WO2016151638A1 - ドライバ支援システム - Google Patents

ドライバ支援システム Download PDF

Info

Publication number
WO2016151638A1
WO2016151638A1 PCT/JP2015/001742 JP2015001742W WO2016151638A1 WO 2016151638 A1 WO2016151638 A1 WO 2016151638A1 JP 2015001742 W JP2015001742 W JP 2015001742W WO 2016151638 A1 WO2016151638 A1 WO 2016151638A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
visibility
driver
information
traveling direction
Prior art date
Application number
PCT/JP2015/001742
Other languages
English (en)
French (fr)
Inventor
栄斉 米澤
雅浩 虻川
尚之 対馬
道学 吉田
村山 修
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580078140.3A priority Critical patent/CN107408338A/zh
Priority to US15/555,057 priority patent/US10232772B2/en
Priority to DE112015006370.6T priority patent/DE112015006370T5/de
Priority to JP2016513156A priority patent/JP6103138B2/ja
Priority to PCT/JP2015/001742 priority patent/WO2016151638A1/ja
Publication of WO2016151638A1 publication Critical patent/WO2016151638A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/056Detecting movement of traffic to be counted or controlled with provision for distinguishing direction of travel
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096716Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/09675Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where a selection from the received information takes place in the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles

Definitions

  • the present invention relates to a driver support system that detects and warns of a decrease in visibility of a driver who gets on a vehicle.
  • a driver assistance device that calculates the position of the sun based on the position of the host vehicle and the current time, and further calculates the direction in which sunlight is inserted into the driver's seat based on the position of the sun and the traveling direction of the host vehicle.
  • This driver support device can warn the driver of the host vehicle that the visibility of the vehicle is reduced by sunlight in advance by calculating the direction in which sunlight is inserted into the driver's seat.
  • the driver assistance system of the present invention is made to solve the above-mentioned problems, and aims to detect a reduction in the visibility of a driver riding in another vehicle and warn the driver of the own vehicle. To do.
  • the driver support system of the present invention includes an other vehicle information acquisition unit that acquires traveling direction information of other vehicles, a point where the visibility of a driver who rides on the vehicle decreases, and the visibility of the driver of the vehicle corresponding to the point.
  • a storage unit in which the direction information to be reduced is stored in association with each other, a traveling direction information of the other vehicle acquired in the other vehicle information acquisition unit, and a direction in which the visibility stored in the storage unit is reduced.
  • a visibility determination unit that determines whether or not the visibility of a driver who rides in the other vehicle is reduced based on the information, and the visibility of a driver who rides in the other vehicle is reduced by the visibility determination unit.
  • a warning processing unit that warns the driver of the host vehicle that the visibility of the driver who rides on the other vehicle is reduced when it is determined that the driver of the host vehicle is driving.
  • the driver support system determines whether or not the visibility of a driver who gets on the vehicle has decreased, and when the visibility of the driver who gets on the vehicle decreases, the position information of the vehicle and the vehicle A visibility lowering point determination unit that outputs traveling direction information, and a storage unit that stores the vehicle position information and the vehicle traveling direction information that are output from the visibility lowering point determination unit in association with each other. It is characterized by providing.
  • the driver support system detects a decrease in the visibility of a driver who rides on another vehicle and warns the driver of the own vehicle, so when the visibility of a driver who rides on another vehicle is reduced, The driver of the own vehicle can travel while paying attention to the movement of other vehicles.
  • FIG. 2 is a hardware configuration diagram of the driver support system according to Embodiment 1.
  • FIG. 2 is a functional block diagram of a driver support system according to Embodiment 1.
  • FIG. It is an example of the database which the server concerning Embodiment 1 memorizes.
  • 5 is an operation flowchart in which the driver assistance system according to the first embodiment stores the traveling direction information of the host vehicle. It is a functional block diagram of the visibility fall information detecting device and visibility fall point judging device concerning Embodiment 1.
  • 5 is an operation flowchart of the visibility lowering point determination device according to the first embodiment.
  • 4 is an example of an image in which an image analysis unit according to the first embodiment emphasizes an eyelid edge by filter processing.
  • FIG. 4 is an operation flowchart of a process in which the driver assistance device according to the first embodiment warns of a decrease in visibility of a driver who gets on another vehicle. It is an example in which the display device 4 according to Embodiment 1 displays a warning image. It is a functional block diagram of a visibility fall information detecting device and a visibility fall point judging device in the case of judging visibility fall based on a driver's eyes or the state of a sun visor. It is a figure which shows the gaze distribution of the driver of the own vehicle which concerns on Embodiment 1. FIG. It is a figure explaining the sun visor sensor which concerns on Embodiment 1. FIG. 6 is a functional block diagram of a driver support system according to Embodiment 2. FIG.
  • FIG. 6 is an operation flowchart of the driver support system according to the second embodiment. It is an example in which the display device according to Embodiment 2 displays a warning image.
  • 10 is a functional block diagram of a driver support system according to Embodiment 3.
  • FIG. 10 is an operation flowchart of the driver support system according to the third embodiment. It is an example in which the display device according to Embodiment 3 displays a warning image.
  • FIG. 10 is a functional block diagram of a driver support system according to a fourth embodiment. 10 is an operation flowchart of the driver support system according to the fourth embodiment.
  • FIG. 10 is a functional block diagram of a driver support system according to a fifth embodiment. 10 is an operation flowchart of the driver support system according to the fifth embodiment.
  • FIG. 1 is a hardware configuration diagram of the driver support system according to the first embodiment.
  • FIG. 2 is a functional block diagram of the driver support system according to the first embodiment.
  • the driver support system according to Embodiment 1 includes a periphery monitoring device 1, a processing device 2, a storage device 3, a display device 4, a speaker 5, an external communication device 6, a server 7, and a visibility reduction information detection device 8.
  • the vehicle position acquisition device 9 and the visibility degradation point determination device 10 are provided.
  • the processing device 2 includes a peripheral monitoring device 1, a storage device 3, a display device 4, a speaker 5, an external communication device 6, a visibility reduction information detection device 8, a host vehicle position acquisition device 9, and a visual recognition via a CPU bus 100.
  • a sex degradation point determination device 10 is connected, and information can be exchanged via the CPU bus 101.
  • the host vehicle is a vehicle that includes a driver assistance system and that warns that the visibility of the driver is reduced.
  • a driver support system mounted on the own vehicle will be described.
  • the other vehicle refers to a vehicle other than the above-described own vehicle.
  • the vehicle refers to the host vehicle or another vehicle.
  • the periphery monitoring device 1 is a device that acquires peripheral information for calculating the position of another vehicle and the traveling direction of the other vehicle.
  • the periphery monitoring device 1 corresponds to a radar, a rider, a camera, or the like.
  • Peripheral information refers to information on the distance between the host vehicle and other vehicles acquired by a peripheral monitoring device such as a radar or a rider, or image data captured by a camera.
  • information on the position of the own vehicle is expressed as position information of the own vehicle
  • information on the position of the other vehicle is expressed as position information of the other vehicle.
  • the information on the traveling direction of the host vehicle is expressed as the traveling direction information of the host vehicle
  • the information on the traveling direction of the other vehicle is expressed as the traveling direction information of the other vehicle.
  • the processing device 2 is a device for determining whether or not the visibility of a driver who gets on another vehicle is reduced, and for example, a CPU (Central Processing Unit) corresponds to this.
  • the reduction in visibility means a state in which the surrounding situation becomes difficult to see when a driver of another vehicle feels dazzled by sunlight or when it feels dazzled by sunlight reflected by a building or a car.
  • the processing device 2 includes a visibility determination unit 21, another vehicle information acquisition unit 22, and a warning processing unit 23.
  • the processing device 2 implements the functions of the other vehicle information acquisition unit 22, the visibility determination unit 21, and the warning processing unit 23, which will be described later, by executing a program stored in advance in the storage device 3 or the like.
  • the driver support system may be the processing device 2 or may include the processing device 2 and a server 7 described later.
  • the storage device 3 outputs warning image data to be displayed on the display device 4 to be described later and a speaker 5 to be described later when the processing device 2 determines that the visibility of the driver who gets on the other vehicle is reduced.
  • the sound data for warning to be stored is stored.
  • warning image data and warning sound data are expressed as warning data.
  • the display device 4 displays a warning image when it is determined by the processing device 2 that the visibility of a driver who gets on another vehicle is reduced.
  • the display device 4 corresponds to a head-up display, an instrument panel, and a display for displaying road information of a car navigation system.
  • the display device 4 is a display for displaying road information of a head-up display, an instrument panel, and a car navigation system, but is not limited thereto, and is connected from the outside. It may be a display of a device such as a smartphone or a tablet.
  • the speaker 5 outputs a warning sound when the processing device 2 determines that the visibility of a driver who gets on another vehicle is reduced.
  • the speaker 5 is attached to the front or left and right in the vehicle, and corresponds to a speaker that outputs music or road information of a car navigation system.
  • the speaker 5 may be a speaker of a device such as a smartphone or a tablet connected from the outside to an in-vehicle device such as a car navigation system.
  • External communication device 6 communicates with an external device.
  • the server 7 described later is an external server installed outside the vehicle
  • the external communication device 6 transmits and receives information to and from the server 7.
  • the server 7 includes a visibility degradation point database.
  • FIG. 3 is an example of a visibility drop point database stored by the server according to the first embodiment.
  • the visibility degradation point database is information in which date, time zone, point where visibility is degraded, direction in which visibility is degraded, glare degree, and the like are associated with each other.
  • the point where the visibility is lowered refers to a point where the visibility of the driver is lowered by irradiating the driver of the vehicle with light reflected from the sun or a building while the vehicle is traveling.
  • stored in the server 7 falls is expressed as a coordinate
  • the direction where visibility falls is expressed as an azimuth
  • the azimuth corresponds to the direction of solar light with respect to the vehicle, the direction of the light reflected by the sun on a building or the like, or the traveling direction when the visibility of a driver riding on the vehicle is reduced.
  • the data described in the top row of FIG. 3 is an azimuth 120 ° or 240 at a point indicated by coordinates 34.40N and 132.47E in the time zone 7:00 to 8:00 on January 1st. This shows that a driver who rides on a vehicle facing in the direction of ° decreases visibility due to glare.
  • the degree of glare indicates information on the strength of glare, and the degree of glare increases as the intensity of light hitting the driver increases.
  • the server 7 may be an external server provided outside the vehicle, or may be a storage device (not shown) inside the vehicle.
  • a storage unit including an external server outside the vehicle and a storage device inside the vehicle may be expressed.
  • the visibility reduction information detection device 8 is a device that acquires information for detecting that the visibility of a driver riding in the host vehicle is reduced, and includes, for example, an in-vehicle camera.
  • the visibility reduction information detection device 8 is an in-vehicle camera
  • the information for detecting that the visibility is reduced corresponds to the face image data of the driver imaged by the in-vehicle camera.
  • the own vehicle position acquisition device 9 is a device that acquires the position information of the own vehicle and the traveling direction information of the own vehicle.
  • the own vehicle position acquisition device 9 acquires a plurality of position information of the own vehicle at time intervals by GPS (Global Positioning System) or the like, and the traveling direction of the own vehicle from the position information of the own vehicle that changes with time. Calculate information.
  • the position information of the host vehicle is, for example, information such as latitude and longitude where the host vehicle is located.
  • the own vehicle position acquisition apparatus 9 may acquire the traveling direction information of the own vehicle from CAN (Controller Area Network) data (for example, information on a gyro sensor, a geomagnetic sensor, etc.).
  • CAN Controller Area Network
  • the visibility lowering point determination device 10 determines whether or not the visibility of a driver who gets on the host vehicle is reduced. Further, when the visibility-decreasing point determination device 10 determines that the visibility of the driver who rides on the host vehicle is decreased, the position-decision point determination device 10 transmits the position information of the host vehicle and the traveling direction information of the host vehicle to the server 7.
  • the other vehicle information acquisition unit 22 acquires the surrounding information from the surrounding monitoring device 1 and calculates the traveling direction of the other vehicle based on the surrounding information. A method for calculating the traveling direction of the other vehicle will be described later.
  • the visibility determination unit 21 determines whether or not the visibility of the driver who gets on the other vehicle has decreased. Determine whether.
  • the warning processing unit 23 does not receive at least warning image data or warning sound data from the storage device 3. One is acquired and output to the display device 4 or the speaker 5.
  • the functions of the other vehicle information acquisition unit 22, the visibility determination unit 21, and the warning processing unit 23 described above may be realized by the processing device 2 or by the server 7 side. There may be.
  • FIG. 4 is an operation flowchart in which the driver assistance system according to the first embodiment stores the traveling direction information of the host vehicle.
  • the visibility lowering point determination device 10 acquires information for detecting that the visibility is lowered from the visibility lowering information detection device 8.
  • the visibility-decreasing point determination device 10 determines whether or not the visibility of the driver who rides on the host vehicle is reduced based on information for detecting that the visibility is reduced.
  • FIGS. 5 to 7. are a functional block diagram of the visibility degradation point determination device 10 and the visibility degradation information detection device 8 according to the first embodiment.
  • FIG. 6 is an operation flowchart of the visibility lowering point determination device 10 according to the first embodiment.
  • FIG. 7 is an example of an image in which the image analysis unit according to the first embodiment emphasizes the edge of the eyelid by filter processing.
  • the visibility degradation information detection device 8 includes an in-vehicle camera 81.
  • the in-vehicle camera 81 is a device that images the driver's face.
  • the visibility lowering point determination device 10 includes an image analysis unit 101 and a determination unit 103.
  • the image analysis unit 101 is an apparatus that analyzes image data captured by the in-vehicle camera 81 and calculates information on the degree of eyelid opening described below.
  • the determination unit 103 is a device that determines whether or not the visibility of a driver who rides on the host vehicle is lowered based on information on the degree of eyelid opening calculated by the image analysis unit 101.
  • the in-vehicle camera 81 captures the face of the driver and outputs the image data of the face to the image analysis unit 101 of the visibility degradation point determination device 10.
  • the image analysis unit 101 analyzes the image data and specifies the position of the eyes (ST101).
  • the image analysis unit 101 filters this image data with a Sobel filter and emphasizes the edge of the eyelid (ST102).
  • the image analysis unit 101 extracts the maximum value h in the vertical direction and the maximum value w in the horizontal direction in the number of pixels of the emphasized edge. Further, the image analysis unit 101 calculates a ratio h / w between the maximum value h in the vertical direction and the maximum value w in the horizontal direction (ST103). The ratio h / w corresponds to information on the degree of eyelid opening.
  • the image analysis unit 101 outputs the ratio h / w information to the determination unit 103.
  • the determination unit 103 determines the degree of eyelid opening based on the ratio h / w information acquired from the image analysis unit 101 (ST104). For example, the determination unit 103 has a threshold value in advance, and when the ratio h / w is equal to or greater than the threshold value, the determination unit 103 determines that the visibility of a driver who rides on the host vehicle is reduced, and the ratio h / w is When it is below the threshold value, it is determined that the visibility of the driver who gets on the host vehicle is not lowered.
  • the visibility-decreasing point determination device 10 determines that the visibility is reduced, the processing of ST300 in FIG. 4 is executed. On the other hand, when the visibility reduction point determination device 10 determines that the visibility is not lowered, the processing is terminated.
  • the visibility-decreasing point determination device 10 determines that the visibility of a driver who gets on the host vehicle is decreasing
  • the position information of the host vehicle and the traveling direction of the host vehicle are determined from the host vehicle position acquisition device 9.
  • the date and time when it is determined that the visibility is lowered from the information and the time measuring means (not shown) are acquired.
  • the visibility-decreasing point determination device 10 transmits information on the position of the host vehicle, the traveling direction of the host vehicle, the date, and the time to the server 7 via the external communication device 6.
  • the server 7 stores the position information of the host vehicle, the traveling direction information of the host vehicle, the date information, and the time information in the visibility degradation point information database.
  • the vehicle in the time zone 7:30 on January 1st, the vehicle is headed at the point indicated by coordinates (corresponding to the position of the vehicle) 34.40N, 132.47E (the vehicle's (Corresponding to the traveling direction)
  • the visibility-decreasing point determination device 10 determines that the visibility of the driver who rides on the host vehicle is reduced when facing the direction of 240 °
  • the visibility-decreasing point determination device 10 Stores the date “1/1”, the time zone “7:00 to 8:00”, the coordinates “34.40N, 132.47E”, and the azimuth “240 °” in the server 7.
  • the visibility lowering point determination device 10 stores the degree of glare corresponding to the degree of eyelid opening, for example, “30%” in the server 7.
  • the visibility-decreasing point determination device 10 does not necessarily have to transmit date and date information to the server 7.
  • the server 7 is provided with a time measuring means (not shown) for measuring the current date and time, and information on the coordinates, the direction, and the degree of glare obtained from the visibility lowering point determination device 10 is used as these information. May be stored in association with the date and time zone at the time of acquisition.
  • the driver assistance system of the other vehicle outputs the position information of the other vehicle and the traveling direction information of the other vehicle to the server 7 when it is determined that the visibility is lowered. To do.
