒以上4.5秒以下であり、さらに好ましくは0.5秒以上4秒以下である。
 また縦延伸後フィルムの長手方向のリラックス率が10%未満であると、長手方向の分子配向の緩和が充分に行えず、長手方向の収縮率が増加し、70℃における熱収縮率が4%を超えてしまうため好ましくない。また縦延伸後フィルムの長手方向のリラックス率が60%より大きいと、長手方向の直角引裂強度が大きくなり、引張破壊強さが小さくなるので好ましくない。縦延伸後フィルムのリラックス率は15%以上55%以下がより好ましく、20%以上50%以下がさらに好ましい。
 縦延伸後のフィルムをリラックスさせる手段としては、縦延伸後のフィルムをロール間に配設した加熱装置(加熱炉)で加熱し、ロール間の速度差で実施する方法や、縦延伸後のフィルムをロールと横延伸機間に配設した加熱装置(加熱炉)で加熱し、横延伸機の速度をロールより遅くする方法等で、実施できる。加熱装置(加熱炉)としては、温調ロール、近赤外線ヒータ、遠赤外線ヒータ、熱風ヒータ等のいずれも用いることができる。
 (ii)中間熱処理工程でのリラックス
 中間熱処理工程においては、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上12秒以下の時間で長手方向に5%以上20%以下のリラックスを実施することが望ましい。リラックス率が5%未満であると、長手方向の分子配向の緩和が充分に行えず、長手方向の収縮率が増加し、70℃における熱収縮率が4%を超えてしまうため好ましくない。またリラックス率が20%より大きいと、フィルム物性調整は可能であるが、設備上20%が限界であるため、20%を上限とした。リラックス率は8%以上がより好ましく、11%以上がさらに好ましい。
 また中間熱処理工程で長手方向のリラックスを行う時間は0.1秒以上12秒以下が好ましい。0.1秒未満であるとリラックスが短時間になってしまい、温度をTg+90℃より高くしないとリラックスムラが生じるので好ましくない。またリラックス時間が12秒より長くなるとフィルムとしては問題無いが、設備が巨大化するので、温度と時間で適宜調整するのが好ましい。リラックス時間は、より好ましくは0.3秒以上11秒以下であり、さらに好ましくは0.5秒以上10秒以下である。
 (iii)最終熱処理工程でのリラックス
 最終熱処理工程においては、テンター内の把持用クリップ間の距離を縮めることにより、0.1秒以上9秒以下の時間で長手方向に5%以上20%以下のリラックスを実施することが望ましい。リラックス率が5%未満であると、長手方向の分子配向の緩和が充分に行えず、長手方向の収縮率が増加し、98℃における熱収縮率が15%を超えてしまうため好ましくない。またリラックス率が20%より大きいと、フィルム物性調整は可能であるが、設備上20%が限界であるため、20%を上限とした。リラックス率は8%以上がより好ましく、11%以上がさらに好ましい。
 また最終熱処理工程で長手方向のリラックスを行う時間は0.1秒以上9秒以下が好ましい。0.1秒未満であるとリラックスが短時間になってしまい、温度をTg+50℃より高くしないとリラックスムラが生じるので好ましくない。またリラックス時間が9秒より長くなるとフィルムとしては問題無いが、設備が巨大化するので、温度と時間で適宜調整するのが好ましい。リラックス時間は、より好ましくは0.3秒以上8秒以下であり、さらに好ましくは0.5秒以上7秒以下である。
 4.包装体
 本発明の包装体は、包装対象物の外周の少なくとも一部を本発明の熱収縮性フィルムによって被覆し、次いで熱収縮させることによって形成されるものである。包装対象物としては、食品保存用のプラスチックボトルを始め、シャンプーやコンデイショナー等に用いられるポリエチレン製容器、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙製の箱等を挙げることができる。また、熱収縮性ポリエステル系フィルムから得られたラベルは、容器の全部でなくとも、例えばボトルの蓋を覆う形態(キャップシール)のように一部を覆えばよく、容器に完全に密着させる前の予備成形品(プレフォーム)であっても良い。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムから得られるラベルを熱収縮させて被覆させる場合には、当該ラベルを約2~15%程度熱収縮させて包装対象物に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても良いし、印刷が施されていなくても良い。
 ラベルを作製する方法としては、長方形状のフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着してラベル状にするか、あるいは、ロール状に巻き取ったフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着して、チューブ状体としたものをカットしてラベル状とする。接着用の有機溶剤としては、1,3-ジオキソランあるいはテトラヒドロフラン等の環状エーテル類が好ましい。この他、ベンゼン、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素、塩化メチレン、クロロホルム等のハロゲン化炭化水素やフェノール等のフェノール類あるいはこれらの混合物が使用できる。
 次に、実施例および比較例を用いて本発明を具体的に説明するが、本発明は、これらの実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。なお、フィルムの評価方法やポリエステルの合成方法を以下に示す。
 [二次収縮率]
 エージング環境下におかれていない熱収縮性フィルム(以下、特に断らない限り、単に熱収縮性フィルムというときはエージング環境下におかれていない熱収縮性フィルムを指すものとする)から主収縮方向の長さが25mm、幅2mmのサンプルを切り出し、熱機械分析装置(TMA;セイコーインスツルメンツ社製)を用いて測定した。サンプルは、専用のチャックを用いてプローブに取り付けた。チャック間距離(プローブ間距離)は15mmとした。予め100℃に保温した炉内にサンプルを挿入し、100℃で36秒間キープした後に炉内に送風して、サンプルを25℃まで3分間に亘って冷却した。冷却開始したときのサンプル長をゼロとして、サンプルの変位量を測定し、下記式1にしたがって二次収縮率を求めた。

