WO2016148119A1 - 反射板を有する光電変換素子 - Google Patents

反射板を有する光電変換素子 Download PDF

Info

Publication number
WO2016148119A1
WO2016148119A1 PCT/JP2016/058061 JP2016058061W WO2016148119A1 WO 2016148119 A1 WO2016148119 A1 WO 2016148119A1 JP 2016058061 W JP2016058061 W JP 2016058061W WO 2016148119 A1 WO2016148119 A1 WO 2016148119A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
conversion element
formula
active layer
Prior art date
Application number
PCT/JP2016/058061
Other languages
English (en)
French (fr)
Inventor
行一 六原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to DE112016001262.4T priority Critical patent/DE112016001262T5/de
Priority to JP2017506553A priority patent/JP6816714B2/ja
Priority to US15/557,856 priority patent/US20180053868A1/en
Priority to CN201680015588.5A priority patent/CN107431134A/zh
Publication of WO2016148119A1 publication Critical patent/WO2016148119A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element having a reflector.
  • silicon-based solar cells are opaque and subject to restrictions on usage in various lifestyles including design.
  • an organic thin-film solar cell having an active layer containing an organic compound such as a polymer compound has a wide range of element configuration options, and a transparent solar cell can also be produced. Therefore, organic thin-film solar cells are attracting attention as a new technology that can meet various needs depending on the usage environment.
  • an organic thin film solar cell in which a substrate, an electrode, a hole transport layer, an active layer containing a polymer compound, a functional layer, and an electrode are laminated in this order is known (Patent Document 1).
  • the organic thin film solar cell described in Patent Document 1 may not always have sufficient photoelectric conversion efficiency.
  • the present invention is as follows.
  • the reflection plate further has an average reflectance of light having a wavelength of 850 to 1100 nm of 50% or more.
  • R represents a hydrogen atom, a halogen atom, an amino group, a cyano group, or a monovalent organic group. When there are two R, they may be the same or different.
  • R represents a hydrogen atom, a halogen atom, an amino group, a cyano group, or a monovalent organic group. When there are two R, they may be the same or different.
  • [6] The photoelectric conversion element according to [5], wherein the structural unit represented by the formula (I) is a structural unit represented by the following formula (II).
  • II the structural unit represented by the following formula (II)
  • Z represents the same meaning as described above.
  • [7] The photoelectric conversion element according to [5] or [6], wherein Z is a group represented by any one of formulas (Z-4) to (Z-7).
  • the photoelectric conversion element of the present invention is A photoelectric conversion element in which a support substrate, an electrode (first electrode), an active layer, an electrode (second electrode), and a reflector are laminated in this order, and the average transmittance of light having a wavelength of 400 to 700 nm is 10% or more
  • the reflector has an average transmittance of light having a wavelength of 400 to 700 nm of 70% or more, and an average reflectance of light in the region of ⁇ 150 nm of the peak wavelength of light absorption of the active layer is 50% or more. It is a photoelectric conversion element.
  • the photoelectric conversion element of the present invention is preferably an organic photoelectric conversion element.
  • An organic photoelectric conversion element means a photoelectric conversion element containing an organic compound in an active layer.
  • the photoelectric conversion element of the present invention include a photoelectric conversion element having a structure in which an anode, an active layer, a cathode, and a sealing substrate are laminated in this order on a support substrate, and a reflector is laminated.
  • Examples of the photoelectric conversion element of the present invention include a photoelectric conversion element having a structure in which a cathode, an active layer, an anode, and a sealing substrate are laminated in this order on a support substrate, and a reflector is laminated.
  • the anode and cathode are preferably composed of transparent or translucent electrodes.
  • the light incident from the transparent or translucent electrode is absorbed in the active layer by one or more compounds selected from the group consisting of an electron accepting compound and an electron donating compound described later, whereby electrons and holes are generated. Combined excitons are generated.
  • the exciton moves in the active layer and reaches the heterojunction interface where the electron accepting compound and the electron donating compound are adjacent to each other, the difference between the HOMO energy and the LUMO energy at the interface causes the electrons and holes to be separated.
  • Charges (electrons and holes) are generated that can separate and move independently. The generated electric charges are taken out as electric energy (current) by moving to the electrodes.
  • the photoelectric conversion element of the present invention has transparency. Specifically, the photoelectric conversion element of the present invention has an average transmittance of 10% or more for light having a wavelength of 400 to 700 nm.
  • the average transmittance of light having a wavelength of 400 to 700 nm is preferably 20% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 45% or more from the viewpoint of design.
  • the photoelectric conversion element of the present invention is usually formed on a support substrate.
  • a substrate that is not chemically changed when a photoelectric conversion element is manufactured is preferably used.
  • the support substrate include a glass substrate, a plastic substrate, and a polymer film.
  • a substrate having high light transmittance is preferably used as the support substrate.
  • light is usually taken from the support substrate side.
  • anode For the anode, a conductive metal oxide film, a metal thin film, a conductive film containing an organic substance, or the like is used. Specifically, indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: abbreviated as ITO), indium zinc oxide (Indium Zinc Oxide: abbreviated as IZO), gold, platinum, silver, copper, aluminum, Thin films such as polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used. Among these, a thin film of ITO, IZO, or tin oxide is preferably used for the anode. For example, a transparent or translucent electrode in which the thickness of the thin film constituting the above-described anode is set to such a thickness that light can be transmitted is used as the anode.
  • the active layer can take the form of a single layer or a stack of a plurality of layers.
  • the active layer having a single layer structure is composed of a layer containing an electron accepting compound and an electron donating compound.
  • the active layer having a configuration in which a plurality of layers are stacked includes, for example, a stacked body in which a first active layer containing an electron donating compound and a second active layer containing an electron accepting compound are stacked. .
  • the first active layer is disposed closer to the anode than the second active layer.
  • the active layer is preferably formed by a coating method.
  • the active layer preferably contains a polymer compound, and may contain a polymer compound alone or in combination of two or more.
  • one or more compounds selected from the group consisting of an electron donating compound and an electron accepting compound may be mixed in the active layer.
  • the electron-accepting compound used in the photoelectric conversion element is preferably a compound whose HOMO energy is higher than that of the electron-donating compound and whose LUMO energy is higher than that of the electron-donating compound.
  • the electron donating compound may be a low molecular compound or a high molecular compound.
  • Examples of the low molecular electron-donating compound include phthalocyanine, metal phthalocyanine, porphyrin, metal porphyrin, oligothiophene, tetracene, pentacene, and rubrene.
  • Polymeric electron donating compounds include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof , Polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, polyfluorene and derivatives thereof, polymer compounds having a structural unit represented by formula (I), and the like represented by formula (I) A polymer compound having a unit is preferred. These polymer compounds are preferably conjugated polymer compounds. (In formula (I), Ar 1 and Ar 2 may be the same or different, and represent a trivalent aromatic heterocyclic group.)
  • Z represents a group represented by any one of the following formulas (Z-1) to (Z-7).
  • R represents a hydrogen atom, a halogen atom, an amino group, a cyano group, or a monovalent organic group.
  • the monovalent organic group include an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, an aryloxy group, an arylthio group, and a substituted An optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted arylalkylthio group, an optionally substituted acyl group, an optionally substituted acyloxy group, an optionally substituted Good amide group, optionally substituted acid imide group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group
  • halogen atom represented by R examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom.
  • the alkyl group which may be substituted may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group usually has 1 to 30 carbon atoms.
  • Examples of the substituent that the alkyl group may have include a halogen atom. Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • alkyl group which may be substituted include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2- Methylbutyl group, 1-methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7- Examples include chain alkyl groups such as dimethyloctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group, eicosyl group, and cyclo
  • the optionally substituted alkoxy group may be linear or branched, and may be a cycloalkoxy group.
  • substituent that the alkoxy group may have include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • the alkoxy group usually has about 1 to 20 carbon atoms.
  • the optionally substituted alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, a cyclohexyloxy group, Heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, lauryloxy, trifluoromethoxy, pentafluoroethoxy, perfluorobutoxy, perfluoro Examples include a hexyloxy group, a perfluorooctyloxy group, a methoxymethyloxy group, and a 2-methoxyethyloxy group.
  • the alkylthio group which may be substituted may be linear or branched, and may be a cycloalkylthio group.
  • substituent that the alkylthio group may have include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • the alkylthio group usually has about 1 to 20 carbon atoms.
  • optionally substituted alkylthio group examples include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group.
  • An aryl group is an atomic group obtained by removing one hydrogen atom on an aromatic ring from an optionally substituted aromatic hydrocarbon, and usually has 6 to 60 carbon atoms.
  • substituent include a halogen atom, an optionally substituted alkoxy group, and an optionally substituted alkylthio group.
  • halogen atom, the optionally substituted alkoxy group and the optionally substituted alkylthio group include a halogen atom represented by R, an optionally substituted alkyl group, and an optionally substituted alkoxy. The same as the specific examples of the group and the optionally substituted alkylthio group.
  • aryl group examples include a phenyl group, a C1 to C12 alkyloxyphenyl group (C1 to C12 alkyl represents an alkyl having 1 to 12 carbon atoms.
  • C1 to C12 alkyl is preferably C1 to C8 alkyl. More preferably, it is C1 to C6 alkyl, C1 to C8 alkyl represents alkyl having 1 to 8 carbon atoms, and C1 to C6 alkyl represents alkyl having 1 to 6 carbon atoms.
  • C1 to C12 alkyl, C1 to C8 alkyl and C1 to C6 alkyl include those described and exemplified for the above alkyl group, and the same applies to the following.), C1 to C12 alkylphenyl group, 1 -Naphthyl group, 2-naphthyl group and pentafluorophenyl group.
  • the aryloxy group usually has about 6 to 60 carbon atoms.
  • Specific examples of the aryloxy group include a phenoxy group, a C1-C12 alkyloxyphenoxy group, a C1-C12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • the arylthio group usually has about 6 to 60 carbon atoms.
  • Specific examples of the arylthio group include a phenylthio group, a C1-C12 alkyloxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group which may be substituted usually has about 7 to 60 carbon atoms, and the alkyl part may have a substituent.
  • substituent include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • arylalkyl group which may be substituted include a phenyl-C1-C12 alkyl group, a C1-C12 alkyloxyphenyl-C1-C12 alkyl group, a C1-C12 alkylphenyl-C1-C12 alkyl group, 1- Examples include naphthyl-C1 to C12 alkyl groups and 2-naphthyl-C1 to C12 alkyl groups.
  • the arylalkoxy group which may be substituted usually has about 7 to 60 carbon atoms, and the alkoxy moiety may have a substituent.
  • substituent include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • Specific examples of the optionally substituted arylalkoxy group include phenyl-C1 to C12 alkoxy group, C1 to C12 alkoxyphenyl-C1 to C12 alkoxy group, C1 to C12 alkylphenyl-C1 to C12 alkoxy group, and 1-naphthyl. -C1-C12 alkoxy group and 2-naphthyl-C1-C12 alkoxy group are mentioned.
  • the arylalkylthio group which may be substituted usually has about 7 to 60 carbon atoms, and the alkylthio moiety may have a substituent.
  • substituent include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • arylalkylthio group examples include phenyl-C1 to C12 alkylthio group, C1 to C12 alkyloxyphenyl-C1 to C12 alkylthio group, C1 to C12 alkylphenyl-C1 to C12 alkylthio group, 1- Examples thereof include a naphthyl-C1 to C12 alkylthio group and a 2-naphthyl-C1 to C12 alkylthio group.
  • the acyl group which may be substituted usually has about 2 to 20 carbon atoms.
  • substituent that the acyl group may have include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • Specific examples of the optionally substituted acyl group include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, trifluoroacetyl group, and pentafluorobenzoyl group.
  • the acyloxy group which may be substituted usually has about 2 to 20 carbon atoms.
  • substituent that the acyloxy group may have include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • Specific examples of the optionally substituted acyloxy group include acetoxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, pivaloyloxy group, benzoyloxy group, trifluoroacetyloxy group and pentafluorobenzoyloxy group. It is done.
  • the amide group which may be substituted usually has about 1 to 20 carbon atoms.
  • An amide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an amide.
  • Examples of the substituent that the amide group may have include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • the acid imide group which may be substituted usually has about 2 to 20 carbon atoms.
  • An acid imide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid imide.
  • the substituent that the acid imide group may have include a halogen atom.
  • Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R.
  • Specific examples of the acid imide group which may be substituted include a succinimide group and a phthalimide group.
  • the substituted amino group usually has about 1 to 40 carbon atoms.
  • the alkyl group and aryl group which may be substituted are mentioned, for example.
  • Specific examples of the optionally substituted alkyl group and aryl group are the same as the specific examples of the optionally substituted alkyl group and aryl group represented by R.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert -Butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl
  • the substituted silyl group usually has about 3 to 40 carbon atoms.
  • the alkyl group and aryl group which may be substituted are mentioned, for example.
  • Specific examples of the optionally substituted alkyl group and aryl group are the same as the specific examples of the optionally substituted alkyl group and aryl group represented by R.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tri-p-xylylsilyl group, tribenzylsilyl group, Examples thereof include a diphenylmethylsilyl group, a tert-butyldiphenylsilyl group, and a dimethylphenylsilyl group.