  • the position information of the other vehicle and the traveling direction information of the other vehicle in the visibility lowering point database, the information amount of the visibility lowering point database can be enhanced.
  • the position information of the host vehicle or the other vehicle is output from the driver support system of the host vehicle or the other vehicle, or the position information of the other vehicle is used as the position information of the vehicle.
  • the traveling direction information or the traveling direction information of another vehicle is expressed as the traveling direction information of the vehicle.
  • the visibility reduction database includes the vehicle position information transmitted from the own vehicle or the other vehicle and the vehicle progress when the visibility of the driver who gets on the own vehicle or the other vehicle is lowered.
  • the direction information is automatically stored, the position information of the vehicle and the traveling direction information of the vehicle may be stored in advance in the visibility reduction database manually by the designer.
  • FIG. 8 is an operation flowchart of a process in which the driver assistance apparatus according to the first embodiment warns of a decrease in visibility of a driver who gets on another vehicle.
  • the own vehicle position acquisition device 9 transmits the position information of the own vehicle to the server 7 via the external communication device 6 with a predetermined time interval.
  • the predetermined time interval is arbitrarily set by the driver support system designer. In the description of FIG. 5, it is assumed that the own vehicle position acquisition device 9 transmits the information of the own vehicle position “33.40N, 131.47E” to the server 7 at time “9:30”.
  • the server 7 receives information of the position “33.40N, 131.47E” of the own vehicle from the own vehicle position acquisition device 9.
  • the server 7 searches for a time zone including the time when the position information of the host vehicle is received from the host vehicle position acquisition device 9 among the time zones stored in the visibility degradation point database shown in FIG. Since the information of the time “9:30” is transmitted from the own vehicle position acquisition device 9, the server 7 extracts the time zone “9:00 to 10:00” as a search result. It is assumed that the server 7 has time measuring means (not shown) and can acquire the current time from the time measuring means.
  • the server 7 receives the position “33.
  • the coordinates information corresponding to “40N, 131.47E” is searched from the visibility reduction database.
  • the coordinate information corresponding to the position “33.40N, 131.47E” of the host vehicle received from the host vehicle position acquisition device 9 is set in the server 7 and stored in the visibility degradation database.
  • the corresponding coordinate information is assumed. In the example of FIG.
  • the server 7 indicates that the position “33.40N, 131.47E” of the host vehicle received from the host vehicle position acquisition device 9 is the coordinate “34.40N, It is assumed that it is extracted as being included in the range of “132.47E”.
  • the server 7 transmits information of the orientation “140 °, 220 °” associated with the extracted coordinates “34.40N, 132.47E” to the external communication device 6.
  • the server 7 stores the coordinates of the visibility degradation point database as point information, but may store the information as range information.
  • the server 7 can store in the form of a range such as a range from the intersection center to the radius Xm or a range from a point A to a point B on a specific road.
  • the server 7 determines whether or not the position “33.40N, 131.47E” of the host vehicle received from the host vehicle position acquisition device 9 is included in the determined range.
  • the present invention is not limited to this, and the visibility determination unit 21 may make the determination.
  • the host vehicle position acquisition device 9 transmits information on a range determined centering on the position “33.40N, 131.47E” of the host vehicle of the host vehicle to the server 7.
  • Information on the direction corresponding to the coordinates included in the information may be searched from the visibility degradation point database and transmitted. By comprising in this way, a different range can be set for every vehicle.
  • the visibility determining unit 21 acquires information on the orientation “140 °, 220 °” from the server 7 via the external communication device 6.
  • the visibility determination unit 21 performs the process of ST4.
  • the periphery monitoring device 1 acquires the periphery information.
  • the periphery monitoring device 1 acquires information on the distance between the host vehicle and another vehicle using a radar or the like.
  • the other vehicle information acquisition part 22 acquires periphery information from the periphery monitoring apparatus 1, and determines whether another vehicle exists in the predetermined range from the own vehicle.
  • the other vehicle information acquisition unit 22 calculates the position of the other vehicle based on the information on the position of the own vehicle and the distance between the own vehicle and the other vehicle. To do.
  • the other vehicle information acquisition unit 22 calculates the position of the other vehicle a plurality of times, and calculates the traveling direction of the other vehicle from the change in the position of the other vehicle calculated a plurality of times.
  • the other vehicle information acquisition unit 22 outputs the calculated traveling direction information of the other vehicle to the visibility determination unit 21, and executes the process of ST5.
  • the predetermined range may be a range that can be measured by a radar or the like, or may be a range that is arbitrarily determined separately from a ranging range by a radar or the like.
  • the visibility determination unit 21 gets on the other vehicle based on the traveling direction of the other vehicle acquired from the other vehicle information acquisition unit 22 and the information of the direction “140 °, 220 °” acquired from the server 7. It is determined whether or not the visibility of the driver to be reduced is lowered.
  • the visibility determination unit 21 is configured so that the traveling direction of the other vehicle corresponds to the azimuth acquired from the server 7, that is, the traveling direction of the other vehicle is oriented in a direction of 140 ° or 220 °. In this case, it is determined that the visibility of the driver who gets on the other vehicle is lowered.
  • the processing device 2 performs the process of ST5.
  • the processing apparatus 2 complete
  • the visibility determination unit 21 determines whether or not the traveling direction of the other vehicle corresponds to the azimuth acquired from the server 7 so that the traveling direction of the other vehicle and the azimuth acquired from the server 7 do not completely match. It is not necessary to determine whether or not
  • the visibility determination unit 21 has a threshold value for the deviation between the traveling direction of the other vehicle and the orientation acquired from the server 7 in advance, and the deviation between the traveling direction of the other vehicle and the orientation obtained from the server 7 is less than the threshold value. In some cases, it may be determined that the traveling direction of the other vehicle corresponds to the direction acquired from the server 7.
  • the warning processing unit 23 when the visibility determination unit 21 determines that the visibility of the driver who gets on the other vehicle is lowered, the warning processing unit 23 outputs the warning image data and the warning sound from the storage device 3. Get the data.
  • the warning processing unit 23 outputs warning image data to the display device 4 and warning sound data to the speaker 5.
  • the warning processing unit 23 acquires both the warning image data and the warning sound data. However, only one of them may be acquired.
  • the display device 4 acquires warning image data from the warning processing unit 23 and displays a warning image.
  • FIG. 9 is an example in which the display device 4 according to Embodiment 1 displays a warning image.
  • the warning image is an image indicated by A.
  • the warning image is displayed on the display device 4 by displaying an image of the other vehicle and the surroundings of the other vehicle captured by a camera outside the vehicle (not shown) and superimposing the image on the displayed image of the other vehicle. Display a warning.
  • the warning processing unit 23 may acquire the position information of the other vehicle from the other vehicle information acquisition unit 22.
  • the display device 4 displays a warning image around an image showing another vehicle, the display device 4 is not limited to this, and may be displayed with characters “attention ahead” or simply “attention”.
  • the speaker 5 acquires warning sound data from the warning processing unit 23 and outputs a warning sound.
  • the warning sound may be a sound such as “attention to the vehicle ahead” or “attention to the right vehicle”, or may be a buzzer or the like.
  • the point where the visibility of the driver who rides on the vehicle is reduced and the direction information where the visibility of the driver of the vehicle corresponding to this point is reduced are associated with each other.
  • the visibility of the driver who gets on the other vehicle based on the traveling direction information of the other vehicle and the direction information that decreases the visibility stored in the visibility lowering point information database.
  • the visibility of the driver who gets on the other vehicle is reduced by the driver of the own vehicle when it is judged that the visibility of the driver who gets on the other vehicle is lowered.
  • the driver of the own vehicle can travel while paying attention to the movement of the other vehicle.
  • the other vehicle information acquisition part 22 which concerns on this Embodiment shall acquire the periphery information for calculating the positional information on another vehicle, and the advancing direction information of another vehicle from the periphery monitoring apparatus 1, it is an external communication apparatus.
  • the position information of the other vehicle and the traveling direction information of the other vehicle may be acquired from the other vehicle via 6. That is, the other vehicle information acquisition unit 22 may acquire the position information of the other vehicle and the traveling direction information of the other vehicle by inter-vehicle communication. In this way, by using inter-vehicle communication, for example, information on the surroundings of other vehicles traveling in a place that cannot be acquired by a laser, a rider, or the like can be acquired by a wall or a fence.
  • the visibility determination unit 21 acquires the traveling direction information of the other vehicle from the other vehicle information acquisition unit 22 when determining whether or not the visibility of the driver who gets on the other vehicle is reduced.
  • the position information of other vehicles may be acquired.
  • the visibility determining unit 21 determines whether or not the other vehicle exists within a range determined from the position of the host vehicle, and when the other vehicle exists within this range. Determines a decrease in the visibility of a driver who gets on the other vehicle.
  • the determined range may be a range for selecting the inside of the database when the server 7 acquires information on the coordinates of the host vehicle, or a range similar to the range transmitted by the host vehicle position acquisition device 9 to the server 7. It may be a range other than these.
  • the driver support system does not display a warning when the risk of a collision or the like is extremely low, so that the reliability of the warning can be improved.
  • the driver support system may determine whether or not another vehicle exists within a range determined from the coordinates acquired from the server 7.
  • the driver assistance system determines a decrease in the visibility of the other vehicle when the other vehicle exists within a range determined from the coordinates acquired from the server 7.
  • a plurality of coordinates acquired from the server 7 exist within the range determined from the own vehicle by determining a decrease in visibility for other vehicles existing within the range determined from the coordinates acquired from the server 7. Even in this case, it is possible to determine a decrease in visibility of a driver who gets on another vehicle closer to the coordinates acquired from the server 7 and to warn the driver of the host vehicle.
  • the visibility determining unit 21 acquires the direction information from the server 7, but acquires the glare degree information associated with the direction information of the visibility reduction database. Whether or not to warn based on the degree of glare may be determined.
  • the visibility determination unit 21 has a glare degree threshold, and displays a warning image or a warning sound on the driver of the host vehicle when the glare degree acquired from the server 7 is equal to or greater than the threshold. Output.
  • the driver assistance system according to the present embodiment since the driver assistance system according to the present embodiment acquires information on the degree of glare, the driver assistance system according to the present embodiment warns the driver of the own vehicle depending on how much the driver of the other vehicle has degraded visibility. It can be determined whether or not. Therefore, when the reduction in visibility is extremely low, it is possible to perform control such that no warning is given.
  • the visibility determining unit 21 acquires the azimuth based on the visibility degradation point database, but the azimuth data is not stored (the row of the date 9/3 in FIG. 3). )),
  • the position of the sun may be calculated, and it may be determined whether or not the visibility of the other vehicle has deteriorated based on the position of the sun and the traveling direction of the other vehicle.
  • the driver assistance system calculates the direction of the sun and visually recognizes other vehicles when the visibility determining unit 21 does not store the direction information in the visibility degradation point database. Therefore, it is possible to warn the driver of the own vehicle that the visibility of the driver who gets on the other vehicle is lowered even at a point where there is no azimuth data.
  • the visibility lowering point determination device 10 may determine whether or not to store information on coordinates and azimuth in the visibility lowering point database based on information on the degree of glare.
  • the visibility reduction point determination device 10 has a threshold value of the degree of glare, and when the information on the degree of glare acquired from the visibility reduction information detection device 8 is equal to or greater than the threshold value, the coordinates, direction, and Information on the degree of glare is transmitted to the server 7.
  • the visibility reduction point determination device 10 stores the coordinates, the direction, and the information on the degree of glare. Do not send to 7.
  • the driver support system determines whether or not to store information on coordinates, orientation, and the degree of glare according to the degree of glare. The information on the coordinates, the direction, and the degree of glare can be prevented from being stored in the visibility degradation point database. Therefore, the accuracy of the visibility degradation point information database is improved.
  • the visibility fall point determination apparatus 10 which concerns on this Embodiment shall determine whether the visibility of the driver who gets into the own vehicle has fallen based on the opening degree of an eyelid, Without being limited thereto, it may be determined whether or not the visibility of the driver who gets on the host vehicle is lowered based on the driver's line of sight or the state of the sun visor provided in the vehicle.
  • FIG. 10 is a functional block diagram of the visibility degradation information detection device 8 and the visibility degradation point judgment device 10 when determining the visibility degradation based on the driver's line of sight or the state of the sun visor.
  • the line-of-sight detection unit 82 is a device that detects the line of sight of the driver.
  • the line-of-sight detection unit 82 acquires information on the presence or absence of line-of-sight detection of the driver who gets on the host vehicle or information on the line-of-sight distribution and outputs the information to the determination unit 103.
  • the determination unit 103 acquires the presence / absence of the gaze detection of the driver or the gaze distribution information, and determines whether the visibility of the driver getting on the host vehicle is reduced.
  • the line of sight can be detected by irradiating the face of the driver who rides on the host vehicle with infrared rays and measuring the corneal reflection.
  • the determination unit 103 uses the property that gaze detection cannot be performed when external light is incident on the eyes of the driver, and the visibility of the driver getting on the host vehicle is reduced due to the influence of external light. Is detected.
  • FIG. 11 is a diagram illustrating a gaze distribution of the driver of the host vehicle according to the first embodiment.
  • the driver of the own vehicle feels dazzling due to the influence of external light, he / she does not try to see the vicinity of the center of the external light.
  • the forward signal is a notable subject for the driver, but avoids the driver turning his or her eyes due to the incidence of external light. In this way, it is estimated whether or not the driver feels dazzling by extracting the tendency to avoid directing the line of sight to a specific region of interest by the line-of-sight detection function.
  • the visibility lowering point determination device 10 may determine whether or not the visibility of a driver who rides on the host vehicle is lowered based on the sun visor sensor 83 provided in the vehicle.
  • FIG. 12 is a diagram illustrating the sun visor sensor according to the first embodiment.
  • the sun visor sensor 83 includes a sun visor orientation sensor 831, a sun visor usage determination sensor 834, and an illuminance sensor 832.
  • the sun visor use determination sensor 834 is provided in a hinge portion 833 extending inside the sun visor.
  • the sun visor usage determination sensor 834 rotates as the hinge portion 833 rotates when the sun visor is used. That is, the sun visor usage determination sensor 834 detects the use of the sun visor by detecting the rotation of the hinge shaft 834 in the horizontal axis direction.
  • the sun visor usage determination sensor 834 corresponds to, for example, a contact switch or a non-contact magnetic sensor.
  • the sun visor orientation sensor 831 is provided near the hinge portion 831 connected to the vehicle ceiling.
  • the sun visor orientation sensor 831 detects the rotation of the hinge shaft 831 in the vertical axis direction.
  • the sun visor direction sensor 831 detects which direction the sun visor is directed by detecting the rotation of the hinge shaft 831 in the vertical axis direction.
  • the sun visor orientation sensor 831 corresponds to, for example, a rotary encoder.
  • the illuminance sensor 832 is provided at the lower part of the surface of the sun visor facing the outside of the vehicle, and detects the intensity of light inserted into the driver's seat.
  • the vehicle information management unit 102 can detect the driver's intention to use the sun visor, the incident direction of external light, and the intensity based on information detected by the sun visor orientation sensor 831, the sun visor usage determination sensor 834, and the illuminance sensor 832. Then, it is estimated whether or not the visibility of the driver who gets on the host vehicle is lowered.
  • the vehicle information management unit 102 outputs information on whether or not the visibility is lowered to the determination unit 103. Based on information from the vehicle information management unit 102 or the line-of-sight detection unit 82, the determination unit 103 determines whether or not the visibility is lowered.
  • the vehicle position information and the traveling direction information of the host vehicle are transmitted to the server 7.
  • FIG. 13 is a functional block diagram of the driver support system according to the second embodiment.
  • the components corresponding to the configuration of the driver support system according to the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the driver support system includes a map database 11.
  • the map database 11 stores information on roads on which vehicles travel (hereinafter referred to as road information).
  • road information information on roads on which vehicles travel
  • the map database 11 is provided in the vehicle, but may be provided in an external server.
  • the visibility determination unit 21 acquires the position information of the host vehicle from the host vehicle position acquisition device 9. Further, the visibility determination unit 21 acquires road information of the map database 11 based on the position information of the own vehicle, and a driver who gets on another vehicle based on the road information and the direction information acquired from the server 7.
  • the road where the visibility of the road may be lowered is determined.
  • the road information is information on roads on which the vehicle can travel.
  • the road information includes at least information on the direction of the road and the direction in which the vehicle can travel on the road (hereinafter referred to as travelable direction information).
  • travelable direction information refers to a road where the visibility of the driver who gets on the other vehicle may decrease when another vehicle travels.