 二次収縮率={(冷却開始したときの長さ-25℃における長さ)/冷却開始したときの長さ}×100(%) 式1
 [吸光度比]
 FT-IR装置「FTS 60A/896」(バリアン社製)を用いて、測定波数領域650~4000cm-1、積算回数128回で、ATR法で偏光をかけて、熱収縮性フィルムの赤外吸収スペクトルを測定した。1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2を吸光度比とした。
 [熱収縮率(温湯熱収縮率)]
 熱収縮性フィルム、または、30℃、85%RHで672時間エージングしたフィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中に無荷重状態で10秒間浸漬して熱収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から引き出してフィルムの縦および横方向の寸法を測定し、下記式2にしたがって、それぞれ熱収縮率を求めた。熱収縮率の大きい方向を主収縮方向(幅方向)とした。 

 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式2
 [可動非晶量]
 温度変調示差走査熱量計(DSC)「Q100」(TA Instruments 社製)を用いて、フィルムサンプルをハーメチックアルミニウムパン内に5.0±0.2mgで秤量し、MDSC(登録商標)ヒートオンリーモードで、平均昇温速度2.0℃/min、変調周期60秒で測定し、可逆熱容量曲線を得た。得られた可逆熱容量曲線において、付属の解析ソフト(TA Instruments社製 TA Analysis)を用いて変曲点を求め、変曲点(ガラス転移点)前後の可逆熱容量差を下記式3にしたがって求めた。ここで、上記の変曲点とは可逆熱容量曲線が凹凸の無い理想的な曲線である場合に、可逆熱容量曲線を二階微分した時の値が0である点をいう。

