WO2016145757A1 - 一种oled基板、其制造方法、面板及显示装置 - Google Patents

一种oled基板、其制造方法、面板及显示装置 Download PDF

Info

Publication number
WO2016145757A1
WO2016145757A1 PCT/CN2015/084048 CN2015084048W WO2016145757A1 WO 2016145757 A1 WO2016145757 A1 WO 2016145757A1 CN 2015084048 W CN2015084048 W CN 2015084048W WO 2016145757 A1 WO2016145757 A1 WO 2016145757A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
layer
oled
encapsulation layer
substrate
Prior art date
Application number
PCT/CN2015/084048
Other languages
English (en)
French (fr)
Inventor
焦志强
施槐庭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/121,843 priority Critical patent/US10103358B2/en
Publication of WO2016145757A1 publication Critical patent/WO2016145757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Definitions

  • the present invention relates to the field of OLEDs, and in particular, to an OLED substrate, a method of manufacturing the same, a panel, and a display device.
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the OLED panel is an important component of the OLED display device, and the service life of the OLED panel determines the service life of the OLED display device.
  • the OLED panel includes: a first substrate, an OLED device, an encapsulation layer, and a second substrate, wherein the first substrate is used to carry the OLED device and the encapsulation layer, the OLED device is disposed on the first substrate, and the OLED device is used for emitting light,
  • the encapsulation layer is disposed on the first substrate and completely covers the OLED device, the encapsulation layer is for preventing water from entering the OLED device, the second substrate is fixed on the encapsulation layer, and the second substrate is for protecting the encapsulation layer and the OLED device.
  • the first substrate, the OLED device and the encapsulation layer constitute an OLED substrate.
  • the OLED panel has a relatively short service life. It is found that the heat generated by the OLED device during long-time lighting operation is the main reason for the rapid decay of the lifetime of the OLED panel.
  • the application fields of OLED devices are becoming wider and wider, and the application environment requirements are becoming more and more demanding, such as high-brightness display, display, and large-size display.
  • an embodiment of the present invention provides an OLED substrate, a manufacturing method thereof, a panel, and a display device.
  • the technical solutions adopted are as follows:
  • an OLED substrate including an OLED device and an encapsulation layer on a first substrate, the encapsulation layer encapsulating the OLED device, the OLED substrate further comprising a heat dissipation layer disposed on the OLED device Above.
  • above the OLED device means on the side of the OLED device opposite to the first substrate.
  • the heat dissipation layer is disposed between the OLED device and the encapsulation layer.
  • the heat dissipation layer is in contact with the OLED device.
  • the heat dissipation layer in contact with the OLED device is an insulator heat dissipation material or a semiconductor heat dissipation material.
  • the heat dissipation layer is not in contact with the OLED device.
  • the heat dissipation layer that is not in contact with the OLED device is an insulator heat dissipation material, a semiconductor heat dissipation material, or a metal material.
  • the encapsulation layer is a plurality of layers, and the heat dissipation layer is disposed between any two adjacent layers of the multi-layer encapsulation layer.
  • the heat dissipation layer disposed between any two adjacent layers of the multi-layer encapsulation layer is an insulator heat dissipation material, a semiconductor heat dissipation material or a metal material.
  • the heat dissipation layer is disposed outside the encapsulation layer.
  • the heat dissipation layer disposed outside the package layer is an insulator heat dissipation material, a semiconductor heat dissipation material, or a metal material.
  • the insulator heat dissipating material is one of aluminum nitride, boron nitride, polycrystalline boron nitride or aluminum oxide.
  • the semiconductor heat dissipating material is one of graphene or carbon nanotubes.
  • the metal material is one of aluminum, magnesium or copper.
  • the heat dissipation layer has a thickness of 100 um or less.
  • the heat dissipation layer has a thickness of 1 um to 5 um.
  • the encapsulation layer is a thin film encapsulation layer.
  • a method of fabricating an OLED substrate comprising the steps of
  • the OLED substrate includes a heat dissipation layer and a package a layer in which a heat dissipation layer is disposed over the OLED device.
  • the heat dissipation layer is disposed between the OLED device and the encapsulation layer, and the OLED substrate preparation is completed on the OLED device, specifically,
  • the encapsulation layer is prepared on the heat dissipation layer.
  • the encapsulation layer is a multi-layer encapsulation layer, and the heat dissipation layer is disposed between two adjacent encapsulation layers, and the OLED substrate preparation is completed on the OLED device, specifically,
  • An encapsulation layer is further prepared on the heat dissipation layer.
  • the heat dissipation layer is disposed outside the package layer, and the OLED substrate preparation is completed on the OLED device, specifically,
  • the heat dissipation layer is prepared on the encapsulation layer.
  • an OLED panel comprising the OLED substrate, and a second substrate mounted on the OLED substrate.
  • a display device comprising the OLED substrate.
  • the invention provides an OLED substrate, a manufacturing method thereof, a panel and a display device.
  • the heat generated by the OLED device during lighting is quickly dissipated, thereby improving the life of the OLED device.
  • the service life of the OLED panel is improved, thereby improving the service life of the display device, wherein the manufacturing method also has the advantages that the process is simple and easy to implement.
  • FIG. 1 is a structural diagram of an OLED substrate according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of another OLED substrate according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of another OLED substrate according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for manufacturing an OLED substrate according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a manufacturing process of an OLED substrate according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for manufacturing an OLED substrate according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a manufacturing process of an OLED substrate according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for manufacturing another OLED substrate according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a manufacturing process of another OLED substrate according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for manufacturing another OLED substrate according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a manufacturing process of another OLED substrate according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of an OLED panel according to an embodiment of the present invention.
  • the present embodiment provides an OLED substrate A including an OLED device 2 and an encapsulation layer 3 on a first substrate 1 , the encapsulation layer 3 encapsulating the OLED device 2 , the OLED substrate A A heat dissipation layer 4 is also provided, which is disposed above the OLED device 2 for dissipating heat emitted by the OLED device 2.
  • the OLED substrate A of the embodiment adds a heat dissipation layer 4, and the heat generated by the OLED device 2 during lighting is quickly dissipated by the good thermal conductivity of the heat dissipation layer 4, thereby improving the life of the OLED device 2.
  • the heat dissipation layer 4 is disposed between the OLED device 2 and the encapsulation layer 3 .
  • This embodiment can effectively improve the heat dissipation condition of the OLED substrate A.
  • the heat dissipation layer 4 is not in contact with the OLED device 2 .
  • the heat dissipation layer 4 is in contact with the OLED device 2. This contact structure facilitates better heat dissipation.
  • the heat dissipation layer 4 is a layer, and the package layer 3 is two layers, that is, the first package layer 31 and the second package layer 32.
  • the heat dissipation layer 4 is disposed on the OLED device 2 and the first package layer 31.
  • the heat dissipation layer 4 completely covers the OLED device 2, and the heat dissipation layer 4, the first package layer 31 and the second package layer 32 are stacked, and the heat dissipation layer 4 is in contact with the first package layer 31.
  • the contact heat dissipation structure is formed by the heat dissipation layer 4 and the package layer 3, so that the OLED device 2 can be better dissipated.