  • FIG. 14 is an example of a map database according to the second embodiment.
  • the map database 11 is composed of the position of the host vehicle, the road direction, and the travelable direction.
  • the direction of the road indicates the direction in which the road extends with reference to the coordinates indicated by the position of the host vehicle.
  • the travelable direction indicates in which direction the vehicle can travel on the road.
  • the position “34.40N, 132.47E” of the host vehicle in FIG. 13 shows a case where the host vehicle exists at an intersection, and the road extends in directions of 30 °, 120 °, 210 °, and 300 °. It shows that.
  • roads extending in the directions of 30 °, 120 °, 210 °, and 300 ° are 0 (passable in both directions), 0 (passable in both directions), and -1 (travelable in the center direction of the intersection), respectively. 1 (the vehicle can travel in a direction away from the center of the intersection).
  • the visibility determination unit 21 acquires a road direction and a travelable direction based on the position of the host vehicle.
  • FIG. 15 is an operation flowchart of the driver support system according to the second embodiment.
  • components corresponding to the operations of the driver support system according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the driver assistance system assumes that the host vehicle has determined that the visibility of other vehicles ahead is determined at the intersection as described in FIG.
  • the visibility determination unit 21 acquires the position information of the host vehicle from the host vehicle position acquisition device 9. Further, the visibility determining unit 21 acquires the road information of the surroundings at the position of the host vehicle from the map database 11 based on the position information of the host vehicle.
  • the visibility determining unit 21 determines the road on which the driver's visibility may be reduced based on the road information and the orientation information acquired from the visibility-decreasing point information database (hereinafter, the visibility is reduced).
  • the visibility determination unit 21 acquires road information of the intersection.
  • the visibility determining unit 21 recognizes that there is a possibility that the vehicle may travel from the right road, the left road, and the road ahead in view of the position of the host vehicle based on the road information of the intersection. Further, the visibility determining unit 21 determines whether the other vehicle has traveled on any road among the roads on which the vehicle may travel from the direction of the visibility degradation point information database.
  • the visibility determining unit 21 determines whether there is a road direction in the map database that matches the orientation of the visibility lowered point information database. If the direction of the road in the map database matches the direction of the visibility lowering point information database, the visibility determining unit 21 determines whether or not the direction of the visibility lowering point information database matches the advanceable direction. judge. When the azimuth
  • the warning processing unit 23 obtains the corresponding warning image data or sound data from the storage device 3 based on the information on the road where the driver visibility, which is obtained from the visibility determination unit 21, may decrease. Obtain and output to the display device 4 or the speaker 5.
  • the display device 4 acquires image data for warning and displays this image.
  • FIG. 16 is an example in which the display device 4 according to the second embodiment displays a warning image.
  • B shows a warning image in the present embodiment.
  • the warning image B indicates that the visibility of the other vehicle may be reduced when the other vehicle travels from the right direction of the host vehicle.
  • the speaker 5 acquires sound data for warning and displays this sound.
  • the driver assistance system determines a direction in which the visibility of a driver who gets on another vehicle decreases based on information on a road on which the vehicle can travel and information on the traveling direction of the vehicle. Judgment and warning to the driver of the own vehicle of the direction in which the visibility decreases, so even in the case where the presence of other vehicles cannot be detected, the direction in which the visibility decreases can be predicted in advance, Can drive.
  • the map data acquisition process of ST501 is performed when it is determined that the visibility is reduced in ST5.
  • the present invention is not limited to this, and the visibility is reduced in ST3. Even if it is determined that it has not, ST501 may be executed.
  • Embodiment 3 The driver assistance system according to Embodiment 3 is a driver who gets on another vehicle when there is a high possibility that the own vehicle and the other vehicle will collide based on the traveling direction information of the own vehicle and the traveling direction information of the other vehicle. It is characterized by warning that the visibility of is lowered.
  • FIG. 17 is a functional block diagram of the driver support system according to the third embodiment. In the description of FIG. 17, components corresponding to the configuration of the driver support system according to the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the driver support system according to Embodiment 3 includes a driving monitoring device 12 and a host vehicle information acquisition unit 24.
  • the driving monitoring device 12 is a device that monitors vehicle information such as brakes, accelerators, turn signals, and traveling directions of the vehicle using a vehicle information acquisition system such as CAN.
  • the own vehicle information acquisition unit 24 is a device that acquires own vehicle information from the driving monitoring device 12 and determines a direction in which the own vehicle travels.
  • the other vehicle information acquisition unit 22 acquires the peripheral information from the periphery monitoring device 1 and estimates the direction in which the other vehicle travels.
  • the visibility determination unit 21 determines whether or not the visibility of a driver who gets on the other vehicle is lowered, acquires the traveling direction information of the other vehicle from the other vehicle information acquisition unit 22, and the own vehicle information acquisition unit The traveling direction information of the own vehicle is acquired from 24, and it is determined whether or not there is a high possibility that the own vehicle and another vehicle collide.
  • FIG. 18 is an operation flowchart of the driver support system according to the third embodiment.
  • components corresponding to the operations of the driver support system according to the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 18 from ST1 to ST5, as described with reference to FIG.
  • the driving monitoring device 12 acquires own vehicle information. Further, the driving monitoring device 12 outputs the own vehicle information to the visibility determining unit 21.
  • the visibility determination unit 21 acquires the host vehicle information and predicts the direction in which the host vehicle will proceed. For example, when the host vehicle is stopped at an intersection, the visibility determining unit 21 can easily predict the direction in which the host vehicle will travel from the direction of the blinker or the like. Furthermore, the visibility determination unit 21 determines whether or not the host vehicle and the other vehicle may collide based on the direction in which the host vehicle travels and the traveling direction of the other vehicle.
  • the visibility determination unit 21 determines that the possibility that the host vehicle and the other vehicle collide is high, the visibility of the driver riding in the other vehicle determined in ST5 is reduced. This is notified to the warning processing unit 23 and the process proceeds to ST6.
  • the visibility determining unit 21 is unlikely to collide with the other vehicle.
  • the processing is terminated without notifying the warning processing unit 23 that the visibility of the driver riding in the other vehicle determined in step S1 is lowered. It should be noted that the driver assistance system designer can arbitrarily set whether or not the host vehicle and the other vehicle are likely to collide with each other when the host vehicle and the other vehicle travel in either direction.
  • the driver assistance system determines the possibility of collision between the host vehicle and the other vehicle based on the traveling direction information of the host vehicle and the traveling direction information of the other vehicle, and If it is determined that there is a possibility that the driver will get on the other vehicle, the warning that the visibility of the driver who gets on the other vehicle is lowered is warned. The driver of the vehicle can be warned only when necessary.
  • the other vehicle information acquisition unit 22 determines in which direction the other vehicle travels based on the peripheral information acquired from the periphery monitoring device 1, but from the external communication device 6 by inter-vehicle communication. Information on the direction in which the other vehicle travels may be acquired, and the direction in which the other vehicle travels may be estimated based on the peripheral information and the information acquired from the external communication device 6.
  • the visibility determining unit 21 determines the possibility of collision based on the traveling direction of the own vehicle and the traveling direction of the other vehicle. Based on the information, the possibility of a rear vehicle colliding with the host vehicle may be determined.
  • the driving monitoring device 12 uses the speed information of the host vehicle (hereinafter referred to as speed information of the host vehicle) as host vehicle information.
  • the information is output to the visibility determination unit 21 via the acquisition unit 24.
  • the periphery monitoring device 1 outputs information on the speed of the other vehicle (hereinafter referred to as speed information of the other vehicle) to the visibility determination unit 21 via the other vehicle information acquisition unit 22.
  • the visibility determination unit 21 determines whether or not the other vehicle behind collides with the own vehicle based on the relative speed between the speed of the own vehicle and the speed of the other vehicle traveling behind. When the visibility determination unit 21 determines that there is a possibility that the rear vehicle may collide with the host vehicle, the visibility determination unit 21 outputs information indicating that the visibility of the rear vehicle is degraded to the warning processing unit 23. .
  • FIG. 19 shows an example in which the display device 4 according to the third embodiment displays a warning image. In FIG. 19, for example, when the visibility determination unit 21 determines that there is a high possibility that the host vehicle and another vehicle behind will collide, the display device 4 displays a warning image C1. Further, the warning image C2 may be displayed on the rearview mirror or the like.
  • the visibility determination unit 21 determines the possibility of a collision based on the information on the speed of the host vehicle and the speed of the other vehicle, thereby visually recognizing the driver who rides on the other vehicle traveling behind the host vehicle. Therefore, it can be determined that the possibility of collision with the host vehicle is high.
  • Embodiment 4 The driver assistance system according to Embodiment 4 controls a vehicle when there is a high possibility that the host vehicle and the other vehicle collide based on the traveling direction information of the host vehicle and the traveling direction information of the other vehicle.
  • FIG. 20 is a functional block diagram of the driver support system according to the fourth embodiment.
  • the components corresponding to the configuration of the driver support system according to Embodiments 1 to 3 are denoted by the same reference numerals and description thereof is omitted.
  • the driver support system includes a vehicle control unit 14.
  • the vehicle control unit 14 controls the operation of the host vehicle when the visibility determination unit 21 determines that the possibility of a collision is high based on the traveling direction of the host vehicle and the traveling direction of the other vehicle.
  • the vehicle control unit 14 controls, for example, a seat belt and a brake.
  • FIG. 21 is an operation flowchart of the driver support system according to the fourth embodiment.
  • the components corresponding to the operations of the driver support system according to the first to third embodiments are denoted by the same reference numerals and the description thereof is omitted.
  • the own vehicle determines a decrease in the visibility of the other vehicle behind, and the other vehicle behind may collide with the own vehicle. It is determined that there is a warning image and the ST7c will be described.
  • the vehicle control unit 14 winds up the seat bell when the visibility determination unit 21 determines that the rear vehicle may collide with the host vehicle, and the impact applied when the rear vehicle collides. To alleviate. In addition, the vehicle control unit 14 controls to forcibly apply the brake of the host vehicle, and prevents the host vehicle from jumping out due to an impact when a collision occurs.
  • the driver assistance system controls the operation of the host vehicle when it is determined that the host vehicle and another vehicle may collide with each other. While detecting, the damage at the time of collision of the own vehicle and another vehicle can be reduced.
  • Embodiment 5 The driver assistance system according to Embodiment 1 determines the position information of the host vehicle and the progress of the host vehicle when the visibility reduction point determination device 10 determines that the driver's visibility is reduced.
  • the direction information was transmitted to the server 7 and stored.
  • the driver assistance system causes the server 7 to send the position information of the own vehicle and the progress of the own vehicle in all cases where the visibility reduction point determination device 10 determines that the visibility of the driver who gets on the own vehicle is reduced. If the direction information is stored, the amount of data may be enormous. Therefore, the driver support system according to the fifth embodiment transmits the position information of the own vehicle and the traveling direction information of the own vehicle to the server 7 at a specific point such as an intersection, for example, except for a specific point such as a straight road. In this point, the position information of the own vehicle and the traveling direction information of the own vehicle are transmitted to the server 7 when the light reflected on the building or the like is irradiated to the driver who gets on the own vehicle.
  • FIG. 22 is a functional block diagram of the driver support system according to the fifth embodiment.
  • components corresponding to the configuration of the driver support system according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the driver support system includes a solar bearing calculation device 15.
  • the sun direction calculation device 15 acquires the position of the host vehicle from the host vehicle position acquisition device 9, and calculates the direction of the sun with reference to the host vehicle based on the position and time of the host vehicle.
  • the visibility-decreasing point determination device 10 acquires the position information of the host vehicle from the host vehicle position acquisition device 9, and determines whether the host vehicle is present at a specific point. On the other hand, when it is determined that the host vehicle is present at a specific point, the visibility-decreasing point determination device 10 transmits the position information of the host vehicle and the traveling direction information of the host vehicle to the server 7.
  • the specific point can be arbitrarily set by the designer of the driver support system, and corresponds to, for example, an intersection.
  • the visibility-decreasing point determination device 10 determines that the host vehicle does not exist at a specific point, the traveling direction of the host vehicle from the host vehicle position acquisition device 9 and the azimuth of the sun from the sun direction calculation device 15 are determined. The reason why the visibility of the driver who gets on the own vehicle is reduced based on the traveling direction of the own vehicle and the azimuth information of the sun. It is determined whether it is due to direct irradiation to the driver or indirectly due to sunlight reflection. If the cause of the decrease in the visibility of the driver who gets on the host vehicle is directly irradiated with sunlight, the visibility-decreasing point determination device 10 displays the position information of the host vehicle and the traveling direction information of the host vehicle. If it is not transmitted to the server 7 but indirectly irradiated by the reflection of sunlight, it is transmitted to the position information of the own vehicle and the traveling direction information of the own vehicle.
  • FIG. 23 is an operation flowchart of the driver support system according to the fifth embodiment.
  • components corresponding to the operations of the driver support system according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the specific point is described as an intersection, but the specific point can be arbitrarily determined by the driver support system designer.
  • the visibility degradation point determination device 10 acquires information related to the position of the host vehicle from the host vehicle position acquisition device 9, and determines whether the host vehicle is present at a specific point, that is, an intersection. When the own vehicle exists at the intersection, the process of ST400 is executed. On the other hand, when the host vehicle does not exist at the intersection, for example, when the vehicle is traveling on a straight road that cannot turn right or left, the visibility-decreasing point determination device 10 executes the process of ST312.
  • the sun bearing calculation device 15 acquires information related to the position of the host vehicle from the host vehicle position acquisition device 9. Moreover, the solar azimuth calculation device 15 calculates the azimuth of the sun based on the information regarding the position of the host vehicle and the current time.
  • the visibility-decreasing point determination device 10 acquires the traveling direction of the host vehicle from the host vehicle position acquisition device 9, acquires the azimuth information of the sun from the solar azimuth calculation device 15, and the traveling direction of the host vehicle and the solar It is determined whether or not the direction matches.
  • the traveling direction of the host vehicle coincides with the direction of the sun
  • the visibility-decreasing point determination device 10 is such that the cause of the decrease in the visibility of the driver riding on the host vehicle is directly irradiated with sunlight. Judge that there is.
  • the visibility-decreasing point determination device 10 reflects that sunlight is reflected on a building or the like because the driver's visibility is reduced. It is determined that this is due to If the driver assistance system determines that the driver's visibility in the host vehicle has been reduced due to direct sunlight, the process is terminated and the sunlight is reflected on the building, etc. If it is determined that this is the case, ST400 is performed.
  • the visibility-decreasing point determination device 10 transmits the position information of the host vehicle, the traveling direction information of the host vehicle, the date information, and the time information acquired in ST300 to the server 7 via the external communication device 6. .
  • the server 7 stores the position information of the host vehicle, the traveling direction information of the host vehicle, the date information, and the time information in the visibility degradation point information database.
  • the cause of the decrease in the visibility of the driver who gets on the own vehicle based on the traveling direction of the own vehicle and the azimuth information of the sun is directly caused by sunlight.
  • the vehicle is determined to be due to the irradiation indirectly due to the reflection of sunlight Since the position information and the traveling direction information of the own vehicle are transmitted, the information amount of the visibility degradation point stored in the server 7 can be reduced.
  • the driver assistance system according to Embodiment 1 is traveling on a straight road where the host vehicle cannot turn right or left, and the traveling direction of the host vehicle and the direction of the sun relative to the position of the host vehicle are
  • the position information of the own vehicle and the traveling direction information of the own vehicle are stored in the server 7 a plurality of times, and the amount of data becomes enormous.
  • the driver assistance system according to the present embodiment provides a server 7 when the vehicle is present at a specific point such as an intersection, and the driver's visibility is reduced by being indirectly irradiated with light by sunlight reflection. Since the position information of the own vehicle and the traveling direction information of the own vehicle are transmitted to the server 7, the amount of data stored in the server 7 can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 本発明のドライバ支援システムは、他車両の進行方向情報を取得する他車両情報取得部と、車両に乗車するドライバの視認性が低下する地点と、前記地点に対応する車両のドライバの視認性が低下する方向情報とが対応づけられて記憶される記憶部と、前記他車両情報取得部に取得された前記他車両の進行方向情報と、前記記憶部に記憶される前記視認性が低下する方向情報とに基づいて、前記他車両に乗車するドライバの視認性が低下しているか否かを判定する視認性判定部と、前記視認性判定部により前記他車両に乗車するドライバの視認性が低下していると判定された場合に、自車両のドライバに前記他車両に乗車するドライバの視認性が低下していることを警告する警告処理部と、を備えることを特徴とする。