  • the substituted silyloxy group usually has about 3 to 40 carbon atoms.
  • the alkyl group and aryl group which may be substituted are mentioned, for example.
  • Specific examples of the optionally substituted alkyl group and aryl group are the same as the specific examples of the optionally substituted alkyl group and aryl group represented by R.
  • Specific examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tripropylsilyloxy group, triisopropylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, tri-p-xylyl group.
  • Examples thereof include a silyloxy group, a tribenzylsilyloxy group, a diphenylmethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a dimethylphenylsilyloxy group.
  • the substituted silylthio group usually has about 3 to 40 carbon atoms.
  • the alkyl group and aryl group which may be substituted are mentioned, for example.
  • Specific examples of the optionally substituted alkyl group and aryl group are the same as the specific examples of the optionally substituted alkyl group and aryl group represented by R.
  • substituted silylthio group examples include trimethylsilylthio group, triethylsilylthio group, tripropylsilylthio group, triisopropylsilylthio group, tert-butyldimethylsilylthio group, triphenylsilylthio group, tri-p-xylyl group.
  • Examples include silylthio group, tribenzylsilylthio group, diphenylmethylsilylthio group, tert-butyldiphenylsilylthio group, and dimethylphenylsilylthio group.
  • the substituted silylamino group usually has about 3 to 80 carbon atoms.
  • the alkyl group and aryl group which may be substituted are mentioned, for example.
  • Specific examples of the optionally substituted alkyl group and aryl group are the same as the specific examples of the optionally substituted alkyl group and aryl group represented by R.
  • substituted silylamino group examples include trimethylsilylamino group, triethylsilylamino group, tripropylsilylamino group, triisopropylsilylamino group, tert-butyldimethylsilylamino group, triphenylsilylamino group, tri-p-xylyl group.
  • a monovalent heterocyclic group is an atomic group obtained by removing one hydrogen atom on a heterocyclic ring from an optionally substituted heterocyclic compound.
  • the monovalent heterocyclic group usually has 4 to 20 carbon atoms.
  • the heterocyclic compound include furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, triazole, thiadiazole, oxadi Azole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoin
  • Examples of the substituent that the heterocyclic compound may have include a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, and an optionally substituted alkylthio group.
  • Specific examples of the halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, and a substituted and optionally substituted alkylthio group include a halogen atom represented by R, an optionally substituted Specific examples of the good alkyl group, the optionally substituted alkoxy group and the optionally substituted alkylthio group are the same.
  • the heterocyclic group an aromatic heterocyclic group is preferable.
  • heterocyclic oxy group examples include a group represented by the formula (A-1) in which an oxygen atom is bonded to the monovalent heterocyclic group.
  • Specific examples of the heterocyclic oxy group include thienyloxy group, C1-C12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C1-C12 alkylpyridyloxy group, imidazolyloxy group, pyrazolyloxy group, triazolyl group. And a ruoxy group, an oxazolyloxy group, a thiazoleoxy group, and a thiadiazoleoxy group.
  • heterocyclic thio group examples include a group represented by the formula (A-2) in which a sulfur atom is bonded to the monovalent heterocyclic group.
  • Specific examples of the heterocyclic thio group include thienyl mercapto group, C1-C12 alkyl thienyl mercapto group, pyrrolyl mercapto group, furyl mercapto group, pyridyl mercapto group, C1-C12 alkyl pyridyl mercapto group, imidazolyl mercapto group, pyrazolyl mercapto group.
  • the arylalkenyl group usually has 8 to 20 carbon atoms. Specific examples of the arylalkenyl group include a styryl group.
  • the arylalkynyl group usually has 8 to 20 carbon atoms. Specific examples of the arylalkynyl group include a phenylacetylenyl group.
  • the substituted carboxyl group means a carboxyl group substituted with an alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group, and usually has about 2 to 60 carbon atoms, preferably 2 to 48 carbon atoms. .
  • substituted carboxyl group examples include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, t-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group Cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyloxycarbonyl group, tri Fluoromethoxycarbonyl group, pentafluoroethoxycarbonyl group, perfluorobutoxycarbonyl group, perfluorohexyloxycarbonyl group, perfluorooxy Chill oxycarbonyl group, phenoxycarbon
  • R is an optionally substituted alkyl group having 6 or more carbon atoms, or optionally substituted carbon.
  • An acyloxy group having 6 or more carbon atoms is preferable, an alkyl group having 6 or more carbon atoms which may be substituted, or an alkoxy having 6 or more carbon atoms which may be substituted.
  • alkyl group having 6 or more carbon atoms which is a preferred embodiment of R, Hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, triacontyl, tetracontyl
  • a linear alkyl group such as a pentacontyl group, a 1,1,3,3-tetramethylbutyl group, a 1-methylheptyl group, a 2-ethylhexyl group, a 3,7-dimethyloctyl group, a 1-propylpentyl group 3-heptyldodecyl group, 2-heptylundecyl group, 2-octyldo
  • the alkyl group having 6 or more carbon atoms is appropriately selected in consideration of the solubility of the polymer compound in the solvent, etc., and is a hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group.
  • tetradecyl group pentadecyl group, hexadecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 1-propylpentyl group and 3-heptyldodecyl group, hexyl group, heptyl group, octyl group, dodecyl group, More preferred are tetradecyl, hexadecyl, 2-ethylhexyl, 3,7-dimethyloctyl and 3-heptyldodecyl, hexyl, octyl, dodecyl, hexadecyl, 2-ethylhexyl, 3,7-dimethyl. An octyl group and a 3-heptyldodecyl group are particularly preferred.
  • a phenyl group substituted with an alkyl group is preferable in consideration of solubility of the polymer compound of the present invention in a solvent.
  • the substitution position of the alkyl group is preferably the para position.
  • phenyl group substituted with an alkyl group at the para-position examples include p-hexylphenyl group, p-heptylphenyl group, p-octylphenyl group, p-nonylphenyl group, p-decylphenyl group, p-undecylphenyl group, p-dodecylphenyl group, p-tridecylphenyl group, p-tetradecylphenyl group, p-pentadecylphenyl group, p-hexadecylphenyl group, p-2-ethylhexylphenyl group, p-3,7-dimethyloctyl A phenyl group, p-1-propylpentylphenyl group and p-2-hexyldecylphenyl group are preferred, and p-hexylphenyl group, p-
  • the trivalent aromatic heterocyclic group represented by Ar 1 and Ar 2 is a hydrogen atom 3 on the aromatic ring from an optionally substituted heterocyclic compound having aromaticity.
  • the carbon number of the trivalent aromatic heterocyclic group is usually 2 to 60, preferably 4 to 60, and more preferably 4 to 20.
  • Examples of the substituent that the heterocyclic compound having aromaticity may have include a halogen atom, an amino group, a cyano group, and a monovalent organic group.
  • the definitions and specific examples of the halogen atom and monovalent organic group are the same as the definitions and specific examples of the halogen atom and monovalent organic group represented by R.
  • trivalent aromatic heterocyclic group represented by Ar 1 and Ar 2 include the following formulas (201) to (301).
  • R represents the same meaning as described above. When there are a plurality of R, they may be the same or different.
  • the structural unit represented by the formula (I) is preferably a structural unit represented by the following formula (II).
  • formula (II) Z represents the same meaning as described above. ]
  • Examples of the structural unit represented by the formula (II) include structural units represented by the formulas (501) to (505).
  • R represents the same meaning as described above. When there are two R, they may be the same or different. ]
  • the formula (501), the formula (502), the formula (503), The structural unit represented by the formula (504) is preferable, the structural unit represented by the formula (501) and the formula (504) is more preferable, and the structural unit represented by the formula (501) is particularly preferable.
  • the electron-accepting compound may be a low molecular compound or a high molecular compound.
  • Low molecular electron accepting compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives , diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60, bathocuproine And the like, and the like.
  • Polymeric electron-accepting compounds include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof , Polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, polyfluorene and derivatives thereof, and the like. Among these, fullerenes and derivatives thereof are particularly preferable.
  • fullerenes include C 60 fullerene, C 70 fullerene, and carbon nanotube.
  • fullerene derivatives include C 60 fullerene derivatives and C 70 fullerene derivatives. Specific examples of C 60 fullerene derivatives include the following.
  • the ratio of fullerenes and fullerene derivatives is The amount is preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound.
  • the photoelectric conversion element preferably includes an active layer having the above-described single-layer structure. From the viewpoint of including many heterojunction interfaces, an electron including one or more selected from the group consisting of fullerenes and fullerene derivatives It is more preferable to provide an active layer having a single layer structure containing an accepting compound and an electron donating compound.
  • the active layer preferably contains a polymer compound (preferably a conjugated polymer compound) and at least one selected from the group consisting of fullerenes and derivatives of fullerenes.
  • a polymer compound preferably a conjugated polymer compound
  • the polymer compound used in the active layer include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof.
  • polymer compounds having a structural unit represented by formula (I), and the like are represented by formula (I)
  • a polymer compound having a structural unit is preferred. These polymer compounds are preferably conjugated polymer compounds.
  • the film thickness of the active layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the active layer preferably has a light absorption peak wavelength of 750 to 850 nm from the viewpoint of ensuring transparency in the visible light region and increasing the photoelectric conversion efficiency.
  • a functional layer may be disposed between the electrodes.
  • a functional layer containing an electron transporting material is preferably provided between the active layer and the cathode.
  • the functional layer is preferably transparent or translucent. From the viewpoint of ensuring transparency, the film thickness is preferably about 0.1 to 300 nm, and preferably 1 to 100 nm.
  • the functional layer is preferably formed by a coating method, for example, by coating a coating liquid containing an electron transporting material and a solvent on the surface of the layer on which the functional layer is provided.
  • the coating solution includes a dispersion such as an emulsion (emulsion) or a suspension (suspension).
  • the electron transporting material examples include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), GZO (gallium-doped zinc oxide), and ATO ( Antimony-doped tin oxide) and AZO (aluminum-doped zinc oxide).
  • zinc oxide is preferable from the viewpoint of high photoelectric conversion efficiency.
  • the average particle system corresponding to zinc oxide spheres is preferably 1 nm to 1000 nm, more preferably 10 nm to 100 nm.
  • the average particle system is measured by the light scattering method.
  • a functional layer containing an electron transporting material between the cathode and the active layer By providing a functional layer containing an electron transporting material between the cathode and the active layer, it is possible to prevent peeling of the cathode and to increase the efficiency of electron injection from the active layer to the cathode.
  • the functional layer is preferably provided in contact with the active layer, and further preferably provided in contact with the cathode.
  • the functional layer including the electron transporting material in this manner, it is possible to prevent the cathode from being peeled off and further increase the efficiency of electron injection from the active layer to the cathode.
  • the functional layer containing an electron transporting material functions as one or more selected from the group consisting of a so-called electron transport layer and an electron injection layer.
  • the functional layer containing an electron transporting material is preferably composed of a material having high wettability with respect to a coating solution used when coating and forming a cathode.
  • the functional layer containing an electron transporting material preferably has higher wettability with respect to the coating solution than the wettability of the active layer with respect to the coating solution used when the cathode is applied and formed.
  • the photoelectric conversion element of the present invention may have a hole transport layer.
  • the hole transport layer is provided between the anode and the active layer.
  • the hole transport layer is preferably transparent or translucent. From the viewpoint of ensuring transparency, the film thickness is preferably about 0.1 to 300 nm, and more preferably 1 to 100 nm.
  • As a material used for the hole transport layer it has the ability to improve the smoothness of the electrode and transport holes, for example, water-soluble such as polyvinyl carbazole, polysilane, polyethylene dioxythiophene, polystyrene sulfonate. Examples thereof include conductive polymers, and the hole transport layer can be formed by applying an aqueous solution of these polymer materials to the surface of the electrode.
  • the material for forming the hole transport layer may be a water-soluble polymer material.
  • PEDOT / PSS composed of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (4-styrenesulfonic acid) (PSS) is preferable from the viewpoint of high photoelectric conversion efficiency.
  • the cathode can take the form of a single layer or a stack of a plurality of layers.
  • the cathode can be formed by, for example, a coating method.
  • the coating liquid used when forming the cathode by a coating method includes a constituent material of the cathode and a solvent.
  • the cathode preferably contains a polymer compound exhibiting conductivity, and is preferably made of a polymer compound substantially exhibiting conductivity.
  • the constituent material of the cathode include organic materials such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, and polypyrrole and derivatives thereof.
  • a transparent or translucent electrode in which the thickness of the thin film constituting the cathode is set to a thickness that allows light to pass through is used as the cathode.
  • the cathode preferably contains one or more selected from the group consisting of polythiophene and polythiophene derivatives.
  • the cathode preferably contains at least one selected from the group consisting of polyaniline and polyaniline derivatives.
  • polythiophene and derivatives thereof include compounds containing one or more structural formulas shown below as repeating units. (In the formula, n represents 1 or an integer of 2 or more.)
  • polypyrrole and derivatives thereof include compounds containing one or more of the following structural formulas as a repeating unit. (In the formula, n represents 1 or an integer of 2 or more.)
  • polyaniline and derivatives thereof include compounds containing one or more structural formulas shown below as repeating units. (In the formula, n represents 1 or an integer of 2 or more.)
  • PEDOT / PSS composed of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (4-styrenesulfonic acid) (PSS) has a high photoelectric conversion efficiency. It is preferably used as a constituent material of the cathode.