  • the heat dissipation layer 4 is an insulator heat dissipation material, a semiconductor heat dissipation material, or a metal material.
  • the heat dissipation layer 4 may be formed of the above various materials.
  • the heat dissipation layer 4 is made of an insulator heat dissipation material or a semiconductor heat dissipation material. This embodiment can effectively improve the heat dissipation condition of the OLED substrate A.
  • the insulator heat dissipating material includes aluminum nitride AlNx, boron nitride BN, polycrystalline boron nitride PBN or aluminum oxide Al 2 O 3 , etc.
  • aluminum nitride AlNx is preferred. Since the aluminum nitride AlNx has good thermal conductivity, the heat dissipation layer 4 made of aluminum nitride AlNx can significantly improve the heat dissipation of the OLED substrate A, thereby greatly extending the service life of the OLED panel.
  • the semiconductor heat dissipating material includes graphene, carbon nanotubes, and the like.
  • the metal material has good thermal conductivity, including aluminum Al, magnesium Mg, copper Cu, and the like.
  • the heat dissipation layer 4 and the first encapsulation layer 31 can also be in contact.
  • the heat dissipation layer 4 is an insulator heat dissipation material or a semiconductor heat dissipation material or a metal heat dissipation material.
  • the heat dissipation condition of the OLED substrate A can be effectively improved.
  • the insulator heat dissipating material includes aluminum nitride AlNx, boron nitride BN, polycrystalline boron nitride PBN or aluminum oxide Al 2 O 3 , etc. In the present embodiment, aluminum nitride AlNx is preferred.
  • the heat dissipation layer 4 made of aluminum nitride AlNx can significantly improve the heat dissipation of the OLED substrate A, thereby greatly extending the service life of the OLED panel.
  • the heat dissipation layer 4 can also be a plurality of layers of two layers, three layers, and the like, wherein the plurality of heat dissipation layers 4 are stacked, and the plurality of heat dissipation layers 4 are made of different materials or materials. Specific implementation When the heat dissipation requirement is selected, the number of layers of the heat dissipation layer 4 and its material are selected.
  • the encapsulation layer may be an encapsulation layer of a thin film or other forms of encapsulation layers.
  • the encapsulation layer 3 may also be a layer, and the encapsulation layer 3 may also be a plurality of layers of three layers, four layers, etc., and the multi-layer encapsulation layer 3 may be stacked, and the multi-layer encapsulation layer 3 may be the same material or Different materials. In the specific implementation, the number of layers of the encapsulation layer 3 and its material are selected according to the insulation and waterproof requirements.
  • the first encapsulation layer 31 and the second encapsulation layer 32 are made of different materials.
  • the material of the first encapsulation layer 31 is silicon nitride SiNx
  • the material of the second encapsulation layer 32 is silicon oxide SiOx.
  • the OLED device 2 can effectively block water.
  • the material of the first encapsulation layer 31 may also be silicon oxide SiOx, and the material of the second encapsulation layer 32 may also be silicon nitride SiNx.
  • the material of the first encapsulation layer 31 and the second encapsulation layer 32 is silicon oxide SiOx, or the materials of the first encapsulation layer 31 and the second encapsulation layer 32 are silicon nitride SiNx.
  • the first encapsulation layer 31 and the second encapsulation layer 32 may also be other materials as long as the insulation water blocking performance can be satisfied.
  • the OLED device 2 is a bottom emitting device.
  • the OLED device 2 can also be a top emitting device.
  • the encapsulation layer 3 is a plurality of layers, and the heat dissipation layer 4 is disposed between any two adjacent layers of the multi-layer encapsulation layer 3. This embodiment can effectively improve the heat dissipation condition of the OLED substrate A.
  • the heat dissipation layer 4 is a layer
  • the package layer 3 is two layers, that is, the first package layer 31 and the second package layer 32.
  • the first package layer 31 completely covers the OLED device 2, and the heat dissipation layer 4
  • the first encapsulation layer 31, the heat dissipation layer 4, and the second encapsulation layer 32 are disposed in a stacked manner between the first encapsulation layer 31 and the second encapsulation layer 32.
  • the heat dissipation layer 4 completely covers the first encapsulation layer 31, and the edge of the heat dissipation layer 4 is spaced from the edge of the first encapsulation layer 31 by 0 um to 5000 um, and for the narrow bezel panel, the range is preferably 50 um to 500 um.
  • the heat dissipation layer 4 is an insulator heat dissipation material, a semiconductor heat dissipation material, or a metal material. This embodiment can effectively improve the heat dissipation condition of the OLED substrate A.
  • the heat dissipation layer 4 can also be a plurality of layers of two layers, three layers, and the like.
  • the plurality of heat dissipation layers 4 are stacked, and the plurality of heat dissipation layers 4 are made of different materials or materials.
  • the number of layers of the heat dissipation layer 4 and the material thereof are selected according to the heat dissipation requirement.
  • the encapsulation layer may be an encapsulation layer of a thin film or other forms of encapsulation layers.
  • the encapsulation layer 3 can also be a plurality of layers of three layers, four layers, and the like, and the multi-layer encapsulation layer 3 is stacked, and the material of the multi-layer encapsulation layer 3 can be the same or different materials.
  • the heat dissipation performance of the film heat dissipation layer 4 determines the quantity and material.
  • the multi-layer encapsulation layer 3 includes first, second, third, ..., N-th package layers, and the heat dissipation layer 4 is disposed between the first encapsulation layer 31 and the second encapsulation layer 32, The heat dissipation layer 4 is disposed between the second package layer 32 and the third package layer, ..., the heat dissipation layer 4 is disposed between the N-1th package layer and the Nth package layer, that is, the heat dissipation layer 4 can be disposed Between any two adjacent layers of the multilayer encapsulation layer 3.
  • the first encapsulation layer 31 and the second encapsulation layer 32 are made of different materials.
  • the material of the first encapsulation layer 31 is silicon nitride SiNx
  • the material of the second encapsulation layer 32 is silicon oxide SiOx.
  • the material of the first encapsulation layer 31 may also be silicon oxide SiOx, and the material of the second encapsulation layer 32 may also be silicon nitride SiNx.
  • the material of the first encapsulation layer 31 and the second encapsulation layer 32 is silicon oxide SiOx, or the materials of the first encapsulation layer 31 and the second encapsulation layer 32 are silicon nitride SiNx.
  • the first encapsulation layer 31 and the second encapsulation layer 32 may also be other materials as long as the insulation water blocking performance can be satisfied.
  • the OLED device 2 is a bottom emitting device.
  • the OLED device 2 can also be a top emitting device.
  • the heat dissipation layer 4 is laminated outside the package layer 3. This embodiment can effectively improve the heat dissipation condition of the OLED substrate A.
  • the heat dissipation layer 4 is a layer
  • the package layer 3 is two layers, that is, the first package layer 31 and the second package layer 32.
  • the first package layer 31 completely covers the OLED device 2, and the second package
  • the layer 32 is laminated on the first encapsulation layer 31, and the heat dissipation layer 4 is superposed and overlaid on the second encapsulation layer 32.
