WO2016152155A1 - フェノール樹脂発泡体及びその製造方法 - Google Patents

フェノール樹脂発泡体及びその製造方法 Download PDF

Info

Publication number
WO2016152155A1
WO2016152155A1 PCT/JP2016/001672 JP2016001672W WO2016152155A1 WO 2016152155 A1 WO2016152155 A1 WO 2016152155A1 JP 2016001672 W JP2016001672 W JP 2016001672W WO 2016152155 A1 WO2016152155 A1 WO 2016152155A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
mass
resin foam
less
compound
Prior art date
Application number
PCT/JP2016/001672
Other languages
English (en)
French (fr)
Inventor
健 井原
滋美 向山
雅人 浜島
寿 三堀
義人 深沢
Original Assignee
旭化成建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成建材株式会社 filed Critical 旭化成建材株式会社
Priority to EP19211174.8A priority Critical patent/EP3640288A1/en
Priority to CN201680009566.8A priority patent/CN107207759B/zh
Priority to KR1020177020078A priority patent/KR101991603B1/ko
Priority to RU2017133125A priority patent/RU2686935C2/ru
Priority to JP2017507507A priority patent/JP6193530B2/ja
Priority to EP16768060.2A priority patent/EP3275926B1/en
Priority to AU2016237953A priority patent/AU2016237953B2/en
Priority to CA2978859A priority patent/CA2978859A1/en
Priority to US15/556,076 priority patent/US20180230283A1/en
Publication of WO2016152155A1 publication Critical patent/WO2016152155A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Definitions