  • the cathode is not limited to the coating liquid containing the organic material, but an emulsion (emulsion) or suspension (suspension) containing conductive material nanoparticles, conductive material nanowires, or conductive material nanotubes. Alternatively, it may be formed by a coating method using a dispersion such as a metal paste, a low melting point metal in a molten state, or the like.
  • the conductive substance include metals such as gold and silver, oxides (metal oxides) such as ITO (indium tin oxide), and carbon nanotubes.
  • the cathode may be composed only of nanoparticles or nanofibers of a conductive material. As shown in Japanese Patent Application Laid-Open No. 2010-525526, the cathode or nanofiber of a conductive material is a predetermined material such as a conductive polymer. It may have a configuration of being distributed in the medium.
  • sealing substrate examples include a glass substrate, a plastic substrate, and a polymer film.
  • a substrate having high light transmittance is preferably used.
  • the average transmittance of light having a wavelength of 400 to 700 nm is 70% or more.
  • the average transmittance of light having a wavelength of 400 to 650 nm is preferably 80% or more.
  • the average transmittance is a value obtained by averaging the transmittance of light having a wavelength of 400 to 700 nm or a wavelength of 400 to 650 nm measured every 1 nm.
  • the reflector used in the present invention has an average reflectance of light of 50% or more in the region of ⁇ 150 nm of the peak wavelength of light absorption of the active layer.
  • the average reflectance of the light is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average reflectance is a value obtained by averaging the reflectance of light measured every 1 nm with respect to a region of ⁇ 150 nm of the peak wavelength of light absorption of the active layer.
  • a near infrared reflecting film made of a dielectric multilayer film can be used as the reflecting plate used in the present invention.
  • the dielectric multilayer film has a structure in which low refractive index layers and high refractive index layers are alternately stacked.
  • the difference in refractive index between the high refractive index layer and the low refractive index layer is preferably 0.5 or more, and more preferably 1.0 or more.
  • the difference in refractive index is 1.0 or more, the wavelength range of the near infrared region that can be cut is widened, and a filter having better near infrared ray cutting performance can be obtained.
  • the refractive index of the material constituting the high refractive index layer is usually 1.6 or less, preferably 1.2 to 1.6.
  • Examples of such a material include silica (SiO 2 ), alumina, lanthanum fluoride, magnesium fluoride, sodium hexafluoroaluminum, and the like, and silica is preferable.
  • the refractive index of the material constituting the low refractive index layer is usually 1.7 or more and preferably 1.7 or more and 2.5 or less.
  • examples of such materials include titanium oxide (titania (TiO 2 )), zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, and indium oxide. 1 or more types.
  • it is at least one selected from the group consisting of titania (TiO 2 ), ITO (tin-doped indium oxide) and ATO (antimony-doped tin oxide).
  • ITO titanium oxide
  • ATO antimony-doped tin oxide
  • one or more selected from the group consisting of ITO (tin-doped indium oxide) and ATO (antimony-doped tin oxide) can be used.
  • the reflective plate used in the present invention has an average reflectance of 50% or more of light having a wavelength of 850 to 1100 nm from the viewpoint of providing near infrared cut performance. 60% or more is preferable, 70% or more is more preferable, More preferably, it is 80% or more.
  • the average reflectance is a value obtained by averaging the reflectances of light having a wavelength of 850 to 1100 nm measured every 1 nm.
  • the position where the reflector is formed is not limited to the position directly above the cathode or anode, but may be formed inside the sealing substrate or outside the sealing substrate, or may be formed on a new substrate and bonded together. But you can.
  • a spectrophotometer for example, JASCO-V670, made by JASCO Corporation
  • JASCO-V670 the measurable wavelength range is 200 to 2500 nm, so measurement is performed in this wavelength range.
  • an ultraviolet-visible near-infrared spectrophotometer (trade name: V670) manufactured by JASCO Corporation is used.
  • V670 an absorption spectrum can be measured in the wavelength range of 300 nm to 2500 nm.
  • a thin film containing a polymer compound is formed on a substrate (for example, a quartz substrate or a glass substrate) by applying a solution containing the polymer compound or a melt containing the polymer compound.
  • a substrate for example, a quartz substrate or a glass substrate
  • the absorption spectrum of the substrate and the absorption spectrum of the laminate of the thin film and the substrate are measured.
  • the absorption spectrum of the thin film is obtained by subtracting the absorption spectrum of the substrate from the absorption spectrum of the laminate.
  • the vertical axis and the horizontal axis of the absorption spectrum indicate absorbance and wavelength, respectively. It is desirable to adjust the thickness of the thin film so that the maximum absorbance is 0.3-2.
  • the method for manufacturing the photoelectric conversion element of the present invention will be described by taking a photoelectric conversion element in which the first electrode is an anode and the second electrode is a cathode as an example.
  • an anode is formed on a support substrate, an active layer is formed on the anode, a cathode is formed on the active layer by, for example, a coating method, and then a reflector is pasted on the cathode.
  • a photoelectric conversion element in which the first electrode is an anode and the second electrode is a cathode as an example.
  • an anode is formed on a support substrate
  • an active layer is formed on the anode
  • a cathode is formed on the active layer by, for example, a coating method
  • a reflector is pasted on the cathode.
  • the anode is formed by depositing the above-described anode material on the above-described support substrate by vacuum deposition, sputtering, ion plating, plating, or the like.
  • the anode may be formed by a coating method using a coating liquid containing an organic material such as polyaniline and its derivative, polythiophene and its derivative, a metal ink, a metal paste, a molten low melting point metal, or the like.
  • the method for forming the active layer is not particularly limited, but is preferably formed by a coating method from the viewpoint of simplifying the manufacturing process.
  • the active layer can be formed, for example, by a coating method using a coating solution containing the constituent material of the active layer and a solvent.
  • the active layer is selected from the group consisting of conjugated polymer compounds, fullerenes and fullerene derivatives. It can form by the coating method using the above and the coating liquid containing a solvent.
  • the solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbezen, t-butylbenzene; carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Halogenated saturated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane; Halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; tetrahydrofuran, tetrahydropyran And ether solvents such as
  • the coating liquid used in the present invention may contain two or more kinds of solvents.
  • a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray Examples include coating methods, screen printing methods, flexographic printing methods, offset printing methods, inkjet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, etc.
  • spin coating methods and flexographic printing methods can be mentioned.
  • the method, the inkjet printing method, and the dispenser printing method are preferable.
  • ⁇ Functional layer formation process> it is preferable to form a functional layer containing an electron transporting material between the active layer and the cathode. That is, it is preferable to form the functional layer by coating the active layer with a coating solution containing the above-described electron transporting material after the formation of the active layer and before the formation of the cathode.
  • the functional layer is formed by applying the coating liquid on the surface of the active layer.
  • a coating solution that causes little damage to the layer to which the coating solution is applied such as an active layer
  • a layer to which the coating solution is applied such as an active layer
  • a coating solution that hardly dissolves it is preferable to use a coating solution that hardly dissolves. That is, when the coating liquid used for forming the cathode is applied on the active layer, the functional layer is formed using a coating liquid that causes less damage to the active layer than the coating liquid damages the active layer. Preferably formed. Specifically, it is preferable to form the functional layer by using a coating solution that hardly dissolves the active layer, rather than the coating solution used when forming the cathode.
  • the coating solution used for coating and forming the functional layer includes a solvent and the electron transporting material described above.
  • the solvent for the coating solution include water and alcohol.
  • Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, methoxybutanol and the like.
  • the coating liquid used for this invention may contain 2 or more types of solvent, and may contain 2 or more types of solvent illustrated above.
  • the cathode is formed on the surface of the active layer or functional layer, for example, by a coating method. Specifically, the cathode is formed by applying a coating solution containing a solvent and the above-described cathode constituent material onto the surface of the light emitting layer or the functional layer.
  • the solvent for the coating solution used for forming the cathode include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbesen, and t-butylbenzene, and four solvents.
  • Halogenated saturated hydrocarbon solvents such as carbon chloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogens such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • unsaturated hydrocarbon solvents ether solvents such as tetrahydrofuran and tetrahydropyran, water, alcohols and the like.
  • the alcohol examples include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, methoxybutanol and the like.
  • the coating liquid used for this invention may contain 2 or more types of solvent, and may contain 2 or more types of solvent illustrated above.
  • the cathode When the cathode is formed using a coating solution that damages the active layer or the functional layer, for example, the cathode has a two-layer structure, and the first thin film does not damage the light emitting layer or the functional layer. It may be formed using a coating solution, and then the second thin film may be formed using a coating solution capable of damaging the light emitting layer and the functional layer. Thus, by using a two-layer cathode, even if the second thin film is formed using a coating solution that can damage the light-emitting layer or the functional layer, the first thin film functions as a protective layer. Therefore, damage to the light emitting layer and the functional layer can be suppressed.
  • the functional layer made of zinc oxide is easily damaged by an acidic solution
  • the first thin film is formed using a neutral coating solution.
  • a two-layered cathode may be formed by forming a second-layer thin film using an acidic solution.
  • the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by irradiating light such as sunlight to a transparent or semi-transparent electrode to generate a photovoltaic force between the electrodes. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the photoelectric conversion element of the present invention can be operated as an organic photosensor by irradiating light to a transparent or semi-transparent electrode with a voltage applied between the electrodes to cause photocurrent to flow. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • a photoelectric conversion element exhibiting light transmittance can be configured.
  • Such a photoelectric conversion element can be easily configured as a parallel or series multi-junction element by being overlapped with a light-impermeable photoelectric conversion element or a light-transmitting photoelectric conversion element.
  • the reflection plate is formed, for example, by forming a near-infrared reflection film made of the above-described dielectric multilayer film on a glass substrate or the like by vacuum deposition, sputtering, ion plating, plating, or the like.
  • Synthesis example 1 Synthesis of polymer compound A
  • a polymer compound A comprising the following structural units was synthesized by the method described in Example 1 of International Publication No. WO2013 / 051676A1. Used.
  • Example 1 (Production and evaluation of organic thin-film solar cells) A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared. The ITO thin film was formed by sputtering, and the thickness was 150 nm. This glass substrate was treated with ozone UV to treat the surface of the ITO thin film. Next, a PEDOT: PSS solution (manufactured by HC Starck Co., CleviosP VP AI4083) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the air, thereby transporting holes having a thickness of 35 nm. A layer was formed.
  • PEDOT: PSS solution manufactured by HC Starck Co., CleviosP VP AI4083
  • the ink 1 was applied by spin coating to form an active layer (film thickness of about 120 nm).
  • an active layer was formed on the glass substrate, and the absorption spectrum was measured using a spectrophotometer (manufactured by JASCO, UV-Vis near-infrared spectrophotometer JASCO-V670). The absorption wavelength peak was 810 nm.
  • a wire-like conductor dispersion liquid of a water solvent (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) is applied by a spin coater and dried, so that the conductive wire layer having a film thickness of 120 nm is dried. A cathode was obtained. Thereafter, a UV curable sealant was applied to the periphery, the glass substrates were bonded together, and then sealed by irradiation with UV light.
  • an IR cut filter (IRC2 manufactured by Ceratech Japan) was attached to the outside of the sealing substrate as a reflector to obtain an organic thin film solar cell.
  • the obtained organic thin-film solar cell was measured for transmission spectrum using a spectrophotometer (manufactured by JASCO Corporation, UV-visible near-infrared spectrophotometer JASCO-V670). The average transmittance at a wavelength of 400 to 700 nm was 45%.
  • FIG. 1 shows the result of transmittance obtained by measuring the reflection and transmission spectra using a spectrophotometer (manufactured by JASCO Corporation, UV-VIS / NIR spectrophotometer JASCO-V670) as the IR cut filter used.
  • the reflectance results are shown in FIG.
  • the average transmittance at a wavelength of 400 to 700 nm was 72%, and the average reflectance at a wavelength of 660 to 960 nm was 100%.
  • the average reflectance of light having a wavelength of 850 to 1100 nm was 98%.
  • the average transmittance at a wavelength of 400 to 650 nm was 86%.
  • the shape of the obtained organic thin film solar cell was a regular square of 10 mm ⁇ 10 mm.
  • a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 )
  • the obtained organic thin film solar cell is irradiated with a certain amount of light, and the generated current and voltage are
  • the photoelectric conversion efficiency was measured by measuring.
  • the photoelectric conversion efficiency was 4.58%.
  • Comparative Example 1 An organic thin-film solar cell similar to that of Example 1 was produced except that the IR cut filter was not attached to the outside of the sealing substrate. Using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ), the obtained organic thin film solar cell is irradiated with a certain amount of light, and the generated current and voltage are The photoelectric conversion efficiency was measured by measuring. The photoelectric conversion efficiency was 3.89%.
  • a highly efficient photoelectric conversion element is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 支持基板、電極、活性層、電極及び反射板がこの順で積層され、波長400~700nmの光の平均透過率が10%以上である光電変換素子であり、前記反射板は波長400~700nmの光の平均透過率が70%以上であり、かつ活性層の光吸収のピーク波長の±150nmの領域の光の平均反射率が50%以上である光電変換素子。