  • the distance between the edge of the heat dissipation layer 4 and the edge of the second encapsulation layer 32 is 0 um to 5000 um, and for the narrow bezel panel, the range is preferably 50 um to 500 um.
  • the heat dissipation layer 4 is an insulator heat dissipation material, a semiconductor heat dissipation material, or a metal material. This embodiment can effectively improve the heat dissipation condition of the OLED substrate A.
  • the heat dissipation layer 4 can also be a plurality of layers of two layers, three layers, and the like.
  • the plurality of heat dissipation layers 4 are stacked, and the plurality of heat dissipation layers 4 are made of different materials or materials.
  • the number of layers of the heat dissipation layer 4 and the material thereof are selected according to the heat dissipation requirement.
  • the encapsulation layer may be an encapsulation layer of a thin film or other forms of encapsulation layers.
  • the encapsulation layer 3 can also be a plurality of layers of three layers, four layers, and the like, and the multi-layer encapsulation layer 3 is stacked, and the material of the multi-layer encapsulation layer 3 can be the same or different materials.
  • the heat dissipation performance of the film heat dissipation layer 4 determines the quantity and material.
  • the multi-layer encapsulation layer 3 includes first, second, third, ... Nth encapsulation layers, and the first encapsulation layer 31 to the Nth encapsulation layer are stacked from the inside to the outside, and the heat dissipation layer 4 is disposed. Outside the Nth encapsulation layer.
  • the first encapsulation layer 31 and the second encapsulation layer 32 are made of different materials.
  • the material of the first encapsulation layer 31 is silicon nitride SiNx
  • the material of the second encapsulation layer 32 is silicon oxide SiOx.
  • the material of the first encapsulation layer 31 may also be silicon oxide SiOx, and the material of the second encapsulation layer 32 may also be silicon nitride SiNx.
  • the material of the first encapsulation layer 31 and the second encapsulation layer 32 is silicon oxide SiOx, or the materials of the first encapsulation layer 31 and the second encapsulation layer 32 are silicon nitride SiNx.
  • the first encapsulation layer 31 and the second encapsulation layer 32 may also be other materials as long as they can satisfy the insulation water blocking performance.
  • the OLED device 2 is a bottom emitting device.
  • the OLED device 2 can also be a top emitting device.
  • the heat dissipation layer 4 has a thickness of 100 ⁇ m or less. This embodiment can effectively improve the heat dissipation status of the OLED substrate A.
  • the heat dissipation layer 4 has a thickness of 1 um to 5 um. In this embodiment, the heat dissipation condition of the OLED substrate A is effectively improved in the case of the most material saving.
  • the thickness of the heat dissipation layer 4 can also be applied to the embodiments shown in FIG. 2 to FIG. 3.
  • the first substrate 1 may be a glass substrate, and may also be a plastic substrate or other substrate.
  • the first substrate 1 may also be a TFT substrate.
  • the first substrate 1 in the embodiment shown in FIG. 2 to FIG. 3 can be a glass substrate, and can also be a plastic substrate or other substrate.
  • the first substrate 1 may also be a TFT substrate, wherein the TFT is used to control the opening or closing of the OLED device 2.
  • the OLED device 2 can be monochromatic, multi-color or white. Color light emitting device.
  • the OLED device 2 in the embodiment shown in Figures 2 to 3 can be a monochromatic, multi-color or white light-emitting device.
  • the present invention provides a manufacturing method applied to the OLED substrate A, and the manufacturing method includes the following steps.
  • Step S100 providing a first substrate 1 (see FIG. 5);
  • Step S200 preparing an OLED device 2 on the first substrate 1 (see FIG. 5) (see FIG. 5);
  • Step S300 completing preparation of an OLED substrate A (see FIG. 5) on the OLED device 2 (see FIG. 5), the OLED substrate A (see FIG. 5) including a heat dissipation layer 4 (see FIG. 5) and an encapsulation layer 3 (see FIG. 5) See Figure 5) where the heat sink layer is placed over the OLED device.
  • the step S200 of preparing the OLED device 2 on the first substrate 1 is the same as the corresponding conventional process.
  • the preparation of the OLED device 2 is completed by an evaporation process on the basis of preparing the first substrate 1.
  • the structure of the OLED substrate A in the embodiment is the same as that of the OLED substrate A in the first embodiment, and the embodiment of the OLED panel substrate A is not described in detail in this embodiment.
  • the manufacturing method of the present invention since the manufacturing method of the present invention includes all the contents of the OLED substrate A in the first embodiment, the manufacturing method of the present invention also includes all the effects of the OLED substrate A, and the present invention increases the heat dissipation layer 4 by The heat generated by the OLED device 2 is rapidly dissipated by the good thermal conductivity of the heat dissipation layer 4, and the life of the OLED device 2 is improved, thereby improving the service life of the OLED substrate A, wherein the manufacturing method has a simple process and is easy to use.
  • FIG. 6 As shown in FIG. 6, referring to FIG. 7, the embodiment is illustrated by using FIG. 6 as an example.
  • the heat dissipation layer 4 (see FIG. 7) is disposed on the OLED device 2 (see FIG. 7) and the package layer. 3 (see FIG. 7), the OLED substrate A preparation (see FIG. 7) is completed on the OLED device 2 (see FIG. 7) corresponding to the step S300 described in FIG. 4, specifically including
  • Step S301 preparing the heat dissipation layer 4 on the OLED device 2 (see FIG. 7) (see FIG. 7);
  • step S302 the encapsulation layer 3 is prepared on the heat dissipation layer 4 (see FIG. 7) (see FIG. 7).
  • This embodiment has a simple process and is easy to process.
  • the step S301 is performed on the OLED device 2, specifically on the cathode of the OLED device 2, by a chemical vapor deposition CVD process, a film forming ALD process in a vacuum or sputtering.
  • the heat dissipation layer 4 is prepared by the SPUTTER process. More specifically, the heat dissipation layer 4 is prepared by a chemical vapor deposition CVD process when the nitride of aluminum is selected, and the thickness of the heat dissipation layer 4 is preferably 2 ⁇ m.
  • the heat dissipation layer 4 is made of aluminum oxide, it is prepared by a film forming ALD process in a vacuum, and the thickness of the heat dissipation layer 4 is preferably 2 micrometers.
  • the heat dissipation layer 4 may be in contact with the OLED device 2 or may be non-contact.
  • the step S302 is on the heat dissipation layer 4, and the encapsulation layer 3 is prepared by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum or a sputtering SPUTTER process.
  • the first encapsulation layer 31, that is, the silicon nitride layer SiNx is prepared by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum process, or a sputtering SPUTTER process, and the thickness thereof is preferably 2 microns
  • a second encapsulation layer 32 i.e., a silicon nitride layer SiOx, is prepared on the first encapsulation layer 31 by a chemical vapor deposition CVD process, a vacuum film formation ALD process or a sputtering SPUTTER process, preferably having a thickness of 1.5 microns.
  • the face pack is specifically performed on the second encapsulation layer 32.
  • FIG. 8 As shown in FIG. 8, referring to FIG. 9, the embodiment is illustrated by using FIG. 8 as an example.