 可逆熱容量差=(高温側の熱容量)―(低温側の熱容量)          式3
 ここで、熱容量曲線においてTgより高温側での熱容量曲線のベースラインの延長線を引く。ここで、Tg+5℃からTg+15℃の範囲の熱容量曲線のベースラインを、最小二乗法により直線フィッティングしたものを前記Tgより高温側での熱容量曲線のベースラインの延長線とする。そして、変曲点(T)における接線との交点を求め、この交点におけるY軸(可逆熱容量)の値を読み取り、高温側の熱容量とする。次に、Tより低温側での熱容量曲線のベースラインの延長線を引く。ここで、T-15℃からT-5℃の範囲の熱容量曲線のベースラインを、最小二乗法により直線フィッティングしたものを前記Tより低温側での熱容量曲線のベースラインの延長線とする。そして、変曲点(T)における接線との交点を求め、この交点におけるY軸(可逆熱容量)の値を読み取り、低温側の熱容量とし、高温側の熱容量と低温側の熱容量の値の差を熱容量差ΔCpとした。
 また、上記の可逆熱容量曲線において、T付近のベースラインシフトが乱れなく生じたことから、測定を正常に行えたことを確認した。
 [エンタルピー緩和量]
 温度変調示差走査熱量計(DSC)「Q100」(TA Instruments 社製)を用いて、30℃、85%RH雰囲気下で672時間エージングした後のフィルムサンプルをハーメチックアルミニウムパン内に5.0mg秤量し、MDSC(登録商標)ヒートオンリーモードで、平均昇温速度2.0℃/min、変調周期60秒で測定して得られるノンリバースヒートフローにおけるT付近のピーク部分の面積をエンタルピー緩和量(J/g)とした。ここで、ピーク面積を求める際の温度範囲は、ピーク前後におけるノンリバースヒートフローの微分値がゼロとなる点、すなわちノンリバースヒートフローの傾きがゼロになる点とした。測定例を図4に示す。
 また、上記のノンリバースヒートフローと同様に測定して得られたリバースヒートフローにおいて、T付近のベースラインシフトが乱れなく生じたことから、ノンリバースヒートフローの測定も正常に行えたことを確認した。
 [Tg]
 温度変調示差走査熱量計(DSC)「Q100」(TA Instruments 社製)を用いて、30℃、85%RH雰囲気下で672時間エージングした後のフィルムサンプルをハーメチックアルミニウムパン内に5.0mg秤量し、MDSC(登録商標)ヒートオンリーモードで、平均昇温速度2.0℃/min、変調周期60秒で測定して得られるリバースヒートフローを測定した。得られたリバースヒートフローの変曲点の前後に接線を引き、ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度をガラス転移点(T;℃)とした。
 [引張破壊強さ]
 JIS K7113に準拠し、測定方向(フィルム長手方向)が140mm、測定方向と直交する方向(フィルム幅方向)が20mmの短冊状のフィルムサンプルを作製した。万能引張試験機「DSS-100」(島津製作所製)を用いて、試験片の両端をチャックで片側20mmずつ把持(チャック間距離100mm)して、雰囲気温度23℃、引張速度200mm/minの条件にて引張試験を行い、引張破壊時の強度(応力)を引張破壊強さ(MPa)とした。
 [直角引裂強度]
 所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させた。この10%収縮後のフィルムから、JIS K7128-3に準じて、図4に示す形状の試験片を切り出した。なお、試験片を切り出す際は、フィルム長手方向が引き裂き方向になるようにした。次に、万能引張試験機(島津製作所製「オートグラフ」)で試験片の両端(幅方向)を掴み、引張速度200mm/分の条件にて引張試験を行い、フィルムが長手方向に完全に引き裂かれたときの最大荷重を測定した。この最大荷重をフィルムの厚みで除して、単位厚み当たりの直角引裂強度(N/mm)を算出した。
[エージング後の収縮仕上がり性]
 熱収縮性フィルムの端部をジオキソランで溶着し、直径7.4cm、高さ3.3cmの円筒状ラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を得た。このラベルを30℃、85%RH雰囲気下で672時間エージングした。その後、直径7cm、高さ3cmの円筒形の金型を温度40℃に調整した後、前述の円筒状ラベルを図5に示すように金型に被せて、120℃(風速12m/秒)の熱風を60秒当てて熱収縮させた。尚、このときの必要収縮率(金型上部の折れ込み部分)は約10%であった。その後、収縮させたラベルは、速やかに金型から取り外し、25℃の室温に10分間放置した。ラベルの収縮仕上がり性を、以下の基準に従って、目視で5段階評価した。

5:仕上がり性最良(欠点なし)
4:仕上がり性量(欠点1箇所あり)
3:欠点2箇所あり
2:欠点3~5箇所あり
1:欠点多数あり(6箇所以上)