Description

ドライバ支援システム
 本発明は、車両に乗車するドライバの視認性低下を検出して警告するドライバ支援システムに関する。
 従来から、自車両の位置及び現在時刻に基づいて太陽の位置を算出し、さらにこの太陽の位置と自車両の進行方向とに基づいて太陽光が運転席内に差し込む方向を算出するドライバ支援装置が開示されている(例えば、特許文献1参照)。このドライバ支援装置は、太陽光が運転席内に差し込む方向を算出することで、事前に自車両のドライバが太陽光によって視認性が低下することを警告することができる。
特開2003―121159号公報
 しかしながら、特許文献1に記載のドライバ支援システムは、自車両に乗車するドライバの視認性低下を検出することはできても、他車両に乗車するドライバの視認性低下を検出することはできなかった。したがって、自車両に乗車するドライバの視認性が低下していない場合であっても、他車両に乗車するドライバの視認性が低下している場合には、他車両から衝突される可能性があり、危険という課題があった。
 本発明のドライバ支援システムは、上記のような課題を解決するためになされたものであって、他車両に乗車するドライバの視認性低下を検出し、自車両のドライバに警告することを目的とする。
 本発明のドライバ支援システムは、他車両の進行方向情報を取得する他車両情報取得部と、車両に乗車するドライバの視認性が低下する地点と、前記地点に対応する車両のドライバの視認性が低下する方向情報とが対応づけられて記憶される記憶部と、前記他車両情報取得部に取得された前記他車両の進行方向情報と、前記記憶部に記憶される前記視認性が低下する方向情報とに基づいて、前記他車両に乗車するドライバの視認性が低下しているか否かを判定する視認性判定部と、前記視認性判定部により前記他車両に乗車するドライバの視認性が低下していると判定された場合に、自車両のドライバに前記他車両に乗車するドライバの視認性が低下していることを警告する警告処理部と、を備えることを特徴とする。
 本発明のドライバ支援システムは、車両に乗車するドライバの視認性が低下したか否かを判定し、前記車両に乗車するドライバの視認性が低下した際に、前記車両の位置情報と前記車両の進行方向情報とを出力する視認性低下地点判定部と、前記視認性低下地点判定部から出力された前記車両の位置情報と前記車両の進行方向情報とを対応づけて記憶させる記憶部と、を備えることを特徴とする。
 本発明に係るドライバ支援システムは、他車両に乗車するドライバの視認性低下を検出し、自車両のドライバに警告するので、他車両に乗車するドライバの視認性が低下している場合には、自車両のドライバが他車両の動きに注意して走行することができる。
実施の形態1に係るドライバ支援システムのハードウェア構成図である。 実施の形態1に係るドライバ支援システムの機能ブロック図である。 実施の形態1に係るサーバが記憶するデータベースの例である。 実施の形態1に係るドライバ支援システムが自車両の進行方向情報を記憶する動作フローチャートである。 実施の形態1に係る視認性低下情報検出装置及び視認性低下地点判定装置の機能ブロック図である。 実施の形態1に係る視認性低下地点判定装置の動作フローチャートである。 実施の形態1に係る画像解析部がフィルタ処理によりまぶたのエッジを強調した画像の例である。 実施の形態1に係るドライバ支援装置が他車両に乗車するドライバの視認性低下を警告する処理の動作フローチャートである。 実施の形態1に係る表示装置4が警告画像を表示する例である。 ドライバの視線又はサンバイザの状態に基づいて視認性低下を判定する場合の視認性低下情報検出装置及び視認性低下地点判定装置の機能ブロック図である。 実施の形態1に係る自車両のドライバの視線分布を示す図である。 実施の形態1に係るサンバイザセンサを説明する図である。 実施の形態2に係るドライバ支援システムの機能ブロック図である。 実施の形態2に係る地図データベースの例である。 実施の形態2に係るドライバ支援システムの動作フローチャートである。 実施の形態2に係る表示装置が警告画像を表示する例である。 実施の形態3に係るドライバ支援システムの機能ブロック図である。 実施の形態3に係るドライバ支援システムの動作フローチャートである。 実施の形態3に係る表示装置が警告画像を表示する例である。 実施の形態4に係るドライバ支援システムの機能ブロック図である。 実施の形態4に係るドライバ支援システムの動作フローチャートである。 実施の形態5に係るドライバ支援システムの機能ブロック図である。 実施の形態5に係るドライバ支援システムの動作フローチャートである。
 実施の形態1.
 以下、図1、図2を用いて実施の形態1に係るドライバ支援システムについて説明する。
図1は、実施の形態1に係るドライバ支援システムのハードウェア構成図である。図2は、実施の形態1に係るドライバ支援システムの機能ブロック図である。図1において、実施の形態1に係るドライバ支援システムは、周辺監視装置1、処理装置2、記憶装置3、表示装置4、スピーカー5、外部通信装置6、サーバ7、視認性低下情報検出装置8、自車両位置取得装置9、及び視認性低下地点判定装置10を備える。処理装置2には、CPUバス100を介して周辺監視装置1、記憶装置3、表示装置4、スピーカー5、外部通信装置6、視認性低下情報検出装置8、自車両位置取得装置9、及び視認性低下地点判定装置10が接続され、CPUバス101を介して情報をやりとりすることができる。以下、図2を用いて各構成についてそれぞれ説明する。なお、自車両とは、ドライバ支援システムを備える車両であって、ドライバの視認性が低下していることを警告する車両のことをいう。以下の説明では、この自車両に搭載されたドライバ支援システムについて説明する。他車両とは、上記した自車両以外の車両を指す。さらに、車両は、自車両又は他車両を指す。
 周辺監視装置1は、他車両の位置及び他車両の進行方向を算出するための周辺情報を取得する装置である。例えば、周辺監視装置1は、レーダー、ライダー、カメラ等がこれに相当する。周辺情報は、周辺監視装置例えば、レーダー又はライダーが取得した自車両と他車両との距離の情報、又はカメラが撮像した画像データ等を指す。なお、以下の説明において、自車両の位置の情報を自車両の位置情報と表現し、他車両の位置の情報を他車両の位置情報と表現する。また、自車両の進行方向の情報を自車両の進行方向情報と表現し、他車両の進行方向の情報を他車両の進行方向情報と表現する。
 処理装置2は、他車両に乗車するドライバの視認性が低下しているか否かを判定するための装置であって、例えば、CPU(Central Processing Unit)がこれに相当する。視認性の低下とは、他車両のドライバが太陽光によって眩しいと感じた場合、及びビルや車などによって反射した太陽光により眩しいと感じた場合に、周辺の状況が見えにくくなる状態をいう。処理装置2は、視認性判定部21、他車両情報取得部22、警告処理部23を備える。処理装置2は、記憶装置3等に予め記憶されたプログラムを実行することにより、後述する他車両情報取得部22、視認性判定部21、及び警告処理部23の機能を実現する。なお、ドライバ支援システムは、処理装置2であってもよいし、この処理装置2と後述するサーバ7とを備えるものであってもよい。
 記憶装置3は、処理装置2により他車両に乗車するドライバの視認性が低下していると判定された場合に、後述する表示装置4に表示させる警告用の画像データ及び後述するスピーカー5に出力させる警告用の音データを記憶する。なお、以下の説明において、警告用の画像データ及び警告用の音データを警告データと表現する。
 表示装置4は、処理装置2により他車両に乗車するドライバの視認性が低下していると判定された場合に、警告用の画像を表示する。例えば、表示装置4は、ヘッドアップディスプレイ、インストゥルメントパネル、及びカーナビゲーションシステムの道路情報を表示するためのディスプレイがこれに相当する。なお、本実施の形態において、表示装置4は、ヘッドアップディスプレイ、インストゥルメントパネル、及びカーナビゲーションシステムの道路情報を表示するためのディスプレイであるものとしたが、これに限られず、外部から接続されるスマートフォン、タブレット等のデバイスのディスプレイであってもよい。
 スピーカー5は、処理装置2により他車両に乗車するドライバの視認性が低下していると判定された場合に、警告用の音を出力する。スピーカー5は、例えば、車両内の前方、又は左右に取り付けられ、音楽、又はカーナビゲーションシステムの道路情報を出力するスピーカーがこれに相当する。また、スピーカー5は、カーナビゲーションシステム等の車載機器に外部から接続されたスマートフォン、タブレット等のデバイスのスピーカーであってもよい。
 外部通信装置6は、外部の装置と通信する。例えば、後述するサーバ7が車両外部に設置される外部サーバである場合、外部通信装置6は、サーバ7と情報の送受信を行う。
 サーバ7は、視認性低下地点データベースを備える。図3は、実施の形態1に係るサーバが記憶する視認性低下地点データベースの例である。図3に示すように、視認性低下地点データベースは、日付、時間帯、視認性が低下する地点、視認性が低下する方向、まぶしさの度合い等が対応づけられた情報である。視認性が低下する地点は、車両が走行中に太陽又はビル等から反射した光がこの車両のドライバに照射することによって、このドライバの視認性が低下する地点をいう。本実施の形態において、サーバ7に記憶される視認性が低下する地点を座標と表現し、視認性が低下する方向を方位と表現する。方位は、車両を基準として太陽の光、又は太陽の光がビル等に反射した光の方向又は、車両に乗車するドライバの視認性が低下した際の進行方向に相当する。図3の1番上の行に記載されているデータは、1月1日の時間帯7:00~8:00において、座標34.40N,132.47Eで示される地点で方位120°又は240°の方向を向いている車両に乗車するドライバが、眩しさにより視認性が低下することを示している。眩しさの度合いは、眩しさの強さの情報を示しており、ドライバに当たる光の強度が強いほど眩しさの度合いも高くなる。なお、サーバ7は、車両の外部に設けられる外部サーバであってもよいし、車両内部の記憶装置(図示せず)であってもよい。車両外部の外部サーバ及び車両内部の記憶装置を含めて、記憶部と表現してもよい。以下の説明において、なお、視認性低下地点データベースの説明において、日付、時間帯、座標、まぶしさの度合いを対応づけることを説明したが、視認性低下地点データベースは、少なくとも座標、方位が対応づけられていればよい。
 視認性低下情報検出装置8は、自車両に乗車するドライバの視認性が低下していることを検出するための情報を取得する装置であって、例えば、車載カメラ等を備える。視認性低下情報検出装置8が車載カメラである場合、視認性が低下していることを検出するための情報は、車載カメラによって撮像されたドライバの顔画像データに相当する。
 自車両位置取得装置9は、自車両の位置情報及び自車両の進行方向情報を取得する装置である。例えば、自車両位置取得装置9は、GPS(Global Positioning System)等により、自車両の位置情報を時間間隔をあけて複数取得し、時間ごとに変化する自車両の位置情報から自車両の進行方向情報を算出する。自車両の位置情報は、例えば、自車両が位置する緯度及び経度等の情報である。なお、自車両位置取得装置9は、自車両の進行方向情報をCAN(Controller Area Network)のデータ(例えば、ジャイロセンサ、地磁気センサ等の情報)から取得してもよい。
 視認性低下地点判定装置10は、自車両に乗車するドライバの視認性が低下しているか否かを判定する。また、視認性低下地点判定装置10は、自車両に乗車するドライバの視認性が低下していると判定した場合に、自車両の位置情報及び自車両の進行方向情報をサーバ7に送信する。
 次に、図2を用いて処理装置2の構成を詳細に説明する。
 他車両情報取得部22は、周辺監視装置1から周辺情報を取得し、この周辺情報に基づいて他車両の進行方向を算出する。なお、他車両の進行方向の算出方法については、後述する。
 視認性判定部21は、他車両情報取得部22が算出した他車両の進行方向情報と、サーバ7から取得した方位の情報に基づき、他車両に乗車するドライバの視認性が低下しているか否かを判定する。
 警告処理部23は、視認性判定部21により、他車両のドライバの視認性が低下していると判定された場合に、記憶装置3から警告用の画像データ、又は警告用の音データのすくなくとも1つを取得し、表示装置4又はスピーカー5に出力する。
 なお、上記した他車両情報取得部22、視認性判定部21、及び警告処理部23の機能は、処理装置2で実現されるものであってもよいし、サーバ7側で実現されるものであってもよい。
 以下、図4を用いて、実施の形態1に係るドライバ支援システムが視認性低下地点データベースに自車両の進行方向情報を記憶させる処理について説明する。図4は、実施の形態1に係るドライバ支援システムが自車両の進行方向情報を記憶する動作フローチャートである。
 ST100において、視認性低下地点判定装置10は、視認性低下情報検出装置8から視認性が低下していることを検出するための情報を取得する。
 ST200において、視認性低下地点判定装置10は、視認性が低下していることを検出するための情報に基づいて、自車両に乗車するドライバの視認性が低下しているか否か判定する。以下、図5から図7を用いて、自車両に乗車するドライバの視認性が低下しているか否かの判定方法について詳細に説明する。図5は、実施の形態1に係る視認性低下地点判定装置10及び視認性低下情報検出装置8の機能ブロック図である。図6は、実施の形態1に係る視認性低下地点判定装置10の動作フローチャートである。図7は、実施の形態1に係る画像解析部がフィルタ処理によりまぶたのエッジを強調した画像の例である。
 図5において、視認性低下情報検出装置8は、車載カメラ81を備える。車載カメラ81は、ドライバの顔を撮像する装置である。視認性低下地点判定装置10は、画像解析部101及び判定部103を備える。画像解析部101は、車載カメラ81が撮像した画像データを解析し、後述するまぶたの開き具合の情報を算出する装置である。判定部103は、画像解析部101が算出したまぶたの開き具合の情報に基づいて、自車両に乗車するドライバの視認性が低下しているか否かを判定する装置である。