  • the present invention relates to a phenol resin foam and a method for producing the same.
  • heat insulating materials for residential use fiber-based heat insulating materials such as glass wool and rock wool, and foamed plastic heat insulating materials obtained by foaming styrene resin, urethane resin, and phenol resin are known.
  • the heat insulating performance of a foamed plastic heat insulating material is greatly affected by the type and state of the compound contained in the bubbles.
  • chlorofluorocarbon which has a low thermal conductivity of gas
  • CFC chlorofluorocarbon
  • CFC was abolished by the Montreal Protocol adopted in 1987 because it contributes greatly to the destruction of the ozone layer and climate change.
  • HFC hydrofluorocarbon
  • HFC has many substances having a high global warming potential, and conversion to a compound having a lower ozone depletion potential and a global warming potential is required.
  • hydrocarbon compounds are extremely excellent in terms of environmental protection because of their extremely low ozone depletion potential and global warming potential.
  • the conventional CFC type compound there existed a subject that heat conductivity was high.
  • Patent Documents 1 and 2 disclose compounds containing unsaturated halogenated hydroolefins having a low or zero ozone depletion coefficient and a low global warming coefficient.
  • Patent Document 1 and Patent Document 2 only describe examples in which a compound containing an unsaturated halogenated hydroolefin is applied to a polyurethane resin foam or a polyisocyanurate resin foam. No examples have been described. Then, when the present inventors repeated research about the application to a phenol resin foam, many halogenated hydroolefins are disclosed in patent documents 1 and patent documents 2, but these compounds are high in polarity. In addition, when used in a phenol resin foam, the phenol resin having a hydroxyl group, which is a hydrophilic group, is plasticized, and the cell diameter of the phenol resin foam is increased or the closed cell ratio is decreased. It became clear that there was a possibility of doing.
  • the present invention has a low environmental burden (low or zero ozone depletion coefficient and low global warming coefficient), can maintain excellent heat insulation performance over a long period of time, and further increases moisture permeability.
  • An object of the present invention is to provide a phenolic resin foam in which the dew condensation inside the wall is reduced and a method for producing the same.
  • the present inventors have found that at least one selected from the group consisting of phenol resins, chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons.
  • the present inventors have found that a phenol resin foam with reduced condensation inside the wall body accompanying an increase in moisture permeability can be provided, and the present invention has been completed.
  • [1] Contains at least one selected from the group consisting of a phenol resin, a chlorinated hydrofluoroolefin, a non-chlorinated hydrofluoroolefin, and a halogenated hydrocarbon, and has a density of 20 kg / m 3 or more and 100 kg / m 3 or less.
  • the average cell diameter is 10 ⁇ m or more and 300 ⁇ m or less
  • the closed cell rate is 80% or more and 99% or less
  • the moisture permeability is 0.38 ng / (m ⁇ s ⁇ Pa) or more and 2.00 ng / (m ⁇ s ⁇ Pa) or less
  • a phenolic resin foam a phenolic resin foam.
  • the chlorinated hydrofluoroolefin is at least one selected from the group consisting of 1-chloro-3,3,3-trifluoropropene and 2-chloro-3,3,3-trifluoropropene
  • the non-chlorinated hydrofluoroolefin is 1,3,3,3-tetrafluoro-1-propene, 2,3,3,3-tetrafluoro-1-propene, and 1,1,1,4,4,
  • the phenol resin foam according to [1] which is at least one selected from the group consisting of 4-hexafluoro-2-butene.
  • the phenol resin foam according to the above [1] or [2], wherein the halogenated hydrocarbon is isopropyl chloride.
  • [8] Volatility including at least one selected from the group consisting of a phenol resin, a surfactant, a curing catalyst, and a chlorinated hydrofluoroolefin, a non-chlorinated hydrofluoroolefin, and a halogenated hydrocarbon on the face material.
  • the phenol resin foam of the present invention has the above-described configuration, it has a low environmental load, can maintain excellent heat insulation performance over a long period of time, and can further reduce condensation inside the wall body due to an increase in moisture permeability. Moreover, according to the manufacturing method of the phenol resin foam of this invention, the phenol resin foam of this invention which has the said structure can be manufactured easily.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. Note that the present invention is not limited to the following embodiments.
  • the phenol resin foam of this embodiment contains at least one selected from the group consisting of phenol resins, chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons, and has a density of 20 kg / m. 1. It is 3 or more and 100 kg / m 3 or less, the average cell diameter is 10 ⁇ m or more and 300 ⁇ m or less, the closed cell rate is 80% or more and 99% or less, and the moisture permeability is 0.38 ng / (m ⁇ s ⁇ Pa) or more. 00 ng / (m ⁇ s ⁇ Pa) or less.
  • At least one compound or mixture selected from the group consisting of chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, and halogenated hydrocarbons may be referred to as “compound ⁇ ”. Since the compound ⁇ has a low or zero ozone depletion coefficient and a low global warming coefficient (because the load on the environment is low), the phenol resin foam containing the compound ⁇ has a low load on the environment.
  • the chlorinated hydrofluoroolefin is not particularly limited, but 1-chloro-3,3,3-trifluoropropene and 2-chloro are preferable from the viewpoint of low thermal conductivity, foamability, and environmental load. At least one selected from the group consisting of -3,3,3-trifluoropropene is preferred.
  • the non-chlorinated hydrofluoroolefin is not particularly limited, but is 1,3,3,3-tetrafluoro-1-propene, 2 from the viewpoint of low thermal conductivity, foamability, and environmental load. 3,3,3-tetrafluoro-1-propene, 1,1,1,4,4,4-hexafluoro-2-butene and the like are preferable.
  • the halogenated hydrocarbon is not particularly limited, but is a halogenated hydrocarbon containing at least one hydrogen atom from the viewpoint of low thermal conductivity, boiling point of a volatile compound, and environmental load.
  • Halogenated hydrocarbons containing no more than one kind of halogen atom or halogenated hydrocarbons containing no fluorine atom are preferred, and isopropyl chloride is more preferred.
  • the phenol resin foam of this embodiment may further contain a hydrocarbon, for example.
  • the hydrocarbon include hydrocarbons having 6 or less carbon atoms.
  • Specific examples of the hydrocarbon having 6 or less carbon atoms include normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3- Examples thereof include dimethylbutane and cyclohexane.
  • pentanes such as normal pentane, isopentane, cyclopentane, and neopentane, or butanes such as normal butane, isobutane, and cyclobutane are preferably used.
  • the said hydrocarbon may be used independently and may be used in combination of 2 or more types.
  • the phenol resin foam of this embodiment is not specifically limited,
  • the single compound which consists of 1 type of said compound (alpha) may be included, multiple types of said compound (alpha), or at least 1 type of said compound
  • the compound ⁇ and at least one of the above hydrocarbons may be included.
  • the phenol resin foam of the present embodiment has, for example, at least one compound ⁇ and at least one carbonization from the viewpoint that the gas permeability of the phenol resin is low and heat insulation is more easily maintained over a long period of time.
  • the second component it is preferable to contain hydrogen (in particular, one or two of the above-mentioned compounds ⁇ as the first component and the above-mentioned hydrocarbons (for example, pentanes such as cyclopentane and isopentane) as the second component).
  • hydrogen in particular, one or two of the above-mentioned compounds ⁇ as the first component and the above-mentioned hydrocarbons (for example, pentanes such as cyclopentane and isopentane)
  • a mixture of the compound ⁇ and the hydrocarbon may be referred to as a “volatile compound”.
  • the “volatile compound” refers to the compound ⁇ .
  • the volatile compound is a compound in which at least a part of the compound contained in the volatile compound is volatilized when the phenol resin foam of the present embodiment is produced (when the foamable phenol resin composition is foamed / cured). is there.
  • the proportion of the hydrocarbon in the volatile compound is not particularly limited. From the viewpoint that the phenol resin has low gas permeability and heat insulation is more easily maintained over a long period of time, for example, the total amount of volatile compounds (100% by mass) ) Is preferably 5% by mass or more, more preferably 15% by mass or more, and still more preferably 45% by mass or more.
  • the average boiling point of the volatile compound is not particularly limited. For example, it is preferably ⁇ 30 ° C. or higher and 45 ° C. or lower, more preferably ⁇ 20 ° C. or higher and 43 ° C. or lower, still more preferably 0 ° C. or higher and 41 ° C. or lower, particularly preferably. Is from 10 ° C. to 39 ° C., most preferably from 19 ° C. to 38 ° C. When the average boiling point is lower than ⁇ 30 ° C., the foaming speed becomes too fast and the bubble film tends to be broken at the time of foaming, so that there is a concern that the closed cell ratio is lowered and the long-term heat insulation performance is likely to be lowered. If the temperature is higher than 45 ° C., it is difficult to obtain a sufficient foaming pressure and it is difficult to obtain a desired thickness.
  • the average boiling point can be obtained by the following formula (1).
  • Boiling point average value p ⁇ Tp + q ⁇ Tq + r ⁇ Tr + (1)
  • the content of each of the target components (P, Q, R,%) Of the volatile compound is p, q, r,... (Molar fraction), and the boiling points are Tp, Tq. , Tr,... (° C.)
  • the phenol resin foam in this embodiment may further contain an inorganic compound.
  • an inorganic compound such as aluminum hydroxide, talc, silicon oxide, glass powder, titanium oxide or the like is contained, the bubble diameter tends to be reduced, and there is an advantage that the thermal conductivity is improved.
  • aluminum hydroxide is preferable.
  • content of the said inorganic compound in a phenol resin foam is not specifically limited, For example, 0.1 to 35 mass% is preferable with respect to a phenol resin foam (100 mass%), More preferably It is 1 mass% or more and 20 mass% or less, More preferably, it is 2 mass% or more and 15 mass% or less.
  • the volume average particle size of the inorganic compound is not particularly limited, but is preferably 0.5 ⁇ m or more and 500 ⁇ m or less, more preferably 2 ⁇ m or more and 100 ⁇ m or less, and further preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the volume average particle size is smaller than 0.5 ⁇ m, the effect of reducing the bubble diameter tends to be small, and when the volume average particle size is larger than 500 ⁇ m, the thermal conductivity tends to be deteriorated due to deterioration of the solid thermal conductivity. There is.
  • the kind and content of the inorganic compound dispersed in the phenol resin foam of the present embodiment are subjected to general pretreatment as necessary, and then X-ray fluorescence analysis, X-ray electron spectroscopy, atom It can be qualitatively and quantitatively determined by using an analysis method such as absorption method or Auger electron spectroscopy.
  • the volume average particle diameter of the inorganic compound dispersed in the phenol resin foam is obtained by cutting the foam, enlarging it with an optical microscope, and using micro local elemental analysis such as Auger electron spectroscopy.
  • the location of the inorganic compound particles is confirmed, the particle size of the dispersed particles is measured, and the volume is calculated from the particle size assuming that the particles are approximately spherical.
  • the particle size and volume can be determined.
  • the phenol resin foam in the present embodiment can further contain a silane compound or a siloxane compound. These may be used alone or in combination. Hexamethyldisilazane, dimethoxydimethylsilane, or the like may be used as the silane compound, and hexamethyldisiloxane may be used as the siloxane compound. Since the silane compound and the siloxane compound have nonpolarity, they are not easily mixed with a phenol resin having polarity. For this reason, since many bubble nuclei are formed, a foam having a small bubble diameter and a high closed cell ratio can be obtained.
  • the phenol resin foam in the present embodiment has a density of 20 kg / m 3 or more and 100 kg / m 3 or less, preferably 22 kg / m 3 or more and 50 kg / m 3 or less, more preferably 24 kg / m 3 or more and 40 kg / m 3 or less. m 3 or less, more preferably 26 kg / m 3 or more and 35 kg / m 3 or less, and most preferably 27 kg / m 3 or more and 30 kg / m 3 or less.
  • the density is lower than 20 kg / m 3 , the bubble film becomes thin and the bubble film is easily broken at the time of foaming, making it difficult to obtain a high closed cell structure. Gets worse.
  • the density says the value measured by the method as described in "(1) Foam density" of below-mentioned (evaluation).
  • the density can be adjusted by, for example, the ratio of the volatile compound, the ratio of the curing catalyst, the foaming temperature, the composition and ratio of the phenol resin, the reaction rate, the viscosity of the phenol resin, and the like.
  • the cause is related to the fact that the average bubble diameter, closed cell rate, and moisture permeability are too high or too low. Furthermore, the present inventors paid attention to the use of production conditions, in particular a phenol resin having a specific range of Mw and viscosity and a volatile compound having a boiling point average value of a specific range, and the discharge temperature of the foamable phenol resin composition.
  • the physical property values such as average cell diameter, closed cell rate, moisture permeability can be made the specific range, and by satisfying the physical property values, excellent heat insulation performance over a long period of time It has been found that the effect of maintaining or preventing dew condensation inside the wall body due to an increase in moisture permeability can be obtained.
  • the phenol resin foam in this embodiment has an average cell diameter of 10 ⁇ m or more and 300 ⁇ m or less, preferably 30 ⁇ m or more and 200 ⁇ m or less, more preferably 40 ⁇ m or more and 150 ⁇ m or less, and further preferably 50 ⁇ m or more and 110 ⁇ m or less. Especially preferably, they are 60 micrometers or more and 95 micrometers or less. If the average bubble diameter is too large (for example, if the average bubble diameter is larger than 300 ⁇ m), the heat insulation performance by the gas inside the bubble and the heat shielding by the bubble film are reduced, and the initial heat insulation performance deteriorates or is included in the bubble.
  • the volatile compounds tend to be easily replaced with air, and the heat insulation performance after a long period of time tends to deteriorate.
  • the average bubble diameter is too small (for example, if the average bubble diameter is smaller than 10 ⁇ m), the individual bubble membranes are thinned, so that heat rays are transmitted and heat insulation performance tends to deteriorate.
  • the said average bubble diameter says the value measured by the method as described in "(2) Average bubble diameter" of (evaluation) mentioned later.
  • the average cell diameter can be adjusted by, for example, the composition and viscosity of the phenol resin, the type and ratio of volatile compounds, curing conditions, foaming conditions, and the like.
  • the phenol resin foam in this embodiment has a closed cell ratio of 80% or more and 99% or less, more preferably 85% or more and 99% or less, still more preferably 90% or more and 99% or less, and particularly preferably 93% or more and 99. % Or less, most preferably 95% or more and 99% or less. If the closed cell rate is too low (for example, if the closed cell rate is less than 80%), the volatile compounds contained in the bubbles are easily replaced with air, and the thermal conductivity after a long period of time (after a long period of time) The heat insulation performance) is deteriorated, which is not preferable. In addition, the said closed cell rate says the value measured by the method as described in "(3) closed cell rate" of (evaluation) mentioned later.
  • the closed cell ratio can be adjusted by, for example, the composition and viscosity of the phenol resin, the type and ratio of volatile compounds, curing conditions, foaming conditions, and the like.
  • the phenol resin foam in the present embodiment has a moisture permeability of 0.38 ng / (m ⁇ s ⁇ Pa) or more and 2.00 ng / (m ⁇ s ⁇ Pa) or less, more preferably 0.50 ng / (m ⁇ S ⁇ Pa) to 1.50 ng / (m ⁇ s ⁇ Pa), more preferably 0.63 ng / (m ⁇ s ⁇ Pa) to 1.25 ng / (m ⁇ s ⁇ Pa).
  • the moisture permeability is too low (for example, if the moisture permeability is less than 0.38 ng / (m ⁇ s ⁇ Pa)), moisture in the mortar is lost when it comes into direct contact with a mortar layer such as a wet external insulation method. Since it becomes difficult, it is not preferable. If the moisture permeability is too high (for example, if the moisture permeability is greater than 2.00 ng / (m ⁇ s ⁇ Pa)), indoor moisture will permeate through the foam in the winter when it is installed inside the house. Therefore, it is not preferable because dew condensation is likely to occur on the outdoor side and mold is generated to increase health risks.
  • the said moisture permeability means the value measured by the method as described in "(7) Moisture permeability" of (evaluation) mentioned later.
  • the moisture permeability can be adjusted, for example, by the ratio of the volatile compound, the ratio of the curing catalyst, the foaming temperature, the composition and ratio of the phenol resin, the reaction rate, the viscosity of the phenol resin, and the like.
  • the phenol resin foam in this embodiment preferably has an initial thermal conductivity of less than 0.0200 W / m ⁇ K, more preferably less than 0.0190 W / m ⁇ K, and still more preferably 0.0180 W / m. It is less than m ⁇ K, particularly preferably less than 0.0170 W / m ⁇ K.
  • the initial thermal conductivity is a value measured by the method described in “(5) Initial thermal conductivity” in (Evaluation) described later.
  • the initial thermal conductivity can be adjusted by, for example, the composition and ratio of the phenol resin, the type and ratio of the volatile compound, curing conditions, foaming conditions, and the like.
  • the phenolic resin foam in the present embodiment is a thermal conductivity after an accelerated test corresponding to long-term use (or long-term storage), and the thermal conductivity after being left in a 110 ° C. atmosphere for 14 days (after being left for 14 days)
  • the thermal conductivity is preferably less than 0.0210 W / m ⁇ K, more preferably less than 0.0200 W / m ⁇ K, still more preferably less than 0.0190 W / m ⁇ K, particularly preferably 0.8. It is less than 0180 W / m ⁇ K.
  • the thermal conductivity after standing for 14 days refers to a value measured by the method described in “(6) Thermal conductivity after standing for 14 days in 110 ° C. atmosphere” in (Evaluation) described later.
  • the thermal conductivity after standing for 14 days can be adjusted by, for example, the composition and ratio of the phenol resin, the type and ratio of the volatile compound, the curing conditions, the foaming conditions, and the like.
  • the phenol resin foam in the present embodiment is not particularly limited in the difference in thermal conductivity between the thermal conductivity after standing for 14 days and the initial thermal conductivity, but it is, for example, less than 0.0020 W / m ⁇ K. Is more preferable, less than 0.0017 W / m ⁇ K, still more preferably 0.0015 W / m ⁇ K or less.
  • the difference in thermal conductivity between the thermal conductivity after standing for 14 days and the initial thermal conductivity is expressed in “(6) Thermal conductivity after standing for 14 days in 110 ° C. atmosphere” in (Evaluation) described later. The value measured by the described method.
  • the phenol resin foam in the present embodiment can be produced, for example, by foaming and curing a foamable phenol resin composition containing a phenol resin and the compound ⁇ and optionally containing a surfactant and a curing catalyst.