  • the heat dissipation layer 4 (see FIG. 9) is disposed in the middle of the encapsulation layer 3 (see FIG. 9), and FIG.
  • the OLED substrate A preparation (see FIG. 9) is completed on the OLED device 2 (see FIG. 9) corresponding to the step S300, specifically including,
  • Step S303 preparing the encapsulation layer 3 on the OLED device 2 (see FIG. 9) (see FIG. 9);
  • Step S304 preparing the heat dissipation layer 4 on the encapsulation layer 3 (see FIG. 9) (see FIG. 9);
  • step S305 the encapsulation layer 3 is further prepared on the heat dissipation layer 4 (see FIG. 9) (see FIG. 9).
  • This embodiment has a simple process and is easy to process.
  • the step S303 is performed on the OLED device 2, specifically on the cathode of the OLED device 2, by a chemical vapor deposition CVD process, a film forming ALD process in a vacuum or sputtering.
  • the SPUTTER process produces a first encapsulation layer 31, a silicon nitride SiNx, preferably having a thickness of 1.5 microns.
  • the step S304 is to prepare the heat dissipation layer 4 on the first encapsulation layer 31 by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum or a sputtering SPUTTER process. More specifically, the heat dissipation layer 4 is prepared by a chemical vapor deposition CVD process when the nitride of aluminum is selected, and the thickness of the heat dissipation layer 4 is preferably 2 ⁇ m. When the heat dissipation layer 4 is made of aluminum oxide, film formation in vacuum is performed. Process preparation, the thickness of the heat dissipation layer 4 is preferably 2 microns.
  • the step S305 is that the second encapsulation layer 32 is prepared on the heat dissipation layer 4 by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum process, or a sputtering SPUTTER process. More specifically, in the present embodiment, on the heat dissipation layer 4, the second encapsulation layer 32, that is, the nitride layer SiOx of silicon, is prepared by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum process, or a sputtering SPUTTER process, and the thickness thereof is preferably 1.5 microns. Accordingly, the face pack is specifically performed on the second encapsulation layer 32.
  • FIG. 10 As shown in FIG. 10, reference may also be made to FIG. 11.
  • the embodiment is illustrated by using FIG. 10 as an example.
  • the heat dissipation layer 4 (see FIG. 11) is disposed outside the package layer 3 (see FIG. 11), and FIG.
  • the preparation of the OLED substrate A (see FIG. 11) is completed on the OLED device 2 (see FIG. 11) corresponding to the step S300, which specifically includes
  • Step S306 preparing the encapsulation layer 3 on the OLED device 2 (see FIG. 11) (see FIG. 11);
  • step S307 the heat dissipation layer 4 is prepared on the encapsulation layer 3 (see FIG. 11) (see FIG. 11).
  • This embodiment has a simple process and is easy to process.
  • the step S306 is performed on the OLED device 2, specifically on the cathode of the OLED device 2, by a chemical vapor deposition CVD process, a film forming ALD process in a vacuum or sputtering.
  • the SPUTTER process produces a first encapsulation layer 31, a silicon nitride SiNx, preferably having a thickness of 1.5 microns.
  • a second encapsulation layer 32 that is, a nitride layer SiOx of silicon, is prepared by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum or a sputtering SPUTTER process, and the thickness thereof is preferably 1.5 ⁇ m.
  • the step S307 is to prepare the heat dissipation layer 4 on the second encapsulation layer 32 by a chemical vapor deposition CVD process, a film formation ALD process in a vacuum or a sputtering SPUTTER process. More specifically, the heat dissipation layer 4 is prepared by a chemical vapor deposition CVD process when the nitride of aluminum is selected, and the thickness of the heat dissipation layer 4 is preferably 2 ⁇ m. When the heat dissipation layer 4 is made of aluminum oxide, it is prepared by a film forming ALD process in a vacuum, and the thickness of the heat dissipation layer 4 is preferably 2 micrometers. Correspondingly, the surface package in the step S400 is specifically performed on the heat dissipation layer 4.
  • the embodiment provides an OLED panel 1 including the OLED substrate A. And a second substrate 5 mounted on the OLED substrate A.
  • the OLED substrate A can also be the OLED substrate A shown in FIG. 2 to FIG.
  • the structure of the OLED substrate A in the embodiment is the same as that of the OLED substrate A in the first embodiment, and the structure of the OLED substrate A is not described in detail in this embodiment.
  • the OLED panel 1 of the present invention includes all the contents of the OLED substrate A in the first embodiment.
  • the display device of the present invention also includes all the effects of the OLED substrate A.
  • the present invention increases the heat dissipation layer 4 by means of a heat dissipation layer. 4 good thermal conductivity, the heat generated by the OLED device 2 during lighting is quickly dissipated, thereby improving the life of the OLED device 2, thereby improving the service life of the OLED panel 1.
  • the OLED substrate A and the second substrate 5 to which the encapsulating sheet 6 is attached are bonded and heat-cured, and the surface encapsulation is completed to finally form the OLED panel 1.
  • the encapsulating sheet 6 is a double-sided tape.
  • the encapsulating sheet 6 can also be any type of sheet glue capable of double-sided bonding.
  • the second substrate 5 may be a glass substrate, and may also be a plastic substrate or other substrate.
  • the OLED panel 1 may be a display panel, and may also be a lighting panel.
  • the embodiment provides a display device including the OLED substrate A.
  • the OLED substrate A can also be the OLED substrate A shown in FIG. 2 to FIG.
  • the structure of the OLED substrate A in the embodiment is the same as that of the OLED substrate A in the first embodiment, and the structure of the OLED substrate A is not described in detail in this embodiment.
  • the display device of the present invention includes all the contents of the OLED substrate A in the first embodiment, and the display device of the present invention also includes all the effects of the OLED substrate A.
  • the present invention By adding the heat dissipation layer 4, the present invention And forming a contact heat dissipation structure with the heat dissipation layer 4 and the package layer 3, and the heat generated by the OLED device 2 is quickly dissipated by the good thermal conductivity of the heat dissipation layer 4, thereby improving the lifetime of the OLED device 2, thereby improving the OLED panel.
  • the service life which in turn increases the life of the display device.