 なお、欠点とは、飛び上がり、シワ、収縮不足、ラベル端部折れ込み、収縮白化、ヒケ、波打ち等である。
 [ミシン目開封性]
 熱収縮性フィルムの端部をジオキソランで溶着し、主収縮方向と直交する方向にミシン目を入れた円筒状ラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を得た。ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、ラベルの縦方向(高さ方向)に幅22mm、長さ120mmにわたって2本設けた。このラベルを温度40℃に調整したポリエチレン製容器(胴直径160mm)の胴部に被せて、120℃(風速12m/秒)の熱風を60秒当てて熱収縮させた。その後、このボトルに水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本からこの本数を差し引いて、ミシン目開封不良率(%)を算出した。
 [ヘイズ]
 フィルムのヘイズを、JIS K7136に準拠し、ヘイズメータ「500A」(日本電色工業社製)を用いて測定した。なお、測定は2回行い、平均値をヘイズとした。
 <ポリエステル原料の調製>
 合成例1
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、280℃で26.7Paの減圧条件のもとで重縮合反応を行い、固有粘度0.75dl/gのポリエステルAを得た。組成を表1に示す。
 合成例2~7
 合成例1と同様の方法により、表1に示すポリエステルB~Gを得た。ポリエステルFの製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266;平均粒径1.5μm)をポリエステルに対して7,000ppmの割合で添加した。なお、表中、IPAはイソフタル酸、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、BDは1,4-ブタンジオール、ε-CLはε-カプロラクトン、DEGは副生成物のジエチレングリコールである。各ポリエステルの固有粘度は、それぞれ、B:0.72dl/g,C:0.80dl/g,D:1.20dl/g,E:0.77dl/g,F:0.75dl/g、G:0.78dl/gであった。なお、各ポリエステルは、適宜チップ状にした。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 上記したポリエステルA、ポリエステルB、ポリエステルEおよびポリエステルFを質量比5:75:15:5で混合して押出機に投入した。この混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さ450μmの未延伸フィルムを得た。未延伸フィルムのTgは60℃であった。
 得られた未延伸フィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロールでフィルム温度が80℃になるまで予備加熱した後、表面温度86℃に設定された低速回転ロールと、表面温度86℃に設定された高速回転ロールとの間で、回転速度差を利用して、縦方向に4.1倍延伸した。
 縦延伸直後のフィルムを、加熱炉へ通した。加熱炉内は熱風ヒータで加熱されており、設定温度は95℃であった。加熱炉の入口と出口のロール間の速度差を利用して、長手方向に45%リラックス処理を行った。リラックスの時間は0.6秒であった。
 リラックス処理後のフィルムを横延伸機(テンター)に導き、123℃で中間熱処理を行った。中間熱処理後のフィルムを第1中間ゾーンに導き、1.0秒で通過させて自然冷却を行った。なお、テンターの第1中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、中間熱処理ゾーンからの熱風、冷却ゾーンからの冷却風を遮断した。フィルムの走行時には、フィルムの走行に伴う随伴流の大部分が、中間熱処理ゾーンと第1中間ゾーンとの間に設けられた遮蔽板によって遮断されるように、フィルムと遮蔽板との距離を調整した。加えて、フィルムの走行時には、第1中間ゾーンと冷却ゾーンとの境界において、フィルムの走行に伴う随伴流の大部分が遮蔽板によって遮断されるようにフィルムと遮蔽板との距離を調整した。
 続いて、自然冷却後のフィルムを冷却ゾーンに導き、フィルムの表面温度が87℃になるまで、低温の風を吹き付けることによって積極的に急冷した。このフィルムを第2中間ゾーンを1.0秒で通過させて再度自然冷却した。その後、横延伸ゾーンで、フィルムの表面温度が86℃になるまで予備加熱した後、86℃で幅方向(横方向)に4.0倍延伸した。
 その横延伸後のフィルムを最終熱処理ゾーンに導き、最終熱処理ゾーンにおいて、100℃で熱処理した後、冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ55μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。なお、この例では、中間熱処理時および最終熱処理時のリラックス率は0%とした。得られたフィルムの特性を上記した方法によって評価した。製造条件を表2に、評価結果を表3に示す。また、二次収縮率を図1に、温度変調DSCから得られた可逆熱容量を図2に、温度変調DSCから得られた非可逆熱流束と可逆熱流束を図3に示す。図1中の無印、図2中の無印が実施例1のものであり、図3中の無印と□がそれぞれ実施例1の非可逆熱流束と可逆熱流束である。非可逆熱流束において、きれいな吸熱ピークが観察されており、エンタルピー緩和が行われていることがわかる。なお、可逆熱流束曲線と可逆熱容量曲線においては、Tg付近でベースラインがシフトしているので、DSCの測定が正常に行えたことが確認できた。
 実施例2
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。縦延伸後のフィルム長手方向へのリラックス処理を行わず、フィルムはそのまま中間熱処理ゾーンへと導いた。123℃で中間熱処理を行うと同時に、長手方向にリラックス処理を30%行った。その後、実施例1と同様の方法で横延伸を行い、最終熱処理工程でフィルム長手方向に25%のリラックス処理を100℃で行った。よって、フィルム長手方向へのリラックス率は計48%である。幅500mm、厚さ55μmの二軸延伸フィルムが得られた。製造条件を表2に、評価結果を表3に示す。
 実施例3
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。その後、フィルム長手方向に50%のリラックス処理を95℃の加熱炉で行い、続く中間熱処理時にも20%のリラックス処理を行った以外は、自然冷却、強制冷却、横延伸、最終熱処理を実施例1と同様にして行った。よって、フィルム長手方向へのリラックス率は計60%である。幅500mm、厚さ55μmの二軸延伸フィルムが得られた。製造条件を表2に、評価結果を表3に示す。
 実施例4
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。その後、最終熱処理での温度を95℃とした以外は実施例1と同様にして、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例5