 図6において、車載カメラ81は、ドライバの顔を撮像し、この顔の画像データを視認性低下地点判定装置10の画像解析部101に出力する。画像解析部101は、画像データを解析して目の位置を特定する(ST101)。
 画像解析部101は、この画像データをソーベルフィルタによりフィルタ処理し、まぶたのエッジを強調する(ST102)。
 画像解析部101は、図7に示すように、強調したエッジのピクセル数において、垂直方向の最大値hと水平方向の最大値wを抽出する。また、画像解析部101は、垂直方向の最大値hと水平方向の最大値wの比率h/wを算出する(ST103)。比率h/wがまぶたの開き具合にの情報に相当する。
 画像解析部101は、比率h/wの情報を判定部103に出力する。判定部103は、画像解析部101から取得した比率h/wの情報に基づいて、まぶたの開き具合を判定する(ST104)。例えば、判定部103は、予め閾値を有しており、比率h/wが閾値以上である場合には自車両に乗車するドライバの視認性が低下していると判定し、比率h/wが閾値以下である場合には自車両に乗車するドライバの視認性が低下していないと判定する。視認性低下地点判定装置10は、視認性が低下していると判定した場合には、図4におけるST300の処理を実行する。一方、視認性低下地点判定装置10は、視認性が低下していないと判断した場合には、処理を終了する。
 ST300において、視認性低下地点判定装置10は、自車両に乗車するドライバの視認性が低下していると判定した場合に、自車両位置取得装置9から自車両の位置情報及び自車両の進行方向情報と、時刻計時手段(図示せず)から視認性が低下していると判定された際の日付及び時刻を取得する。
 ST400において、視認性低下地点判定装置10は、自車両の位置、自車両の進行方向、日付、及び時刻の情報を外部通信装置6を介してサーバ7に送信する。サーバ7は、自車両の位置情報、自車両の進行方向情報、日付の情報、及び時刻の情報を視認性低下地点情報データベースに記憶する。
 例えば、図3の例においては、自車両が1月1日の時間帯7:30において、座標(自車両の位置に相当)34.40N、132.47Eで示される地点で方位(自車両の進行方向に相当)240°の方向を向いている際に、視認性低下地点判定装置10が自車両に乗車するドライバの視認性が低下していると判断した場合、視認性低下地点判定装置10は、日付「1/1」、時間帯「7:00~8:00」、座標「34.40N,132.47E」、方位「240°」をサーバ7に記憶する。また、視認性低下地点判定装置10は、まぶたの開き具合に対応するまぶしさの度合い例えば「30%」をサーバ7に記憶する。なお、視認性低下地点判定装置10は、必ずしも日付、日時の情報をサーバ7に送信する必要はない。例えば、サーバ7は、現在の日付、時刻を計時する時刻計時手段(図示せず)を備え、視認性低下地点判定装置10から取得した座標、方位、まぶしさの度合いの情報を、これらの情報を取得した時点における日付、時間帯と対応づけて記憶してもよい。
 なお、図4においては、ドライバ支援システムが自車両に設けられる例を説明したが、他車両に設けられていてもよい。他車両にドライバ支援システムが設けられる場合、他車両のドライバ支援システムは、視認性が低下していると判定した場合に、他車両の位置情報、及び他車両の進行方向情報をサーバ7に出力する。このように、他車両の位置情報、及び他車両の進行方向情報についても視認性低下地点データベースに記憶することで、視認性低下地点データベースの情報量を充実させることができる。なお、自車両又は他車両のドライバ支援システムから出力される自車両の位置情報、又は他車両の位置情報を車両の位置情報とし、自車両又は他車両のドライバ支援システムから送信される自車両の進行方向情報、又は他車両の進行方向情報を車両の進行方向情報と表現する。
 また、本実施の形態に係る視認性低下データベースは、自車両又は他車両に乗車するドライバの視認性が低下した場合に、自車両又は他車両から送信される車両の位置情報、及び車両の進行方向情報を自動で記憶するものとしたが、設計者により予め手動で視認性低下データベースに車両の位置情報、及び車両の進行方向情報を記憶するようにしてもよい。
 次に、図8を用いて、実施の形態1に係るドライバ支援システムの警告処理の動作について説明する。図8は、実施の形態1に係るドライバ支援装置が他車両に乗車するドライバの視認性低下を警告する処理の動作フローチャートである。
 ST1において、自車両位置取得装置9は、外部通信装置6を介して、自車両の位置情報を所定の時間間隔をあけてサーバ7に送信する。所定の時間間隔は、ドライバ支援システムの設計者によって任意に設定される。図5の説明においては、自車両位置取得装置9は、時刻「9:30」において、自車両の位置「33.40N、131.47E」の情報をサーバ7に送信したものとする。
 ST2において、サーバ7は、自車両位置取得装置9から自車両の位置「33.40N、131.47E」の情報を受信する。サーバ7は、図3に示す視認性低下地点データベースに記憶された時間帯のうち、自車両位置取得装置9から自車両の位置情報を受信した際の時刻を含む時刻帯を検索する。自車両位置取得装置9から時刻「9:30」の情報が送信されているため、サーバ7は検索結果として時間帯「9:00~10:00」を抽出する。なお、サーバ7は、時刻計時手段(図示せず)を有し、時刻計時手段から現在時刻を取得できるものとする。
 次に、サーバ7は、視認性低下データベースで検索した時間帯「9:00~10:00」に対応づけられた座標のうち、自車両位置取得装置9から受信した自車両の位置「33.40N、131.47E」に対応する座標の情報を視認性低下データベース内から検索する。自車両位置取得装置9から受信した自車両の位置「33.40N、131.47E」に対応する座標の情報は、例えば、サーバ7に座標の範囲が設定され、視認性低下データベースに記憶された座標を基準に定められた範囲内に自車両位置取得装置9から受信した自車両の位置「33.40N、131.47E」が含まれる場合には、対応する座標の情報であるものとする。図8の例では、サーバ7は、自車両位置取得装置9から受信した自車両の位置「33.40N、131.47E」が、視認性低下地点データベースの3行目の座標「34.40N、132.47E」の範囲に含まれるものとして抽出したものとする。サーバ7は、抽出した座標「34.40N、132.47E」に対応づけられた方位「140°、220°」の情報を外部通信装置6に送信する。なお、図5の説明において、サーバ7は、視認性低下地点データベースの座標を点の情報で記憶しているものとしたが、範囲の情報として記憶してもよい。たとえば、サーバ7は、交差点中心から半径Xmの範囲、又は特定の道路のA地点からB地点までの範囲など、範囲の形式で記憶することが可能である。
 図8の説明において、サーバ7は、自車両位置取得装置9から受信した自車両の位置「33.40N、131.47E」が定められた範囲内に含まれるものか判断するものとしたが、本発明はこれに限られず、視認性判定部21で判断してもよい。例えば、自車両位置取得装置9が自車両の自車両の位置「33.40N、131.47E」を中心として定められた範囲の情報をサーバ7に送信し、サーバ7がこの定められた範囲内に含まれる座標に対応する方位の情報を視認性低下地点データベースから検索し、送信するようにしてもよい。このように構成することで、車両ごとに異なる範囲を設定することができる。
 ST3において、視認性判定部21は、外部通信装置6を介して、サーバ7から方位「140°、220°」の情報を取得する。視認性判定部21は、方位の情報を取得した場合には、ST4の処理を実行する。一方、視認性判定部21は、方位の情報を取得しない場合には、処理を終了する。
 ST4において、周辺監視装置1は、周辺情報を取得する。例えば、周辺監視装置1は、レーダー等により自車両と他車両との距離の情報を取得する。また、他車両情報取得部22は、周辺監視装置1から周辺情報を取得し、自車両から所定の範囲内に他車両が存在するか否か判定する。自車両から所定の範囲内に他車両が存在する場合には、他車両情報取得部22は、自車両の位置及び自車両と他車両との距離の情報に基づいて、他車両の位置を算出する。さらに、他車両情報取得部22は、他車両の位置を複数回算出し、複数算出した他車両の位置の変化から他車両の進行方向を算出する。他車両情報取得部22は、算出した他車両の進行方向情報を視認性判定部21に出力し、ST5の処理を実行する。一方、他車両情報取得部22は、自車両から所定の範囲内に他車両が存在しないと判定した場合には、処理を終了する。なお、所定の範囲は、レーダー等の測距可能な範囲であってもよいし、レーダー等の測距範囲とは別に任意に定められた範囲であってもよい。
 ST5において、視認性判定部21は、他車両情報取得部22から取得した他車両の進行方向と、サーバ7から取得した方位「140°、220°」の情報とに基づいて、他車両に乗車するドライバの視認性が低下しているか否かを判定する。具体的には、視認性判定部21は、他車両の進行方向とサーバ7から取得した方位とが対応する場合、すなわち、他車両の進行方向が方位140°又は220°の方向を向いている場合に、他車両に乗車するドライバの視認性が低下していると判定する。処理装置2は、視認性判定部21により、他車両のドライバの視認性が低下していると判定された場合、ST5の処理を実行する。一方、処理装置2は、視認性判定部21により、他車両のドライバの視認性が低下していないと判定された場合、処理を終了する。なお、視認性判定部21は、他車両の進行方向とサーバ7から取得した方位とが対応しているか否かを、必ずしも他車両の進行方向とサーバ7から取得した方位とが完全に一致しているか否かで判定しなくてもよい。例えば、視認性判定部21は、予め他車両の進行方向とサーバ7から取得した方位とのずれの閾値を有し、他車両の進行方向とサーバ7から取得した方位とのずれが閾値以下である場合には、他車両の進行方向とサーバ7から取得した方位とが対応していると判断してもよい。
 ST6において、警告処理部23は、視認性判定部21で他車両に乗車するドライバの視認性が低下していると判定された場合に、記憶装置3から警告用の画像データ及び警告用の音データを取得する。また、警告処理部23は、警告用の画像データを表示装置4に、警告用の音データをスピーカー5に出力する。なお、本実施の形態においては、警告処理部23は、警告用の画像データ及び警告用の音データの両方を取得するものとしたが、いずれか一方だけ取得するようにしてもよい。
 ST7aにおいて、表示装置4は、警告処理部23から警告用の画像データを取得し、警告画像を表示する。図9は、実施の形態1に係る表示装置4が警告画像を表示する例である。図9において、警告画像は、Aで示す画像である。警告画像は、例えば、図6に示すように表示装置4は、車外カメラ(図示せず)などで撮像した他車両及び他車両周辺の画像を表示し、表示した他車両の画像に重畳させて警告を表示する。なお、警告処理部23は、他車両の位置情報を他車両情報取得部22から取得すればよい。表示装置4は、他車両を示す画像の周辺に警告画像を表示するものとしたが、これに限られず、「前方車両注意」又は単に「注意」の文字で表示するようにしてもよい。
 ST7bにおいて、スピーカー5は、警告処理部23から警告用の音データを取得し、警告音を出力する。警告音は、「前方車両注意」又は「右方向車両注意」等の音声を出力してもよいし、ブザー等であってもよい。
 以上のように、実施の形態1に係るドライバ支援システムは、車両に乗車するドライバの視認性が低下する地点と、この地点に対応する車両のドライバの視認性が低下する方向情報とが対応づけられる視認性低下地点情報データベースを用いて、他車両の進行方向情報と、視認性低下地点情報データベースに記憶される前記視認性が低下する方向情報とに基づいて、他車両に乗車するドライバの視認性が低下しているか否かを判定し、さらに、他車両に乗車するドライバの視認性が低下していると判定した場合に、自車両のドライバに他車両に乗車するドライバの視認性が低下していることを警告するので、自車両のドライバが他車両の動きに注意して走行することができる。
 本実施の形態に係る他車両情報取得部22は、他車両の位置情報、及び他車両の進行方向情報を算出するための周辺情報を周辺監視装置1から取得するものとしたが、外部通信装置6を介して他車両から他車両の位置情報、他車両の進行方向情報を取得してもよい。すなわち、他車両情報取得部22は、車車間通信によって、他車両の位置情報、他車両の進行方向情報を取得してもよい。このように、車車間通信を用いることで、例えば、壁や塀などにより、レーザーやライダー等では取得できないような場所を走行する他車両の周辺情報を取得することができる。
 なお、本実施の形態に係る視認性判定部21は、他車両に乗車するドライバの視認性が低下しているか否かの判定時に、他車両情報取得部22から他車両の進行方向情報を取得するものとしたが、さらに他車両の位置情報を取得してもよい。他車両の位置情報を取得する場合、視認性判定部21は、自車両の位置から定められた範囲内に他車両が存在するか否か判定し、この範囲内に他車両が存在する場合には、この他車両に乗車するドライバの視認性低下を判定する。定められた範囲は、サーバ7が自車両の座標の情報を取得した場合にデータベース内を選択するための範囲、自車両位置取得装置9がサーバ7に送信する範囲と同様の範囲であってもよいし、これらとは別の範囲でもよい。このように、他車両が自車両の位置から定められた範囲内に存在するか否かを判定することによって、例えば車車間通信によって他車両の位置情報を取得する場合に、自車両の位置から著しく遠い位置を走行する他車両を警告の対象から除外することが可能となる。よって、本実施の形態に係るドライバ支援システムは、衝突等の危険性が著しく低いような場合に警告表示することがないので、警告の信頼性を高めることができる。
 また、本実施の形態に係るドライバ支援システムは、サーバ7から取得した座標から定められた範囲内にこの他車両が存在するか否か判定してもよい。ドライバ支援システムは、サーバ7から取得した座標から定められた範囲内に他車両が存在する場合に、この他車両の視認性低下を判定する。このように、サーバ7から取得した座標から定められた範囲内に存在する他車両について視認性の低下を判定することで、自車両から定められた範囲内にサーバ7から取得した座標が複数存在する場合であっても、サーバ7から取得した座標により近い他車両に乗車するドライバの視認性低下を判定し、自車両のドライバに警告することができる。