  • the display device may be a mobile phone, a navigator, a tablet computer, a television, a notebook computer or a monitor.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED基板、其制造方法、面板、显示装置,属于OLED产品及制造领域。OLED基板(A),包括位于第一基板(1)上的OLED器件(2)及封装层(3),封装层(3)封装OLED器件(2),OLED基板(A)还包括散热层(4),散热层(4)设置在OLED器件(2)上方。通过增加散热层,借助散热层良好的导热性,将OLED器件在点亮时产生的热量迅速消散,提高OLED器件寿命,从而提高OLED面板寿命,进而提高了显示装置寿命。

Description

一种OLED基板、其制造方法、面板及显示装置 技术领域
本发明涉及OLED领域,特别涉及一种OLED基板、其制造方法、面板、显示装置。
背景技术
OLED(Organic Light Emitting Diode,有机发光二极管)显示装置由于具有自发光、无需背光模组、对比度以及清晰度高、视角宽、全固化、适用于挠曲性面板、温度特性好、低功耗、响应速度快以及制造成本低等一系列优异特性,已经成为新一代平面显示装置的重点发展方向之一,因此日益受到越来越多的关注。而OLED面板是OLED显示装置中的重要组成部分,OLED面板的使用寿命决定了OLED显示装置的使用寿命。
现有的OLED面板包括:第一基板、OLED器件、封装层及第二基板,其中,第一基板用于承载OLED器件及封装层,OLED器件设置在第一基板上,OLED器件用于发光,封装层设置在第一基板上并完全覆盖OLED器件,封装层用于防止水进入OLED器件,第二基板固定在封装层上,第二基板用于保护封装层及OLED器件。其中,第一基板、OLED器件及封装层组成OLED基板。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
一方面,OLED面板与液晶显示面板相比,使用寿命比较短,研究发现OLED器件在长时间点亮工作时所产生的热量是导致OLED面板使用寿命衰减过快的主要原因。另一方面,随着OLED技术的发展,OLED器件的应用领域越来越宽广,应用环境要求也越来越苛刻,如高亮度显示、显示、大尺寸显示等。对OLED器件来说,亮度越高,尺寸越大,OLED器件本身的发热量也会越多,而过多的热量会使OLED器件的寿命缩短。因此如何将OLED器件的热量吸收并散发出去仍是摆在本领域研发人员面前的一个技术难题。
发明内容
为了解决现有技术OLED器件的散热问题,本发明实施例提供了一种OLED基板、其制造方法、面板、显示装置。所采用的技术方案如下:
一方面,提供了一种OLED基板,包括位于第一基板上的OLED器件及封装层,所述封装层封装所述OLED器件,所述OLED基板还包括散热层,所述散热层设置在OLED器件上方。
本说明书中,“在OLED器件上方”是指位于OLED器件的与第一基板相反的那一侧上。
可选地,所述散热层设置在所述OLED器件与所述封装层之间。
可选地,所述散热层与所述OLED器件接触。
可选地,与所述OLED器件接触的所述散热层为绝缘体散热材料或半导体散热材料。
可选地,所述散热层与所述OLED器件不接触。
可选地,与所述OLED器件不接触的所述散热层为绝缘体散热材料、半导体散热材料或金属材料。
可选地,所述封装层为多层,所述散热层设置在所述多层封装层的任意两相邻层之间。
可选地,设置在所述多层封装层的任意两相邻层之间的所述散热层为绝缘体散热材料、半导体散热材料或金属材料。
可选地,所述散热层设置在所述封装层外部。
可选地,设置在所述封装层外部的所述散热层为绝缘体散热材料、半导体散热材料或金属材料。
可选地,所述绝缘体散热材料为铝的氮化物、氮化硼、聚晶氮化硼或三氧化二铝中的一种。
可选地,所述半导体散热材料为石墨烯或碳纳米管中的一种。
可选地,所述金属材料为铝、镁或铜中的一种。
可选地,所述散热层厚度在100um以下。
可选地,所述散热层厚度为1um-5um。
可选地,所述封装层为薄膜封装层。
另一方面,提供了一种OLED基板的制造方法,所述制造方法包括如下步骤,
提供第一基板;
在所述第一基板上制备OLED器件;
在所述OLED器件上完成OLED基板制备,所述OLED基板包括散热层及封装 层,其中散热层设置在OLED器件上方。
可选地,所述散热层设置在所述OLED器件与所述封装层之间,在所述OLED器件上完成OLED基板制备,具体包括,
在所述OLED器件上制备所述散热层;
在所述散热层上制备所述封装层。
可选地,所述封装层为多层封装层,所述散热层设置在相邻的两个封装层之间,在所述OLED器件上完成OLED基板制备,具体包括,
在所述OLED器件上制备封装层;
在所述封装层上制备所述散热层;
在所述散热层上再制备封装层。
可选地,所述散热层设置在所述封装层外部,在所述OLED器件上完成OLED基板制备,具体包括,
在所述OLED器件上制备所述封装层;
在所述封装层上制备所述散热层。
另一方面,提供了一种OLED面板,包括所述的OLED基板,以及对装在所述OLED基板上的第二基板。
另一方面,提供了一种显示装置,包括所述的OLED基板。
本发明实施例提供的技术方案带来的有益效果是:
本发明提供的一种OLED基板、其制造方法、面板、显示装置,通过增加散热层结构,借助散热层良好的导热性,将OLED器件在点亮时产生的热量迅速消散,提高OLED器件的寿命,从而提高OLED面板的使用寿命,进而提高了显示装置的使用寿命,其中,所述制造方法还具有工艺简单易于实现的优点。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种OLED基板结构图;
图2是本发明实施例提供的另一种OLED基板结构图;
图3是本发明实施例提供的另一种OLED基板结构图;
图4是本发明实施例提供一种OLED基板的制造方法流程图;
图5是本发明实施例提供一种OLED基板的制造过程结构图;
图6是本发明实施例提供一种OLED基板的制造方法流程图;
图7是本发明实施例提供一种OLED基板的制造过程结构图;
图8是本发明实施例提供另一种OLED基板的制造方法流程图;
图9是本发明实施例提供另一种OLED基板的制造过程结构图;
图10是本发明实施例提供另一种OLED基板的制造方法流程图;
图11是本发明实施例提供另一种OLED基板的制造过程结构图;
图12是本发明实施例提供的一种OLED面板结构图。
图中各符号表示含义如下:
1第一基板,
2 OLED器件,
3封装层,31第一封装层,32第二封装层,
4散热层,
5第二基板,
6封装片胶,
A.OLED基板,
I.OLED面板。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
如图1所示,本实施例提供了一种OLED基板A,包括位于第一基板1上的OLED器件2及封装层3,所述封装层3封装所述OLED器件2,所述OLED基板A还包括散热层4,所述散热层4设置在OLED器件2上方,所述散热层4用于散发所述OLED器件2发出的热量。
本实施例所述OLED基板A增加了散热层4,借助散热层4良好的导热性,将OLED器件2在点亮时产生的热量迅速消散,提高OLED器件2的寿命。
如图1所示,本实施例中,所述散热层4设置在所述OLED器件2与所述封装层3之间。本实施例可以有效改善OLED基板A的散热状况。
具体地,本实施例中,如图1所示,所述散热层4与所述OLED器件2不接触。在另一个优选的实施例中,所述散热层4与所述OLED器件2是接触的。这种接触的结构,有利于更好的散热。
更具体地,本实施例中,散热层4为一层,封装层3为两层,即第一封装层31和第二封装层32,散热层4设置在OLED器件2与第一封装层31之间,散热层4完全覆盖OLED器件2,散热层4、第一封装层31和第二封装层32层叠设置,散热层4与第一封装层31接触。本实施例中,通过散热层4与封装层3形成接触式散热结构,能够更好地为OLED器件2散热。