 ポリエステルBとポリエステルEとポリエステルFとを質量比で65:30:5となるように混合して押出機に投入した。その混合樹脂を、実施例1と同様の条件で溶融押し出しし、未延伸フィルムを形成した。この未延伸フィルムのTgは55℃であった。この未延伸フィルムを、縦延伸時のフィルム温度を80℃、中間熱処理の温度を140℃、横延伸ゾーンのフィルム温度を83℃とした以外は、実施例1と同様にして、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例6
 ポリエステルBとポリエステルCとポリエステルEとポリエステルFとを質量比で18:62:15:5となるように混合して押出機に投入した。その混合樹脂を、実施例1と同様の条件で溶融押し出しし、厚さ450μmの未延伸フィルムを形成した。この未延伸フィルムのTgは61℃であった。この未延伸フィルムを、中間熱処理の温度を140℃とした以外は、実施例1と同様にして、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例7
 ポリエステルAとポリエステルCとポリエステルEとポリエステルFとを質量比5:80:10:5に変更し、中間熱処理の温度を140℃、最終熱処理温度を110℃に変更した以外は実施例1と同様の方法で、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。なお、未延伸フィルムのTgは61℃であった。製造条件を表2に、評価結果を表3に示す。
 実施例8
 ポリエステルAとポリエステルEとポリエステルFとポリエステルGとを質量比5:15:5:75に変更した以外は実施例1と同様の方法で、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。なお、未延伸フィルムのTgは59℃であった。製造条件を表2に、評価結果を表3に示す。
 実施例9
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸およびリラックス処理を行った。続いて、縦延伸後のリラックス処理後のフィルムを、横延伸倍率を3.0倍、横延伸温度を90℃とした以外は、実施例1と同様の方法で、横延伸を行い、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 実施例10
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、縦延伸倍率を3.5倍とした以外は、実施例1と同じ方法で縦延伸およびリラックス処理を行った。続いて、縦延伸後のリラックス処理後のフィルムを、横延伸温度を83℃にした以外は実施例9と同様にして横延伸を行い、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 比較例1
 実施例6と同じポリエステル原料を実施例6と同様に溶融押し出しする際に、未延伸フィルムの厚みが220μmとなるように、押出機の吐出量を調整した。それ以外は、実施例6と同様にして未延伸フィルムを得た。その後、縦延伸を行わず、テンター内で76℃に予熱した後、67℃で4.0倍延伸し、76℃で最終熱処理を施した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ55μmの一軸延伸フィルムを所定の長さにわたって連続的に製造した。製造条件を表2に、評価結果を表3に示す。
 比較例2
 実施例1と同じポリエステル原料を実施例1と同様に溶融押し出しし、実施例1と同じ方法で縦延伸した。その後、実施例と同じ方法で横延伸を行い、最終熱処理での温度を86℃とした以外は実施例1と同様にして、幅500mm、厚さ55μmの二軸延伸フィルムを連続的に製造した。製造条件を表2に、評価結果を表3に示す。また、二次収縮率を図1に、温度変調DSCから得られた可逆熱容量を図2に示す。図1中の○印、図2中の○印が比較例2のものである。可逆熱容量曲線において、Tg付近でベースラインがシフトしているので、DSCの測定が正常に行えたことが確認できた。
 比較例3
 ポリエステルAとポリエステルBとポリエステルDとポリエステルFとを質量比10:75:10:5に変更した以外は実施例1と同様の方法で未延伸フィルムを得て、これを実施例1と同様の方法で縦延伸を行った。なお、未延伸フィルムのTgは70℃であった。縦延伸後のフィルムは、温度を105℃とした加熱炉に通し、長手方向に40%リラックス処理を行った。その後、中間熱処理温度を130℃、冷却温度を103℃、横延伸温度を100℃、最終熱処理温度を140℃とした以外は実施例1と同様にして、幅500mm、厚さ55μmの二軸延伸フィルムを製造した。製造条件を表2に、評価結果を表3に示す。
 比較例4
 比較例3と同じポリエステル原料を実施例1と同様に溶融押し出しする際に、未延伸フィルムの厚みが220μmとなるように、押出機の吐出量を調整した。それ以外は、実施例1と同様にして未延伸フィルムを得た。その後、縦延伸を行わず、テンター内で95℃に予熱した後、90℃で4.0倍延伸し、91℃で最終熱処理を施した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ55μmの一軸延伸フィルムを所定の長さにわたって連続的に製造した。製造条件を表2に、評価結果を表3に示す。また、温度変調DSCから得られた非可逆熱流束と可逆熱流束を図3に示す。図3中の○印と△印がそれぞれ比較例4の非可逆熱流束と可逆熱流束である。非可逆熱流束曲線において、きれいな吸熱ピークが観察されており、エンタルピー緩和が行われていることがわかる。なお、可逆熱流束曲線においてはTg付近でベースラインがシフトしているので、DSCの測定が正常に行えたことが確認できた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の実施例の熱収縮性フィルムは、ブタンジオールとε-カプロラクトンを所定量用い、所定のリラックス工程を経た二軸延伸フィルムであり、二次収縮が少なく、エージング中の熱収縮特性の劣化も少なく、エージング後のラベルの収縮仕上がり性にも優れたものであった。
 比較例1、2、4では熱固定温度が低かったため、二次収縮率が5.8%と高く、収縮仕上がり性に劣る結果となった。中でも比較例1と4では長手方向に分子鎖が配向していないため、長手方向の吸光度比や引張破壊強度が本発明の規定範囲を満足しないものであった。特に比較例4は、ε-カプロラクトンを用いておらず、縦延伸と長手方向のリラックスを行っていないため幅方向の吸光度比が高くなりすぎており、エージング中の熱収縮特性の劣化が大きく、エージング後のラベルの収縮仕上がり性に劣ったものとなった。
 一方、比較例3はε-カプロラクトンを用いて二軸延伸とリラックス工程を経た系であるが、熱固定温度が140℃と極端に高い例である。この例では、熱固定温度がTg+60℃を超えているため、エージング前であっても70℃の幅方向収縮率が10%以下となっており、収縮仕上がり性に劣るものとなった。
 本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れた特性を有しているので、ボトル等のラベル用途に好適に用いることができる。本発明の熱収縮性ポリエステル系フィルムがラベルとして用いられて得られたボトル等の包装体は美麗な外観を有するものである。
 1:変曲点(Tg)における接線
 2:Tgより高温側での熱容量曲線のベースラインの延長線
 3:Tgより低温側での熱容量曲線のベースラインの延長線
 F:フィルム