  • the foamable phenolic resin composition further includes additives such as the hydrocarbon, the inorganic compound, and / or a plasticizer, a flame retardant, a curing aid, a nitrogen-containing compound, a silane compound, and a siloxane compound. May be.
  • a plasticizer such as phthalate ester may be added.
  • the method for producing a phenolic resin foam of the present embodiment includes a phenol resin, a surfactant, a curing catalyst, a chlorinated hydrofluoroolefin, a non-chlorinated hydrofluoroolefin, and a halogenated hydrocarbon on the face material.
  • a method for producing a phenol resin foam comprising foaming and curing a foamable phenol resin composition containing a volatile compound containing at least one selected from the above, the weight average molecular weight Mw of the phenol resin determined by gel permeation chromatography Is 400 to 3000, the viscosity of the phenol resin at 40 ° C.
  • the phenol resin in the present embodiment is obtained by, for example, polymerizing a compound having a phenyl group and a compound having an aldehyde group or a derivative thereof by heating in a temperature range of 40 ° C. to 100 ° C. with an alkali catalyst. .
  • the said phenol resin may be used independently and may be used in combination of 2 or more type.
  • Examples of the compound having a phenyl group used for the preparation of the phenol resin include phenol, resorcinol, catechol, o-, m- or p-cresol, xylenols, ethylphenols, p-tertbutylphenol and the like. . Of these, phenol, o-, m- or p-cresol is preferable, and phenol is most preferable.
  • As the compound having a phenyl group a compound having a binuclear phenyl group can also be used. The above compounds having a phenyl group may be used alone or in combination of two or more.
  • Examples of the compound having an aldehyde group or a derivative thereof used for the preparation of the phenol resin include formaldehyde, paraformaldehyde, 1,3,5-trioxane, tetraoxymethylene and the like. Of these, formaldehyde and paraformaldehyde are preferable.
  • the compound having an aldehyde group or a derivative thereof may be used alone or in combination of two or more.
  • the phenol resin has a weight average molecular weight Mw determined by gel permeation chromatography according to the method described in “(8) Weight average molecular weight Mw of phenol resin” in (Evaluation), which will be described later. It is preferably 500 or more and 2500 or less, more preferably 700 or more and 2500 or less, particularly preferably 1000 or more and 2000 or less, and most preferably 1500 or more and 2000 or less. If the weight average molecular weight Mw is less than 400, a large number of addition reaction sites remain in the phenol nucleus, so that the calorific value after mixing the curing catalyst with the phenol resin increases, so that the phenol resin plasticized with the compound ⁇ has a high temperature. And the viscosity is further reduced.
  • the weight average molecular weight Mw can be adjusted by, for example, the type and ratio of the compound having a phenyl group, the compound having an aldehyde group or a derivative thereof, the temperature and time during polymerization, and the like.
  • the viscosity at 40 ° C. of the phenol resin is not particularly limited, but is preferably, for example, 1000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, and more preferably 5000 mPa ⁇ s or more from the viewpoint of improving the closed cell ratio or reducing the average cell diameter. It is 50000 mPa ⁇ s or less, more preferably 7000 mPa ⁇ s or more and 30000 mPa ⁇ s or less. If the viscosity of the phenol resin at 40 ° C. is too low (for example, lower than 1000 mPa ⁇ s), the bubbles in the phenol resin foam are united, and the bubble diameter tends to be too large.
  • the viscosity of the phenol resin at 40 ° C. is too high (for example, higher than 100000 mPa ⁇ s), the foaming speed becomes slow, so that the necessary foaming ratio cannot be obtained.
  • the viscosity at 40 ° C. is a value measured by the method described in “(9) Viscosity of phenol resin at 40 ° C.” in (Evaluation) described later.
  • the viscosity at 40 ° C. can be adjusted by, for example, the weight average molecular weight of the phenol resin, the moisture content of the phenol resin, and the like.
  • the content of the volatile compound in the foamable phenol resin composition is not particularly limited.
  • the total amount of the phenol resin and the surfactant (100% by mass) is preferably 3.0% by mass or more and 25.0% by mass or less, more preferably 4.0% by mass or more and 20.0% by mass or less, and still more preferably 5.0% by mass or more and 17% by mass or less. 0.5% by mass or less, particularly preferably 6.0% by mass or more and 15.0% by mass or less.
  • the content is less than 3.0% by mass, it is not preferable because it is very difficult to obtain a necessary foaming ratio and the foam becomes too high in density, and a good foam cannot be obtained.
  • the viscosity of the phenol resin decreases due to the plasticizing effect of the compound ⁇ , and excessive foaming occurs due to the excessive content. Is broken, and the closed cell ratio is lowered, and the long-term heat insulation performance and the like are lowered.
  • the foamable phenolic resin composition contains an inorganic gas such as nitrogen or argon as a cell nucleating agent from the viewpoint of making it difficult for the closed cell ratio to decrease and the bubble diameter to become coarser due to the plasticization of the phenolic resin. Also good.
  • the content of the cell nucleating agent is preferably 0.05% by mass or more and 5.0% by mass or less, more preferably 0.05% by mass with respect to the total amount (100% by mass) of the compound ⁇ and the hydrocarbon. % By mass to 3.0% by mass, more preferably 0.1% by mass to 2.5% by mass, particularly preferably 0.1% by mass to 1.5% by mass, most preferably 0.3% by mass.
  • the content is 1.0% by mass or less. If the amount is less than 0.05% by mass, the effect as a cell nucleating agent cannot be sufficiently obtained. It is not preferable because the bubbles in the body are torn, the closed cell ratio is low, the bubble diameter is coarse, and the foam becomes poor.
  • nonionic surfactants are effective, for example, a copolymer of ethylene oxide and propylene oxide.
  • the said surfactant may be used independently and may be used in combination of 2 or more types. Although the usage-amount of the said surfactant is not specifically limited, It is preferably used in 0.3 to 10 mass parts with respect to 100 mass parts of said phenol resins.
  • the curing catalyst may be an acidic curing catalyst that can cure the phenol resin, and for example, an acid anhydride curing catalyst is preferable.
  • an acid anhydride curing catalyst phosphoric anhydride and aryl sulfonic anhydride are preferable.
  • aryl sulfonic anhydride examples include toluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid, substituted phenol sulfonic acid, xylenol sulfonic acid, substituted xylenol sulfonic acid, dodecyl benzene sulfonic acid, benzene sulfonic acid, and naphthalene sulfonic acid.
  • the said curing catalyst may be used independently and may be used in combination of 2 or more types.
  • the curing catalyst may be diluted with a solvent such as ethylene glycol or diethylene glycol.
  • the usage-amount of the said curing catalyst is not specifically limited, It is preferably used in 3 to 30 mass parts with respect to the total amount (100 mass parts) of the said phenol resin and the said surfactant.
  • curing aid examples include resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, and the like.
  • the said hardening adjuvant may be used independently and may be used in combination of 2 or more types.
  • the inorganic compound examples include those described above.
  • content of the said inorganic compound in the said foamable phenol resin composition is not specifically limited, For example, 0.1 mass part or more and 35 mass parts or less are preferable with respect to phenol resin whole quantity (100 mass parts), More Preferably they are 1 mass part or more and 20 mass parts or less, More preferably, they are 2 mass parts or more and 15 mass parts or less.
  • the content is more than 35 parts by mass, the initial thermal conductivity of the foam tends to be deteriorated due to the high thermal conductivity of the inorganic compound itself rather than the effect of reducing the bubble diameter after foaming.
  • plasticizer for example, phthalic acid esters, glycols such as ethylene glycol and diethylene glycol, and the like can be used, and among these, phthalic acid esters are preferable.
  • the said plasticizer may be used independently and may be used in combination of 2 or more types.
  • content of the said plasticizer is not specifically limited, For example, 0.5 mass part or more and 20 mass parts or less are preferable with respect to 100 mass parts of phenol resins, More preferably, 1.0 mass part or more and 10 mass parts or less are preferable. It is.
  • the upper plasticizer is added too much (for example, if it is added in an amount of more than 20 parts by mass), the viscosity of the phenolic resin is remarkably lowered, and foam breakage is induced at the time of foam curing. If added in less than part), the effect of the plasticizer may not be exhibited.
  • a nitrogen-containing compound is added to the foamable phenol resin composition as a formaldehyde catcher agent for reducing the amount of formaldehyde released from the phenol resin foam and / or for the purpose of imparting flexibility to the phenol resin foam. It may be added.
  • the nitrogen-containing compound for example, a compound selected from the group consisting of urea, melamine, nucleidine, pyridine, hexamethylenetetramine and a mixture thereof can be used, and urea is preferably used.
  • the said nitrogen-containing compound may be used independently and may be used in combination of 2 or more types.
  • the nitrogen-containing compound may be added directly during the reaction of the phenol resin or at a timing near the end point, or previously reacted with a compound having an aldehyde group or a derivative thereof. You may mix things with a phenol resin.
  • content of the said nitrogen-containing compound is not specifically limited, For example, 1 mass% or more and 10 mass% or less are preferable with respect to 100 mass% of said phenol resins.
  • the said foamable phenol resin composition is not specifically limited, For example, it can obtain by mixing the said phenol resin, the said surfactant, the said curing catalyst, the said compound alpha, etc. in the ratio as mentioned above. .
  • the phenol resin foam can be obtained by foaming and curing (heat curing) the foamable phenol resin composition.
  • the phenol resin foam is, for example, continuously discharged onto a surface material (lower surface material) that travels the foamable phenol resin composition, and has a surface opposite to the surface in contact with the surface material of the phenol resin composition. Covering with other face material (upper surface material) (both faces of foamed or unfoamed phenolic resin composition are sandwiched between face materials), heat-curing continuous production method, or providing face material on the inner surface of the mold It can be obtained by a batch production system in which a mold agent is applied, the foamable phenolic resin composition is poured, foamed and heat-cured.
  • the continuous production method is preferable from the viewpoint of productivity and the quality of the obtained phenol resin foam.
  • the laminated board laminated board (laminated board containing a face material and a phenol resin foam) which laminated
  • the phenol resin foam laminate may have one face material or two face materials (upper surface material and lower surface material).
  • the face material has flexibility, for example, for the purpose of preventing breakage of the face material during production.
  • the face material having flexibility include synthetic fiber nonwoven fabric, synthetic fiber woven fabric, glass fiber paper, glass fiber woven fabric, glass fiber nonwoven fabric, glass fiber mixed paper, paper, metal film, or a combination thereof.
  • the face material may contain a flame retardant in order to impart flame retardancy.
  • the flame retardant examples include bromine compounds such as tetrabromobisphenol A and decabromodiphenyl ether, aromatic phosphoric acid esters, aromatic condensed phosphoric acid esters, halogenated phosphoric acid esters, red phosphorus and other phosphorous or phosphorous compounds, ammonium polyphosphate
  • Antimony compounds such as antimony trioxide and antimony pentoxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and carbonates such as calcium carbonate and sodium carbonate can be used.
  • the flame retardant may be kneaded into the fibers of the face material, or may be added to a binder of face materials such as acrylic, polyvinyl alcohol, vinyl acetate, epoxy, and unsaturated polyester.
  • the face material may be surface-treated with a water repellent or an asphalt waterproofing agent such as a fluororesin, silicone resin, wax emulsion, paraffin, or acrylic resin paraffin wax combined system.
  • a water repellent or an asphalt waterproofing agent such as a fluororesin, silicone resin, wax emulsion, paraffin, or acrylic resin paraffin wax combined system.
  • the face material preferably has high gas permeability.
  • face materials include synthetic fiber nonwoven fabrics, glass fiber papers, glass fiber nonwoven fabrics, papers, pre-perforated metal films (metal foils and papers with through-holes, glass cloth and glass fibers laminated and reinforced) Etc.) are preferably used.
  • oxygen permeability is particularly preferred facing material is 4.5cm 3 / 24h ⁇ m 2 or more.
  • the weight per unit area is preferably 15 g / m 2 or more and 200 g / m 2 or less, more preferably 15 g / m 2 or more and 150 g / m 2 or less, further preferably 15 g / m 2 or more and 100 g / m 2 or less, particularly preferably 15 g / m.
  • the basis weight is, for example, preferably from 30 g / m 2 to 600 g / m 2 , more preferably from 30 g / m 2 to 500 g / m 2 , and even more preferably from 30 g / m 2 to 400 g. / M 2 or less, particularly preferably 30 g / m 2 or more and 350 g / m 2 or less, and most preferably 30 g / m 2 or more and 300 g / m 2 or less.
  • the foamable phenol resin composition is foamed, for example, by discharging it onto a face material at a temperature higher than the average boiling point of the compound ⁇ (the average boiling point of the mixture ⁇ when hydrocarbons are included). Is preferred.
  • the foamed phenol resin composition (phenol resin foam before curing) can be obtained, for example, by using a device having a first oven and a second oven (for example, an endless steel belt type double conveyor, a slat type double conveyor, etc.). It can be cured.
  • the temperature (discharge temperature, Y, unit: ° C.) of the foamable phenol resin composition when the foamable phenol resin composition is discharged onto the face material (for example, on the bottom material) is not particularly limited.
  • the coefficient is not more than the coefficient a calculated by the following formula (2) and is not less than the coefficient b calculated by the following formula (3) (b ⁇ Y ⁇ a), and the following formula (4) It is more preferable that the coefficient is less than the coefficient a ′ calculated in step (b) and the coefficient b ′ calculated in the following formula (5) (b ′ ⁇ Y ⁇ a ′).
  • the coefficient a ′′ or less is within the range of the coefficient a ′′ or less and the coefficient b ′′ calculated by the following formula (7) (b ′′ ⁇ Y ⁇ a ′′).
  • the discharge temperature Y is higher than the coefficient a, it is not preferable because foaming occurs rapidly and bubbles are easily broken.
  • the discharge temperature Y is lower than the coefficient b, the foaming speed is slow, so that the coalescence of bubbles tends to occur and the bubble diameter tends to increase, which is not preferable.
  • X represents the average boiling point (° C.) of the volatile compound
  • the discharge temperature is a value measured by the method described in “(10) Discharge temperature” in (Evaluation) described later.
  • the said discharge temperature can be adjusted with mixer temperature control, the ratio of a volatile compound, the ratio of a curing catalyst, the composition and ratio of a phenol resin, reaction rate, the viscosity of a phenol resin, etc., for example.
  • the first oven is preferably an oven that generates hot air of 60 ° C. or higher and 110 ° C. or lower, for example.
  • the foamed phenol resin composition phenol resin foam before curing
  • the first oven may not have a uniform temperature over the entire area, and may have a plurality of different temperature zones.
  • the second oven is preferably an oven that generates hot air of 70 ° C. or higher and 120 ° C. or lower.
  • the second oven is preferably for post-curing the phenol resin foam partially cured in the first oven.
  • Partially cured phenolic resin foam boards may be stacked at regular intervals using spacers or trays. If the temperature in the second oven is too high, the pressure of the volatile compounds inside the bubbles of the phenol resin foam will be too high, which will cause bubble breakage. If it is too low, it will take time to advance the curing reaction. Since there exists a possibility that it may be too much, 80 to 110 degreeC is more preferable.
  • the internal temperature of the phenol resin foam is preferably 60 ° C.
  • the internal temperature of the phenol resin foam can be measured, for example, by placing a thermocouple and a data recording device in an oven.
  • the phenol resin is plasticized due to the high compatibility of the compound ⁇ with the phenol resin, and thus there is a concern that the increase in viscosity associated with the curing reaction of the phenol resin may be canceled in the foam curing step. Is done. As a result, there is a concern that the phenol resin foam cannot obtain sufficient hardness by heating in the oven as in the prior art. For this reason, it is preferable to lengthen the sum total of the residence time in the first and second ovens as compared with the case where conventional hydrocarbons are used.
  • the total residence time in the first and second ovens is preferably, for example, 3 minutes to 60 minutes, more preferably 5 minutes to 45 minutes, further preferably 5 minutes to 30 minutes, and most preferably 7 minutes. It is from 20 minutes to 20 minutes. If the residence time in the oven is too short, the phenolic resin foam comes out of the oven in an uncured state, resulting in a poor phenolic resin foam with poor dimensional stability. If the residence time in the oven is too long, the drying of the phenolic resin foam will proceed too much and the moisture content will be too low, so there is a concern that the board will be warped by inhaling a large amount of atmospheric moisture after leaving the oven. It is not preferable.
  • the foaming and curing method of the foamable phenol resin composition for obtaining the phenol resin foam of the present embodiment is not limited to the above-described method.
  • the phenol resin foam of the present invention can be used, for example, for residential building materials, industrial and industrial heat insulating materials, and the like.
  • the environmental load is small, the initial thermal insulation performance is excellent, the low thermal conductivity can be maintained over a long period of time, and further, the condensation inside the wall body due to the increase in moisture permeability is reduced.
  • a phenol resin foam can be provided.
  • the closed space volume (V2: cm 3 ) of the specimen was measured using an air pycnometer (Tokyo Science Co., Ltd., trade name “MODEL1000”) according to the method described in Method A of ASTM D 2856.
  • the sample was placed in a Tedlar bag for 10 minutes in a temperature controller adjusted to 81 ° C.
  • 100 ⁇ L of gas generated in the Tedlar bag was sampled and subjected to GC / MS analysis under the following measurement conditions to identify volatile compounds in the phenol resin foam.
  • the presence / absence of chlorinated hydrofluoroolefin, non-chlorinated hydrofluoroolefin, and halogenated hydrocarbon was confirmed from the GC / MS analysis results.
  • the types of chlorinated hydrofluoroolefin, non-chlorinated hydrofluoroolefin, and halogenated hydrocarbon were identified from retention times and mass spectra determined in advance.
  • the surface material is peeled off so as not to damage the surface of the phenolic resin foam, and each of the specimens is a specimen of one specimen and a symmetrical configuration type measuring device (Eihiro Seiki Co., Ltd.) Product name “HC-074 / 600”).