本实施例中,所述散热层4为绝缘体散热材料、半导体散热材料或金属材料。当散热层4与OLED器件2不接触时,散热层4可以上述多种材料形成,当散热层4与OLED器件2接触时,散热层4采用绝缘体散热材料或半导体散热材料。本实施例可以有效改善OLED基板A的散热状况。
其中,绝缘体散热材料包括铝的氮化物AlNx、氮化硼BN、聚晶氮化硼PBN或三氧化二铝Al2O3等等,本实施例中,优选铝的氮化物AlNx。由于铝的氮化物AlNx具有良好的导热性,由铝的氮化物AlNx制成的散热层4会明显改善OLED基板A的散热情况,从而大幅延长OLED面板的使用寿命。
半导体散热材料包括石墨烯、碳纳米管等。
金属材料具有良好导热性能,包括铝Al、镁Mg、铜Cu等。
当然,本领域普通技术人员可以理解,散热层4与第一封装层31还可以接触。本实施例中,所述散热层4为绝缘体散热材料或半导体散热材料或金属散热材料。可以有效改善OLED基板A的散热状况。其中,绝缘体散热材料包括铝的氮化物AlNx、氮化硼BN、聚晶氮化硼PBN或三氧化二铝Al2O3等等,本实施例中,优选铝的氮化物AlNx。由于铝的氮化物AlNx具有良好的导热性,由铝的氮化物AlNx制成的散热层4会明显改善OLED基板A的散热情况,从而大幅延长OLED面板的使用寿命。
当然本领域普通技术人员可以理解,散热层4还可以是二层、三层等多层,其中,多层散热层4层叠设置,多层散热层4材质不同或材质相同。具体实施 时,根据散热需求选择散热层4的层数及其材质。另外封装层可以是薄膜的封装层,也可以为其他形式的封装层。
当然本领域普通技术人员可以理解,封装层3还可以是一层,封装层3也可以是三层、四层等多层,多层封装层3层叠设置,多层封装层3材质可以相同或材质不同。具体实施时,根据绝缘及防水需求选择封装层3的层数及其材质。
具体地,本实施例中,第一封装层31和第二封装层32材质不同,第一封装层31的材质为硅的氮化物SiNx,第二封装层32的材质为硅的氧化物SiOx。本实施例,可有效为OLED器件2阻水。
当然,第一封装层31的材质还可为硅的氧化物SiOx,第二封装层32的材质还可以为硅的氮化物SiNx。或者,第一封装层31和第二封装层32的材质均为硅的氧化物SiOx,或者,第一封装层31和第二封装层32的材质均为硅的氮化物SiNx。当然第一封装层31和第二封装层32还可以是其他材料,只要能够满足绝缘阻水性能即可。
更具体地,本实施例中,所述OLED器件2为底发射器件。
当然本领域普通技术人员可以理解所述OLED器件2也可以为顶发射器件。
如图2所示,本实施例中,所述封装层3为多层,所述散热层4设置在所述多层封装层3的任意两相邻层之间。本实施例可以有效改善OLED基板A的散热状况。
更具体地,本实施例中,散热层4为一层,封装层3为两层,即第一封装层31和第二封装层32,第一封装层31完全覆盖OLED器件2,散热层4设置在第一封装层31和第二封装层32之间,第一封装层31、散热层4和第二封装层32层叠设置。
更具体地,本实施例中,散热层4完全覆盖第一封装层31,散热层4边缘与第一封装层31边缘距离为0um至5000um,针对窄边框面板,优选范围为50um至500um。
本实施例中,所述散热层4为绝缘体散热材料、半导体散热材料或金属材料。本实施例可以有效改善OLED基板A的散热状况。
当然本领域普通技术人员可以理解,散热层4还可以是二层、三层等多层, 其中,多层散热层4层叠设置,多层散热层4材质不同或材质相同。具体实施时,根据散热需求选择散热层4的层数及其材质。另外封装层可以是薄膜的封装层,也可以为其他形式的封装层。
当然本领域普通技术人员可以理解,封装层3也还可以是三层、四层等多层,多层封装层3层叠设置,多层封装层3材质可以相同或材质不同,具体实施时,根据薄膜散热层4绝缘阻水性能确定其数量及材质。具体地,多层封装层3包括第一、第二、第三、......、第N层封装层,散热层4设置在第一封装层31和第二封装层32之间,散热层4设置在第二封装层32和第三封装层之间,......,散热层4设置在第N-1封装层和第N封装层之间,即散热层4可以设置在所述多层封装层3的任意两相邻层之间。
具体地,本实施例中,第一封装层31和第二封装层32材质不同,第一封装层31的材质为硅的氮化物SiNx,第二封装层32的材质为硅的氧化物SiOx。
当然,第一封装层31的材质还可为硅的氧化物SiOx,第二封装层32的材质还可以为硅的氮化物SiNx。或者,第一封装层31和第二封装层32的材质均为硅的氧化物SiOx,或者,第一封装层31和第二封装层32的材质均为硅的氮化物SiNx。当然第一封装层31和第二封装层32还可以是其他材料,只要能够满足绝缘阻水性能即可。
更具体地,本实施例中,所述OLED器件2为底发射器件。
当然本领域普通技术人员可以理解所述OLED器件2也可以为顶发射器件。
如图3所示,本实施例中,所述散热层4层叠在所述封装层3外部。本实施例可以有效改善OLED基板A的散热状况。
更具体地,本实施例中,散热层4为一层,封装层3为两层,即第一封装层31和第二封装层32,第一封装层31完全覆盖OLED器件2,第二封装层32层叠在第一封装层31上,散热层4叠加并覆盖在第二封装层32上。
更具体地,本实施例中,散热层4边缘与第二封装层32边缘距离为0um至5000um,针对窄边框面板,优选范围为50um至500um。
本实施例中,所述散热层4为绝缘体散热材料、半导体散热材料或金属材料。本实施例可以有效改善OLED基板A的散热状况。
当然本领域普通技术人员可以理解,散热层4还可以是二层、三层等多层, 其中,多层散热层4层叠设置,多层散热层4材质不同或材质相同。具体实施时,根据散热需求选择散热层4的层数及其材质。另外封装层可以是薄膜的封装层,也可以为其他形式的封装层。
当然本领域普通技术人员可以理解,封装层3也还可以是三层、四层等多层,多层封装层3层叠设置,多层封装层3材质可以相同或材质不同,具体实施时,根据薄膜散热层4绝缘阻水性能确定其数量及材质。具体地,多层封装层3包括第一、第二、第三......第N层封装层,第一封装层31至第N封装层由内至外层叠设置,散热层4设置在第N封装层外部。
具体地,本实施例中,第一封装层31和第二封装层32材质不同,第一封装层31的材质为硅的氮化物SiNx,第二封装层32的材质为硅的氧化物SiOx。
当然,第一封装层31的材质还可为硅的氧化物SiOx,第二封装层32的材质还可以为硅的氮化物SiNx。或者,第一封装层31和第二封装层32的材质均为硅的氧化物SiOx,或者,第一封装层31和第二封装层32的材质均为硅的氮化物SiNx。当然第一封装层31和第二封装层32还可以是其他材料,只要能够满足其绝缘阻水性能即可。
更具体地,本实施例中,所述OLED器件2为底发射器件。
当然本领域普通技术人员可以理解所述OLED器件2也可以为顶发射器件。
如图1所示,本实施例中,所述散热层4厚度在100um以下。本实施例可以有效改善OLED基板A的散热状况
更优选地,所述散热层4厚度为1um-5um。本实施例在最节省材料的情况下,有效改善OLED基板A的散热状况。
当然本领域普通技术人员可以理解,所述散热层4厚度还可以应用于图2-图3所示实施例。
更具体地,如图1所示,本实施例中,第一基板1可以为玻璃基板,还可为塑料基板或者其他基板。当然,第一基板1还可以是TFT基板。当然本领域普通技术人员可以理解,图2-图3所示实施例中的第一基板1可以为玻璃基板,还可为塑料基板或者其他基板。当然,第一基板1还可以是TFT基板,其中,TFT用于控制OLED器件2的开或关。
更具体地,如图1所示,本实施例中,OLED器件2可以为单色、多色或白 色发光器件。当然本领域普通技术人员可以理解,图2-图3所示实施例中OLED器件2可以为单色、多色或白色发光器件。
实施例二
如图4所示,还可参见图5,本发明以图4为主加以说明,本发明提供了一种应用于所述OLED基板A的制造方法,所述制造方法包括如下步骤,