Description

反射板を有する光電変換素子
 本発明は、反射板を有する光電変換素子に関する。
 近年、光電変換素子の一態様であるpn接合型のシリコン系太陽電池を用いるソーラーシステムの採用が提唱されている。しかし、シリコン系太陽電池は不透明であり、意匠性を含めた多様なライフスタイルでの使用用途に制約を受ける。
 一方、高分子化合物等の有機化合物を含む活性層を有する有機薄膜太陽電池は、素子構成の選択肢が広く、透明太陽電池の作成も可能である。従って、有機薄膜太陽電池は、使用環境による多様なニーズに応えることができる新しい技術として注目されている。たとえば、基板、電極、正孔輸送層、高分子化合物を含む活性層、機能層、電極がこの順に積層された有機薄膜太陽電池が知られている(特許文献1)。
特開2013-33906号公報
 特許文献1に記載された有機薄膜太陽電池は、必ずしも十分な光電変換効率を得られない場合もあった。
 本発明は、以下のとおりである。
[1]支持基板、電極、活性層、電極及び反射板がこの順で積層され、波長400~700nmの光の平均透過率が10%以上である光電変換素子であり、前記反射板は波長400~700nmの光の平均透過率が70%以上であり、かつ活性層の光吸収のピーク波長の±150nmの領域の光の平均反射率が50%以上である光電変換素子。
[2]前記反射板が、さらに波長850~1100nmの光の平均反射率が50%以上である[1]記載の光電変換素子。
[3]前記活性層が、高分子化合物を含む[1]又は[2]記載の光電変換素子。
[4]前記高分子化合物を含む活性層の光吸収のピーク波長が、750~850nmである[3]記載の光電変換素子。
[5]前記高分子化合物が、式(I)で表される構成単位を有する高分子化合物である[3]又は[4]記載の光電変換素子。
Figure JPOXMLDOC01-appb-I000005

〔式(I)中、Zは下記式(Z-1)~式(Z-7)のうちのいずれかで表される基を表す。Ar及びArは、同一でも異なっていてもよく、3価の芳香族複素環基を表す。


Figure JPOXMLDOC01-appb-I000006
〔式(Z-1)~式(Z-7)中、Rは、水素原子、ハロゲン原子、アミノ基、シアノ基又は1価の有機基を表す。Rが2つある場合、それらは同一でも異なっていてもよい。〕
[6]前記式(I)で表される構成単位が、下記式(II)で表される構成単位である[5]記載の光電変換素子。

Figure JPOXMLDOC01-appb-I000007


〔式(II)中、Zは前述と同様の意味を表す。〕
[7]前記Zが、前記式(Z-4)~式(Z-7)のうちのいずれかで表される基である、[5]又は[6]記載の光電変換素子。
[8]式(I)で表される構成単位が、下記式(III)で表される構成単位である[5]~[7]のいずれか記載の光電変換素子。

Figure JPOXMLDOC01-appb-I000008

 〔式(III)中、2つあるRは、同一でも異なっていてもよく、前述と同様の意味を表す。〕
[9][1]~[8]のいずれか記載の光電変換素子を含む太陽電池モジュール。
IRカットフィルターの透過スペクトル IRカットフィルターの反射スペクトル
 以下、本発明を詳細に説明する。
 <1>光電変換素子の構成
 本発明の光電変換素子は、
支持基板、電極(第1の電極)、活性層、電極(第2の電極)及び反射板がこの順で積層され、波長400~700nmの光の平均透過率が10%以上である光電変換素子であり、前記反射板は波長400~700nmの光の平均透過率が70%以上であり、かつ活性層の光吸収のピーク波長の±150nmの領域の光の平均反射率が50%以上である光電変換素子である。
 本発明の光電変換素子は、有機光電変換素子であることが好ましい。有機光電変換素子は、活性層に有機化合物を含む光電変換素子を意味する。
 本発明の光電変換素子としては、(a) 第1の電極が陽極であり、第2の電極が陰極である光電変換素子及び(b) 第1の電極が陰極であり、第2の電極が陽極である光電変換素子があげられる。 
 本発明の光電変換素子としては、支持基板上に、陽極、活性層、陰極、封止基板がこの順で積層されかつ反射板を張り合わせた構成の光電変換素子があげられる。
 本発明の光電変換素子としては、また、支持基板上に、陰極、活性層、陽極、封止基板がこの順で積層されかつ反射板を張り合わせた構成の光電変換素子があげられる。
 陽極および陰極は、透明又は半透明の電極によって構成されることが好ましい。透明又は半透明の電極から入射した光は、活性層中において、後述の電子受容性化合物及び電子供与性化合物からなる群より選ばれる1以上の化合物に吸収され、それによって電子と正孔とが結合した励起子が生成される。この励起子が活性層中を移動し、電子受容性化合物と電子供与性化合物とが隣接するヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子と正孔とが分離し、独立して移動することのできる電荷(電子と正孔)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出される。
 本発明の光電変換素子は、透明性を有する。具体的には、本発明の光電変換素子は、波長400~700nmの光の平均透過率が10%以上である。波長400~700nmの光の平均透過率は、意匠性の観点から20%以上が好ましく、30%以上がより好ましく、40%以上がさらに好ましく、45%以上が特に好ましい。
 (支持基板)
 本発明の光電変換素子は、通常、支持基板上に形成される。支持基板には、光電変換素子を作製する際に化学的に変化しないものが好適に用いられる。支持基板としては、例えば、ガラス基板、プラスチック基板、高分子フィルム等が挙げられる、支持基板には光透過性の高い基板が好適に用いられる。
 本発明の光電変換素子において、通常は、支持基板側から光を取り込む。
 (陽極)
 陽極には、導電性の金属酸化物膜、金属薄膜、および有機物を含む導電膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅、アルミニウム、ポリアニリン及びその誘導体、並びにポリチオフェン及びその誘導体等の薄膜が用いられる。これらの中でも陽極には、ITO、IZO、酸化スズの薄膜が好適に用いられる。たとえば上述の陽極を構成する薄膜の膜厚を、光が透過する程度の厚さにした透明又は半透明な電極が陽極として用いられる。
 (活性層)
 活性層は、単層の形態または複数の層が積層された形態をとりうる。単層構成の活性層は、電子受容性化合物及び電子供与性化合物を含有する層から構成される。
 複数の層が積層された構成の活性層は、たとえば電子供与性化合物を含有する第一の活性層と、電子受容性化合物を含有する第二の活性層とを積層した積層体から構成される。この場合、第一の活性層が、第二の活性層に対して陽極寄りに配置される。
 活性層は塗布法により形成されることが好ましい。活性層は、高分子化合物を含むことが好ましく、高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。活性層の電荷輸送性を高めるために、活性層中に電子供与性化合物及び電子受容性化合物からなる群より選ばれる1以上の化合物を混合してもよい。
 光電変換素子に用いられる電子受容性化合物は、そのHOMOエネルギーが電子供与性化合物のHOMOエネルギーよりも高く、かつ、そのLUMOエネルギーが電子供与性化合物のLUMOエネルギーよりも高い化合物であることが好ましい。
 電子供与性化合物は低分子化合物であっても高分子化合物であってもよい。低分子の電子供与性化合物としては、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン、ルブレン等が挙げられる。
 高分子の電子供与性化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体、式(I)で表される構成単位を有する高分子化合物等が挙げられ、式(I)で表される構成単位を有する高分子化合物が好ましい。
これらの高分子化合物は共役高分子化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000009