  • Weight average molecular weight Mw of phenol resin Measured by gel permeation chromatography (GPC) under the following conditions. From calibration curves obtained with standard substances (standard polystyrene, 2-hydroxybenzyl alcohol and phenol) shown later, used in Examples and Comparative Examples. The weight average molecular weight Mw of the phenol resin was determined. Preprocessing: About 10 mg of phenol resin was dissolved in 1 ml of N, N dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph), and 0.2 ⁇ m membrane filter filtered was used as the measurement solution.
  • GPC gel permeation chromatography
  • Measurement condition Measuring device: Shodex System 21 (manufactured by Showa Denko KK) Column: Shodex asahipak GF-310HQ (7.5 mm ID x 30 cm) Eluent: 0.1% by weight of lithium bromide was dissolved in N, N dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) and used.
  • Viscosity of phenol resin at 40 ° C. 0.5 ml of phenol resin was weighed and set in a rotational viscometer (manufactured by Toki Sangyo Co., Ltd., model R-100, rotor part 3 ° ⁇ R-14). The rotation speed of the rotor was set so that the viscosity of the phenol resin to be measured was in the range of 50 to 80% with respect to the measurement upper limit viscosity of the apparatus.
  • the measurement temperature was 40 ° C., and the viscosity value 3 minutes after the start of measurement was taken as the measurement value.
  • Example 1 The reactor was charged with 3500 kg of a 52% by weight aqueous formaldehyde solution and 2510 kg of 99% by weight phenol, stirred with a propeller rotating stirrer, and the temperature inside the reactor was adjusted to 40 ° C. with a temperature controller. Subsequently, 50 mass% sodium hydroxide aqueous solution was added until the pH of the reaction liquid became 8.7. The reaction solution was heated to 85 ° C. over 1 hour, and when the Ostwald viscosity reached 200 centistokes (200 ⁇ 10 ⁇ 6 m 2 / s, measured value at 25 ° C., end point viscosity), the reaction solution was Cooled and added 400 kg of urea.
  • reaction solution was cooled to 30 ° C., and a 50 wt% aqueous solution of paratoluenesulfonic acid monohydrate was added until the pH reached 6.4.
  • the resulting reaction solution was concentrated using a thin film evaporator until the water content in the phenolic resin was 8.3% by mass. As a result, the viscosity was 20000 mPa ⁇ s.
  • a mixture of 50% by mass of an ethylene oxide-propylene oxide block copolymer and 50% by mass of polyoxyethylene dodecyl phenyl ether as a surfactant was mixed at a ratio of 2.0 parts by weight with respect to 100 parts by mass of the phenol resin. . 11 parts by mass of 1-chloro-3,3,3-trifluoropropene as a volatile compound, 80% by mass of xylene sulfonic acid and diethylene glycol as a curing catalyst with respect to 100 parts by mass of the phenol resin mixed with the surfactant. 14 parts by mass of a mixture with 20% by mass was mixed with a mixing head adjusted to 15 ° C. to prepare a foamable phenolic resin composition. And the discharge temperature of the foamable phenolic resin composition was set to 30 degreeC, and it supplied on the moving face material.
  • the foamable phenolic resin composition supplied on the face material should be sandwiched between two face materials at the same time the surface opposite to the face material is in contact with the other face material. Then, it was introduced into a slat type double conveyor heated to 80 ° C., cured with a residence time of 15 minutes, and then cured in an oven at 110 ° C. for 2 hours to obtain a phenol resin foam laminate.
  • Example 2 8 parts by mass of 1,3,3,3-tetrafluoro-1-propene as a volatile compound is added to 100 parts by mass of a phenol resin mixed with a surfactant, and mixed with a mixing head adjusted to 10 ° C. Then, a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 22 ° C.
  • Example 3 8 parts by mass of 2,3,3,3-tetrafluoro-1-propene as a volatile compound is added to 100 parts by mass of a phenol resin mixed with a surfactant and mixed with a mixing head adjusted to 7 ° C. Then, a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 17 ° C.
  • Example 4 14 parts by mass of 1,1,1,4,4,4-hexafluoro-2-butene as a volatile compound was added to 100 parts by mass of a phenol resin mixed with a surfactant, and the temperature was adjusted to 20 ° C.
  • a phenol resin foam laminate was obtained in the same manner as in Example 1 except that mixing was performed with a mixing head and the discharge temperature was 39 ° C.
  • Example 5 Except for adding 7 parts by mass of isopropyl chloride as a volatile compound to 100 parts by mass of a phenol resin mixed with a surfactant, mixing with a mixing head adjusted to 27 ° C., and setting the discharge temperature to 48 ° C. In the same manner as in Example 1, a phenol resin foam laminate was obtained.
  • Example 6 The Ostwald viscosity of the phenol resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10,000 mPa ⁇ s, 1-chloro-3,3,3-trifluoropropene (90% by mass) and cyclopentane (90% by mass) as volatile compounds 10 parts by mass of the mixture with 10 parts by mass of the phenol resin mixed with the surfactant and mixed with a mixing head adjusted to 18 ° C., and the discharge temperature was set to 34 ° C. Except for the above, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 7 The surfactant is mixed with a mixture of 1-chloro-3,3,3-trifluoropropene (50% by mass) and cyclopentane (50% by mass) as volatile compounds with an Ostwald viscosity of 40 centistokes of the phenol resin. 7 parts by mass is added to 100 parts by mass of the phenol resin, mixed with a mixing head adjusted to 25 ° C., and the discharge temperature is set to 45 ° C. I got a plate.
  • Example 8 A viscosity of 10000 mPa ⁇ s in a concentration process using a thin film evaporator of a phenol resin, and a mixture of 1-chloro-3,3,3-trifluoropropene (90% by mass) and isopentane (10% by mass) as a volatile compound. 9 parts by weight with respect to 100 parts by weight of the phenol resin mixed with the surfactant, mixed with a mixing head adjusted to 25 ° C., and the discharge temperature was 43 ° C. Thus, a phenolic resin foam laminate was obtained.
  • Example 9 A viscosity of 5000 mPa ⁇ s in a concentration process by a thin film evaporator of a phenol resin, and a mixture of 1-chloro-3,3,3-trifluoropropene (90% by mass) and isopropyl chloride (10% by mass) as a volatile compound 9 parts by mass with respect to 100 parts by mass of the phenol resin mixed with the surfactant, mixed with a mixing head adjusted to 15 ° C., and the discharge temperature was 28 ° C. Thus, a phenol resin foam laminate was obtained.
  • Example 10 The Ostwald viscosity of the phenolic resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10,000 mPa ⁇ s, 1,3,3,3-tetrafluoro-1-propene (50 mass%) and isopropyl chloride as volatile compounds 7 parts by mass of the mixture (50% by mass) with respect to 100 parts by mass of the phenol resin mixed with the surfactant was mixed with a mixing head adjusted to 12 ° C., and the discharge temperature was 25 ° C. Except for this, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 11 The viscosity of the phenol resin in the thin film evaporator is 5000 mPa ⁇ s, and the volatile compounds are 1-chloro-3,3,3-trifluoropropene (80 mass%), isopropyl chloride (10 mass%) and isopentane ( 10 parts by mass) and 9 parts by mass with respect to 100 parts by mass of the phenol resin mixed with the surfactant, and mixed with a mixing head adjusted to 12 ° C., and the discharge temperature was 25 ° C. Except for the above, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 12 The Ostwald viscosity of the phenol resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10000 mPa ⁇ s, 1,3,3,3-tetrafluoro-1-propene (50% by mass) as a volatile compound, isopropyl chloride 7 parts by mass of a mixture of (40% by mass) and isopentane (10% by mass) with respect to 100 parts by mass of a phenol resin mixed with a surfactant, and mixed with a mixing head adjusted to 9 ° C., A phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 20 ° C.
  • Example 13 The Ostwald viscosity of the phenolic resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 45000 mPa ⁇ s, 1,3,3,3-tetrafluoro-1-propene (50% by mass) and cyclopentane as volatile compounds 7 parts by mass of the mixture of (50% by mass) with respect to 100 parts by mass of the phenol resin mixed with the surfactant was mixed with a mixing head adjusted to 12 ° C., and the discharge temperature was 29 ° C. Except for this, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 14 The Ostwald viscosity of the phenolic resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 80000 mPa ⁇ s, 1,3,3,3-tetrafluoro-1-propene (90% by mass) and cyclopentane as volatile compounds 8 parts by mass of the mixture with (10% by mass) is added to 100 parts by mass of the phenol resin mixed with the surfactant, and mixed with a mixing head adjusted to 7 ° C., and the discharge temperature is set to 19 ° C. Except for this, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 15 The Ostwald viscosity of the phenolic resin is 370 centistokes, the viscosity in the concentration process using a thin film evaporator is 30000 mPa ⁇ s, 1,3,3,3-tetrafluoro-1-propene (80% by mass) and cyclopentane as volatile compounds 8 parts by mass of the mixture with (20% by mass) is added to 100 parts by mass of the phenol resin mixed with the surfactant, and mixed with a mixing head adjusted to 12 ° C., and the discharge temperature is set to 27 ° C. Except for this, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 16 The Ostwald viscosity of the phenolic resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10,000 mPa ⁇ s, 1-chloro-3,3,3-trifluoropropene (25% by mass) and cyclopentane (25% by mass) as volatile compounds 75 parts by mass) and 7 parts by mass with respect to 100 parts by mass of the phenol resin mixed with the surfactant, and mixed with a mixing head adjusted to 30 ° C., and the discharge temperature was 52 ° C. Except for the above, a phenol resin foam laminate was obtained in the same manner as in Example 1.
  • Example 17 8 parts by mass of 2,3,3,3-tetrafluoro-1-propene as a volatile compound is added to 100 parts by mass of a phenol resin mixed with a surfactant and mixed with a mixing head adjusted to 25 ° C. Then, a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 45 ° C.
  • Example 18 5 parts by mass of aluminum hydroxide having a Ostwald viscosity of 80 centistokes and a volume average particle size of 20 ⁇ m is added to 100 parts by mass of the phenol resin, and 1-chloro-3,3,3-trifluoro is added as a volatile compound. 10 parts by mass of a mixture of propene (90% by mass) and cyclopentane (10% by mass) is added to 100 parts by mass of a phenol resin mixed with a surfactant and mixed with a mixing head adjusted to 27 ° C. Then, a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 50 ° C.
  • Example 19 As a volatile compound, a mixture of 1,3,3,3-tetrafluoro-1-propene (70% by mass) and cyclopentane (30% by mass) is added to 100 parts by mass of a phenol resin mixed with a surfactant. 8 parts by mass was added and mixed with a mixing head adjusted to 23 ° C., and a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 41 ° C.
  • Example 20 The viscosity of the phenol resin in the concentration process using a thin film evaporator is 30000 mPa ⁇ s, and 2,3,3,3-tetrafluoro-1-propene (80% by mass) and cyclopentane (20% by mass) as volatile compounds. 8 parts by mass of the mixture was added to 100 parts by mass of the phenol resin mixed with the surfactant, mixed with a mixing head adjusted to 20 ° C., and the discharge temperature was set to 40 ° C. Similarly, a phenol resin foam laminate was obtained.
  • Example 21 A phenol resin foam laminate was obtained in the same manner as in Example 1 except that 2 parts by mass of hexamethyldisiloxane was added to 100 parts by mass of the phenol resin mixed with the surfactant.
  • Example 22 The Ostwald viscosity of the phenol resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10,000 mPa ⁇ s, and 2 parts by mass of hexamethyldisiloxane is added to 100 parts by mass of the phenol resin mixed with the surfactant.
  • a volatile compound a mixture of 1-chloro-3,3,3-trifluoropropene (90% by mass) and cyclopentane (10% by mass) is added to 100 parts by mass of a phenol resin mixed with a surfactant.
  • a phenol resin foam laminate was obtained in the same manner as in Example 1 except that 10 parts by mass were added and mixed with a mixing head whose temperature was adjusted to 18 ° C., and the discharge temperature was 34 ° C.
  • Example 23 2 parts by mass of hexamethyldisiloxane is added to 100 parts by mass of phenol resin with a viscosity of 10,000 mPa ⁇ s and a surfactant mixed in a concentration process by a thin film evaporator of phenol resin, and 1-chloro is added as a volatile compound.
  • -9 parts by mass of a mixture of 3,3,3-trifluoropropene (90% by mass) and isopentane (10% by mass) with respect to 100 parts by mass of a phenol resin mixed with a surfactant, was mixed with a temperature-controlled mixing head, and a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 43 ° C.
  • Example 24 As a volatile compound, a mixture of 1-chloro-3,3,3-trifluoropropene (20% by mass) and isopropyl chloride (80% by mass) is added to 100 parts by mass of a phenol resin mixed with a surfactant. Add 8 parts by weight, add 1 part by weight of phthalate ester as a plasticizer to 100 parts by weight of phenol resin, mix with a mixing head adjusted to 23 ° C., and set the discharge temperature to 41 ° C. In the same manner as in Example 9, a phenol resin foam laminate was obtained.
  • Example 25 As a volatile compound, a mixture of 2-chloro-3,3,3-trifluoropropene (15% by mass) and isopropyl chloride (85% by mass) is added to 100 parts by mass of a phenol resin mixed with a surfactant. Add 8 parts by weight, add 1 part by weight of phthalate as a plasticizer to 100 parts by weight of phenol resin, mix with a mixing head adjusted to 25 ° C, and set the discharge temperature to 43 ° C. In the same manner as in Example 9, a phenol resin foam laminate was obtained.
  • Example 26 A phenol resin foam laminate was obtained in the same manner as in Example 24 except that the Ostwald viscosity of the phenol resin was 40 centistokes and the viscosity in the concentration treatment with a thin film evaporator was 3000 mPa ⁇ s.
  • Example 27 As a volatile compound, a mixture of 1-chloro-3,3,3-trifluoropropene (20% by mass) and isopentane (80% by mass) was added to 7 parts by mass of 100 parts by mass of a phenol resin mixed with a surfactant. A phenol resin foam laminate was obtained in the same manner as in Example 8 except that mass parts were added and mixed with a mixing head adjusted to 27 ° C. and the discharge temperature was 45 ° C.
  • Example 28 As a volatile compound, a mixture of 1-chloro-3,3,3-trifluoropropene (50% by mass) and isopropyl chloride (50% by mass) is added to 100 parts by mass of a phenol resin mixed with a surfactant. 9 parts by weight was added, 1 part by weight of phthalate ester as a plasticizer was added to 100 parts by weight of the phenolic resin, mixed with a mixing head adjusted to 20 ° C., and the discharge temperature was 38 ° C. In the same manner as in Example 9, a phenol resin foam laminate was obtained.
  • Example 29 A mixture of 1-chloro-3,3,3-trifluoropropene (80% by mass) and 1,3,3,3-tetrafluoro-1-propene (20% by mass) as a volatile compound is used as a surfactant. 10 parts by mass with respect to 100 parts by mass of the phenol resin mixed, and mixed with a mixing head adjusted to 15 ° C., and the discharge temperature was set to 26 ° C. A body laminate was obtained.
  • Example 30 As a volatile compound, a mixture of 1-chloro-3,3,3-trifluoropropene (10% by mass), isopropyl chloride (80% by mass) and cyclopentane (10% by mass) was mixed with a surfactant. Add 8 parts by mass to 100 parts by mass of phenol resin, add 1 part by mass of phthalate as a plasticizer to 100 parts by mass of phenol resin, mix with a mixing head adjusted to 19 ° C., and discharge temperature A phenol resin foam laminate was obtained in the same manner as in Example 1 except that the temperature was 38 ° C.
  • Example 31 A mixture of 1,3,3,3-tetrafluoro-1-propene (20% by mass) and cyclopentane (80% by mass) as a volatile compound is added to 100 parts by mass of a phenol resin mixed with a surfactant. 7 parts by mass was added and mixed with a mixing head adjusted to 25 ° C., and a phenol resin foam laminate was obtained in the same manner as in Example 1 except that the discharge temperature was 45 ° C.
  • Example 32 A mixture of 1,3,3,3-tetrafluoro-1-propene (20% by mass) and isopropyl chloride (80% by mass) as a volatile compound is added to 100 parts by mass of a phenol resin mixed with a surfactant. 7 parts by weight, and 1 part by weight of a phthalate ester as a plasticizer is added to 100 parts by weight of a phenolic resin, mixed with a mixing head adjusted to 15 ° C., and the discharge temperature is 30 ° C. Obtained a phenol resin foam laminate in the same manner as in Example 1.
  • Example 33 A phenol resin 100 in which a mixture of 1,1,1,4,4,4-hexafluoro-2-butene (80% by mass) and cyclopentane (20% by mass) as a volatile compound is mixed with a surfactant.
  • a phenol resin foam laminate was obtained in the same manner as in Example 1 except that 12 parts by mass was added to parts by mass and mixed with a mixing head adjusted to 26 ° C., and the discharge temperature was 45 ° C.
  • Example 34 A phenol resin 100 in which a mixture of 1,1,1,4,4,4-hexafluoro-2-butene (80% by mass) and isopropyl chloride (20% by mass) as a volatile compound is mixed with a surfactant. Add 12 parts by weight with respect to parts by weight, add 1 part by weight of phthalate ester as a plasticizer to 100 parts by weight of phenolic resin, mix with a mixing head adjusted to 23 ° C, and set the discharge temperature to 39 ° C. A phenol resin foam laminate was obtained in the same manner as in Example 1 except that.
  • Example 35 A phenol resin 100 in which a mixture of 1,1,1,4,4,4-hexafluoro-2-butene (20% by mass) and isopropyl chloride (80% by mass) as a volatile compound is mixed with a surfactant. Add 8 parts by weight with respect to parts by weight, add 1 part by weight of phthalate ester as a plasticizer to 100 parts by weight of phenolic resin, mix with a mixing head adjusted to 23 ° C, and set the discharge temperature to 39 ° C. A phenol resin foam laminate was obtained in the same manner as in Example 1 except that.
  • Example 36 Mixture of 1,1,1,4,4,4-hexafluoro-2-butene (80% by mass) and 1,3,3,3-tetrafluoro-1-propene (20% by mass) as volatile compounds 13 parts by mass with respect to 100 parts by mass of the phenol resin mixed with the surfactant, mixed with a mixing head adjusted to 15 ° C., and the discharge temperature was 30 ° C. Thus, a phenol resin foam laminate was obtained.
  • Example 1 Example 1 except that the Ostwald viscosity of the phenol resin is 22 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10000 mPa ⁇ s, mixed with a mixing head adjusted to 25 ° C., and the discharge temperature is 43 ° C. Similarly, a phenol resin foam laminate was obtained.
  • Example 2 Example 1 with the exception that the Ostwald viscosity of the phenol resin was 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator was 800 mPa ⁇ s, mixed with a mixing head adjusted to 23 ° C., and the discharge temperature was 40 ° C. Similarly, a phenol resin foam laminate was obtained.
  • Example 3 (Comparative Example 3) Example 1 with the exception that the Ostwald viscosity of the phenol resin was 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator was 10000 mPa ⁇ s, and mixed at a mixing head adjusted to 6 ° C., and the discharge temperature was 16 ° C. Similarly, a phenol resin foam laminate was obtained.
  • Example 4 Example 1 except that the Ostwald viscosity of the phenol resin is 80 centistokes, the viscosity in the concentration treatment with a thin film evaporator is 10000 mPa ⁇ s, mixed with a mixing head adjusted to 33 ° C., and the discharge temperature is 56 ° C. Similarly, a phenol resin foam laminate was obtained.
  • Table 1 and Table 2 show the evaluation results of the phenol resins used in the above Examples and Comparative Examples, and the evaluation results of the phenol resin foams.
  • the phenolic resin foam of the present embodiment has a low environmental load, can maintain excellent heat insulation performance over a long period of time, and is less likely to cause condensation inside the wall body due to an increase in moisture permeability. It can use suitably for the heat insulating material of this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本願発明の目的は、環境への負荷が低く、且つ長期間にわたって優れた断熱性能を維持でき、更には透湿量増加に伴う壁体内部の結露を低減させたフェノール樹脂発泡体及びその製造方法を提供することにある。本願発明のフェノール樹脂発泡体は、フェノール樹脂と、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含有し、密度が20kg/m3以上100kg/m3以下であり、平均気泡径が10μm以上300μm以下であり、独立気泡率が80%以上99%以下であり、透湿率が0.38ng/(m・s・Pa)以上2.00ng/(m・s・Pa)以下であることを特徴とする。