Claims (7)

  1.  エチレンテレフタレートユニットを有し、全ポリエステル樹脂成分100モル%中、非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上、ブタンジオール由来の構成ユニットが1~25モル%含まれている熱収縮性ポリエステル系フィルムであって、下記要件(1)~(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
    (1)予め100℃に保温した炉内へフィルムを挿入して一次収縮させた後、そこから25℃まで冷却したときの二次収縮率が2%以上5%以下
    (2)30℃、85%RH雰囲気下で上記フィルムを672時間エージングした後、70℃の温水中にこのエージング後のフィルムを10秒間浸漬したときの幅方向の温湯熱収縮率が10%以上30%以下
    (3)温度変調DSCで測定した上記フィルムのガラス転移温度前後の可逆熱容量差が0.12J/g・℃以上0.25J/g・℃以下
  2.  全ポリエステル樹脂成分100モル%中、ε-カプロラクトン由来の構成ユニットが1~25モル%、ブタンジオールとε-カプロラクトン由来の構成ユニット以外の非晶質成分となり得る1種以上のモノマー由来の構成ユニットが18モル%以上含まれていることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。
  3.  70℃の温水中に10秒間浸漬したときの長手方向の温湯熱収縮率が-1%以上5%以下である請求項1又は2に記載の熱収縮性ポリエステル系フィルム。
  4.  偏光ATR-FTIR法で測定した1340cm-1での吸光度A1と1410cm-1での吸光度A2との比A1/A2(吸光度比)について、幅方向の吸光度比が0.5以上0.75以下、長手方向の吸光度比が0.35以上0.55以下である請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
  5.  長手方向の引張破壊強さが80MPa以上200MPa以下である請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルム。
  6.  80℃の温水中で幅方向に10%収縮させた後のフィルム長手方向の単位厚み当たりの直角引裂強度が180N/mm以上330N/mm以下である請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルム。
  7.  包装対象物の外周の少なくとも一部を請求項1~6のいずれかに記載の熱収縮性フィルムによって被覆し、次いで熱収縮させることによって得られる包装体。
PCT/JP2016/057319 2015-03-20 2016-03-09 熱収縮性ポリエステル系フィルムおよび包装体 WO2016152517A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016516108A JP6658513B2 (ja) 2015-03-20 2016-03-09 熱収縮性ポリエステル系フィルムおよび包装体
US15/559,030 US10392485B2 (en) 2015-03-20 2016-03-09 Heat-shrinkable polyester-based film and package
CN201680016570.7A CN107428965B (zh) 2015-03-20 2016-03-09 热收缩性聚酯系薄膜及包装体
KR1020177026998A KR102459356B1 (ko) 2015-03-20 2016-03-09 열수축성 폴리에스테르계 필름 및 포장체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-057685 2015-03-20
JP2015057685 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152517A1 true WO2016152517A1 (ja) 2016-09-29

Family

ID=56978396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057319 WO2016152517A1 (ja) 2015-03-20 2016-03-09 熱収縮性ポリエステル系フィルムおよび包装体

Country Status (6)