(式(I)中、Ar及びArは、同一でも異なっていてもよく、3価の芳香族複素環基を示す。)
式(I)中、Zは下記式(Z-1)~式(Z-7)のうちのいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000010
 式(Z-1)~式(Z-7)中、Rは、水素原子、ハロゲン原子、アミノ基、シアノ基又は1価の有機基を表す。1価の有機基としては、例えば、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアシル基、置換されていてもよいアシルオキシ基、置換されていてもよいアミド基、置換されていてもよい酸イミド基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、置換カルボキシル基、が挙げられる。式(Z-1)~式(Z-7)のそれぞれにおいて、Rが2つある場合、それらは同一でも異なっていてもよい。
 Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、好ましくはフッ素原子である。
 置換されていてもよいアルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基であってもよい。アルキル基の炭素数は、通常1~30である。アルキル基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル墓、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。
 置換されていてもよいアルコキシ基は、直鎖状でも分岐状でもよく、シクロアルコキシ基であってもよい。アルコキシ基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。アルコキシ基の炭素数は、通常1~20程度である。置換されていてもよいアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基及び2-メトキシエチルオキシ基が挙げられる。
 置換されていてもよいアルキルチオ基は、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよい。アルキルチオ基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。アルキルチオ基の炭素数は、通常1~20程度である。置換されていてもよいアルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基及びトリフルオロメチルチオ基が挙げられる。
 アリール基は、置換されていてもよい芳香族炭化水素から、芳香環上の水素原子1個を除いた原子団であり、炭素数は、通常6~60である。置換基としては、例えば、ハロゲン原子、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基が挙げられる。該ハロゲン原子、置換されていてもよいアルコキシ基及び置換されていてもよいアルキルチオ基の具体例は、Rで表されるハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアルキルチオ基の具体例と同じである。アリール基の具体例としては、フェニル基、C1~C12アルキルオキシフェニル基(C1~C12アルキルは、炭素数1~12のアルキルであることを示す。C1~C12アルキルは、好ましくはC1~C8アルキルであり、より好ましくはC1~C6アルキルである。C1~C8アルキルは、炭素数1~8のアルキルであることを示し、C1~C6アルキルは、炭素数1~6のアルキルであることを示す。C1~C12アルキル、C1~C8アルキル及びC1~C6アルキルの具体例としては、上記アルキル基で説明し例示したものが挙げられる。以下も同様である。)、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基及びペンタフルオロフェニル基が挙げられる。
 アリールオキシ基は、その炭素数が通常6~60程度である。アリールオキシ基の具体例としては、フェノキシ基、C1~C12アルキルオキシフェノキシ基、C1~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基及びペンタフルオロフェニルオキシ基が挙げられる。
 アリールチオ基は、その炭素数が通常6~60程度である。アリールチオ基の具体例としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基及びペンタフルオロフェニルチオ基が挙げられる。
 置換されていてもよいアリールアルキル基は、その炭素数が通常7~60程度であり、アルキル部分が置換基を有していてもよい。置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアリールアルキル基の具体例としては、フェニル-C1~C12アルキル基、C1~C12アルキルオキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基、1-ナフチル-C1~C12アルキル基及び2-ナフチル-C1~C12アルキル基が挙げられる。
 置換されていてもよいアリールアルコキシ基は、その炭素数が通常7~60程度であり、アルコキシ部分が置換基を有していてもよい。置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアリールアルコキシ基の具体例としては、フェニル-C1~C12アルコキシ基、C1~C12アルコキシフェニル-C1~C12アルコキシ基、C1~C12アルキルフェニル-C1~C12アルコキシ基、1-ナフチル-C1~C12アルコキシ基及び2-ナフチル-C1~C12アルコキシ基が挙げられる。
 置換されていてもよいアリールアルキルチオ基は、その炭素数が通常7~60程度であり、アルキルチオ部分が置換基を有していてもよい。置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアリールアルキルチオ基の具体例としては、フェニル-C1~C12アルキルチオ基、C1~C12アルキルオキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基、1-ナフチル-C1~C12アルキルチオ基及び2-ナフチル-C1~C12アルキルチオ基が挙げられる。
 置換されていてもよいアシル基は、その炭素数が通常2~20程度である。アシル基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基及びペンタフルオロベンゾイル基が挙げられる。
 置換されていてもよいアシルオキシ基は、その炭素数が通常2~20程度である。アシルオキシ基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基及びペンタフルオロベンゾイルオキシ基が挙げられる。
 置換されていてもよいアミド基は、その炭素数が通常1~20程度である。アミド基とは、アミドから窒素原子に結合した水素原子を除いて得られる基をいう。アミド基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよいアミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基が挙げられる。
 置換されていてもよい酸イミド基は、その炭素数が通常2~20程度である。酸イミド基とは、酸イミドから窒素原子に結合した水素原子を除いて得られる基をいう。酸イミド基が有していてもよい置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子の具体例は、Rで表されるハロゲン原子の具体例と同じである。置換されていてもよい酸イミド基の具体例としては、スクシンイミド基及びフタル酸イミド基が挙げられる。
 置換アミノ基は、その炭素数が通常1~40程度である。置換アミノ基が有する置換基としては、例えば、置換されていてもよいアルキル基及びアリール基が挙げられる。該置換されていてもよいアルキル基及びアリール基の具体例は、Rで表される置換されていてもよいアルキル基及びアリール基の具体例と同じである。置換アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1~C12アルコキルオキシフェニルアミノ基、ジ(C1~C12アルキルオキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル-C1~C12アルキルアミノ基、C1~C12アルキルオキシフェニル-C1~C12アルキルアミノ基、C1~C12アルキルフェニル-C1~C12アルキルアミノ基、ジ(C1~C12アルキルオキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基及び2-ナフチル-C1~C12アルキルアミノ基が挙げられる。
 置換シリル基は、その炭素数が通常3~40程度である。置換シリル基が有する置換基としては、例えば、置換されていてもよいアルキル基及びアリール基が挙げられる。該置換されていてもよいアルキル基及びアリール基の具体例は、Rで表される置換されていてもよいアルキル基及びアリール基の具体例と同じである。置換シリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基及びジメチルフェニルシリル基が挙げられる。
 置換シリルオキシ基は、その炭素数が通常3~40程度である。置換シリルオキシ基が有する置換基としては、例えば、置換されていてもよいアルキル基及びアリール基が挙げられる。該置換されていてもよいアルキル基及びアリール基の具体例は、Rで表される置換されていてもよいアルキル基及びアリール基の具体例と同じである。置換シリルオキシ基の具体例としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリプロピルシリルオキシ基、トリイソプロピルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ-p-キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基及びジメチルフェニルシリルオキシ基が挙げられる。
 置換シリルチオ基は、その炭素数が通常3~40程度である。置換シリルチオ基が有する置換基としては、例えば、置換されていてもよいアルキル基及びアリール基が挙げられる。該置換されていてもよいアルキル基及びアリール基の具体例は、Rで表される置換されていてもよいアルキル基及びアリール基の具体例と同じである。置換シリルチオ基の具体例としては、トリメチルシリルチオ基、トリエチルシリルチオ基、トリプロピルシリルチオ基、トリイソプロピルシリルチオ基、tert-ブチルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ-p-キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、tert-ブチルジフェニルシリルチオ基及びジメチルフェニルシリルチオ基が挙げられる。
 置換シリルアミノ基は、その炭素数が通常3~80程度である。置換シリルアミノ基が有する置換基としては、例えば、置換されていてもよいアルキル基及びアリール基が挙げられる。該置換されていてもよいアルキル基及びアリール基の具体例は、Rで表される置換されていてもよいアルキル基及びアリール基の具体例と同じである。置換シリルアミノ基の具体例としては、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリプロピルシリルアミノ基、トリイソプロピルシリルアミノ基、tert-ブチルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ-p-キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、tert-ブチルジフェニルシリルアミノ基、ジメチルフェニルシリルアミノ基、ジ(トリメチルシリル)アミノ基、ジ(トリエチルシリル)アミノ基、ジ(トリプロピルシリル)アミノ基、ジ(トリイソプロピルシリル)アミノ基、ジ(tert-ブチルジメチルシリル)アミノ基、ジ(トリフェニルシリル)アミノ基、ジ(トリ-p-キシリルシリル)アミノ基、ジ(トリベンジルシリル)アミノ基、ジ(ジフェニルメチルシリル)アミノ基、ジ(tert-ブチルジフェニルシリル)アミノ基、ジ(ジメチルフェニルシリル)アミノ基が挙げられる。
 1価の複素環基は、置換されていてもよい複素環式化合物から、複素環上の水素原子1個を除いた原子団である。1価の複素環基は、その炭素数が通常4~20である。複素環式化合物としては、例えば、フラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β-カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン及びフェナジンが挙げられる。複素環式化合物が有していてもよい置換基としては、例えば、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアルキルチオ基が挙げられる。該ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換及び置換されていてもよいアルキルチオ基の具体例は、Rで表されるハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアルキルチオ基の具体例と同じである。複素環基としては、芳香族複素環基が好ましい。
 複素環オキシ基としては、前記1価の複素環基に酸素原子が結合した式(A-1)で表される基が挙げられる。複素環オキシ基の具体例としては、チエニルオキシ基、C1~C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1~C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基及びチアジアゾールオキシ基が挙げられる。
 複素環チオ基としては、前記1価の複素環基に硫黄原子が結合した式(A-2)で表される基が挙げられる。複素環チオ基の具体例としては、チエニルメルカプト基、C1~C12アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C1~C12アルキルピリジルメルカプト基、イミダゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基及びチアジアゾールメルカプト基が挙げられる。
Figure JPOXMLDOC01-appb-I000011
 (A-1)            (A-2)