Description

フェノール樹脂発泡体及びその製造方法
 本発明は、フェノール樹脂発泡体及びその製造方法に関する。
 近年、省エネに関する意識向上、及び次世代省エネ基準の義務化等により、住宅の高気密性能、断熱性能の向上が求められてきている。このように住宅の気密性能及び断熱性能向上の要求に伴い、必要とされる断熱材の厚みが増すことが予想されるが、室内の居住スペースの圧迫や壁体内の空間に制限があることから、断熱材の厚みが増すことに伴う設計変更が必要となるといった問題が生じていた。また、断熱材は壁体内に施工されるため、施工後の交換は非常に困難であることから、断熱材には長期間に渡って断熱性能が維持されることも要求されてきている。
 住宅用途の断熱材としてはグラスウール、ロックウールをはじめとする繊維系の断熱材やスチレン樹脂、ウレタン樹脂、フェノール樹脂を発泡させた発泡プラスチック系の断熱材が知られている。また、発泡プラスチック系の断熱材は、気泡内に内包される化合物の種類や状態によって断熱性能が大きく影響を受けることが知られている。
 従来、発泡プラスチック系の断熱材に用いる上記化合物としては、ガスの熱伝導率が低いクロロフルオロカーボン(CFC)が使用されていた。しかしながら、CFCは、オゾン層の破壊や気候変動に大きく寄与することから、1987年に採択されたモントリオール議定書により使用が廃止された。この結果、上記化合物としてオゾン破壊係数が比較的低いハイドロフルオロカーボン(HFC)などへ転換が進んだ。しかしながら、HFCは、高い地球温暖化係数を有している物質が多く、オゾン破壊係数、及び地球温暖化係数が一層低い化合物への転換が求められている。
 上記化合物として炭化水素系化合物は、オゾン破壊係数、地球温暖化係数が極めて低く、環境保護の点で非常に優れた化合物である。一方で、従来のCFC系化合物と比較して、熱伝導率が高いという課題があった。
 特許文献1、特許文献2には、オゾン破壊係数が低い又はゼロであり、地球温暖化係数が低い不飽和ハロゲン化ヒドロオレフィンを含む化合物が開示されている。
特開2013-64139号公報 特開2010-522819号公報
 しかしながら、特許文献1、特許文献2には、不飽和ハロゲン化ヒドロオレフィンを含む化合物をポリウレタン樹脂発泡体やポリイソシアヌレート樹脂発泡体に適用した例しか記載されておらず、フェノール樹脂発泡体に適用した例は記載されていない。
 そこで、本発明者らがフェノール樹脂発泡体への適用について研究を重ねたところ、特許文献1、特許文献2において多くのハロゲン化ヒドロオレフィンが開示されているが、これらの化合物は極性が高いために、フェノール樹脂発泡体に使用する場合、親水基である水酸基を有するフェノール樹脂を可塑化してしまい、フェノール樹脂発泡体の気泡径を粗大化させてしまったり、独立気泡率を低下させてしまったりする虞があることが明らかとなった。そのため、本発明者らの研究によれば、フェノール樹脂発泡体の製造においてハロゲン化ヒドロオレフィンを含む化合物を使用した場合、環境への負荷は低減できるものの、気泡径が粗大化したり、独立気泡率が低下したりして熱伝導率が悪化することで、長期間にわたって優れた断熱性能が発揮されなくなる虞があるという問題が生じることが明らかとなった。更に気泡径の粗大化に伴いフェノール樹脂発泡体の単位厚みあたりの気泡膜の減少や独立気泡率の低下等に伴って透湿量が増加するため、そのようなフェノール樹脂発泡体を内断熱施工した住宅では、冬季に屋内で発生した湿気がフェノール樹脂発泡体を透過する量が増えることにより屋外側の壁体内部で結露が発生して、カビ等に起因する健康上のリスクが発生し易くなるという課題もあった。
 そこで、本発明は、環境への負荷が低く(オゾン破壊係数が低い又はゼロであり、且つ地球温暖化係数が低く)、且つ長期間にわたって優れた断熱性能を維持でき、更には透湿量増加に伴う壁体内部の結露を低減させたフェノール樹脂発泡体及びその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、フェノール樹脂と、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含有し、フェノール樹脂発泡体の密度、平均気泡径、独立気泡率及び透湿率を特定範囲とすることにより、環境への負荷が低く、長期間にわたって優れた断熱性能を維持することができ、更には透湿量増加に伴う壁体内部の結露を低減させたフェノール樹脂発泡体を提供できることを見出し、本発明を完成させるに至った。
 即ち、本発明は以下の[1]~[8]を提供する。
[1]フェノール樹脂と、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含有し、密度が20kg/m3以上100kg/m3以下であり、平均気泡径が10μm以上300μm以下であり、独立気泡率が80%以上99%以下であり、透湿率が0.38ng/(m・s・Pa)以上2.00ng/(m・s・Pa)以下であることを特徴とするフェノール樹脂発泡体。
[2]上記塩素化ハイドロフルオロオレフィンが、1-クロロ-3,3,3-トリフルオロプロペン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選ばれる少なくとも1種であり、上記非塩素化ハイドロフルオロオレフィンが、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン、及び1,1,1,4,4,4-ヘキサフルオロ-2-ブテンからなる群から選ばれる少なくとも1種である、上記[1]のフェノール樹脂発泡体。
[3]上記ハロゲン化炭化水素が、イソプロピルクロリドである、上記[1]又は[2]に記載のフェノール樹脂発泡体。
[4]炭素数6以下の炭化水素をさらに含む、上記[1]~[3]のいずれかに記載のフェノール樹脂発泡体。
[5]初期熱伝導率が0.0200W/m・K未満である、[1]~[4]のいずれかに記載のフェノール樹脂発泡体。
[6]110℃雰囲気に14日間放置後の熱伝導率が、0.0210W/m・K未満である、上記[1]~[5]のいずれかに記載のフェノール樹脂発泡体。
[7]さらに、無機化合物を含む、上記[1]~[6]のいずれかに記載のフェノール樹脂発泡体。
[8]面材上で、フェノール樹脂、界面活性剤、硬化触媒、並びに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含む揮発性化合物を含有する発泡性フェノール樹脂組成物を発泡及び硬化させるフェノール樹脂発泡体の製造方法であって、ゲル浸透クロマトグラフィーによって求められる上記フェノール樹脂の重量平均分子量Mwが400以上3000以下であり、上記フェノール樹脂の40℃における粘度が1000mPa・s以上100000mPa・s以下であり、上記揮発性化合物の沸点平均値が-30℃以上45℃以下であり、かつ上記発泡性フェノール樹脂組成物の吐出温度(℃)と、上記沸点平均値(℃)とが、下記式の関係を満たすことを特徴とする上記[1]記載のフェノール樹脂発泡体の製造方法。
 0.0002X3+0.006X2+0.07X+17≦Y≦0.00005X3+0.003X2+0.08X+52
(式中、Xは上記揮発性化合物の沸点平均値(℃)を表し、Yは吐出温度(℃)を表す)
 本発明のフェノール樹脂発泡体は、上記構成を有するため、環境への負荷が低く、且つ長期間にわたって優れた断熱性能を維持でき、更には透湿量増加に伴う壁体内部の結露を低減できる。また、本発明のフェノール樹脂発泡体の製造方法によれば、上記構成を有する本発明のフェノール樹脂発泡体を容易に製造することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではない。
 本実施形態のフェノール樹脂発泡体は、フェノール樹脂と、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含有し、密度が20kg/m3以上100kg/m3以下であり、平均気泡径が10μm以上300μm以下であり、独立気泡率が80%以上99%以下、透湿率が0.38ng/(m・s・Pa)以上2.00ng/(m・s・Pa)以下である。
 なお、本明細書において、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種の化合物又は混合物を、「化合物α」と称する場合がある。化合物αは、オゾン破壊係数が低い又はゼロであり、且つ地球温暖化係数が低いため(環境への負荷が低いため)、化合物αを含むフェノール樹脂発泡体は環境への負荷が低い。
 上記塩素化ハイドロフルオロオレフィンとしては、特に限定はされないが、熱伝導率の低さや発泡性、及び環境への負荷の観点から、1-クロロ-3,3,3-トリフルオロプロペン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選ばれる少なくとも1種が好ましい。上記非塩素化ハイドロフルオロオレフィンとしては、特に限定はされないが、熱伝導率の低さや発泡性、及び環境への負荷の観点から、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン等が好ましい。
 また、上記ハロゲン化炭化水素としては、特に限定はされないが、熱伝導率の低さや揮発性化合物の沸点、及び環境への負荷の観点から、水素原子を少なくとも一つ含むハロゲン化炭化水素、2種類以上のハロゲン原子を含まないハロゲン化炭化水素、又はフッ素原子を含まないハロゲン化炭化水素が好ましく、より好ましくはイソプロピルクロリドである。
 本実施形態のフェノール樹脂発泡体は、例えば、炭化水素をさらに含んでいてもよい。
 上記炭化水素としては、例えば、炭素数が6以下の炭化水素が挙げられる。上記炭素数が6以下の炭化水素としては、具体的には、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、2,2-ジメチルブタン、2,3-ジメチルブタン、シクロヘキサン等を挙げることができる。中でも、ノルマルペンタン、イソペンタン、シクロペンタン、ネオペンタン等のペンタン類、又はノルマルブタン、イソブタン、シクロブタン等のブタン類が好適に用いられる。上記炭化水素は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 本実施形態のフェノール樹脂発泡体は、特に限定されないが、例えば、1種の上記化合物αからなる単一の化合物を含んでいてもよいし、複数種の上記化合物α、又は少なくとも1種の上記化合物αと少なくとも1種の上記炭化水素とを含んでいてもよい。中でも、本実施形態のフェノール樹脂発泡体は、フェノール樹脂のガス透過性が低く、長期にわたって断熱性が一層維持されやすいという観点から、例えば、少なくとも1種の上記化合物αと少なくとも1種の上記炭化水素とを含む(特に、第1成分として1種又は2種の上記化合物α、第2成分として上記炭化水素(例えば、シクロペンタン、イソペンタンなどのペンタン類)を含む揮発性化合物)ことが好ましい。
 なお、本明細書において、上記化合物α及び上記炭化水素との混合物を「揮発性化合物」と称する場合がある。本実施形態のフェノール樹脂発泡体に上記炭化水素が含まれない場合、「揮発性化合物」とは化合物αをいう。上記揮発性化合物は、本実施形態のフェノール樹脂発泡体を製造する際(発泡性フェノール樹脂組成物を発泡・硬化する際)に、揮発性化合物に含まれる少なくとも一部の化合物が揮発する化合物である。
 上記揮発性化合物中の上記炭化水素の割合は、特に限定されないが、フェノール樹脂のガス透過性が低く、長期にわたって断熱性が一層維持されやすいという観点から、例えば、揮発性化合物全量(100質量%)に対して、5質量%以上が好ましく、より好ましくは15質量%以上、さらに好ましくは45質量%以上である。
 上記揮発性化合物の沸点平均値は、特に限定されないが、例えば、-30℃以上45℃以下が好ましく、より好ましくは-20℃以上43℃以下、さらに好ましくは0℃以上41℃以下、特に好ましくは10℃以上39℃以下、最も好ましくは19℃以上38℃以下である。沸点平均値が-30℃より低いと、発泡速度が速くなりすぎ、発泡時に気泡膜が破れてしまう傾向にあるため、独立気泡率が低下し、長期の断熱性能が低下しやくなる懸念があり、45℃よりも高いと十分な発泡圧が得にくくなり所望の厚みとするのが難しくなるため好ましくない。
 上記沸点平均値は、以下の式(1)によって求めることができる。
  沸点平均値=p×Tp+q×Tq+r×Tr+…   (1)
(上記式(1)において、対象となる揮発性化合物の含有成分(P、Q、R、…)の各々の含有率がp、q、r、…(モル分率)、沸点がTp、Tq、Tr、…(℃)である。)
 本実施形態におけるフェノール樹脂発泡体は、さらに、無機化合物を含有していてもよい。水酸化アルミニウム、タルク、酸化ケイ素、ガラス粉、酸化チタンなどの無機化合物を含有していると気泡径が微細化する傾向があり、熱伝導率が向上するという利点がある。中でも、水酸化アルミニウムが好ましい。
 フェノール樹脂発泡体中の上記無機化合物の含有量は、特に限定されないが、例えば、フェノール樹脂発泡体(100質量%)に対して、0.1質量%以上35質量%以下が好ましく、より好ましくは1質量%以上20質量%以下、さらに好ましくは2質量%以上15質量%以下である。上記含有量が多すぎると(例えば、35質量%より多いと)、発泡時の粘度が高くなることにより所望の厚みにするのに必要な揮発性化合物量が増えたり、無機化合物自体の高い熱伝導率によって初期熱伝導率が悪化したりする傾向があるため好ましくない。
 上記無機化合物の体積平均粒径は、特に限定されないが、例えば、0.5μm以上500μm以下が好ましく、より好ましくは2μm以上100μm以下、さらに好ましくは5μm以上50μm以下である。体積平均粒径が0.5μmより小さいと、気泡径を微細化する効果が小さくなる傾向があり、体積平均粒径が500μmより大きいと、固体熱伝導率の悪化により熱伝導率が悪くなる傾向がある。
 ここで、本実施形態のフェノール樹脂発泡体中に分散する上記無機化合物の種類や含有量は、必要に応じ一般的な前処理を行った後、蛍光X線分析、X線電子分光法、原子吸光法、オージェ電子分光法等の分析方法を用いることにより定性・定量することができる。
 また、フェノール樹脂発泡体中に分散している上記無機化合物の体積平均粒径は、発泡体を切断し、光学式顕微鏡で拡大し、オージェ電子分光法等の微小局部の元素分析等を用いて組成から微分散する物質を特定することにより無機化合物の粒子の存在位置を確認し、分散する粒子の粒径を測定して、粒子を略球状と仮定して粒径から体積を算出し、求めた粒径及び体積を用いて求めることができる。なお、上述のようにして求めた粒子の占有体積と、発泡体の密度から無機化合物の含有率(発泡体(100質量%)に対する無機化合物の含有量)を求めることも可能である。
 本実施形態におけるフェノール樹脂発泡体は、さらに、シラン系化合物、シロキサン系化合物を添加することもできる。これらは単独で用いても良いし、組み合わせて用いても良い。前記シラン系化合物としては、ヘキサメチルジシラザン、及びジメトキシジメチルシラン等を用いてもよく、前記シロキサン系化合物としては、ヘキサメチルジシロキサン等を用いてもよい。前記シラン系化合物、シロキサン化合物は非極性を有するため、極性を有するフェノール樹脂と混ざりにくい。このため、多くの気泡核が形成されことから気泡径が小さく、高い独立気泡率を有するフォームを得ることができる。
 本実施形態におけるフェノール樹脂発泡体は、密度が20kg/m3以上100kg/m3以下であり、好ましくは22kg/m3以上50kg/m3以下であり、より好ましくは24kg/m3以上40kg/m3以下であり、さらに好ましくは26kg/m3以上35kg/m3以下であり、最も好ましくは27kg/m3以上30kg/m3以下である。密度が20kg/m3よりも低いと、気泡膜が薄くなり、発泡時に気泡膜が破れやすくなることから高い独立気泡構造を得ることが困難となり、揮発性化合物が発泡体から抜けて熱伝導率が悪化する。また、密度が100kg/m3より高いと、樹脂をはじめとする固形成分由来の固体熱伝導率が大きくなり断熱性能が低下する。
 なお、上記密度は、後述の(評価)の「(1)発泡体密度」に記載の方法により測定される値をいう。上記密度は、例えば、揮発性化合物の割合、硬化触媒の割合、発泡温度、フェノール樹脂の組成や割合、反応速度、フェノール樹脂の粘度等により調整できる。
 本発明者らは、従来の炭化水素を含むフェノール樹脂発泡体中の炭化水素を、単に化合物αに置き換えた場合には、フェノール樹脂発泡体の発泡硬化工程における、フェノール樹脂の硬化反応に伴う粘度上昇分が、化合物αのフェノール樹脂に対する高い相溶性によって打ち消されてしまい、相対的に気泡の成長速度が速くなってしまうことを見出した。そのため、炭化水素を化合物αに置き換えただけでは、長期間にわたって優れた断熱性能を維持したり、透湿量増加に伴う壁体内部の結露を防止したりする効果が得られにくいことを見出した。そして、鋭意検討を重ねたところ、その原因として、平均気泡径、独立気泡率、透湿率が、高くなりすぎたり、低くなりすぎたりすることと関連があることを見出した。
 さらに、本発明者らは、製造条件、特に特定の範囲のMw、粘度のフェノール樹脂と特定範囲の沸点平均値の揮発性化合物を使用することに着目し、発泡性フェノール樹脂組成物の吐出温度を特定範囲とすること等によって、平均気泡径、独立気泡率、透湿率等の物性値を特定の範囲とすることができ、そして物性値を満たすことで、長期間にわたって優れた断熱性能を維持したり、透湿量増加に伴う壁体内部の結露を防止したりする効果が得られることを見出した。
 本実施形態におけるフェノール樹脂発泡体は、平均気泡径が10μm以上300μm以下であり、好ましくは30μm以上200μm以下であり、より好ましくは40μm以上150μm以下であり、更に好ましくは50μm以上110μm以下であり、特に好ましくは60μm以上95μm以下である。平均気泡径が大きすぎると(例えば、平均気泡径が300μmより大きいと)、気泡内のガスの対流や気泡膜による熱の遮蔽が少なくなるため初期の断熱性能が悪化したり、気泡に内包された揮発性化合物が空気と置換し易くなり長期間経過後の断熱性能が悪化したりする傾向にある。平均気泡径が小さすぎると(例えば、平均気泡径が10μmより小さいと)、個々の気泡膜が薄くなることから熱線を透過して断熱性能が悪化する傾向にある。
 なお、上記平均気泡径は、後述の(評価)の「(2)平均気泡径」に記載の方法により測定される値をいう。上記平均気泡径は、例えば、フェノール樹脂の組成や粘度、揮発性化合物の種類や割合、硬化条件、発泡条件等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、独立気泡率が80%以上99%以下であり、より好ましくは85%以上99%以下、さらに好ましくは90%以上99%以下、特に好ましくは93%以上99%以下、最も好ましくは95%以上99%以下である。独立気泡率が低すぎると(例えば、独立気泡率が80%より小さいと)、気泡に内包された揮発性化合物が空気と置換しやすくなり、長期間経過後の熱伝導率(長期間経過後の断熱性能)が悪化するため好ましくない。
 なお、上記独立気泡率は、後述の(評価)の「(3)独立気泡率」に記載の方法により測定される値をいう。上記独立気泡率は、例えば、フェノール樹脂の組成や粘度、揮発性化合物の種類や割合、硬化条件、発泡条件等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、透湿率が0.38ng/(m・s・Pa)以上2.00ng/(m・s・Pa)以下であり、より好ましくは0.50ng/(m・s・Pa)以上1.50ng/(m・s・Pa)以下、さらに好ましくは0.63ng/(m・s・Pa)以上1.25ng/(m・s・Pa)以下である。透湿率が低すぎると(例えば、透湿率が0.38ng/(m・s・Pa)より小さいと)、湿式外断熱工法などのモルタル層と直接接するような場合にモルタル中水分が抜け難くなるため好ましくない。透湿率が高すぎると(例えば、透湿率が2.00ng/(m・s・Pa)より大きいと)、住宅に内断熱施工した際に冬季に屋内の湿気が発泡体内を多く透過して、屋外側で結露が起き易くなりカビ等が発生して健康上のリスクが高まるため好ましくない。
 なお、上記透湿率は、後述の(評価)の「(7)透湿率」に記載の方法により測定される値をいう。上記透湿率は、例えば、揮発性化合物の割合、硬化触媒の割合、発泡温度、フェノール樹脂の組成や割合、反応速度、フェノール樹脂の粘度等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、初期熱伝導率が0.0200W/m・K未満であることが好ましく、より好ましくは0.0190W/m・K未満であり、更に好ましくは0.0180W/m・K未満であり、特に好ましくは0.0170W/m・K未満である。
 なお、上記初期熱伝導率は、後述の(評価)の「(5)初期熱伝導率」に記載の方法により測定される値をいう。上記初期熱伝導率は、例えば、フェノール樹脂の組成や割合、揮発性化合物の種類や割合、硬化条件、発泡条件等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、長期間使用(又は長期間保存)に対応した加速試験後の熱伝導率である、110℃雰囲気に14日間放置した後の熱伝導率(14日間放置後の熱伝導率)が、0.0210W/m・K未満であることが好ましく、より好ましくは0.0200W/m・K未満、さらに好ましくは0.0190W/m・K未満、特に好ましくは0.0180W/m・K未満である。
 なお、上記14日間放置後の熱伝導率は、後述の(評価)の「(6)110℃雰囲気に14日間放置した後の熱伝導率」に記載の方法により測定される値をいう。上記14日間放置後の熱伝導率は、例えば、フェノール樹脂の組成や割合、揮発性化合物の種類や割合、硬化条件、発泡条件等により調整できる。
 本実施形態におけるフェノール樹脂発泡体は、14日間放置後の熱伝導率と初期熱伝導率との熱伝導率の差が、特に限定されないが、例えば、0.0020W/m・K未満であることが好ましく、より好ましくは0.0017W/m・K未満、さらに好ましくは0.0015W/m・K以下である。
 なお、14日間放置後の熱伝導率と初期熱伝導率との上記熱伝導率の差は、後述の(評価)の「(6)110℃雰囲気に14日間放置した後の熱伝導率」に記載の方法により測定される値をいう。
 本実施形態におけるフェノール樹脂発泡体は、例えば、フェノール樹脂及び上記化合物αを含み、任意に界面活性剤、硬化触媒を含む発泡性フェノール樹脂組成物を、発泡及び硬化させることにより製造することができる。上記発泡性フェノール樹脂組成物は、さらに、上記炭化水素、上記無機化合物、及び/又は可塑剤、難燃剤、硬化助剤、含窒素化合物、シラン系化合物、シロキサン系化合物等の添加剤を含んでいてもよい。また、より精密に発泡及び硬化速度を制御するためには、フタル酸エステルのような可塑剤を添加しても良い。
 本実施形態のフェノール樹脂発泡体の製造方法は、面材上で、フェノール樹脂、界面活性剤、硬化触媒並びに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含む揮発性化合物を含有する発泡性フェノール樹脂組成物を発泡及び硬化させるフェノール樹脂発泡体の製造方法であって、ゲル浸透クロマトグラフィーによって求められる上記フェノール樹脂の重量平均分子量Mwが400以上3000以下であり、上記フェノール樹脂の40℃における粘度が1000mPa・s以上100000mPa・s以下であり、上記揮発性化合物の沸点平均値が-30℃以上45℃以下であり、かつ上記発泡性フェノール樹脂組成物の吐出温度(単位:℃)と、上記沸点平均値(単位:℃)とが、下記式の関係を満たすことが好ましい。
 0.0002X3+0.006X2+0.07X+17≦Y≦0.00005X3+0.003X2+0.08X+52
(式中、Xは揮発性化合物の沸点平均値(℃)を表し、Yは吐出温度(℃)を表す)
 本実施形態におけるフェノール樹脂は、例えば、フェニル基を有する化合物とアルデヒド基を有する化合物またはその誘導体を原料として、アルカリ触媒により40℃以上100℃以下の温度範囲で加熱して重合させることによって得られる。上記フェノール樹脂は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記フェノール樹脂の調製に用いられる上記フェニル基を有する化合物としては、例えば、フェノール、レゾルシノール、カテコール、o-、m-又はp-クレゾール、キシレノール類、エチルフェノール類、p-tertブチルフェノール等が挙げられる。中でも、フェノール、o-、m-又はp-クレゾールが好ましく、最も好ましくはフェノールである。フェニル基を有する化合物としては、2核のフェニル基を有する化合物も使用できる。フェニル基を有する上記化合物は、単独又は2種類以上で用いてもよい。