步骤S100,提供第一基板1(参见图5);
步骤S200,在所述第一基板1(参见图5)上制备OLED器件2(参见图5);
步骤S300,在所述OLED器件2(参见图5)上完成OLED基板A(参见图5)制备,所述OLED基板A(参见图5)包括散热层4(参见图5)及封装层3(参见图5),其中散热层设置在OLED器件上方。
参见图5,步骤S200在所述第一基板1上制备OLED器件2与相应的传统工艺相同。本实施例,是在制备好第一基板1的基础上通过蒸镀工艺完成OLED器件2的制备。
本实施例所述OLED基板A与实施例一中所述OLED基板A结构完全相同,针对所述OLED面板基板A部分,本实施例不再赘述。
参见图5,由于本发明所述制造方法包括实施例一中所述OLED基板A的全部内容,本发明所述制造方法也包括所述OLED基板A的全部效果,本发明通过增加散热层4,借助散热层4良好的导热性,将OLED器件2在点亮时产生的热量迅速消散,提高OLED器件2的寿命,从而提高OLED基板A的使用寿命,其中,所述制造方法还具有工艺简单易于实现的优点。
如图6所示,还可参见图7,本实施例以图6为例加以说明,所述散热层4(参见图7)设置在所述OLED器件2(参见图7)与所述封装层3(参见图7)之间,与图4中所述步骤S300对应的在所述OLED器件2(参见图7)上完成OLED基板A制备(参见图7),具体包括,
步骤S301,在所述OLED器件2(参见图7)上制备所述散热层4(参见图7);
步骤S302,在所述散热层4(参见图7)上制备所述封装层3(参见图7)。
本实施例工艺简单,易于加工。
参见图7,具体地,本实施例中,所述步骤S301是在OLED器件2上,具体是在OLED器件2的阴极上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备散热层4。更具体地,散热层4选择铝的氮化物时采用化学气相沉积CVD工艺制备,散热层4厚度优选为2微米。散热层4采用三氧化二铝时采用在真空中成膜ALD工艺制备,散热层4厚度优选为2微米。散热层4与OLED器件2可以是接触的,也可以是不接触的。
参见图7,具体地,本实施例中,所述步骤S302是散热层4上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备封装层3。更具体地,本实施例是在散热层4上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备第一封装层31即硅的氮化物层SiNx,其厚度优选2微米,然后通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺在第一封装层31上制备第二封装层32即硅的氮化物层SiOx,其厚度优选1.5微米。相应地,面封装具体是在第二封装层32上进行的。
如图8所示,还可参见图9,本实施例以图8为例加以说明,所述散热层4(参见图9)设置在所述封装层3(参见图9)中间,与图4中所述步骤S300对应的在所述OLED器件2(参见图9)上完成OLED基板A制备(参见图9),具体包括,
步骤S303,在所述OLED器件2(参见图9)上制备所述封装层3(参见图9);
步骤S304,在所述封装层3(参见图9)上制备所述散热层4(参见图9);
步骤S305,在所述散热层4(参见图9)上再制备所述封装层3(参见图9)。
本实施例工艺简单,易于加工。
参见图9,具体地,本实施例中,所述步骤S303是在OLED器件2上,具体是在OLED器件2的阴极上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备第一封装层31即硅的氮化物SiNx,其厚度优选1.5微米。
参见图9,具体地,本实施例中,所述步骤S304是在第一封装层31上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备散热层4。更具体地,散热层4选择铝的氮化物时采用化学气相沉积CVD工艺制备,散热层4厚度优选为2微米。散热层4采用三氧化二铝时采用在真空中成膜ALD 工艺制备,散热层4厚度优选为2微米。
参见图9,具体地,本实施例中,所述步骤S305是散热层4上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备第二封装层32。更具体地,本实施例是在散热层4上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备第二封装层32即硅的氮化物层SiOx,其厚度优选1.5微米。相应地,面封装具体是在第二封装层32上进行的。
如图10所示,还可参见图11,本实施例以图10为例加以说明,所述散热层4(参见图11)设置在所述封装层3(参见图11)外部,与图4中所述步骤S300对应的在所述OLED器件2(参见图11)上完成OLED基板A(参见图11)制备,具体包括,
步骤S306,在所述OLED器件2(参见图11)上制备所述封装层3(参见图11);
步骤S307,在所述封装层3(参见图11)上制备所述散热层4(参见图11)。
本实施例工艺简单,易于加工。
参见图11,具体地,本实施例中,所述步骤S306是在OLED器件2上,具体是在OLED器件2的阴极上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备第一封装层31即硅的氮化物SiNx,其厚度优选1.5微米。然后,在第一封装层31上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备第二封装层32即硅的氮化物层SiOx,其厚度优选1.5微米。
参见图11,具体地,本实施例中,所述步骤S307是在第二封装层32上,通过化学气相沉积CVD工艺、在真空中成膜ALD工艺或溅射SPUTTER工艺制备散热层4。更具体地,散热层4选择铝的氮化物时采用化学气相沉积CVD工艺制备,散热层4厚度优选为2微米。散热层4采用三氧化二铝时采用在真空中成膜ALD工艺制备,散热层4厚度优选为2微米。相应地,所述步骤S400中的面封装具体是在散热层4上进行的。
实施例三
如图12所示,本实施例提供了一种OLED面板I,包括所述的OLED基板A, 以及对装在所述OLED基板A上的第二基板5。
当然本领域普通技术人员可以理解,所述OLED基板A还可以是图2-图3中所示的OLED基板A。
本实施例所述OLED基板A与实施例一中所述OLED基板A结构完全相同,针对所述OLED基板A结构部分,本实施例不再赘述。
由于本发明所述OLED面板I包括实施例一中所述OLED基板A的全部内容,本发明所述显示装置也包括所述OLED基板A的全部效果,本发明通过增加散热层4,借助散热层4良好的导热性,将OLED器件2在点亮时产生的热量迅速消散,提高OLED器件2的寿命,从而提高OLED面板I的使用寿命。
更具体地,本实施例中,OLED基板A与贴有封装片胶6的第二基板5进行贴合并热压固化,完成面封装最终形成OLED面板I。其中,封装片胶6为双面胶。当然,封装片胶6还可以是能够起到双面粘接作用的任何类型片胶。
更具体地,如图12所示,本实施例中,第二基板5可以为玻璃基板,还可为塑料基板或者其他基板。
更具体地,参见图12,OLED面板I可以是显示面板,还可以是照明面板。
实施例四
参见图1,本实施例提供了一种显示装置,包括所述的OLED基板A。
当然本领域普通技术人员可以理解,所述OLED基板A还可以是图2-图3中所示的OLED基板A。
本实施例所述OLED基板A与实施例一中所述OLED基板A结构完全相同,针对所述OLED基板A结构部分,本实施例不再赘述。
参见图1,由于本发明所述显示装置包括实施例一中所述OLED基板A的全部内容,本发明所述显示装置也包括所述OLED基板A的全部效果,本发明通过增加散热层4,并通过散热层4与封装层3形成接触式散热结构,借助散热层4良好的导热性,将OLED器件2在点亮时产生的热量迅速消散,提高OLED器件2的寿命,从而提高OLED面板的使用寿命,进而提高了显示装置的使用寿命。