(式(A-1)及び式(A-2)中、Arは1価の複素環基を表す。)
 アリールアルケニル基は、通常、その炭素数が8~20である。アリールアルケニル基の具体例としては、スチリル基が挙げられる。
 アリールアルキニル基は、通常、その炭素数が8~20である。アリールアルキニル基の具体例としては、フェニルアセチレニル基が挙げられる。
 置換カルボキシル基は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換されたカルボキシル基をいい、炭素数が通常2~60程度であり、好ましくは炭素数2~48である。
 置換カルボキシル基の具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、t-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基、などが挙げられる。
 式(I)で表される構成単位を有する高分子化合物の溶媒に対する溶解性を高める観点からは、Rは、置換されていてもよい炭素数6以上のアルキル基、置換されていてもよい炭素数6以上のアルコキシ基、置換されていてもよい炭素数6以上のアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよい炭素数6以上のアシル基及び置換されていてもよい炭素数6以上のアシルオキシ基が好ましく、置換されていてもよい炭素数6以上のアルキル基、置換されていてもよい炭素数6以上のアルコキシ基、置換されていてもよいアリール基及び置換されていてもよいアリールオキシ基がより好ましく、置換されていてもよい炭素数6以上のアルキル基が特に好ましい。
 Rの好ましい一態様である炭素数6以上のアルキル基としては、
ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、トリアコンチル基、テトラコンチル基、ペンタコンチル基などの直鎖状のアルキル基や1,1,3,3-テトラメチルブチル基、1-メチルヘプチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、1-プロピルペンチル基、3-ヘプチルドデシル基、2-ヘプチルウンデシル基、2-オクチルドデシル基、3,7,11-トリメチルドデシル基、3,7,11,15-テトラメチルヘキサデシル基、3,5,5-トリメチルへキシル基などの分岐状のアルキル基が挙げられる。
 炭素数6以上のアルキル基は、高分子化合物の溶媒に対する溶解性等を考慮して適宜選択されるが、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、1-プロピルペンチル基及び3-ヘプチルドデシル基が好ましく、ヘキシル基、ヘプチル基、オクチル基、ドデシル基、テトラデシル基、ヘキサデシル基、2-エチルヘキシル基、3,7-ジメチルオクチル基及び3-ヘプチルドデシル基がより好ましく、ヘキシル基、オクチル基、ドデシル基、ヘキサデシル基、2-エチルヘキシル基、3,7-ジメチルオクチル基及び、3-ヘプチルドデシル基が特に好ましい。
 Rの好ましい一態様であるアリール基としては、本発明の高分子化合物の溶媒に対する溶解性等を考慮した場合、アルキル基が置換したフェニル基が好ましい。アルキル基の置換位置は、パラ位が好ましい。パラ位にアルキル基が置換したフェニル基としては、p-ヘキシルフェニル基、p-ヘプチルフェニル基、p-オクチルフェニル基、p-ノニルフェニル基、p-デシルフェニル基、p-ウンデシルフェニル基、p-ドデシルフェニル基、p-トリデシルフェニル基、p-テトラデシルフェニル基、p-ペンタデシルフェニル基、p-ヘキサデシルフェニル基、p-2-エチルヘキシルフェニル基、p-3,7-ジメチルオクチルフェニル基、p-1-プロピルペンチルフェニル基及びp-2-ヘキシルデシルフェニル基が好ましく、p-ヘキシルフェニル基、p-ヘプチルフェニル基、p-オクチルフェニル基、p-ドデシルフェニル基、p-ペンタデシルフェニル基、p-ヘキサデシルフェニル基、p-2-エチルヘキシルフェニル基、p-3,7-ジメチルオクチルフェニル基及びp-2-ヘキシルデシルフェニル基がより好ましく、p-ドデシルフェニル基、p-ペンタデシルフェニル基、p-2-エチルヘキシルフェニル基及びp-3,7-ジメチルオクチルフェニル基が特に好ましい。
 式(I)中、Ar及びArで表される3価の芳香族複素環基とは、置換されていてもよい芳香族性を有する複素環式化合物から、芳香環上の水素原子3個を除いた残りの原子団をいう。3価の芳香族複素環基が有する炭素数は、通常2~60であり、好ましくは4~60であり、より好ましくは4~20である。
 芳香族性を有する複素環式化合物が有していてもよい置換基としては、例えば、ハロゲン原子、アミノ基、シアノ基及び1価の有機基が挙げられる。該ハロゲン原子及び1価の有機基の定義及び具体例は、Rで表されるハロゲン原子及び1価の有機基の定義及び具体例と同じである。
 Ar及びArで表される3価の芳香族複素環基の具体例としては、下記式(201)~式(301)が挙げられる。