 上記フェノール樹脂の調製に用いられる上記アルデヒド基を有する化合物またはその誘導体としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、1,3,5-トリオキサン、テトラオキシメチレン等が挙げられる。中でも、ホルムアルデヒド及びパラホルムアルデヒドが好ましい。上記アルデヒド基を有する化合物またはその誘導体は、単独又は2種類以上で用いてもよい。
 上記フェノール樹脂は、後述する(評価)の「(8)フェノール樹脂の重量平均分子量Mw」に記載の方法により、ゲル浸透クロマトグラフィーによって求められる重量平均分子量Mwが、例えば、400以上3000以下であることが好ましく、より好ましくは500以上2500以下、さらに好ましくは700以上2500以下、特に好ましくは1000以上2000以下、最も好ましくは1500以上2000以下である。重量平均分子量Mwが400より小さいとフェノール核に付加反応部位が多く残ってしまうことからフェノール樹脂に硬化触媒を混合した後の発熱量が大きくなるため、化合物αによって可塑化されたフェノール樹脂が高温となりさらに粘度が低下してしまう。この結果、発泡時に気泡の破泡を誘発し、独立気泡率が低下することから熱伝導率が悪化してしまう。また、フェノール樹脂の粘度が低下することから、気泡の合一化が発生しやすくなり、平均気泡径が大きな粗悪なフォームとなってしまう。重量平均分子量Mwが3000より大きいと、フェノール樹脂の粘度が高くなりすぎたり、フェノール樹脂中の低分子量成分が少なくなることから、フェノール樹脂の発熱量が低下して、必要な発泡倍率を得るために多くの揮発性化合物が必要となってしまったり、フェノール樹脂発泡体の表面平滑性が悪化したりしてしまう懸念がある。
 上記重量平均分子量Mwは、例えば、フェニル基を有する化合物やアルデヒド基を有する化合物またはその誘導体の種類や割合、重合時の温度や時間等により調整できる。
 上記フェノール樹脂の40℃における粘度は、特に限定されないが、例えば、1000mPa・s以上100000mPa・s以下が好ましく、独立気泡率の向上や平均気泡径の低下の観点から、より好ましくは5000mPa・s以上50000mPa・s以下であり、さらに好ましくは7000mPa・s以上30000mPa・s以下である。フェノール樹脂の40℃における粘度が低すぎる(例えば、1000mPa・sより低い)、と、フェノール樹脂発泡体中の気泡が合一化してしまうため気泡径が大きくなりすぎてしまう傾向にある。さらには発泡圧によって気泡膜が容易に破れてしまうことから独立気泡率の悪化し、長期保存後の断熱性能の低下を招いてしまう傾向にある。フェノール樹脂の40℃における粘度が高すぎると(例えば、100000mPa・sより高いと)、発泡速度が遅くなることから必要な発泡倍率を得ることができなくなってしまうため好ましくない。
 なお、上記40℃における粘度は、後述の(評価)の「(9)40℃におけるフェノール樹脂の粘度」に記載の方法により測定される値をいう。上記40℃における粘度は、例えば、フェノール樹脂の重量平均分子量、フェノール樹脂の水分率等により調整できる。
 上記発泡性フェノール樹脂組成物中の上記揮発性化合物の含有量(上記化合物α及び/又は上記炭化水素の合計含有量)は、特に限定されないが、例えば、上記フェノール樹脂及び上記界面活性剤の総量(100質量%)に対して、3.0質量%以上25.0質量%以下が好ましく、より好ましくは4.0質量%以上20.0質量%以下、さらに好ましくは5.0質量%以上17.5質量%以下、特に好ましくは6.0質量%以上15.0質量%以下である。上記含有量が3.0質量%未満であると、必要な発泡倍率を得ることが非常に困難となり密度が高すぎる発泡体となってしまい、良好な発泡体が得られなくなるため好ましくない。上記含有量が25.0質量%超であると、上記化合物αの可塑化効果によりフェノール樹脂の粘度が低下してしまうことと、含有量が多すぎることによる過剰発泡が起きて発泡体の気泡が破れてしまい、独立気泡率が低下し長期断熱性能等が低下してしまうため好ましくない。
 上記発泡性フェノール樹脂組成物には、フェノール樹脂可塑化に伴う独立気泡率の低下や気泡径の粗大化を起こりにくくする観点から、気泡核剤として、窒素、アルゴン等の無機ガスを含んでいてもよい。上記気泡核剤の含有量としては、上記化合物α及び上記炭化水素の合計量(100質量%)に対して、0.05質量%以上5.0%質量以下が好ましく、より好ましくは0.05質量%以上3.0質量%以下、さらに好ましくは0.1質量%以上2.5質量%以下、特に好ましくは0.1質量%以上1.5質量%以下、最も好ましくは0.3質量%以上1.0質量%以下である。0.05質量%未満であると、気泡核剤としての効果十分にできなくなり、5.0質量%超であるとフェノール樹脂発泡体の発泡硬化過程において発泡圧が高くなりすぎてしまうことから発泡体の気泡が破れてしまい、独立気泡率が低く、気泡径が粗大で粗悪な発泡体となってしまうため好ましくない。
 上記界面活性剤としては、一般にフェノール樹脂発泡体の製造に使用されるものを使用できるが、中でもノニオン系の界面活性剤が効果的であり、例えば、エチレンオキサイドとプロピレンオキサイドとの共重合体であるアルキレンオキサイドや、アルキレンオキサイドとヒマシ油の縮合物、アルキレンオキサイドとノニルフェノール、ドデシルフェノールのようなアルキルフェノールとの縮合物、アルキルエーテル部分の炭素数が14~22のポリオキシエチレンアルキルエーテル、更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類、ポリジメチルシロキサン等のシリコーン系化合物、ポリアルコール類等が好ましい。上記界面活性剤は単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。
 上記界面活性剤の使用量は、特に限定されないが、上記フェノール樹脂100質量部に対して、0.3質量部以上10質量部以下の範囲で好ましく使用される。
 上記硬化触媒としては、フェノール樹脂を硬化できる酸性の硬化触媒であればよいが、例えば、無水酸硬化触媒が好ましい。上記無水酸硬化触媒としては、無水リン酸や無水アリールスルホン酸が好ましい。上記無水アリールスルホン酸としては、トルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、置換フェノールスルホン酸、キシレノールスルホン酸、置換キシレノールスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記硬化触媒は単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。上記硬化触媒を、エチレングリコール、ジエチレングリコール等の溶媒で希釈してもよい。
 上記硬化触媒の使用量は、特に限定されないが、上記フェノール樹脂及び上記界面活性剤の総量(100質量部)に対して、3質量部以上30質量部以下の範囲で好ましく使用される。
 上記硬化助剤としては、例えば、レゾルシノール、クレゾール、サリゲニン(o-メチロールフェノール)、p-メチロールフェノール等が挙げられる。上記硬化助剤は単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記無機化合物としては、上述のものが挙げられる。
 上記発泡性フェノール樹脂組成物中の上記無機化合物の含有量は、特に限定されないが、例えば、フェノール樹脂全量(100質量部)に対して、0.1質量部以上35質量部以下が好ましく、より好ましくは1質量部以上20質量部以下、さらに好ましくは2質量部以上15質量部以下である。上記含有量が35質量部より多いと、発泡後の気泡径が微細化する効果よりも無機化合物自体の高熱伝導率により発泡体の初期熱伝導率が悪くなる傾向がある。
 上記可塑剤としては、例えば、フタル酸エステル類、エチレングリコール、ジエチレングリコールなどのグリコール類などを用いることができ、中でもフタル酸エステルが好ましい。上記可塑剤は単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記可塑剤の含有量は、特に限定されないが、例えば、フェノール樹脂100質量部に対して、0.5質量部以上20質量部以下が好ましく、より好ましくは1.0質量部以上10質量部以下である。上可塑剤を添加しすぎると(例えば、20質量部より多く添加すると)、フェノール樹脂の粘度が著しく低下し、発泡硬化時に破泡を誘発してしまい、少なすぎると(例えば、0.5質量部より少なく添加すると)、可塑剤による効果を発揮できない場合がある。
 フェノール樹脂発泡体から放散されるホルムアルデヒド量を低減するためのホルムアルデヒドキャッチャー剤として、及び/又はフェノール樹脂発泡体に柔軟性を付与することを目的に、上記発泡性フェノール樹脂組成物に含窒素化合物を添加してもよい。
 上記含窒素化合物としては、例えば、尿素、メラミン、ヌクリジン、ピリジン、ヘキサメチレンテトラミン及びこれらの混合物からなる群から選ばれる化合物等が使用できるが、尿素が好適に用いられる。上記含窒素化合物は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記含窒素化合物としては、一般的に知られているように、フェノール樹脂の反応の途中または終点付近のタイミングで直接添加してもよいし、予めアルデヒド基を有する化合物またはその誘導体と反応させたものをフェノール樹脂に混合してもよい。
 上記含窒素化合物の含有量は、特に限定されないが、例えば、上記フェノール樹脂100質量%に対して、1質量%以上10質量%以下が好ましい。
 上記発泡性フェノール樹脂組成物は、特に限定されないが、例えば、上記フェノール樹脂、上記界面活性剤、上記硬化触媒、及び上記化合物α等を、上述したような割合で混合することにより得ることができる。
 上記フェノール樹脂発泡体は、上記発泡性フェノール樹脂組成物を、発泡及び硬化(加熱硬化)させることにより得ることができる。フェノール樹脂発泡体は、例えば、上記発泡性フェノール樹脂組成物を走行する面材(下面材)上に連続的に吐出し、フェノール樹脂組成物の面材と接触する面とは反対側の面を、他の面材(上面材)で被覆し(発泡又は未発泡のフェノール樹脂組成物の両面を面材で挟み)、加熱硬化させる連続生産方式や、型枠内面に面材を設けたり、離型剤を塗布したりして、上記発泡性フェノール樹脂組成物を流し込み、発泡及び加熱硬化させるバッチ生産方式などにより得ることができる。中でも、生産性、及び得られるフェノール樹脂発泡体の品質の観点から、連続生産方式が好ましい。
 なお、本明細書において、面材上にフェノール樹脂発泡体が積層した積層板(面材とフェノール樹脂発泡体を含む積層板)を、フェノール樹脂発泡体積層板と称する場合がある。フェノール樹脂発泡体積層板は、1枚の面材を有していてもよいし、2枚の面材(上面材と下面材)を有していてもよい。
 上記面材は、例えば、生産時の面材破断を防止する目的で、可撓性を有していることが好ましい。可撓性を有する面材としては、例えば、合成繊維不織布、合成繊維織布、ガラス繊維紙、ガラス繊維織布、ガラス繊維不織布、ガラス繊維混抄紙、紙類、金属フィルムまたは、これらの組合せが挙げられる。上記面材は、難燃性を付与するために難燃剤を含有していてもよい。上記難燃剤としては、テトラブロモビスフェノールA、デカブロモジフェニルエーテル等の臭素化合物、芳香族リン酸エステル、芳香族縮合リン酸エステル、ハロゲン化リン酸エステル、赤リン等のリン又はリン化合物、ポリリン酸アンモニウム、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、炭酸カルシウム、炭酸ナトリウム等の炭酸塩を用いることができる。上記難燃剤は、上記面材の繊維中に練りこまれていてもよく、アクリル、ポリビニルアルコール、酢酸ビニル、エポキシ、不飽和ポリエステル等の面材のバインダーに添加されていてもよい。また、上記面材は、フッ素樹脂系、シリコーン樹脂系、ワックスエマルジョン系、パラフィン系、アクリル樹脂パラフィンワックス併用系などの撥水剤やアスファルト系防水処理剤によって表面処理されていてもよい。これらの撥水剤や防水処理剤は単独で用いてもよいし、上記難燃剤を添加し面材に塗布してもよい。
 上記面材は、ガスの透過性が高いことが好ましい。このような面材としては、合成繊維不織布、ガラス繊維紙、ガラス繊維不織布、紙類、予め穴が空けられた金属フィルム(貫通する孔を有する金属箔と紙、ガラスクロスやガラス繊維を張り合わせ補強した積層物)等が好適に用いられる。上記面材のうち、ガス透過性として、ASTM D3985-95に準拠し測定される、酸素の透過率が4.5cm3/24h・m2以上である面材が特に好ましい。ガス透過性が低い面材を使用した場合には、上記フェノール樹脂が硬化する際に発生する水分を発泡体内から放散させることできず発泡体中に残留することから、独立気泡率が低くボイドの多いフォームとなってしまい、長期間に渡る良好な断熱性能を維持できなくなる。発泡時の発泡性フェノール樹脂組成物の面材への滲み出しや、発泡性フェノール樹脂組成物と面材との接着性の観点から、面材に合成繊維不織布を用いる場合には、目付け量は、例えば、15g/m2以上200g/m2以下が好ましく、より好ましくは15g/m2以上150g/m2以下、さらに好ましくは15g/m2以上100g/m2以下、特に好ましくは15g/m2以上80g/m2以下、最も好ましくは15g/m2以上60g/m2以下である。ガラス繊維不織布を用いる場合には目付け量は、例えば、30g/m2以上600g/m2以下が好ましく、より好ましくは30g/m2以上500g/m2以下、さらに好ましくは30g/m2以上400g/m2以下、特に好ましくは30g/m2以上350g/m2以下、最も好ましくは30g/m2以上300g/m2以下である。
 上記発泡性フェノール樹脂組成物は、例えば、上記化合物αの沸点平均値(炭化水素を含む場合は、混合物βの沸点平均値)よりも高い温度で面材上に吐出することにより、発泡させることが好ましい。発泡したフェノール樹脂組成物(硬化前のフェノール樹脂発泡体)は、例えば、第1のオーブンの及び第2のオーブンを有する機器(例えば、無端スチールベルト型ダブルコンベア、スラット型ダブルコンベアなど)用いるにより硬化させることができる。
 上記面材上(例えば、下面材上)に上記発泡性フェノール樹脂組成物を吐出する際の、上記発泡性フェノール樹脂組成物の温度(吐出温度、Y、単位:℃)は、特に限定されないが、例えば、下記式(2)で算出される係数a以下、且つ下記式(3)で算出される係数b以上の範囲内にあること(b≦Y≦a)が好ましく、下記式(4)で算出される係数a’以下、且つ下記式(5)で算出される係数b’以上の範囲内にあること(b’≦Y≦a’)がより好ましく、下記式(6)で算出される係数a”以下、且つ下記式(7)で算出される係数b”以上の範囲内にあること(b”≦Y≦a”)が更に好ましい。
 吐出温度Yが係数aよりも高いと、急激に発泡が起きて気泡が破れやすくなるため好ましくない。吐出温度Yが係数bよりも低いと、発泡速度が遅くなるために気泡の合一化が起きやすくなり気泡径が大きくなる傾向があり好ましくない。
 a=0.00005X3+0.003X2+0.08X+52 ・・・(2)
 b=0.0002X3+0.006X2+0.07X+17  ・・・(3)
a’=0.00006X3+0.003X2+0.08X+47 ・・・(4)
b’=0.0002X3+0.004X2+0.05X+22  ・・・(5)
a”=0.00007X3+0.003X2+0.08X+42 ・・・(6)
b”=0.0002X3+0.003X2+0.02X+26  ・・・(7)
(式(2)~(7)中、Xは上記揮発性化合物の沸点平均値(℃)を表す)
 なお、上記吐出温度は、後述の(評価)の「(10)吐出温度」に記載の方法により測定される値をいう。上記吐出温度は、例えば、ミキサー温調、揮発性化合物の割合、硬化触媒の割合、フェノール樹脂の組成や割合、反応速度、フェノール樹脂の粘度等により調整できる。
 第1オーブンは、例えば、60℃以上110℃以下の熱風を発生させるオーブンが好ましい。このオーブン内で、発泡したフェノール樹脂組成物(硬化前のフェノール樹脂発泡体)を板状に成形しながら硬化させ、部分硬化したフェノール樹脂発泡体を得ることができる。第1オーブン内は全域に渡って均一な温度でなくてよく、複数の異なる温度ゾーンを有していてもよい。
 第2オーブンは、例えば、70℃以上120℃以下の熱風を発生させるオーブンが好ましい。第2オーブンは、第1オーブンで部分硬化したフェノール樹脂発泡体を後硬化させるものであることが好ましい。部分硬化したフェノール樹脂発泡体ボードはスペーサーやトレイを用いて一定の間隔で重ねてもよい。第2オーブン内の温度が高すぎると、フェノール樹脂発泡体の気泡内部の揮発性化合物の圧力が高くなりすぎるため破泡を誘発してしまい、低すぎると硬化反応を進ませるのに時間がかかりすぎる恐れがあるため、80℃以上110℃以下がより好ましい。
 また第1、第2オーブン内において、フェノール樹脂発泡体の内部温度は60℃以上105℃以下が好ましく、より好ましくは70℃以上100℃以下、さらに好ましくは75℃以上95℃以下、最も好ましくは75℃以上90℃以下である。フェノール樹脂発泡体の内部温度は、例えば、オーブン内に熱電対とデータ記録装置を入れることによって測定できる。
 化合物αを用いる場合には、化合物αのフェノール樹脂に対する高い相溶性によりフェノール樹脂が可塑化してしまうため、発泡硬化の工程においてフェノール樹脂の硬化反応に伴う粘度上昇分が打ち消されてしまうことが懸念される。この結果、従来技術と同様のオーブン内加熱では、フェノール樹脂発泡体が十分な硬度が得られなくなることが懸念される。このため、第1及び第2のオーブン内の滞留時間の合計を従来の炭化水素を用いた場合と比較して長くすることが好ましい。第1及び第2のオーブン内の合計滞留時間としては、例えば、3分以上60分以下が好ましく、より好ましくは5分以上45分以下、さらに好ましくは5分以上30分以下、最も好ましくは7分以上20分以下である。オーブン内の滞留時間が短すぎるとフェノール樹脂発泡体が未硬化の状態でオーブンから出てきてしまうため、寸法安定性が悪い粗悪なフェノール樹脂発泡体となる。オーブン内の滞留時間が長すぎると、フェノール樹脂発泡体の乾燥が進みすぎて含水率が低くなりすぎるため、オーブンから出た後に大気の湿気を多量に吸い込み、ボードが反ってしまう懸念があるため好ましくない。
 なお、本実施形態のフェノール樹脂発泡体を得るための発泡性フェノール樹脂組成物の発泡及び硬化方法は、上述の方法に限定されない。
 本発明のフェノール樹脂発泡体は、例えば、住宅建材用、工業用及び産業用の断熱材用等として用いることができる。
 以上、本実施形態に係る製造方法によれば、環境負荷が少なく、初期断熱性能が優れ、長期間にわたり低い熱伝導率を維持でき、更には透湿量増加に伴う壁体内部の結露を低減できるフェノール樹脂発泡体を提供することができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(評価)
 実施例及び比較例中のフェノール樹脂、フェノール樹脂発泡体について、以下の項目の測定及び評価を行った。
(1)発泡体密度
 JIS K 7222に準拠して、実施例及び比較例で得られたフェノール樹脂発泡体積層板から、20cm角の試料を切り出し、面材を取り除いて、フェノール樹脂発泡体の質量と見かけ容積を測定した。求めた質量及び見かけ容積を用いて、発泡体密度(発泡体見かけ密度)を算出した。
(2)平均気泡径
 JIS K 6402記載の方法を参考に、以下の方法で測定した。
 実施例及び比較例で得られたフェノール樹脂発泡体積層板中のフェノール樹脂発泡体の厚み方向ほぼ中央を表裏面に平行に切削して得られた切断面を走査型電子顕微鏡で50倍に拡大した写真を撮影し、得られた写真上に9cmの長さ(実際の発泡体断面における1,800μmに相当する)の直線を4本引き、各直線が横切った気泡の数の平均値を求めた。平均気泡径は、横切った気泡の数の平均値で、1,800μmを除した値である。
(3)独立気泡率
 ASTM D 2856-94(1998)A法を参考に以下の方法で測定した。
 実施例及び比較例で得られたフェノール樹脂発泡体積層板中のフェノール樹脂発泡体の厚み方向中央部から、約25mm角の立方体試片を切り出した。厚みが薄く25mmの均質な厚みの試片が得られない場合は、切り出した約25mm角の立方体試片表面を約1mmずつスライスし均質な厚みを有する試片を用いた。各辺の長さをノギスにより測定し、見かけ体積(V1:cm3)を計測すると共に試片の重量(W:有効数字4桁,g)を測定した。引き続き、エアーピクノメーター(東京サイエンス社、商品名「MODEL1000」)を使用し、ASTM D 2856のA法に記載の方法に従い、試片の閉鎖空間体積(V2:cm3)を測定した。
 また、上述の(2)平均気泡径の測定法に従い平均気泡径(t:cm)を計測すると共に、上記試片の各辺の長さより、試片の表面積(A:cm2)を計測した。
 t及びAより、式VA=(A×t)/1.14により、試片表面の切断された気泡の開孔体積(VA:cm3)を算出した。また、固形フェノール樹脂の密度は1.3g/cm3とし、試片に含まれる気泡壁を構成する固体部分の体積(VS:cm3)を式VS=試片重量(W)/1.3により、算出した。
 下記式(8)により独立気泡率を算出した。
  独立気泡率(%)=〔(V2-VS)/(V1-VA-VS)〕×100 (8)
 同一製造条件の発泡体サンプルについて6回測定し、その平均値を代表値とした。
(4)フェノール樹脂発泡体中の揮発性化合物の種類同定
 はじめに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素の標準ガスを用いて、以下のGC/MS測定条件における保持時間を求めた。
 実施例及び比較例で得られたフェノール樹脂発泡体積層板から面材を剥がし、フェノール樹脂発泡体試料約10gと金属製やすりとを10L容器(製品名「テドラーバック」)に入れて密封し、窒素5Lを注入した。テドラーバックの上からヤスリを用いて試料を削り、細かく粉砕した。続いて、試料をテドラーバックに入れたまま、81℃に温調された温調機内に10分間入れた。テドラーバック中で発生したガスを100μL採取し、以下に示す測定条件にて、GC/MS分析を行い、フェノール樹脂発泡体中の揮発性化合物を同定した。
 塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素の有無を、GC/MSの分析結果より確認した。塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素の種類は、事前に求めた保持時間とマススペクトルから同定した。炭化水素については、保持時間とマススペクトルによって種類を求めた。別途、発生したガス成分の検出感度を各々標準ガスによって測定し、GC/MSで得られた各ガス成分の検出エリア面積と検出感度より、組成比を算出した。同定した各ガス成分の組成比とモル質量より各ガス成分の質量比を算出した。
(GC/MS測定条件)
ガスクロマトグラフィー:アジレント・テクノロジー社製「Agilent7890型」
カラム:ジーエルサイエンス社製「InertCap 5」(内径0.25mm、膜厚5μm、長さ30m)
キャリアガス:ヘリウム
流量:1.1ml/分
注入口の温度:150℃
注入方法:スプリット法(1:50)
試料の注入量:100μl
カラム温度:-60℃5分間保持、50℃/分で150℃まで昇温し、2.8分保持
質量分析:日本電子株式会社製「Q1000GC型」
イオン化方法:電子イオン化法(70eV)
スキャン範囲:m/Z=10~500
電圧:-1300V
イオン源温度:230℃
インターフェース温度:150℃
(5)初期熱伝導率
 JIS A 1412-2:1999に準拠し、以下の方法で23℃における熱伝導率を測定した。
 実施例及び比較例で得られたフェノール樹脂発泡体積層板を600mm角に切断し、試片を温度23±1℃、湿度50±2%の雰囲気に入れ、24時間ごとに質量の経時変化を測定し、24時間経過の質量変化が0.2質量%以下になるまで、状態調節をした。状態調節された試片は、同環境下に置かれた熱伝導率装置に導入した。
 熱伝導率測定は、フェノール樹脂発泡体表面を傷つけないように面材を剥がし、低温板13℃高温板33℃の条件で、それぞれ試片1枚・対称構成方式の測定装置(英弘精機株式会社製、商品名「HC-074/600」)を用い行った。
(6)110℃雰囲気に14日間放置した後の熱伝導率