Country Link
US (1) US10392485B2 (ja)
JP (1) JP6658513B2 (ja)
KR (1) KR102459356B1 (ja)
CN (1) CN107428965B (ja)
TW (1) TWI690550B (ja)
WO (1) WO2016152517A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068130A (ja) * 2015-09-30 2017-04-06 東洋紡株式会社 ポリエステル系ラベルおよび包装容器
US20190077136A1 (en) * 2016-03-18 2019-03-14 Toyobo Co., Ltd. Polyester film, laminate, and package
US11298927B2 (en) 2016-07-27 2022-04-12 Toyobo Co., Ltd. White polyester film, laminate, and packaging bag
WO2022239693A1 (ja) * 2021-05-11 2022-11-17 株式会社ベルポリエステルプロダクツ ポリエステル樹脂及びその使用方法、並びに化粧料容器及び化粧製品
WO2023243486A1 (ja) * 2022-06-13 2023-12-21 東洋紡株式会社 レーザー印字用熱収縮性ポリエステル系フィルム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142394B1 (ko) * 2013-06-11 2020-08-07 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
JP6459533B2 (ja) * 2014-04-01 2019-01-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
KR20240024333A (ko) 2016-05-31 2024-02-23 다이니폰 인사츠 가부시키가이샤 전지용 포장 재료, 그의 제조 방법, 전지 및 폴리에스테르 필름의 전지용 포장 재료에의 사용 방법
US20210024708A1 (en) * 2018-03-30 2021-01-28 Toyobo Co., Ltd. Heat-shrinkable polyester-based film
US10800897B2 (en) 2018-04-30 2020-10-13 Skc Inc. Heat shrinkable film and method for reproducing polyester container using same
KR102153670B1 (ko) 2018-05-21 2020-09-08 에스케이씨 주식회사 열수축성 필름 및 이의 제조방법
EP3782814A4 (en) 2018-07-05 2021-06-16 Gunze Limited HEAT SHRINKABLE MULTI-LAYER FILM AND HEAT SHRINKABLE LABEL
KR20200027368A (ko) * 2018-09-04 2020-03-12 에스케이씨 주식회사 절연부를 포함하는 케이블 및 케이블 절연부의 제조방법
CN109353139B (zh) * 2018-11-30 2019-07-30 重庆市骏煌印务有限公司 书本胶包装置
US11383916B2 (en) * 2019-05-09 2022-07-12 The Trinko Group, LLC Center-pull bag dispenser without separate end-forms
WO2021085301A1 (ja) * 2019-10-31 2021-05-06 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
CA3169101C (en) * 2020-03-11 2024-04-30 Yuya Kawai Resin-coated metal sheet for containers
JPWO2021230207A1 (ja) * 2020-05-12 2021-11-18
KR20220095838A (ko) 2020-12-30 2022-07-07 에스케이씨 주식회사 폴리에스테르 필름, 이를 포함하는 유리섬유직물 복합소재 및 이의 제조방법
US11879290B2 (en) * 2021-02-17 2024-01-23 Vitro Flat Glass Llc Multi-pane insulating glass unit having a rigid frame for a third pane and method of making the same
US20220259917A1 (en) * 2021-02-17 2022-08-18 Vitro Flat Glass Llc Multi-Pane Insulated Glass Unit Having a Relaxed Film Forming a Third Pane and Method of Making the Same
KR102553959B1 (ko) * 2021-07-05 2023-07-11 에스케이마이크로웍스 주식회사 폴리에스테르 필름, 이를 포함하는 열수축성 라벨 및 포장재
KR102553960B1 (ko) * 2021-07-05 2023-07-11 에스케이마이크로웍스 주식회사 폴리에스테르 필름, 이를 포함하는 열수축성 라벨 및 포장재
US11970303B2 (en) 2022-01-26 2024-04-30 The Procter & Gamble Company Infrared-assisted shrink wrap product bundling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103432A (ja) * 1989-09-14 1991-04-30 Unitika Ltd 金属積層用ポリエステル樹脂組成物およびフィルム
WO2014185442A1 (ja) * 2013-05-16 2014-11-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134976A (en) 1991-06-04 1992-08-04 Outboard Marine Corporation Internal combustion engine
JP3692976B2 (ja) * 2001-07-11 2005-09-07 東洋紡績株式会社 熱収縮性ポリエステル系フィルム
JP2003041024A (ja) * 2001-07-30 2003-02-13 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよびキャップシール用チューブ状ラベル
US7273894B2 (en) * 2003-12-02 2007-09-25 Eastman Chemical Company Compositions for the preparation of void-containing articles
JP2005335111A (ja) 2004-05-25 2005-12-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP4752360B2 (ja) 2005-07-07 2011-08-17 東洋紡績株式会社 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
JP4411556B2 (ja) * 2006-06-14 2010-02-10 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4882919B2 (ja) * 2006-08-30 2012-02-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP4560740B2 (ja) * 2007-09-25 2010-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