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022
(式中、Rは前述と同じ意味を表す。Rが複数ある場合、それらは同一でも異なっていてもよい。)
 式(201)~式(301)で表される3価の芳香族複素環基の中でも、高分子化合物の合成の容易さの観点からは、式(202)、式(205)、式(206)、式(207)、式(210)、式(212)、式(220)、式(235)、式(238)、式(270)、式(271)、式(272)、式(273)、式(274)、式(275)、式(286)、式(287)、式(288)、式(291)、式(292)、式(293)、式(296)及び式(301)で表される基が好ましく、式(235)、式(271)、式(272)、式(273)、式(274)、式(286)、式(291)、式(296)及び式(301)で表される基がより好ましく、式(271)、式(272)、式(273)及び式(274)で表される基がさらに好ましく、式(273)で表される基が特に好ましい。
 式(I)で表される構成単位は、下記式(II)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-I000023
〔式(II)中、Zは前述と同様の意味を表す。〕
 式(II)で表される構成単位としては、例えば、式(501)~式(505)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-I000024
〔式中、Rは、前述と同じ意味を表わす。Rが2つある場合、それらは同一でも異なっていてもよい。〕
 上記の式(501)~式(505)で表される構成単位の中でも、本発明の高効率な光電変換素子を得る観点からは、式(501)、式(502)、式(503)、式(504)で表される構成単位が好ましく、式(501)、式(504)で表される構成単位がより好ましく、式(501)で表される構成単位が特に好ましい。
 前記電子受容性化合物は低分子化合物であっても高分子化合物であってもよい。低分子の電子受容性化合物としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体等が挙げられる。
 高分子の電子受容性化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。これらの中でも、とりわけフラーレン類及びその誘導体が好ましい。
 フラーレン類としては、C60フラーレン、C70以上のフラーレン、カーボンナノチューブが挙げられる。フラーレン類の誘導体としては、C60フラーレンの誘導体、C70以上のフラーレンの誘導体が挙げられる
 C60フラーレンの誘導体の具体的構造としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000025
 活性層が、フラーレン類及びフラーレン類の誘導体からなる群より選ばれる1種以上を含む電子受容性化合物と、電子供与性化合物とを含有する構成では、フラーレン類及びフラーレン類の誘導体の割合が、電子供与性化合物100重量部に対して、10~1000重量部であることが好ましく、50~500重量部であることがより好ましい。光電変換素子としては、前述の単層構成の活性層を備えることが好ましく、ヘテロ接合界面を多く含むという観点からは、フラーレン類及びフラーレン類の誘導体からなる群より選ばれる1種以上を含む電子受容性化合物と、電子供与性化合物とを含有する単層構成の活性層を備えることがより好ましい。
 中でも活性層は、高分子化合物(好ましくは共役高分子化合物)と、フラーレン類及びフラーレン類の誘導体からなる群より選ばれる1種以上とを含むことが好ましい。 活性層に用いられる高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体、式(I)で表される構成単位を有する高分子化合物等が挙げられ、式(I)で表される構成単位を有する高分子化合物が好ましい。
これらの高分子化合物は共役高分子化合物であることが好ましい。
 活性層の膜厚は、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 活性層は、可視光領域の透明性を確保し、かつ光電変換効率を高める観点から光吸収のピーク波長が750~850nmであることが好ましい。
 (機能層)
 光電変換素子において、電極間に機能層が配置されていてもよい。このような機能層として、電子輸送性材料を含む機能層を、活性層と陰極との間に設けることが好ましい。機能層は、透明又は半透明であることが好ましい。透明性を確保する観点から、膜厚は0.1~300nm程度が好ましく、1~100nmが好ましい。
 機能層は、塗布法により形成することが好ましく、たとえば電子輸送性材料と溶媒とを含む塗布液を、当該機能層が設けられる層の表面上に塗布することにより形成することが好ましい。本発明において、塗布液は、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液も含む。
 電子輸送性材料としては、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジウム、ITO(インジウムスズ酸化物)、FTO(フッ素ドープ酸化スズ)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)が挙げられ、これらの中でも、酸化亜鉛が高い光電変換効率を示す点から好ましい。機能層を形成する際には、粒子状の酸化亜鉛を含む塗布液を成膜して、当該機能層を形成することが好ましい。このような電子輸送材料としては、いわゆる酸化亜鉛のナノ粒子を用いることが好ましく、酸化亜鉛のナノ粒子のみからなる電子輸送性材料を用いて、機能層を形成することがより好ましい。酸化亜鉛の球相当の平均粒子系は、1nm~1000nmが好ましく、10nm~100nmが好ましい。
平均粒子系は光散乱法によって測定される。
 陰極と活性層との間に、電子輸送性材料を含む機能層を設けることによって、陰極の剥離を防ぐとともに、活性層から陰極への電子注入効率を高めることができる。機能層は、活性層に接して設けることが好ましく、さらには陰極にも接して設けられることが好ましい。このように電子輸送性材料を含む機能層を設けることによって、陰極の剥離を防ぐとともに、活性層から陰極への電子注入効率をさらに高めることができる。このような機能層を設けることによって、信頼性が高く、光電変換効率の高い光電変換素子を実現することができる。
 電子輸送性材料を含む機能層は、いわゆる電子輸送層及び電子注入層からなる群より選ばれる1種以上として機能する。このような機能層を設けることによって、陰極への電子の注入効率を高めたり、活性層からの正孔の注入を防いだり、電子の輸送能を高めたり、陰極を塗布法で形成する際に用いられる塗布液による侵食から活性層を保護したり、活性層の劣化を抑制したりすることができる。
 電子輸送性材料を含む機能層は、陰極を塗布形成する際に用いられる塗布液に対して濡れ性が高い材料によって構成されることが好ましい。具体的には電子輸送性材料を含む機能層は、陰極を塗布形成する際に用いられる塗布液に対する活性層の濡れ性よりも、当該塗布液に対する濡れ性が高い方が好ましい。このような機能層上に陰極を塗布形成することにより、陰極を形成する際に、塗布液が機能層の表面上に良好に濡れ広がり、膜厚が均一な陰極を形成することができる。
 (正孔輸送層)
 本発明の光電変換素子は、正孔輸送層を有していてもよい。正孔輸送層は陽極と活性層との間に設けられる。正孔輸送層は、透明又は半透明であることが好ましく、透明性を確保する観点から、膜厚は0.1~300nm程度が好ましく、1~100nmが好ましい。正孔輸送層に用いられる材料としては、電極の平滑性を向上させ、正孔を輸送する能力を有し、例えば、ポリビニルカルバゾール、ポリシラン、ポリエチレンジオキシチオフェン、ポリスチレンスルフォネートなどの水溶性の導電性高分子を挙げることができ、これらの高分子材料の水溶液を電極の表面に塗布することによって正孔輸送層を形成することができる。正孔輸送層を形成する材料は水溶性高分子材料であればよい。その中でも、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリ(4-スチレンスルホン酸)(PSS)からなるPEDOT/PSSは、高い光電変換効率を示す点から好ましい。
 (陰極)
 陰極は、単層の形態または複数の層が積層された形態をとりうる。陰極は例えば塗布法により形成することができる。陰極を塗布法により形成する際に用いられる塗布液は、陰極の構成材料と溶媒とを含む。陰極は導電性を示す高分子化合物を含むことが好ましく、実質的に導電性を示す高分子化合物から成ることが好ましい。陰極の構成材料としては、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体等の有機材料が挙げられる。たとえば上述の陰極を構成する薄膜の膜厚を、光が透過する程度の厚さにした透明又は半透明な電極が陰極として用いられる。
 陰極は、ポリチオフェン及びポリチオフェンの誘導体から成る群より選ばれる1種以上を含むことが好ましい。陰極は、ポリアニリン及びポリアニリンの誘導体から成る群より選ばれる1種以上を含むことが好ましい。
 ポリチオフェン及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を繰り返し単位として含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000026
 (式中、nは、1または2以上の整数を表す。)
 ポリピロール及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を繰り返し単位として含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000027
 (式中、nは、1または2以上の整数を表す。)
 ポリアニリン及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を繰り返し単位として含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000028
 (式中、nは、1または2以上の整数を表す。)
 上記陰極の構成材料のなかでも、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリ(4-スチレンスルホン酸)(PSS)からなるPEDOT/PSSは、高い光電変換効率を示す点から、陰極の構成材料として好適に用いられる。
 陰極は、上記有機材料を含む塗布液に限らずに、導電性物質のナノ粒子、導電性物質のナノワイヤ、または導電性物質のナノチューブを含む、エマルション(乳濁液)やサスペンション(懸濁液)、金属ペーストなどの分散液、溶融状態の低融点金属等を用いて塗布法により形成してもよい。導電性物質としては、金、銀、等の金属、ITO(インジウムスズ酸化物)等の酸化物(金属酸化物)、カーボンナノチューブ等が挙げられる。陰極は、導電性物質のナノ粒子またはナノファイバーのみから構成されていてもよく、特表2010-525526号に示されるように、導電性物質のナノ粒子またはナノファイバーが、導電性ポリマーなどの所定の媒体中に分散して配置された構成を有していてもよい。
 (封止基板)
 封止基板としては、例えば、ガラス基板、プラスチック基板、高分子フィルム等が挙げられる。封止基板には光透過性の高い基板が好適に用いられる。
 (反射板)
本発明に用いられる反射板において、波長400~700nmの光の平均透過率は70%以上である。波長400~650nmの光の平均透過率は80%以上であることが好ましい。ここで平均透過率とは、1nmおきに測定した波長400~700nm又は波長400~650nmの光の透過率を平均した値である。
 本発明に用いられる反射板は、活性層の光吸収のピーク波長の±150nmの領域の光の平均反射率が50%以上である。該光の平均反射率は、60%以上であることが好ましく、70%以上であることがより好ましく80%以上であることがさらに好ましい。ここで平均反射率とは、活性層の光吸収のピーク波長の±150nmの領域に対し1nmおきに測定した光の反射率を平均した値である。本発明に用いられる反射板として、たとえば誘電体多層膜からなる近赤外線反射膜を用いることができる。誘電体多層膜は、低屈折率層と高屈折率層とが交互に積層した構造を有する。高屈折率層と低屈折率層の屈折率差は0.5以上であることが好ましく、1.0以上であることがより好ましい。屈折率差が1.0以上であると、カット可能な近赤外線領域の波長幅が広くなり、より近赤外線カット性能に優れたフィルターが得られる。 
<高屈折率層> 
 高屈折率層を構成する材料の屈折率は、通常、1.6以下であり、1.2~1.6が好ましい。このような材料としては、たとえば、シリカ(SiO)、アルミナ、フッ化ランタン、フッ化マグネシウム、六フッ化アルミニウムナトリウムなどが挙げられ、シリカが好ましい。 
<低屈折率層> 
 低屈折率層を構成する材料の屈折率は、通常、1.7以上であり、1.7以上2.5以下であることが好ましい。このような材料としては、たとえば、酸化チタン(チタニア(TiO))、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛、および酸化インジウム等を含む群からなる1種以上が挙げられる。好ましくは、チタニア(TiO)、ITO(錫ドープ酸化インジウム)およびATO(アンチモンドープ酸化錫)からなる群より選ばれる1種以上である。特に、ITO(錫ドープ酸化インジウム)およびATO(アンチモンドープ酸化錫)からなる群より選ばれる1種以上を用いることができる。
 本発明に用いられる反射板は、近赤外線カット性能を付与する観点から、さらに波長850~1100nmの光の平均反射率が50%以上である。60%以上が好ましく、70%以上がより好ましく、さらに好ましくは、80%以上である。ここで平均反射率とは、1nmおきに測定した波長850~1100nmの光の反射率を平均した値である。
 反射板の形成位置は、陰極又は陽極の直上に制限されるものではなく、封止基板の内側、封止基板外側に形成してもよく、新たな基板上に形成して、その基板を張り合わせでもよい。
(反射率、透過率の測定)
 反射率、透過率を測定する装置としては、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、日本分光製、紫外可視近赤外分光光度計JASCO-V670)を用いる。JASCO-V670を用いる場合、測定可能な波長範囲が200~2500nmであるため、該波長範囲で測定を行う。
 高分子化合物を含む薄膜の吸収スペクトルの測定には、例えば、日本分光製の紫外可視近赤外分光光度計(商品名:V670)を用いる。V670を用いる場合、300nm~2500nmの波長範囲で吸収スペクトルを測定することができる。
 まず、基板(例えば、石英基板、ガラス基板)の上に、高分子化合物を含む溶液または高分子化合物を含む溶融体を塗布することにより、高分子化合物を含む薄膜を形成する。
次いで、基板の吸収スペクトル及び薄膜と基板との積層体の吸収スペクトルを測定する。
薄膜の吸収スペクトルは、積層体の吸収スペクトルから基板の吸収スペクトルを差し引いたものである。
 吸収スペクトルの縦軸及び横軸は、それぞれ吸光度及び波長を示す。最大吸光度が0.3~2になるように、薄膜の膜厚を調整することが望ましい。
 <2>光電変換素子の製造方法
 本発明の光電変換素子の製造方法を、第1の電極が陽極であり、第2の電極が陰極である光電変換素子を例として説明する。
 この光電変換素子は、支持基板上に陽極を形成し、前記陽極上に活性層を形成し、前記活性層上に、例えば塗布法によって陰極を形成し、その後、陰極上に反射板を貼り付けることにより製造できる。
 <陽極形成工程>
 陽極は、前述した陽極の材料を真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等によって前述した支持基板上に成膜することで形成される。またポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機材料を含む塗布液、金属インク、金属ペースト、溶融状態の低融点金属等を用いて、塗布法によって陽極を形成してもよい。
 <活性層形成工程>
 活性層の形成方法は特に限定されないが、製造工程の簡易化の観点からは塗布法によって形成することが好ましい。活性層は例えば前述した活性層の構成材料と溶媒とを含む塗布液を用いる塗布法により形成することができ、例えば共役高分子化合物およびフラーレン類及びフラーレン類の誘導体からなる群より選ばれる1種以上と、溶媒とを含む塗布液を用いる塗布法により形成することができる。
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、s-ブチルベゼン、t-ブチルベンゼン等の炭化水素溶媒;四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒;テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒;等が挙げられる。本発明に用いられる塗布液は、2種類以上の溶媒を含んでいてもよい。
 活性層の構成材料を含む塗布液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を挙げることができ、これらのなかでもスピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 <機能層形成工程>
 前述したように、活性層と陰極との間には、電子輸送性材料を含む機能層を形成することが好ましい。すなわち活性層の形成後、かつ陰極の形成前に、上述した電子輸送性材料を含む塗布液を活性層上に塗布成膜することによって機能層を形成することが好ましい。
 電子輸送性材料を含む機能層が活性層に接して設けられる場合には、前記塗布液を活性層の表面上に塗布することによって機能層が形成される。機能層を形成する際には、塗布液が塗布される層(活性層など)に与える損傷が少ない塗布液を用いることが好ましく、具体的には塗布液が塗布される層(活性層など)を溶解し難い塗布液を用いることが好ましい。つまり、陰極を成膜する際に用いられる塗布液を活性層上に塗布した場合に、前記塗布液が活性層に与える損傷よりも、活性層に与える損傷が小さい塗布液を用いて機能層を形成することが好ましくい。具体的には陰極を成膜する際に用いられる塗布液よりも、活性層を溶解し難い塗布液を用いて機能層を形成することが好ましい。
 機能層を塗布形成する際に用いる塗布液は、溶媒と、前述した電子輸送性材料とを含む。前記塗布液の溶媒としては、水、アルコール等があげられ、アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノール等があげられる。また本発明に用いられる塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。
 <陰極形成工程>
 陰極は、活性層または機能層などの表面上に例えば塗布法により形成される。具体的には溶媒と、前述した陰極の構成材料とを含む塗布液を発光層または機能層などの表面上に塗布することによって陰極が形成される。陰極を形成する際に用いる塗布液の溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、s-ブチルベゼン、t-ブチルベンゼン等の炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒、水、アルコール等が挙げられる。アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノール等があげられる。また本発明に用いられる塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。
 活性層や機能層に損傷を与えるような塗布液を用いて陰極を形成する場合には、たとえば陰極を二層構成とし、一層目の薄膜を、発光層や機能層に損傷を与えないような塗布液を用いて形成し、つぎに、二層目の薄膜を、発光層や機能層に損傷を与えうる塗布液を用いて形成してもよい。このように二層構成の陰極とすることにより、たとえ発光層や機能層に損傷を与えうる塗布液を用いて二層目の薄膜を形成したとしても、一層目の薄膜が保護層として機能するため、発光層や機能層に損傷を与えることを抑制することができる。たとえば、酸化亜鉛からなる機能層は、酸性の溶液によって損傷を受けやすいため、酸化亜鉛からなる機能層上に陰極を形成する場合には、中性の塗布液を用いて一層目の薄膜を形成し、つづいて酸性の溶液を用いて二層目の薄膜を形成することによって二層構成の陰極を形成してもよい。
 本発明の光電変換素子は、透明又は半透明の電極に太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。
有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 本発明の光電変換素子は、電極間に電圧を印加した状態で、透明又は半透明の電極に光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 陰極および陽極を、透明又は半透明な電極によって構成した場合、光透過性を示す光電変換素子を構成することができる。このような光電変換素子は、不透光性の光電変換素子、または光透過性を示す光電変換素子と重ね合わせることによって、容易に並列型または直列型の多接合素子を構成することができるという利点を有する。
 <反射板の製造工程>
 反射板は、たとえば前述した誘電体多層膜からなる近赤外線反射膜を真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等によってガラス基板などに成膜することで形成される。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
合成例1
(高分子化合物Aの合成)
 本発明の式(I)で表される構成単位を有する高分子化合物としては、国際公開番号WO2013/051676A1の実施例1に記載された方法で、下記の構成単位からなる高分子化合物Aを合成し使用した。
Figure JPOXMLDOC01-appb-I000029
 (インク1の作成)
 高分子化合物A及びフラーレンC60PCBM(フェニルC61-酪酸メチルエステル)(phenyl C61-butyric acid methyl ester、フロンティアカーボン社製)をテトラリンに溶解し、インク1を製造した。高分子化合物Aの重量に対するC60PCBMの重量の比は、2であった。インク1中、高分子化合物Aの重量とC60PCBMの重量との合計は、インク1の重量に対して、1.5重量%であった。
 実施例1
(有機薄膜太陽電池の作製、評価)
 太陽電池の陽極として機能するITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであり、その厚みは150nmであった。このガラス基板をオゾンUV処理し、ITO薄膜の表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚35nmの正孔輸送層を形成した。この正孔輸送層上に、前記インク1をスピンコートにより塗布し、活性層(膜厚約120nm)を形成した。
 同時にガラス基板上にも活性層を形成し、吸収スペクトルを分光光度計(日本分光製、紫外可視近赤外分光光度計JASCO-V670)を使用して測定した。吸収波長ピークは、810nmであった。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD-711Z、テイカ社製)1重量部と、ナトリウムアセチルアセトナトを1重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に45nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink-N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層からなる陰極を得た。その後、UV硬化性封止剤を周辺に塗布し、ガラス基板を張り合わせた後、UV光を照射することで封止した。
次に高透明性粘着フィルム(3M製CEF0806)を用いて、反射板としてIRカットフィルター(セラテックジャパン製 IRC2)を封止基板の外側に貼り付けて、有機薄膜太陽電池を得た。得られた有機薄膜太陽電池を分光光度計(日本分光製、紫外可視近赤外分光光度計JASCO-V670)を使用して、透過のスペクトルを測定した。波長400~700nmの平均透過率は45%であった。
用いたIRカットフィルターを分光光度計(日本分光製、紫外可視近赤外分光光度計JASCO-V670)を使用して、反射、透過のスペクトルを測定した透過率の結果を図1に示す。反射率の結果を図2に示す。波長400~700nmの平均透過率は72%であり、波長660~960nmの平均反射率は100%であった。波長850~1100nmの光の平均反射率は98%であった。波長400~650nmの平均透過率は86%であった。
  得られた有機薄膜太陽電池の形状は、10mm×10mmの正四角形であった。ソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて、得られた有機薄膜太陽電池に一定の光を照射し、発生する電流と電圧を測定することによって光電変換効率を測定した。光電変換効率は4.58%であった。
比較例1
 封止基板の外側にIRカットフィルターを貼り付けない以外は、実施例1と同様の有機薄膜太陽電池を作製した。
ソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて、得られた有機薄膜太陽電池に一定の光を照射し、発生する電流と電圧を測定することによって光電変換効率を測定した。光電変換効率は3.89%であった。
 本発明によれば高効率な光電変換素子が提供される。