 初期熱伝導率の測定が終了した試片をEN13166:2012 Annex CのC.4.2.2に従い、110℃に温調された循環式オーブン内に14日間入れ加速試験を行ない、その後温度23±2℃、相対湿度50±5%にて状態調節を行った。引き続き、上述の(5)初期熱伝導率の測定方法に従い、110℃雰囲気に14日間放置した後の熱伝導率の測定を行った。
 また、下記式より、熱伝導率の差を算出した。
「熱伝導率の差」(W/m・K)=「110℃雰囲気に14日間放置した後の熱伝導率」(W/m・K)-「初期熱伝導率」(W/m・K)
(7)透湿率
 実施例及び比較例で得られたフェノール樹脂発泡体積層板から製品の厚さで30cm角を切り出して面材を取り除いた試料を用い、更に厚さが50mm超の試料については試料の側面から透湿がないようにカップの高さを試料よりも高くした以外はJIS A 1324:1995記載のカップ法に準拠して透湿量を測定し、透湿率を算出した。
(8)フェノール樹脂の重量平均分子量Mw
 ゲル浸透クロマトグラフィー(GPC)測定により以下のような条件で測定を行い、後に示す標準物質(標準ポリスチレン、2-ヒドロキシベンジルアルコール及びフェノール)によって得られた検量線より、実施例及び比較例で用いたフェノール樹脂の重量平均分子量Mwを求めた。
前処理:
 フェノール樹脂約10mgをN,Nジメチルホルムアミド(和光純薬工業株式会社製、高速液体クロマトグラフ用)1mlに溶解し、0.2μmメンブレンフィルターろ過したものを測定溶液として用いた。
測定条件:
 測定装置:Shodex System21(昭和電工株式会社製)
 カラム:Shodex asahipak GF-310HQ(7.5mmI.D.×30cm)
 溶離液:臭化リチウム0.1重量%をN,Nジメチルホルムアミド(和光純薬工業株式会社製、高速液体クロマトグラフ用)に溶解し使用した。
 流量:0.6ml/min
 検出器:RI検出器
 カラム温度:40℃
 標準物質:標準ポリスチレン(昭和電工株式会社製、Shodex standard SL-105)、2-ヒドロキシベンジルアルコール(シグマアルドリッチ社製、99%品)、フェノール(関東化学株式会社製、特級)
(9)40℃におけるフェノール樹脂の粘度
 フェノール樹脂0.5mlを量りとり、回転粘度計(東機産業株式会社製、R-100型、ローター部は3°×R-14)にセットした。測定するフェノール樹脂の粘度が、装置の測定上限粘度に対して50~80%の範囲になるようにローターの回転数を設定した。測定温度を40℃とし、測定開始から3分間後の粘度の値を測定値とした。
(10)吐出温度
 上記面材上(例えば、下面材上)に上記発泡性フェノール樹脂組成物を吐出した直後の上記発泡性フェノール樹脂組成物の中心部の温度を熱電対で測定した。
(実施例1)
 反応器に52質量%ホルムアルデヒド水溶液3500kgと99質量%フェノール2510kgを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで50質量%水酸化ナトリウム水溶液を反応液のpHが8.7になるまで加えた。反応液を1時間かけて85℃まで昇温し、その後オストワルド粘度が200センチストークス(200×10-62/s、25℃における測定値、終点粘度)に到達した段階で、反応液を冷却し、尿素を400kg添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50重量%水溶液を、pHが6.4になるまで添加した。得られた反応液を薄膜蒸発機によってフェノール樹脂中の水分率が8.3質量%となるまで濃縮処理した結果、粘度は20000mPa・sであった。
 フェノール樹脂100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体50質量%とポリオキシエチレンドデシルフェニルエーテル50質量%との混合物を2.0重量部の割合で混合した。上記界面活性剤が混合されたフェノール樹脂100質量部に対して、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペンを11質量部、硬化触媒としてキシレンスルホン酸80質量%とジエチレングリコール20質量%との混合物14質量部を、15℃に温調したミキシングヘッドで混合し、発泡性フェノール樹脂組成物を調製した。そして、発泡性フェノール樹脂組成物の吐出温度を30℃にして移動する面材上に供給した。
 面材上に供給した発泡性フェノール樹脂組成物は、面材と接触する面とは反対側の面が、他の面材で被覆されると同時に、二枚の面材で挟み込まれるようにして、80℃に加熱されたスラット型ダブルコンベアに導入し、15分の滞留時間で硬化させた後、110℃のオーブンで2時間キュアしてフェノール樹脂発泡体積層板を得た。
(実施例2)
 揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペンを界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、10℃に温調したミキシングヘッドで混合し、吐出温度を22℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例3)
 揮発性化合物として2,3,3,3-テトラフルオロ-1-プロペンを界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、7℃に温調したミキシングヘッドで混合し、吐出温度を17℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例4)
 揮発性化合物として1,1,1,4,4,4-ヘキサフルオロ-2-ブテンを界面活性剤が混合されたフェノール樹脂100質量部に対して14質量部添加し、20℃に温調したミキシングヘッドで混合し、吐出温度を39℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例5)
 揮発性化合物としてイソプロピルクロリドを界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、27℃に温調したミキシングヘッドで混合し、吐出温度を48℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例6)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(90質量%)とシクロペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して10質量部添加し、18℃に温調したミキシングヘッドで混合し、吐出温度を34℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例7)
 フェノール樹脂のオストワルド粘度を40センチストークス、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(50質量%)とシクロペンタン(50質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、25℃に温調したミキシングヘッドで混合し、吐出温度を45℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例8)
 フェノール樹脂の薄膜蒸発機による濃縮処理での粘度を10000mPa・s、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(90質量%)とイソペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して9質量部添加し、25℃に温調したミキシングヘッドで混合し、吐出温度を43℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例9)
 フェノール樹脂の薄膜蒸発機による濃縮処理での粘度を5000mPa・s、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(90質量%)とイソプロピルクロリド(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して9質量部添加し、15℃に温調したミキシングヘッドで混合し、吐出温度を28℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例10)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(50質量%)とイソプロピルクロリド(50質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、12℃に温調したミキシングヘッドで混合し、吐出温度を25℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例11)
 フェノール樹脂の薄膜蒸発機による濃縮処理での粘度を5000mPa・s、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(80質量%)、イソプロピルクロリド(10質量%)とイソペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して9質量部添加し、12℃に温調したミキシングヘッドで混合し、吐出温度を25℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例12)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(50質量%)、イソプロピルクロリド(40質量%)とイソペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、9℃に温調したミキシングヘッドで混合し、吐出温度を20℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例13)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を45000mPa・s、揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(50質量%)とシクロペンタン(50質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、12℃に温調したミキシングヘッドで混合し、吐出温度を29℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例14)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を80000mPa・s、揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(90質量%)とシクロペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、7℃に温調したミキシングヘッドで混合し、吐出温度を19℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例15)
 フェノール樹脂のオストワルド粘度を370センチストークス、薄膜蒸発機による濃縮処理での粘度を30000mPa・s、揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(80質量%)とシクロペンタン(20質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、12℃に温調したミキシングヘッドで混合し、吐出温度を27℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例16)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(25質量%)とシクロペンタン(75質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、30℃に温調したミキシングヘッドで混合し、吐出温度を52℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例17)
 揮発性化合物として2,3,3,3-テトラフルオロ-1-プロペンを界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、25℃に温調したミキシングヘッドで混合し、吐出温度を45℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例18)
 フェノール樹脂のオストワルド粘度を80センチストークス、体積平均粒径20μmの水酸化アルミニウムをフェノール樹脂100質量部に対して5質量部添加し、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(90質量%)とシクロペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して10質量部添加し、27℃に温調したミキシングヘッドで混合し、吐出温度を50℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例19)
 揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(70質量%)とシクロペンタン(30質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、23℃に温調したミキシングヘッドで混合し、吐出温度を41℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例20)
 フェノール樹脂の薄膜蒸発機による濃縮処理での粘度を30000mPa・s、揮発性化合物として2,3,3,3-テトラフルオロ-1-プロペン(80質量%)とシクロペンタン(20質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、20℃に温調したミキシングヘッドで混合し、吐出温度を40℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例21)
 界面活性剤が混合されたフェノール樹脂100質量部に対してヘキサメチルジシロキサンを2質量部添加したこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例22)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、界面活性剤が混合されたフェノール樹脂100質量部に対してヘキサメチルジシロキサンを2質量部添加し、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(90質量%)とシクロペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して10質量部添加し、18℃に温調したミキシングヘッドで混合し、吐出温度を34℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例23)
 フェノール樹脂の薄膜蒸発機による濃縮処理での粘度を10000mPa・s、界面活性剤が混合されたフェノール樹脂100質量部に対してヘキサメチルジシロキサンを2質量部添加し、揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(90質量%)とイソペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して9質量部添加し、25℃に温調したミキシングヘッドで混合し、吐出温度を43℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例24)
 揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(20質量%)とイソプロピルクロリド(80質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、23℃に温調したミキシングヘッドで混合し、吐出温度を41℃としたこと以外は実施例9と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例25)
 揮発性化合物として2-クロロ-3,3,3-トリフルオロプロペン(15質量%)とイソプロピルクロリド(85質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、25℃に温調したミキシングヘッドで混合し、吐出温度を43℃としたこと以外は実施例9と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例26)
 フェノール樹脂のオストワルド粘度を40センチストークス、薄膜蒸発機による濃縮処理での粘度を3000mPa・sとしたこと以外は実施例24と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例27)
 揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(20質量%)とイソペンタン(80質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、27℃に温調したミキシングヘッドで混合し、吐出温度を45℃としたこと以外は実施例8と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例28)
 揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(50質量%)とイソプロピルクロリド(50質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して9質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、20℃に温調したミキシングヘッドで混合し、吐出温度を38℃としたこと以外は実施例9と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例29)
 揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(80質量%)と1,3,3,3-テトラフルオロ-1-プロペン(20質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して10質量部添加し、15℃に温調したミキシングヘッドで混合し、吐出温度を26℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例30)
 揮発性化合物として1-クロロ-3,3,3-トリフルオロプロペン(10質量%)、イソプロピルクロリド(80質量%)とシクロペンタン(10質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、19℃に温調したミキシングヘッドで混合し、吐出温度を38℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例31)
 揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(20質量%)とシクロペンタン(80質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、25℃に温調したミキシングヘッドで混合し、吐出温度を45℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例32)
 揮発性化合物として1,3,3,3-テトラフルオロ-1-プロペン(20質量%)とイソプロピルクロリド(80質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して7質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、15℃に温調したミキシングヘッドで混合し、吐出温度を30℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例33)
 揮発性化合物として1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(80質量%)とシクロペンタン(20質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して12質量部添加し、26℃に温調したミキシングヘッドで混合し、吐出温度を45℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例34)
 揮発性化合物として1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(80質量%)とイソプロピルクロリド(20質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して12質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、23℃に温調したミキシングヘッドで混合し、吐出温度を39℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例35)
 揮発性化合物として1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(20質量%)とイソプロピルクロリド(80質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して8質量部添加し、可塑剤としてフタル酸エステルを、フェノール樹脂100質量部に対して1質量部添加し、23℃に温調したミキシングヘッドで混合し、吐出温度を39℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(実施例36)
 揮発性化合物として1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(80質量%)と1,3,3,3-テトラフルオロ-1-プロペン(20質量%)との混合物を、界面活性剤が混合されたフェノール樹脂100質量部に対して13質量部添加し、15℃に温調したミキシングヘッドで混合し、吐出温度を30℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(比較例1)
 フェノール樹脂のオストワルド粘度を22センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、25℃に温調したミキシングヘッドで混合し、吐出温度を43℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(比較例2)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を800mPa・s、23℃に温調したミキシングヘッドで混合し、吐出温度を40℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(比較例3)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、6℃に温調したミキシングヘッドで混合し、吐出温度を16℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
(比較例4)
 フェノール樹脂のオストワルド粘度を80センチストークス、薄膜蒸発機による濃縮処理での粘度を10000mPa・s、33℃に温調したミキシングヘッドで混合し、吐出温度を56℃としたこと以外は実施例1と同様にしてフェノール樹脂発泡体積層板を得た。
 上記実施例及び比較例で使用したフェノール樹脂の評価結果、及びフェノール樹脂発泡体の評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本実施形態のフェノール樹脂発泡体は、環境への負荷が低く、且つ長期間にわたって優れた断熱性能を維持でき、更には透湿量増加に伴う壁体内部の結露が発生しにくいため、住宅用途の断熱材等に好適に用いることができる。