JP5286829B2 (ja) * 2007-12-13 2013-09-11 東洋紡株式会社 ラベル
WO2009107591A1 (ja) * 2008-02-27 2009-09-03 東洋紡績株式会社 白色熱収縮性ポリエステル系フィルム、白色熱収縮性ポリエステル系フィルムの製造方法、ラベル、及び包装体
JP5339061B2 (ja) * 2008-02-29 2013-11-13 東洋紡株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
KR101066517B1 (ko) * 2008-12-01 2011-09-21 에스케이씨 주식회사 열수축성 폴리에스터계 필름
KR101639101B1 (ko) * 2009-05-26 2016-07-12 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름, 그의 제조방법 및 포장체
KR101725576B1 (ko) * 2010-03-15 2017-04-10 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름, 그의 포장체, 및 열수축성 폴리에스테르계 필름의 제조방법
JP2012017456A (ja) * 2010-06-11 2012-01-26 Fujifilm Corp ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール
JP5240387B1 (ja) * 2012-07-26 2013-07-17 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
ES2824025T3 (es) * 2012-08-03 2021-05-11 Toyo Boseki Película a base de poliéster termocontraíble
CN104582937B (zh) * 2012-08-29 2016-10-26 东洋纺株式会社 热收缩性聚酯系薄膜
KR102142394B1 (ko) * 2013-06-11 2020-08-07 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
JP6485054B2 (ja) * 2014-04-01 2019-03-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6519189B2 (ja) * 2014-04-01 2019-05-29 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6459533B2 (ja) * 2014-04-01 2019-01-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6642001B2 (ja) * 2014-10-30 2020-02-05 東洋紡株式会社 熱収縮性ポリエステル系フィルム及び包装体
JP6504010B2 (ja) * 2015-09-30 2019-04-24 東洋紡株式会社 ポリエステル系ラベルおよび包装容器
CN108779273B (zh) * 2016-03-18 2021-06-11 东洋纺株式会社 聚酯系薄膜、层叠体和包装体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103432A (ja) * 1989-09-14 1991-04-30 Unitika Ltd 金属積層用ポリエステル樹脂組成物およびフィルム
WO2014185442A1 (ja) * 2013-05-16 2014-11-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068130A (ja) * 2015-09-30 2017-04-06 東洋紡株式会社 ポリエステル系ラベルおよび包装容器
US20190077136A1 (en) * 2016-03-18 2019-03-14 Toyobo Co., Ltd. Polyester film, laminate, and package
EP3431531A4 (en) * 2016-03-18 2019-12-11 Toyobo Co., Ltd. POLYESTER FILM, LAMINATE, AND PACKAGING BODY
US11707925B2 (en) * 2016-03-18 2023-07-25 Toyobo Co., Ltd. Polyester film, laminate, and package
US11298927B2 (en) 2016-07-27 2022-04-12 Toyobo Co., Ltd. White polyester film, laminate, and packaging bag
WO2022239693A1 (ja) * 2021-05-11 2022-11-17 株式会社ベルポリエステルプロダクツ ポリエステル樹脂及びその使用方法、並びに化粧料容器及び化粧製品
WO2023243486A1 (ja) * 2022-06-13 2023-12-21 東洋紡株式会社 レーザー印字用熱収縮性ポリエステル系フィルム

Also Published As

Publication number Publication date
JPWO2016152517A1 (ja) 2018-01-11
KR102459356B1 (ko) 2022-10-25
US10392485B2 (en) 2019-08-27
JP6658513B2 (ja) 2020-03-04
TWI690550B (zh) 2020-04-11
US20180079877A1 (en) 2018-03-22
CN107428965A (zh) 2017-12-01
TW201641551A (zh) 2016-12-01
KR20170128363A (ko) 2017-11-22
CN107428965B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2016152517A1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP6337774B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
KR101500917B1 (ko) 열수축성 폴리에스테르계 필름 및 포장체
KR102142394B1 (ko) 열수축성 폴리에스테르계 필름 및 포장체
JP6572907B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
KR102023237B1 (ko) 열수축성 폴리에스테르계 필름 및 포장체
JP6485054B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP6835127B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP6642001B2 (ja) 熱収縮性ポリエステル系フィルム及び包装体
JP2015229242A (ja) 熱収縮性ポリエステル系フィルム及び包装体
JP6673453B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016516108

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026998

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16768420

Country of ref document: EP

Kind code of ref document: A1