Claims (9)

  1.  支持基板、電極、活性層、電極及び反射板がこの順で積層され、波長400~700nmの光の平均透過率が10%以上である光電変換素子であり、前記反射板は波長400~700nmの光の平均透過率が70%以上であり、かつ活性層の光吸収のピーク波長の±150nmの領域の光の平均反射率が50%以上である光電変換素子。
  2.  前記反射板が、さらに波長850~1100nmの光の平均反射率が50%以上である請求項1記載の光電変換素子。
  3.  前記活性層が、高分子化合物を含む請求項1又は2記載の光電変換素子。
  4.  前記高分子化合物を含む活性層の光吸収のピーク波長が、750~850nmである請求項3記載の光電変換素子。
  5. 前記高分子化合物が、式(I)で表される構成単位を有する高分子化合物である請求項3又は4記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000001
    〔式(I)中、Zは下記式(Z-1)~式(Z-7)のうちのいずれかで表される基を表す。Ar及びArは、同一でも異なっていてもよく、3価の芳香族複素環基を表す。

    Figure JPOXMLDOC01-appb-I000002
    〔式(Z-1)~式(Z-7)中、Rは、水素原子、ハロゲン原子、アミノ基、シアノ基又は1価の有機基を表す。Rが2つある場合、それらは同一でも異なっていてもよい。〕
  6.  前記式(I)で表される構成単位が、下記式(II)で表される構成単位である請求項5記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000003
    〔式(II)中、Zは前述と同様の意味を表す。〕
  7. 前記Zが、前記式(Z-4)~式(Z-7)のうちのいずれかで表される基である、請求項5又は6記載の光電変換素子。
  8.  式(I)で表される構成単位が、下記式(III)で表される構成単位である請求項5~7のいずれか記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000004
     〔式(III)中、2つあるRは、同一でも異なっていてもよく、前述と同様の意味を表す。〕
  9. 請求項1~8のいずれか記載の光電変換素子を含む太陽電池モジュール。
PCT/JP2016/058061 2015-03-18 2016-03-15 反射板を有する光電変換素子 WO2016148119A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016001262.4T DE112016001262T5 (de) 2015-03-18 2016-03-15 Vorrichtung zur photoelektrischen Umwandlung, die eine Reflexionsplatte aufweist
JP2017506553A JP6816714B2 (ja) 2015-03-18 2016-03-15 反射板を有する光電変換素子
US15/557,856 US20180053868A1 (en) 2015-03-18 2016-03-15 Photoelectric conversion device having reflection plate
CN201680015588.5A CN107431134A (zh) 2015-03-18 2016-03-15 具有反射板的光电转换元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015054350 2015-03-18
JP2015-054350 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016148119A1 true WO2016148119A1 (ja) 2016-09-22

Family

ID=56919011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058061 WO2016148119A1 (ja) 2015-03-18 2016-03-15 反射板を有する光電変換素子

Country Status (5)

Country Link
US (1) US20180053868A1 (ja)
JP (1) JP6816714B2 (ja)
CN (1) CN107431134A (ja)
DE (1) DE112016001262T5 (ja)
WO (1) WO2016148119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627565A1 (en) * 2018-09-19 2020-03-25 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
CN111247654A (zh) * 2017-10-23 2020-06-05 住友化学株式会社 光电转换元件及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541153U (ja) * 1991-11-06 1993-06-01 三洋電機株式会社 光起電力装置
JP2010245533A (ja) * 2009-04-02 2010-10-28 Samsung Corning Precision Glass Co Ltd 太陽電池用多層薄膜構造
WO2012033205A1 (ja) * 2010-09-10 2012-03-15 三菱電機株式会社 太陽電池および太陽電池モジュール
WO2013051676A1 (ja) * 2011-10-07 2013-04-11 住友化学株式会社 高分子化合物及び電子素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195373A (ja) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd 視感度補正近赤外カットフィルタ、並びに、それを用いた光学ローパスフィルタ及び視感度補正素子
JP2007251114A (ja) * 2006-03-17 2007-09-27 Keihin Komaku Kogyo Kk 光学多層膜を有した高性能太陽光電池用基板及びその製造方法
US20100263721A1 (en) * 2009-04-20 2010-10-21 Electronics And Telecommunications Research Institute Transparent solar cell
CN102082236A (zh) * 2010-12-06 2011-06-01 电子科技大学 一种半透明有机薄膜太阳能电池及其制备方法
MX339751B (es) * 2011-01-26 2016-06-08 Massachusetts Inst Technology Celdas fotovoltaicas transparentes.
CN102650709A (zh) * 2011-02-24 2012-08-29 上海空间电源研究所 空间用硅太阳电池的带通滤波器
WO2012147564A1 (ja) * 2011-04-25 2012-11-01 住友化学株式会社 高分子化合物及びそれを用いた電子素子
US20140360576A1 (en) * 2012-01-25 2014-12-11 Lucintech, Inc. Intrinsically Semitransparent Solar Cell And Method Of Controlling Transmitted Color Spectrum
US10431706B2 (en) * 2013-02-09 2019-10-01 The Regents Of The University Of Michigan Photoactive device
JP2014191346A (ja) * 2013-03-28 2014-10-06 Konica Minolta Inc Irカットフィルターおよびそれを備えた撮像装置
JP2014236212A (ja) * 2013-06-05 2014-12-15 三菱化学株式会社 太陽光発電フィルムの設置方法、太陽光発電フィルム一体型部材、及び太陽光発電フィルム
CN203659887U (zh) * 2013-12-11 2014-06-18 上海空间电源研究所 一种用于空间三结砷化镓太阳电池的红外截止滤光片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541153U (ja) * 1991-11-06 1993-06-01 三洋電機株式会社 光起電力装置
JP2010245533A (ja) * 2009-04-02 2010-10-28 Samsung Corning Precision Glass Co Ltd 太陽電池用多層薄膜構造
WO2012033205A1 (ja) * 2010-09-10 2012-03-15 三菱電機株式会社 太陽電池および太陽電池モジュール
WO2013051676A1 (ja) * 2011-10-07 2013-04-11 住友化学株式会社 高分子化合物及び電子素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247654A (zh) * 2017-10-23 2020-06-05 住友化学株式会社 光电转换元件及其制造方法
EP3627565A1 (en) * 2018-09-19 2020-03-25 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11322627B2 (en) 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Also Published As

Publication number Publication date
JP6816714B2 (ja) 2021-01-20
JPWO2016148119A1 (ja) 2017-12-28
CN107431134A (zh) 2017-12-01
DE112016001262T5 (de) 2017-12-28
US20180053868A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP5999095B2 (ja) 高分子化合物及び電子素子
Henriksson et al. Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications
WO2012118169A1 (ja) 有機光電変換素子の製造方法
JP5742494B2 (ja) 高分子化合物及びそれを用いた電子素子
JP6816714B2 (ja) 反射板を有する光電変換素子
Aryal et al. Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells
WO2012111784A1 (ja) 有機光電変換素子の製造方法
WO2013183549A1 (ja) 組成物及びそれを用いた電子素子
Sharma et al. Photovoltaic properties of bulk heterojunction devices based on CuI-PVA as electron donor and PCBM and modified PCBM as electron acceptor
JP5639783B2 (ja) 光電変換素子
JP6276602B2 (ja) 有機光電変換素子
JP6983759B2 (ja) 有機光電変換素子、並びにそれを備える太陽電池モジュール及びセンサー
WO2012147564A1 (ja) 高分子化合物及びそれを用いた電子素子
JP6889108B2 (ja) 有機光電変換素子、その製造方法並びにそれを備える太陽電池モジュール及びセンサー
JP6329427B2 (ja) 光電変換素子
JP5887814B2 (ja) 高分子化合物及びそれを用いた電子素子
JP5908305B2 (ja) 光電変換素子
WO2011052726A1 (ja) 組成物及び電子素子
WO2016009822A1 (ja) 光電変換素子
WO2012111782A1 (ja) 有機光電変換素子の製造方法
KR101580385B1 (ko) 신규 억셉터를 함유한 중합체 제조방법 및 이를 이용한 유기 광전자 소자
JP2016197666A (ja) 有機光電変換素子
JP2015095577A (ja) 色素を含むバッファー層及びこれを用いた光電変換素子
JP2014197688A (ja) 光電変換素子
JP2015095576A (ja) ホスフィンオキサイド化合物を含むバッファー層及びこれを用いた光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506553

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15557856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001262

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764949

Country of ref document: EP

Kind code of ref document: A1