Claims (8)

  1.  フェノール樹脂と、塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含有し
     密度が20kg/m3以上100kg/m3以下であり、
     平均気泡径が10μm以上300μm以下であり、
     独立気泡率が80%以上99%以下であり、
     透湿率が0.38ng/(m・s・Pa)以上2.00ng/(m・s・Pa)以下であることを特徴とするフェノール樹脂発泡体。
  2.  前記塩素化ハイドロフルオロオレフィンが、1-クロロ-3,3,3-トリフルオロプロペン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選ばれる少なくとも1種であり、前記非塩素化ハイドロフルオロオレフィンが、1,3,3,3-テトラフルオロ-1-プロペン、2,3,3,3-テトラフルオロ-1-プロペン、及び1,1,1,4,4,4-ヘキサフルオロ-2-ブテンからなる群から選ばれる少なくとも1種である、請求項1記載のフェノール樹脂発泡体。
  3.  前記ハロゲン化炭化水素が、イソプロピルクロリドである、請求項1又は2記載のフェノール樹脂発泡体。
  4.  炭素数6以下の炭化水素をさらに含む、請求項1から3のいずれか1項に記載のフェノール樹脂発泡体。
  5.  初期熱伝導率が0.0200W/m・K未満である、請求項1から4のいずれか1項に記載のフェノール樹脂発泡体。
  6.  110℃雰囲気に14日間放置した後の熱伝導率が、0.0210W/m・K未満である、請求項1から5のいずれか1項に記載のフェノール樹脂発泡体。
  7.  さらに、無機化合物を含む、請求項1から6のいずれか1項に記載のフェノール樹脂発泡体。
  8.  面材上で、フェノール樹脂、界面活性剤、硬化触媒、並びに塩素化ハイドロフルオロオレフィン、非塩素化ハイドロフルオロオレフィン、及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種を含む揮発性化合物を含有する発泡性フェノール樹脂組成物を発泡及び硬化させるフェノール樹脂発泡体の製造方法であって、
     ゲル浸透クロマトグラフィーによって求められる前記フェノール樹脂の重量平均分子量Mwが400以上3000以下であり、
     前記フェノール樹脂の40℃における粘度が1000mPa・s以上100000mPa・s以下であり、
     前記揮発性化合物の沸点平均値が-30℃以上45℃以下であり、かつ
     前記発泡性フェノール樹脂組成物の吐出温度(℃)と、前記沸点平均値(℃)とが、下記式の関係を満たすことを特徴とする請求項1記載のフェノール樹脂発泡体の製造方法。
     0.0002X3+0.006X2+0.07X+17≦Y≦0.00005X3+0.003X2+0.08X+52
    (式中、Xは揮発性化合物の沸点平均値(℃)を表し、Yは吐出温度(℃)を表す)
PCT/JP2016/001672 2015-03-24 2016-03-23 フェノール樹脂発泡体及びその製造方法 WO2016152155A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19211174.8A EP3640288A1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method of producing same
CN201680009566.8A CN107207759B (zh) 2015-03-24 2016-03-23 酚醛树脂发泡体及其制造方法
KR1020177020078A KR101991603B1 (ko) 2015-03-24 2016-03-23 페놀 수지 발포체 및 그 제조 방법
RU2017133125A RU2686935C2 (ru) 2015-03-24 2016-03-23 Пенопласт на основе фенольной смолы и способ его получения
JP2017507507A JP6193530B2 (ja) 2015-03-24 2016-03-23 フェノール樹脂発泡体及びその製造方法
EP16768060.2A EP3275926B1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method of producing same
AU2016237953A AU2016237953B2 (en) 2015-03-24 2016-03-23 Phenol resin foam and method for producing same
CA2978859A CA2978859A1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method for producing same
US15/556,076 US20180230283A1 (en) 2015-03-24 2016-03-23 Phenolic resin foam and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061588 2015-03-24
JP2015-061588 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152155A1 true WO2016152155A1 (ja) 2016-09-29

Family

ID=56977966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001672 WO2016152155A1 (ja) 2015-03-24 2016-03-23 フェノール樹脂発泡体及びその製造方法

Country Status (10)

Country Link
US (1) US20180230283A1 (ja)
EP (2) EP3275926B1 (ja)
JP (2) JP6193530B2 (ja)
KR (1) KR101991603B1 (ja)
CN (1) CN107207759B (ja)
AU (1) AU2016237953B2 (ja)
CA (1) CA2978859A1 (ja)
RU (1) RU2686935C2 (ja)
TW (1) TW201641582A (ja)
WO (1) WO2016152155A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163602B1 (ja) * 2016-12-20 2017-07-12 積水化学工業株式会社 フェノール樹脂発泡体およびフェノール樹脂発泡体の製造方法
JP2018095707A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体及びフェノール樹脂発泡体の製造方法
JP2018094767A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡板
JP2018095869A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体及びその製造方法
JP2018123292A (ja) * 2017-01-27 2018-08-09 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
WO2019189840A1 (ja) * 2018-03-30 2019-10-03 旭化成建材株式会社 フェノール樹脂発泡体積層板およびその製造方法
JPWO2021145417A1 (ja) * 2020-01-16 2021-07-22
JPWO2021157698A1 (ja) * 2020-02-06 2021-08-12
JP2021528513A (ja) * 2018-05-29 2021-10-21 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 絶縁フォームのための発泡剤組成物
WO2023017603A1 (ja) * 2021-08-12 2023-02-16 旭化成建材株式会社 フェノール樹脂発泡体
RU2792103C1 (ru) * 2020-01-16 2023-03-16 Асахи Касеи Констракшн Матириалс Корпорейшн Ламинированная плита и композитная плита из вспененной фенольной смолы

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993165B2 (ja) * 2017-10-16 2022-01-13 旭化成建材株式会社 フェノール樹脂発泡体積層板
JP6993192B2 (ja) * 2017-11-17 2022-02-04 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
JP7045169B2 (ja) * 2017-11-22 2022-03-31 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
WO2019208811A1 (ja) * 2018-04-27 2019-10-31 旭化成建材株式会社 難燃性フェノール樹脂発泡体
US11987685B2 (en) * 2018-05-04 2024-05-21 The Chemours Company Fc, Llc Insulation performance foams
GB2575988B (en) * 2018-07-30 2020-07-22 Kingspan Holdings Irl Ltd Phenolic foam and method of manufacture thereof
EP3835344A4 (en) * 2018-08-10 2022-04-20 Asahi Yukizai Corporation RESIN COMPOSITION FOR THE PRODUCTION OF PHENOLIC FOAM
GB2599599B (en) * 2020-01-27 2022-10-19 Kingspan Holdings Irl Ltd Phenolic foam and method of manufacture thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070506A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007070504A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007070507A (ja) * 2005-09-08 2007-03-22 Asahi Organic Chem Ind Co Ltd 発泡性レゾール型フェノール樹脂成形材料およびフェノール樹脂発泡体
JP2007070503A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2010522819A (ja) * 2007-03-29 2010-07-08 アーケマ・インコーポレイテッド ヒドロクロロフルオロオレフィンの発泡剤組成物
JP2011504538A (ja) * 2007-11-25 2011-02-10 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法
JP2013064139A (ja) * 2005-06-24 2013-04-11 Honeywell Internatl Inc フッ素置換されたオレフィンを含む起泡剤及び組成物、並びに起泡方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165413A (en) * 1978-03-15 1979-08-21 Koppers Company, Inc. Process for producing phenolic foams with a uniform appearance
JP2845641B2 (ja) * 1991-06-12 1999-01-13 旭有機材工業株式会社 フェノール樹脂発泡体の製造方法及びその応用
PL1885799T3 (pl) * 2005-04-27 2010-04-30 Kingspan Holdings Irl Ltd Plastyfikator do pianki fenolowej i proces wytwarzania pianki fenolowej
TWI482748B (zh) * 2005-06-24 2015-05-01 Honeywell Int Inc 含有經氟取代之烯烴之組合物
JP2007070505A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
EP1922356B1 (en) * 2005-09-08 2012-10-03 Kingspan Holdings (IRL) Limited A phenolic foam
JP2007070512A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP5587199B2 (ja) * 2008-11-07 2014-09-10 旭化成建材株式会社 発泡性フェノール樹脂組成物、フェノール樹脂フォーム及びその製造方法
PL2714786T3 (pl) * 2011-05-25 2016-04-29 Du Pont Piany fenolowe ze środkiem porotwórczym 1, 1, 1, 4, 4, 4-heksafluoro- 2-butenem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064139A (ja) * 2005-06-24 2013-04-11 Honeywell Internatl Inc フッ素置換されたオレフィンを含む起泡剤及び組成物、並びに起泡方法
JP2007070506A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007070504A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007070507A (ja) * 2005-09-08 2007-03-22 Asahi Organic Chem Ind Co Ltd 発泡性レゾール型フェノール樹脂成形材料およびフェノール樹脂発泡体
JP2007070503A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2010522819A (ja) * 2007-03-29 2010-07-08 アーケマ・インコーポレイテッド ヒドロクロロフルオロオレフィンの発泡剤組成物
JP2011504538A (ja) * 2007-11-25 2011-02-10 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する発泡剤及び組成物ならびに発泡方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095869A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体及びその製造方法
JP2018095707A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体及びフェノール樹脂発泡体の製造方法
JP2018094767A (ja) * 2016-12-10 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡板
JP7016688B2 (ja) 2016-12-10 2022-02-07 積水化学工業株式会社 フェノール樹脂発泡体及びその製造方法
JP6163602B1 (ja) * 2016-12-20 2017-07-12 積水化学工業株式会社 フェノール樹脂発泡体およびフェノール樹脂発泡体の製造方法
JP2018095824A (ja) * 2016-12-20 2018-06-21 積水化学工業株式会社 フェノール樹脂発泡体およびフェノール樹脂発泡体の製造方法
JP2018123292A (ja) * 2017-01-27 2018-08-09 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
KR20230118703A (ko) 2018-03-30 2023-08-11 아사히 가세이 겐자이 가부시키가이샤 페놀 수지 발포체 적층판 및 그 제조 방법
JPWO2019189840A1 (ja) * 2018-03-30 2021-01-14 旭化成建材株式会社 フェノール樹脂発泡体積層板およびその製造方法
KR20200118120A (ko) 2018-03-30 2020-10-14 아사히 가세이 겐자이 가부시키가이샤 페놀 수지 발포체 적층판 및 그 제조 방법
JP7011048B2 (ja) 2018-03-30 2022-01-26 旭化成建材株式会社 フェノール樹脂発泡体積層板およびその製造方法
WO2019189840A1 (ja) * 2018-03-30 2019-10-03 旭化成建材株式会社 フェノール樹脂発泡体積層板およびその製造方法
JP2021528513A (ja) * 2018-05-29 2021-10-21 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 絶縁フォームのための発泡剤組成物
JPWO2021145417A1 (ja) * 2020-01-16 2021-07-22
WO2021145417A1 (ja) * 2020-01-16 2021-07-22 旭化成建材株式会社 フェノール樹脂発泡体積層板および複合板
JP7223200B1 (ja) 2020-01-16 2023-02-15 旭化成建材株式会社 フェノール樹脂発泡体積層板および複合板
JP7190592B2 (ja) 2020-01-16 2022-12-15 旭化成建材株式会社 フェノール樹脂発泡体積層板および複合板
RU2792103C1 (ru) * 2020-01-16 2023-03-16 Асахи Касеи Констракшн Матириалс Корпорейшн Ламинированная плита и композитная плита из вспененной фенольной смолы
JP2023026455A (ja) * 2020-01-16 2023-02-24 旭化成建材株式会社 フェノール樹脂発泡体積層板および複合板
WO2021157698A1 (ja) * 2020-02-06 2021-08-12 旭化成建材株式会社 フェノール樹脂発泡体積層板
JP7223201B1 (ja) 2020-02-06 2023-02-15 旭化成建材株式会社 フェノール樹脂発泡体積層板
JP2023036629A (ja) * 2020-02-06 2023-03-14 旭化成建材株式会社 フェノール樹脂発泡体積層板
JP7191255B2 (ja) 2020-02-06 2022-12-16 旭化成建材株式会社 フェノール樹脂発泡体積層板
JPWO2021157698A1 (ja) * 2020-02-06 2021-08-12
US11932733B2 (en) 2020-02-06 2024-03-19 Asahi Kasei Construction Materials Corporation Phenolic resin foam laminate board
WO2023017603A1 (ja) * 2021-08-12 2023-02-16 旭化成建材株式会社 フェノール樹脂発泡体

Also Published As

Publication number Publication date
CN107207759A (zh) 2017-09-26
CN107207759B (zh) 2021-07-30
RU2017133125A (ru) 2019-04-03
EP3640288A1 (en) 2020-04-22
EP3275926B1 (en) 2020-02-12
EP3275926A4 (en) 2018-01-31
EP3275926A1 (en) 2018-01-31
AU2016237953A1 (en) 2017-09-28
KR20170096182A (ko) 2017-08-23
JP2017171945A (ja) 2017-09-28
TW201641582A (zh) 2016-12-01
JP6518729B2 (ja) 2019-05-22
JPWO2016152155A1 (ja) 2017-05-25
AU2016237953B2 (en) 2018-11-08
US20180230283A1 (en) 2018-08-16
RU2686935C2 (ru) 2019-05-06
RU2017133125A3 (ja) 2019-04-03
JP6193530B2 (ja) 2017-09-06
KR101991603B1 (ko) 2019-06-20
CA2978859A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6193530B2 (ja) フェノール樹脂発泡体及びその製造方法
JP6505644B2 (ja) フェノール樹脂発泡体及びその製造方法
JP6208399B2 (ja) フェノール樹脂発泡体及びその製造方法
JP7014566B2 (ja) フェノール樹脂発泡板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507507

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020078

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2978859

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15556076

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016768060

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016237953

Country of ref document: AU

Date of ref document: 20160323

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017133125

Country of ref document: RU