 本実施の形態に係る視認性判定部21は、サーバ7から方位の情報を取得するものとしたが、視認性低下データベースの方位の情報に対応づけられた、まぶしさの度合いの情報を取得し、このまぶしさの度合いに基づいて警告するか否かを判定してもよい。例えば、視認性判定部21は、まぶしさの度合いの閾値を有し、サーバ7から取得した、まぶしさの度合いが閾値以上である場合に、自車両のドライバに警告画像を表示又は警告音を出力する。このように、本実施の形態に係るドライバ支援システムは、まぶしさの度合いの情報を取得するので、他車両のドライバがどの程度視認性が低下しているかによって、自車両のドライバに警告するか否かを判定することができる。したがって、視認性の低下が著しく低いような場合には、警告しないといった制御が可能となる。
 本実施の形態に係る視認性判定部21は、視認性低下地点データベースに基づいて、方位を取得するものとしたが、方位のデータが記憶されていない場合(図3の日付9/3の行を参照)には、太陽の位置を計算し、この太陽の位置と他車両の進行方向とに基づいて、他車両の視認性が低下しているか否かを判定してもよい。このように、本実施の形態に係るドライバ支援システムは、視認性判定部21により、視認性低下地点データベースに方位の情報が記憶されていない場合には、太陽の方向を計算し他車両の視認性が低下しているか否か判定するので、方位のデータがない地点においても、他車両に乗車するドライバの視認性が低下していることを自車両のドライバに警告することができる。
 本実施の形態に係る視認性低下地点判定装置10の説明において、サーバ7の視認性低下地点情報データベースに座標、方位、及びまぶしさの度合いの情報を対応づけて記憶する例を説明した。視認性低下地点判定装置10は、まぶしさの度合いの情報に基づいて、座標、方位の情報を視認性低下地点データベースに記憶するか否かを判定してもよい。例えば、視認性低下地点判定装置10は、まぶしさの度合いの閾値を有し、視認性低下情報検出装置8から取得したまぶしさの度合いの情報が閾値以上である場合に、座標、方位、及びこのまぶしさの度合いの情報をサーバ7に送信する。一方、視認性低下地点判定装置10は、視認性低下情報検出装置8から取得したまぶしさの度合いの情報が閾値以下である場合には、座標、方位、及びこのまぶしさの度合いの情報をサーバ7に送信しない。このように、ドライバ支援システムは、まぶしさの度合いに応じて座標、方位、及びまぶしさの度合いの情報を記憶するか否かを判定するので、視認性の低下度合いが小さいような場合には、視認性低下地点データベースに上記座標、方位、及びまぶしさの度合いの情報を記憶しないようにすることができる。よって、視認性低下地点情報データベースの精度が向上する。
 なお、本実施の形態に係る視認性低下地点判定装置10は、まぶたの開き具合に基づいて自車両に乗車するドライバの視認性が低下しているか否かを判定するものとしたが、これに限られず、ドライバの視線、又は車両に備えられたサンバイザの状態に基づいて、自車両に乗車するドライバの視認性が低下しているか否かを判定してもよい。
 図10は、ドライバの視線又はサンバイザの状態に基づいて視認性低下を判定する場合の視認性低下情報検出装置8及び視認性低下地点判定装置10の機能ブロック図である。図10において、視線検出部82は、ドライバの視線を検出する装置である。視線検出部82は、自車両に乗車するドライバの視線検出有無、又は視線分布の情報を取得し、判定部103に出力する。判定部103は、ドライバの視線検出有無、又は視線分布の情報を取得し、自車両に乗車するドライバの視認性が低下しているか否かを判定する。例えば、視線の検出において、自車両に乗車するドライバの顔に赤外線を照射し、角膜反射を測定することにより視線を検出することができる。しかし、西日などの光がドライバの目に入射すると、この光がドライバの目で反射するため、正常に視線検出を行えなくなる場合がある。判定部103は、ドライバの目に外部の光が入射することによって視線検出を行うことができない性質を利用し、自車両に乗車するドライバが外部の光の影響により視認性が低下していることを検出する。
 視線検出部82は、自車両に乗車するドライバの視線を検出できた場合には、この視線が特定の注目すべき領域を避けているか否かによって、視認性の低下を検出してもよい。図11は、実施の形態1に係る自車両のドライバの視線分布を示す図である。図11において、自車両のドライバは、外部の光の影響により眩しさを感じると、この外部の光の中心付近を見ようとしなくなる。前方の信号は、ドライバにとって注目すべき対象であるが、外部の光の入射によって、ドライバが視線を向けるのを避けている。このように、視線検出機能によって、特定の注目すべき領域に視線を向けることを避けている傾向を抽出することによって、ドライバが眩しさを感じているかどうかを推定する。
 視認性低下地点判定装置10は、車両に備えられたサンバイザセンサ83に基づいて、自車両に乗車するドライバの視認性が低下しているか否かについて判定してもよい。図12は実施の形態1に係るサンバイザセンサを説明する図である。サンバイザセンサ83は、サンバイザ向きセンサ831、サンバイザ使用判定センサ834及び照度センサ832を備える。
図12において、サンバイザ使用判定センサ834は、サンバイザの内部に伸びているヒンジ部833に設けられる。サンバイザ使用判定センサ834は、サンバイザが使用される際にヒンジ部833が回転することにともなって回転する。すなわち、サンバイザ使用判定センサ834は、ヒンジ軸834の横軸方向の回転を検出してサンバイザが使用されたことを検出する。サンバイザ使用判定センサ834は、例えば、接触式スイッチ、非接触の磁力センサに相当する。
 サンバイザ向きセンサ831は、ヒンジ部831の車両天井部に接続される付近に設けられる。サンバイザ向きセンサ831は、ヒンジ軸831の縦軸方向の回転を検出する。サンバイザ向きセンサ831は、ヒンジ軸831の縦軸方向の回転を検出することにより、サンバイザの向きがいずれの方向に向いているかを検出する。サンバイザ向きセンサ831は、例えば、ロータリーエンコーダに相当する。
 照度センサ832は、サンバイザの両面のうち、車両の外側を向く面の下部に設けられ、運転席に差し込む光の強度を検出する。
 車両情報管理部102は、サンバイザ向きセンサ831、サンバイザ使用判定センサ834、及び照度センサ832が検出した情報に基づいて、ドライバのサンバイザ使用意志、外部の光の入射方向、強度を検出することができ、自車両に乗車するドライバの視認性が低下しているか否かを推定する。車両情報管理部102は、視認性が低下しているか否かの情報を判定部103に出力する。判定部103は、車両情報管理部102又は視線検出部82からの情報に基づいて、視認性が低下しているか否かを判定し、視認性が低下していると判定した場合には、自車両の位置情報及び自車両の進行方向情報をサーバ7に送信する。
 実施の形態2.
 実施の形態2に係るドライバ支援システムは、視認性低下地点情報データベースの方位の情報及び地図データの道路情報に基づいて、他車両が実際に走行しているか否かに関わらず、他車両に乗車するドライバの視認性が低下する方向を、自車両に乗車するドライバに警告することを特徴とする。以下、図13を用いて、実施の形態2に係るドライバ支援システムの構成について説明する。図13は、実施の形態2に係るドライバ支援システムの機能ブロック図である。なお、図13の説明において、実施の形態1に係るドライバ支援システムの構成に相当するものに関しては、同じ符号を付して説明を省略する。
 実施の形態2に係るドライバ支援システムは、地図データベース11を備える。地図データベース11は、車両が走行する道路の情報(以下、道路情報とする)を記憶する。なお、図13の例では、地図データベース11が車両内に設けられるものとしたが、外部サーバに設けられていてもよい。
 本実施の形態に係るドライバ支援システムにおいて、視認性判定部21は、自車両位置取得装置9から自車両の位置情報を取得する。また、視認性判定部21は、自車両の位置情報に基づいて、地図データベース11の道路情報を取得し、この道路情報とサーバ7から取得した方位情報とに基づいて、他車両に乗車するドライバの視認性が低下する可能性のある道路を判定する。道路情報とは、車両が走行可能な道路の情報である。例えば、道路情報には、少なくとも道路の方向及び道路における車両が進行可能な方向の情報(以下、進行可能方向情報とする)が含まれるものとする。ドライバの視認性が低下する可能性のある道路とは、他車両が走行した場合に、この他車両に乗車するドライバの視認性が低下するおそれのある道路をいう。
 ここで、図14を用いて、地図データベース11の例を説明する。図14は、実施の形態2に係る地図データベースの例である。地図データベース11は、自車両の位置、道路の方向、進行可能方向から構成される。道路の方向は、自車両の位置で示される座標を基準として道路が延びる方位を示している。進行可能方向は、道路上を車両がどの方向に進行可能かを示している。例えば、図13の自車両の位置「34.40N、132.47E」は、自車両が交差点に存在する場合を示しており、道路が30°、120°、210°、300°の方向に延びていることを示している。また、30°、120°、210°、300°の方向に延びる道路は、それぞれ0(双方向に通行可能)、0(双方向に通行可能)、-1(交差点の中心方向に走行可能)、1(交差点の中心から遠ざかる方向に通行可能)のように、進行可能方向が対応づけられている。視認性判定部21は、自車両の位置に基づいて、道路の方向及び進行可能方向を取得する。
 続いて、図15を用いて、実施の形態2に係るドライバ支援システムの動作について説明する。図15は、実施の形態2に係るドライバ支援システムの動作フローチャートである。なお、図15の説明において、実施の形態1に係るドライバ支援システムの動作に相当するものに関しては、同じ符号を付して説明を省略する。図8のST1からST5の説明において、ドライバ支援システムは、図8で説明したように、自車両が交差点で前方の他車両の視認性低下を判定したものとし、ST501から説明する。
 ST501において、視認性判定部21は、自車両位置取得装置9から自車両の位置情報を取得する。また、視認性判定部21は、自車両の位置情報に基づいて、地図データベース11から自車両の位置における周辺の道路情報を取得する。
 ST502において、視認性判定部21は、この道路情報と視認性低下地点情報データベースから取得した方位の情報とに基づいて、ドライバの視認性が低下する可能性のある道路(以下、視認性が低下する方向とする)を判定する。例えば、自車両が図9に示すような交差点にいる場合、視認性判定部21は、この交差点の道路情報を取得する。視認性判定部21は、交差点の道路情報によって、自車両の位置からみて右方向の道路、左方向の道路、及び前方の道路から車両が走行してくる可能性があることを認識する。さらに、視認性判定部21は、視認性低下地点情報データベースの方位から、車両が走行してくる可能性のある道路のうち、いずれの道路を他車両が走行してきた場合に、この他車両に乗車するドライバの視認性が低下するかを判定する。具体的には、視認性判定部21は、地図データベースの道路の方向のうち、視認性低下地点情報データベースの方位と一致するものがあるか判定する。また、地図データベースの道路の方向と視認性低下地点情報データベースの方位とが一致する場合、視認性判定部21は、この視認性低下地点情報データベースの方位が進行可能方向と一致するか否かを判定する。視認性低下地点情報データベースの方位と進行可能方向とが一致する場合、視認性判定部21は、他車両に乗車するドライバの視認性が低下する可能性のある道路の情報を視認性が低下する方向の情報として警告処理部23に出力する。図9の例においては、自車両が交差点にいる場合に、自車両からみて右方向がドライバの視認性が低下する方向であるものとする。
 ST6bにおいて、警告処理部23は、視認性判定部21から取得したドライバの視認性が低下する可能性のある道路の情報に基づいて、記憶装置3から対応する警告用の画像データ又は音データを取得し、表示装置4又はスピーカー5に出力する。
 ST7aにおいて、表示装置4は、警告用の画像データを取得し、この画像を表示する。図16は、実施の形態2に係る表示装置4が警告画像を表示する例である。図16において、Bは本実施の形態における警告画像を示している。警告画像Bは、自車両の右方向から他車両が走行してきた場合に、この他車両の視認性が低下するおそれがあることを示している。
 ST6bにおいて、スピーカー5は、警告用の音データを取得し、この音を表示する。
 以上のように、実施の形態2に係るドライバ支援システムは、車両が走行可能な道路の情報と、車両の進行方向情報とに基づいて、他車両に乗車するドライバの視認性が低下する方向を判定し、視認性が低下する方向を自車両のドライバに警告するので、他車両の存在を検出できないような場合においても、予め視認性が低下する方向を予測することができ、ドライバが注意して走行することができる。
 なお、図8の説明においては、ST5で視認性が低下していると判定された場合に、ST501の地図データ取得の処理を行うものとしたが、これに限られず、ST3で視認性が低下していないと判定された場合であっても、ST501を実行してもよい。
 実施の形態3.
 実施の形態3に係るドライバ支援システムは、自車両の進行方向情報と他車両の進行方向情報に基づいて、自車両と他車両とが衝突する可能性が高い場合に、他車両に乗車するドライバの視認性が低下していることを警告することを特徴とする。以下、図17を用いて、実施の形態3に係るドライバ支援システムの構成について説明する。図17は、実施の形態3に係るドライバ支援システムの機能ブロック図である。なお、図17の説明において、実施の形態1及び実施の形態2に係るドライバ支援システムの構成に相当するものに関しては、同じ符号を付して説明を省略する。
 実施の形態3に係るドライバ支援システムは、運転監視装置12と自車両情報取得部24とを備える。
 運転監視装置12は、CAN等の車両情報取得システムを用いて、自車両のブレーキ、アクセル、ウインカー、進行方向等の自車両情報を監視する装置である。
 自車両情報取得部24は、運転監視装置12から自車両情報を取得し、これから自車両が進行する方向を判定する装置である。
 本実施の形態において、他車両情報取得部22は、周辺監視装置1から周辺情報を取得して、これから他車両が進行する方向を推定するものとする。
 視認性判定部21は、他車両に乗車するドライバの視認性が低下しているか否かを判定するとともに、他車両情報取得部22から他車両の進行方向情報を取得し、自車両情報取得部24から自車両の進行方向情報を取得して、自車両と他車両が衝突する可能性が高いか否かを判定する。
 次に、図18を用いて実施の形態3に係るドライバ支援システムの動作について説明する。図18は、実施の形態3に係るドライバ支援システムの動作フローチャートである。図18の説明において、実施の形態1及び実施の形態2に係るドライバ支援システムの動作に相当するものに関しては、同じ符号を付して説明を省略する。図18の説明において、ST1からST5において、図8で説明したように、自車両が交差点で前方の他車両の視認性低下を判定したものとし、ST51から説明する。
 ST51において、運転監視装置12は、自車両情報を取得する。また、運転監視装置12は、この自車両情報を視認性判定部21に出力する。視認性判定部21は、自車両情報を取得し、自車両がこれから進行する方向を予測する。例えば、自車両が交差点で停車している場合、視認性判定部21は、ウインカー等の方向から、自車両がこれから進行する方向は容易に予測することができる。さらに、視認性判定部21は、自車両が進行する方向と、他車両の進行方向とに基づいて、自車両と他車両が衝突する可能性があるか否か判定する。例えば、自車両が交差点で停車しており、他車両が前方の対向車線で停車している場合、次に他車両が進行する方向が直進であって、自車両の進行方向が右折である場合には、自車両と他車両とが衝突する可能性が高い。このように、視認性判定部21は、自車両と他車両とが衝突する可能性が高いと判定した場合に、ST5で判定した他車両に乗車しているドライバの視認性が低下していることを警告処理部23に通知してST6に進む。一方で、視認性判定部21は、例えば、他車両の進行方向が直進であって、自車両の進行方向が左折である場合、自車両と他車両とが衝突する可能性は低いので、ST3で判定した他車両に乗車しているドライバの視認性が低下していることを警告処理部23に通知せずに処理を終了する。なお、自車両と他車両がいずれの方向に進む場合に、自車両と他車両とが衝突する可能性が高いか否かは、ドライバ支援システムの設計者が任意に設定可能である。
 以上のように、実施の形態3に係るドライバ支援システムは、自車両の進行方向情報と他車両の進行方向情報とに基づいて、自車両と他車両とが衝突する可能性を判定し、衝突する可能性があると判定した場合には、他車両に乗車するドライバの視認性が低下していることを警告するので、他車両の視認性が低下する毎に警告することを防ぎつつ、かつ必要な場合にだけ自車両のドライバに警告することができる。
 なお、本実施の形態において、他車両情報取得部22は、他車両がいずれの方向に進行するかを周辺監視装置1から取得する周辺情報によって判定したが、車車間通信によって外部通信装置6から他車両が進行する方向の情報を取得し、周辺情報と外部通信装置6から取得した情報とに基づいて、これから他車両が進行する方向を推定してもよい。
 また、本実施の形態に係る視認性判定部21は、自車両の進行方向と他車両の進行方向とに基づいて衝突する可能性を判定したが、さらに自車両の速度及び他車両の速度の情報に基づいて、後方の車両が自車両に衝突する可能性を判定してもよい。自車両の速度及び他車両の速度の情報に基づいて衝突する可能性を判定する場合、運転監視装置12は、自車両の速度の情報(以下、自車両の速度情報とする)を自車両情報取得部24を介して視認性判定部21に出力する。また、周辺監視装置1は、周辺情報に加えて、他車両の速度の情報(以下、他車両の速度情報とする)を他車両情報取得部22を介して視認性判定部21に出力する。視認性判定部21は、自車両の速度と後方を走行する他車両の速度との相対速度に基づいて、後方の他車両が自車両に衝突するか否かを判定する。視認性判定部21は、後方の車両が自車両に衝突する可能性があると判定した場合には、後方の車両の視認性が低下していることを示す情報を警告処理部23に出力する。図19は、実施の形態3に係る表示装置4が警告画像を表示する例である。図19において、例えば、視認性判定部21により自車両と後方の他車両とが衝突する可能性が高いと判定された場合に、表示装置4は、警告画像C1を表示する。また、バックミラー等に警告画像C2を表示するようにしてもよい。このように、視認性判定部21は、自車両の速度及び他車両の速度の情報に基づいて衝突する可能性を判定することによって、自車両の後方を走行する他車両に乗車するドライバの視認性が低下しており、自車両に衝突する可能性が高いことを判定することができる。
 実施の形態4.
 実施の形態4に係るドライバ支援システムは、自車両の進行方向と他車両の進行方向情報に基づいて、自車両と他車両とが衝突する可能性が高い場合に、車両を制御することを特徴とする。以下、図20を用いて、実施の形態4に係るドライバ支援システムの構成について説明する。図20は、実施の形態4に係るドライバ支援システムの機能ブロック図である。なお、図20の説明において、実施の形態1から実施の形態3に係るドライバ支援システムの構成に相当するものに関しては、同じ符号を付して説明を省略する。
 実施の形態4に係るドライバ支援システムは、車両制御部14を備える。車両制御部14は、視認性判定部21によって、自車両の進行方向と他車両の進行方向とに基づいて衝突の可能性が高いと判定された場合に、自車両の動作を制御する。車両制御部14は、例えば、シートベルトやブレーキを制御する。
 次に、図21を用いて実施の形態4に係るドライバ支援システムの動作について説明する。図21は、実施の形態4に係るドライバ支援システムの動作フローチャートである。なお、図21の説明において、実施の形態1から実施の形態3に係るドライバ支援システムの動作に相当するものに関しては、同じ符号を付して説明を省略する。図21の説明において、ST1からST6において、図18で説明したように、自車両が交差点で後方の他車両の視認性低下を判定し、さらに、後方の他車両が自車両に衝突する可能性があると判定して警告画像を表示したものとし、ST7cについて説明する。
 ST7cにおいて、車両制御部14は、視認性判定部21により後方車両が自車両に衝突する可能性があると判定した場合に、シートベルの巻き取りを行い、後方車両が衝突した際にかかる衝撃を軽減する。また、車両制御部14は、強制的に自車両のブレーキをかけるように制御し、衝突された際の衝撃による自車両の飛び出しを防止する。
 以上のように、実施の形態4に係るドライバ支援システムは、自車両と他車両とが衝突する可能性があると判定された場合に、自車両の動作を制御するので、視認性の低下を検出しつつ、自車両と他車両とが衝突した際の被害を軽減することができる。
 実施の形態5
 実施の形態1に係るドライバ支援システムは、視認性低下地点判定装置10により自車両に乗車するドライバの視認性が低下していると判定された場合において、自車両の位置情報及び自車両の進行方向情報をサーバ7に送信して記憶させた。しかしながら、ドライバ支援システムは、視認性低下地点判定装置10により自車両に乗車するドライバの視認性が低下していると判定された場合のすべてにおいてサーバ7に自車両の位置情報及び自車両の進行方向情報を記憶させていては、データ量が膨大になるおそれがある。そこで、実施の形態5に係るドライバ支援システムは、例えば、交差点などの特定の地点においては、自車両の位置情報及び自車両の進行方向情報をサーバ7に送信し、直進道路などの特定地点以外の地点においては、ビル等に反射した光が自車両に乗車するドライバに照射された場合に自車両の位置情報及び自車両の進行方向情報をサーバ7に送信することを特徴とする。
 以下、図22を用いて、実施の形態5に係るドライバ支援システムの構成について説明する。図22は、実施の形態5に係るドライバ支援システムの機能ブロック図である。なお、図22の説明において、実施の形態1に係るドライバ支援システムの構成に相当するものに関しては、同じ符号を付して説明を省略する。
 図22において、実施の形態5に係るドライバ支援システムは、太陽方位算出装置15を備える。太陽方位算出装置15は、自車両位置取得装置9から自車両の位置を取得し、この自車両の位置及び時刻に基づいて、自車両を基準とした太陽の方位を算出する。
 本実施の形態において、視認性低下地点判定装置10は、自車両位置取得装置9から自車両の位置情報を取得し、自車両が特定の地点に存在するか否かを判定する。一方、視認性低下地点判定装置10は、自車両が特定の地点に存在すると判定した場合には、自車両の位置情報及び自車両の進行方向情報をサーバ7に送信する。特定の地点は、ドライバ支援システムの設計者によって任意に設定可能であるが、例えば、交差点等に相当する。
 一方、視認性低下地点判定装置10は、自車両が特定の地点に存在しないと判定した場合には、自車両位置取得装置9から自車両の進行方向と、太陽方位算出装置15から太陽の方位の情報(以下、太陽の方位情報とする)とを取得し、自車両の進行方向と太陽の方位情報に基づいて自車両に乗車するドライバの視認性が低下したことの原因が、太陽光が直接ドライバに照射したことによるものか、又は太陽光の反射により間接的に照射されたものによるものかを判定する。視認性低下地点判定装置10は、自車両に乗車するドライバの視認性が低下した原因が、太陽光が直接照射したものである場合には、自車両の位置情報及び自車両の進行方向情報をサーバ7に送信せず、太陽光の反射により間接的に照射されたことが原因である場合には、自車両の位置情報及び自車両の進行方向情報に送信する。
 以下、図23を用いて、実施の形態5に係るドライバ支援システムの動作について説明する。図23は、実施の形態5に係るドライバ支援システムの動作フローチャートである。図23の説明において、実施の形態1に係るドライバ支援システムの動作に相当するものに関しては、同じ符号を付して説明を省略する。以下の説明において、特定の地点は交差点であるものとして説明するが、特定の地点はドライバ支援システムの設計者によって任意に決めることができる。
 ST311において、視認性低下地点判定装置10は、自車両位置取得装置9から自車両の位置に関する情報を取得し、自車両が特定の地点、すなわち交差点に存在するか否かを判定する。自車両が交差点に存在する場合には、ST400の処理を実行する。一方、視認性低下地点判定装置10は、自車両が交差点に存在しない場合、例えば、右左折不可能な直進道路を走行中の場合、ST312の処理を実行する。
 ST312において、太陽方位算出装置15は、自車両位置取得装置9から自車両の位置に関する情報を取得する。また、太陽方位算出装置15は、自車両の位置に関する情報と、現在時刻とに基づいて太陽の方位を算出する。
 続いて、視認性低下地点判定装置10は、自車両位置取得装置9から自車両の進行方向を取得し、太陽方位算出装置15から太陽の方位情報を取得し、自車両の進行方向と太陽の方位とが一致するか否かを判定する。視認性低下地点判定装置10は、自車両の進行方向と太陽の方位とが一致する場合には、自車両に乗車するドライバの視認性が低下した原因が、太陽光が直接照射されたものであると判定する。一方、視認性低下地点判定装置10は、自車両の進行方向と太陽の方向とが一致しない場合には、自車両に乗車するドライバの視認性が低下した原因が、太陽光がビル等に反射したことによるものと判定する。ドライバ支援システムは、自車両に乗車するドライバの視認性が低下した原因が、太陽光が直接照射されたものであると判定した場合には、処理を終了し、太陽光がビル等に反射したことによるものと判定した場合には、ST400を実施する。
 ST400において、視認性低下地点判定装置10は、ST300で取得した自車両の位置情報、自車両の進行方向情報、日付の情報、及び時刻の情報を外部通信装置6を介してサーバ7に送信する。サーバ7は、自車両の位置情報、自車両の進行方向情報、日付の情報、及び時刻の情報を視認性低下地点情報データベースに記憶する。
 以上のように、実施の形態5に係るドライバ支援システムは、自車両の進行方向と太陽の方位情報に基づいて自車両に乗車するドライバの視認性が低下したことの原因が、太陽光が直接ドライバに照射したことによるものか、又は太陽光の反射により間接的に照射されたものによるものかを判定し、太陽光の反射により間接的に照射されたものによるものと判定した場合に自車両の位置情報及び自車両の進行方向情報を送信するので、サーバ7に記憶する視認性低下地点の情報量を削減することができる。例えば、実施の形態1に係るドライバ支援システムは、自車両が右折又は左折できないような直線道路を走行しており、自車両の進行方向と、自車両の位置を基準とした太陽の方位との関係が長時間変化しないような場合には、サーバ7に自車両の位置情報及び自車両の進行方向情報を複数回記憶することとなり、データ量が膨大となる。本実施の形態に係るドライバ支援システムは、自車両が交差点等の特定の地点に存在し、太陽光の反射により間接的に光が照射されることによりドライバの視認性が低下した場合にサーバ7に自車両の位置情報及び自車両の進行方向情報を送信するので、サーバ7に記憶させるデータの量を削減することができる。
1 周辺監視装置、2 処理装置、3 記憶装置、4 表示装置、5 スピーカー、6 外部通信装置、7 サーバ、8 視認性低下情報検出装置、9 自車両位置取得装置、10 視認性低下地点判定装置、12 運転監視装置、14 車両制御部、15 太陽方位算出装置、21 視認性判定部、22 他車両情報取得部、23 警告処理部、24 自車両位置情報取得部、81 車載カメラ、82 視線検出部、83 サンバイザセンサ、101 画像解析部、103 判定部、831 サンバイザ向きセンサ、834 サンバイザ使用判定センサ、832 照度センサ

Claims (9)

  1. 他車両の進行方向情報を取得する他車両情報取得部と、
    車両に乗車するドライバの視認性が低下する地点と、前記地点に対応する車両のドライバの視認性が低下する方向情報とが対応づけられて記憶される記憶部と、
    前記他車両情報取得部に取得された前記他車両の進行方向情報と、前記記憶部に記憶される前記視認性が低下する方向情報とに基づいて、前記他車両に乗車するドライバの視認性が低下しているか否かを判定する視認性判定部と、
    前記視認性判定部により前記他車両に乗車するドライバの視認性が低下していると判定された場合に、自車両のドライバに前記他車両に乗車するドライバの視認性が低下していることを警告する警告処理部と、
    を備えるドライバ支援システム。
  2. 前記他車両情報取得部は、前記他車両の位置情報を取得し、
    前記視認性判定部は、前記他車両のうち、前記自車両から定められた範囲内を走行する他車両に乗車するドライバの視認性が低下しているか否かを判定することを特徴とする請求項1に記載のドライバ支援システム。
  3. 前記他車両情報取得部は、前記他車両の位置情報を取得し、
    前記視認性判定部は、前記視認性が低下する地点のうち、前記他車両の位置から定められた範囲内に存在する前記視認性が低下する地点の情報に基づいて、前記他車両に乗車するドライバの視認性が低下しているか否かを判定することを特徴とする請求項1又は2に記載のドライバ支援システム。
  4. 前記視認性判定部は、
    車両が走行可能な道路の情報と、前記車両の進行方向情報とに基づいて、他車両に乗車するドライバの視認性が低下する方向を判定し、
    前記警告処理部は、前記視認性が低下する方向を自車両のドライバに警告することを特徴とする請求項3に記載のドライバ支援システム。
  5. 前記視認性判定部は、
    前記自車両の進行方向情報と前記他車両の進行方向情報とに基づいて、前記自車両と前記他車両とが衝突する可能性を判定し、衝突する可能性があると判定した場合には、前記他車両に乗車するドライバの視認性が低下していることを警告することを特徴とすることを特徴とする請求項2から請求項4のいずれかに記載のドライバ支援システム。
  6. 前記視認性判定部によって、前記自車両と前記他車両とが衝突する可能性があると判定された場合に、前記自車両の動作を制御する車両制御部を備えることを特徴とする請求項2から請求項5のいずれかに記載のドライバ支援システム。
  7. 前記記憶部は、前記自車両の外部サーバに設けられることを特徴とする請求項1から請求項6のいずれかに記載のドライバ支援システム。
  8. 車両に乗車するドライバの視認性が低下したか否かを判定し、前記車両に乗車するドライバの視認性が低下した際に、前記車両の位置情報と前記車両の進行方向情報とを出力する視認性低下地点判定部と、
    前記視認性低下地点判定部から出力された前記車両の位置情報と前記車両の進行方向情報とを対応づけて記憶させる記憶部と、
    を備えるドライバ支援システム。
  9. 太陽の方位を算出する太陽方位算出手段を備え、
    前記視認性低下地点判定部は、前記車両に乗車するドライバの視認性が低下し、前記車両が定められた地点を走行している場合には、前記車両の位置情報と前記車両の進行方向とを出力し、
    前記車両に乗車するドライバの視認性が低下し、前記車両が定められた地点以外の地点を走行している場合には、前記太陽の方位情報と前記車両の進行方向とに基づいて、前記太陽の光が前記ドライバに直接照射されたものか否かを判定し、前記太陽の光が前記ドライバに直接照射されたものである場合には、前記車両の位置情報と前記車両の進行方向とを出力することを特徴とする請求項8に記載のドライバ支援システム。
PCT/JP2015/001742 2015-03-26 2015-03-26 ドライバ支援システム WO2016151638A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580078140.3A CN107408338A (zh) 2015-03-26 2015-03-26 驾驶员辅助系统
US15/555,057 US10232772B2 (en) 2015-03-26 2015-03-26 Driver assistance system
DE112015006370.6T DE112015006370T5 (de) 2015-03-26 2015-03-26 Fahrerassistenzsystem
JP2016513156A JP6103138B2 (ja) 2015-03-26 2015-03-26 ドライバ支援システム
PCT/JP2015/001742 WO2016151638A1 (ja) 2015-03-26 2015-03-26 ドライバ支援システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001742 WO2016151638A1 (ja) 2015-03-26 2015-03-26 ドライバ支援システム

Publications (1)

Publication Number Publication Date
WO2016151638A1 true WO2016151638A1 (ja) 2016-09-29

Family

ID=56977059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001742 WO2016151638A1 (ja) 2015-03-26 2015-03-26 ドライバ支援システム

Country Status (5)

Country Link
US (1) US10232772B2 (ja)
JP (1) JP6103138B2 (ja)
CN (1) CN107408338A (ja)
DE (1) DE112015006370T5 (ja)
WO (1) WO2016151638A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076796A1 (de) * 2017-10-19 2019-04-25 Continental Automotive Gmbh Verfahren zum erzeugen einer sichtweitensammlung und sichtweitensammeleinrichtung
JP2019148531A (ja) * 2018-02-28 2019-09-05 パイオニア株式会社 演算処理装置、演算処理方法、およびコンピュータプログラム
JP2020160878A (ja) * 2019-03-27 2020-10-01 日産自動車株式会社 運転支援方法及び運転支援装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163581B2 (ja) * 2018-01-18 2022-11-01 トヨタ自動車株式会社 エージェント連携システムおよびエージェント連携方法
JP6777124B2 (ja) * 2018-08-24 2020-10-28 株式会社Jvcケンウッド 警告装置、運転傾向解析装置および運転傾向解析方法
US11724691B2 (en) * 2018-09-15 2023-08-15 Toyota Research Institute, Inc. Systems and methods for estimating the risk associated with a vehicular maneuver
CN113165510B (zh) * 2018-11-23 2024-01-30 日本精机株式会社 显示控制装置、方法和计算机程序
JP7234614B2 (ja) * 2018-12-10 2023-03-08 トヨタ自動車株式会社 異常検出装置、異常検出システム及び異常検出プログラム
JP2020101869A (ja) * 2018-12-19 2020-07-02 本田技研工業株式会社 制御装置及びプログラム
US11087152B2 (en) * 2018-12-27 2021-08-10 Intel Corporation Infrastructure element state model and prediction
JP2021077099A (ja) * 2019-11-08 2021-05-20 トヨタ自動車株式会社 情報提供システム
FR3104790B1 (fr) * 2019-12-12 2021-11-19 Continental Automotive Gmbh Prevention contre des eblouissements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121159A (ja) * 2001-10-10 2003-04-23 Kenwood Corp ナビゲーション装置、及びプログラム
JP2005196651A (ja) * 2004-01-09 2005-07-21 Nissan Motor Co Ltd 車両用通信装置
JP2006277538A (ja) * 2005-03-30 2006-10-12 Equos Research Co Ltd 車両間通信装置
JP2011158281A (ja) * 2010-01-29 2011-08-18 Pioneer Electronic Corp 経路探索装置、経路探索方法、経路探索プログラムおよび記録媒体
JP2012068040A (ja) * 2010-09-21 2012-04-05 Clarion Co Ltd 車載機器
JP2014178971A (ja) * 2013-03-15 2014-09-25 Denso Corp 車両用衝突警報装置
WO2014167701A1 (ja) * 2013-04-12 2014-10-16 トヨタ自動車 株式会社 走行環境評価システム及び走行環境評価方法及び運転支援装置及び走行環境の表示装置
JP2014203186A (ja) * 2013-04-03 2014-10-27 株式会社デンソー 監視システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166895A (ja) 1996-12-09 1998-06-23 Mitsubishi Electric Corp 車両用追従走行制御装置
DE19744720A1 (de) 1997-10-10 1999-04-15 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung einer Fahrgeschwindigkeit eines Kraftfahrzeugs
JP4054103B2 (ja) 1998-04-09 2008-02-27 富士通テン株式会社 走行路形状認識装置
JP2002181554A (ja) 2000-12-11 2002-06-26 Kenwood Corp ナビゲーション装置
JP3985595B2 (ja) 2002-06-14 2007-10-03 株式会社日立製作所 自動車の走行制御装置
JP2004191093A (ja) 2002-12-09 2004-07-08 Yamaha Corp 交通危険個所通知システム
JP2005062060A (ja) 2003-08-18 2005-03-10 Denso Corp 事故防止装置、存在報知プログラム、及び記憶媒体
JP4645891B2 (ja) 2005-03-24 2011-03-09 日本精機株式会社 車両用運転支援装置及び車両用運転支援方法
JP4793571B2 (ja) 2006-08-23 2011-10-12 社団法人北海道開発技術センター 走行支援システム及び走行支援方法
JP2008070998A (ja) 2006-09-13 2008-03-27 Hitachi Ltd 車両周囲情報表示装置
JP2008210058A (ja) 2007-02-23 2008-09-11 Toyota Central R&D Labs Inc 車両事故防止装置
JP2009037493A (ja) 2007-08-02 2009-02-19 Honda Motor Co Ltd 運転支援装置
JP2009269461A (ja) 2008-05-07 2009-11-19 Toyota Motor Corp 車両用減光制御装置
JP5613398B2 (ja) * 2009-10-29 2014-10-22 富士重工業株式会社 交差点運転支援装置
JP2011118601A (ja) 2009-12-02 2011-06-16 Advanced Telecommunication Research Institute International 交通ハザードマップ生成装置
JP5518007B2 (ja) 2011-07-11 2014-06-11 クラリオン株式会社 車両用外界認識装置及びそれを用いた車両制御システム
JP2013054545A (ja) 2011-09-05 2013-03-21 Mitsubishi Motors Corp 運転支援装置
JP2013097677A (ja) 2011-11-02 2013-05-20 Daimler Ag 運転管理システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121159A (ja) * 2001-10-10 2003-04-23 Kenwood Corp ナビゲーション装置、及びプログラム
JP2005196651A (ja) * 2004-01-09 2005-07-21 Nissan Motor Co Ltd 車両用通信装置
JP2006277538A (ja) * 2005-03-30 2006-10-12 Equos Research Co Ltd 車両間通信装置
JP2011158281A (ja) * 2010-01-29 2011-08-18 Pioneer Electronic Corp 経路探索装置、経路探索方法、経路探索プログラムおよび記録媒体
JP2012068040A (ja) * 2010-09-21 2012-04-05 Clarion Co Ltd 車載機器
JP2014178971A (ja) * 2013-03-15 2014-09-25 Denso Corp 車両用衝突警報装置
JP2014203186A (ja) * 2013-04-03 2014-10-27 株式会社デンソー 監視システム
WO2014167701A1 (ja) * 2013-04-12 2014-10-16 トヨタ自動車 株式会社 走行環境評価システム及び走行環境評価方法及び運転支援装置及び走行環境の表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076796A1 (de) * 2017-10-19 2019-04-25 Continental Automotive Gmbh Verfahren zum erzeugen einer sichtweitensammlung und sichtweitensammeleinrichtung
US11482101B2 (en) 2017-10-19 2022-10-25 Continental Automotive Gmbh Method for generating a visual range collection and visual range collecting device
JP2019148531A (ja) * 2018-02-28 2019-09-05 パイオニア株式会社 演算処理装置、演算処理方法、およびコンピュータプログラム
JP2020160878A (ja) * 2019-03-27 2020-10-01 日産自動車株式会社 運転支援方法及び運転支援装置

Also Published As

Publication number Publication date
JPWO2016151638A1 (ja) 2017-04-27
DE112015006370T5 (de) 2017-12-14
US20180037162A1 (en) 2018-02-08
JP6103138B2 (ja) 2017-03-29
CN107408338A (zh) 2017-11-28
US10232772B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
JP6103138B2 (ja) ドライバ支援システム
KR102051142B1 (ko) 차량용 운전자 위험 지수 관리 시스템 및 그 방법
CN107176165B (zh) 车辆的控制装置
US9248796B2 (en) Visually-distracted-driving detection device
JP5718942B2 (ja) 輸送手段の安全な運転を補助する装置及び方法
JP4722777B2 (ja) 障害物認識判定装置
EP2535224B1 (en) Driving support equipment for vehicles
KR101655553B1 (ko) 운전자 보조 장치 및 방법
US9952058B2 (en) Driver visibility detection system and method for detecting driver visibility
JP5712119B2 (ja) 車両用歩行者報知装置
CN111976598A (zh) 车辆盲区监测方法及系统
CN112771592B (zh) 用于警告机动车的驾驶员的方法、控制设备及机动车
JP6496018B2 (ja) 交通標識の有効性確認システム及び方法
CN109416884B (zh) 识别区域推定装置、识别区域推定方法及识别区域推定程序
JP2009184554A (ja) 安全走行支援システム
JP2018127084A (ja) 自動運転車両
JP4936060B2 (ja) 車両用走行支援装置
JP6259680B2 (ja) 安全確認判定装置、及び運転支援装置
JP2006236029A (ja) 警告装置及び警告方法
JP2005182307A (ja) 車両運転支援装置
JP6526191B2 (ja) 交通標識支援システム及び方法
CN115593403A (zh) 一种车辆侧方盲区防碰撞的预警方法
JP2007062434A (ja) 車両用警報装置
US20210197722A1 (en) Driving assistance device, driving situation information acquisition system, driving assistance method, and program
US20230141584A1 (en) Apparatus for displaying at least one virtual lane line based on environmental condition and method of controlling same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513156

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15555057

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006370

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886195

Country of ref document: EP

Kind code of ref document: A1