所述显示装置可以为手机、导航仪、平板电脑、电视、笔记本电脑或监视器等。
以上实施例仅为参考,但不限于此上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种OLED基板,包括位于第一基板上的OLED器件及封装层,所述封装层封装所述OLED器件,其特征在于,所述OLED基板还包括散热层,所述散热层设置在OLED器件上方。
  2. 根据权利要求1所述的OLED基板,其特征在于,所述散热层设置在所述OLED器件与所述封装层之间。
  3. 根据权利要求2所述的OLED基板,其特征在于,所述散热层与所述OLED器件接触。
  4. 根据权利要求3所述的OLED基板,其特征在于,所述散热层为绝缘体散热材料或半导体散热材料。
  5. 根据权利要求2所述的OLED基板,其特征在于,所述散热层与所述OLED器件不接触。
  6. 根据权利要求5所述的OLED基板,其特征在于,所述散热层为绝缘体散热材料、半导体散热材料或金属材料。
  7. 根据权利要求1所述的OLED基板,其特征在于,所述封装层为多层,所述散热层设置在所述多层封装层的任意两相邻层之间。
  8. 根据权利要求7所述的OLED基板,其特征在于,所述散热层为绝缘体散热材料、半导体散热材料或金属材料。
  9. 根据权利要求1所述的OLED基板,其特征在于,所述散热层设置在所述封装层外部。
  10. 根据权利要求9所述的OLED基板,其特征在于,所述散热层为绝缘体散热材料、半导体散热材料或金属材料。
  11. 根据权利要求10所述的OLED基板,其特征在于,所述绝缘体散热材料为铝的氮化物、氮化硼、聚晶氮化硼或三氧化二铝中的一种。
  12. 根据权利要求10所述的OLED基板,其特征在于,所述半导体散热材料为石墨烯或碳纳米管中的一种。
  13. 根据权利要求10所述的OLED基板,其特征在于,所述金属材料为铝、镁或铜中的一种。
  14. 根据权利要求1所述的OLED基板,其特征在于,所述散热层厚度在100um以下。
  15. 根据权利要求14所述的OLED基板,其特征在于,所述散热层厚度为1um-5um。
  16. 根据权利要求1所述的OLED基板,其特征在于,所述封装层为薄膜封装层。
  17. 一种OLED基板的制造方法,其特征在于,所述制造方法包括如下步骤,
    提供第一基板;
    在所述第一基板上制备OLED器件;
    在所述OLED器件上完成OLED基板制备,所述OLED基板包括散热层及封装层,其中散热层设置在OLED器件上方。
  18. 根据权利要求17所述的制造方法,其特征在于,所述散热层设置在所述OLED器件与所述封装层之间,在所述OLED器件上完成OLED基板制备,具体包括,
    在所述OLED器件上制备所述散热层;
    在所述散热层上制备所述封装层。
  19. 根据权利要求17所述的制造方法,其特征在于,所述封装层为多层封装层,所述散热层设置在相邻的两个封装层之间,在所述OLED器件上完成OLED基板制备,具体包括,
    在所述OLED器件上制备封装层;
    在所述封装层上制备所述散热层;
    在所述散热层上再制备封装层。
  20. 根据权利要求17所述的制造方法,其特征在于,所述散热层设置在所述封装层外部,在所述OLED器件上完成OLED基板制备,具体包括,
    在所述OLED器件上制备所述封装层;
    在所述封装层上制备所述散热层。
  21. 一种OLED面板,其特征在于,包括权利要求1-16任一项所述的OLED基板,以及对装在所述OLED基板上的第二基板。
  22. 一种显示装置,其特征在于,包括权利要求1-16任一项所述的OLED基板。
PCT/CN2015/084048 2015-03-17 2015-07-15 一种oled基板、其制造方法、面板及显示装置 WO2016145757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/121,843 US10103358B2 (en) 2015-03-17 2015-07-15 OLED substrate and producing method thereof, panel, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510115023.1A CN104659074B (zh) 2015-03-17 2015-03-17 一种oled基板、其制造方法、面板及显示装置
CN201510115023.1 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016145757A1 true WO2016145757A1 (zh) 2016-09-22

Family

ID=53249996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084048 WO2016145757A1 (zh) 2015-03-17 2015-07-15 一种oled基板、其制造方法、面板及显示装置

Country Status (3)

Country Link
US (1) US10103358B2 (zh)
CN (1) CN104659074B (zh)
WO (1) WO2016145757A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891619B2 (en) 2018-02-19 2024-02-06 City Of Hope Adeno-associated virus compositions for restoring F8 gene function and methods of use thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659074B (zh) * 2015-03-17 2019-04-09 京东方科技集团股份有限公司 一种oled基板、其制造方法、面板及显示装置
CN105514035B (zh) * 2016-01-21 2018-11-20 武汉华星光电技术有限公司 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
CN106910724B (zh) * 2016-04-05 2020-06-05 苏州捷芯威半导体有限公司 一种半导体器件
CN106450029A (zh) * 2016-10-25 2017-02-22 武汉华星光电技术有限公司 Oled显示装置及其制作方法
CN106784380A (zh) * 2016-12-29 2017-05-31 固安翌光科技有限公司 一种封装结构及其制备方法和应用
CN107154465A (zh) * 2017-05-26 2017-09-12 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置
CN107564869B (zh) * 2017-08-28 2019-12-24 华进半导体封装先导技术研发中心有限公司 一种扇出封装结构及其制造方法
CN108682754B (zh) * 2017-12-29 2019-11-29 南京轩世琪源软件科技有限公司 一种用于虚拟现实的oled器件的制作方法
CN108364987B (zh) * 2018-02-24 2021-01-26 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN110675760A (zh) * 2019-09-30 2020-01-10 云谷(固安)科技有限公司 显示面板及显示装置
CN110808341B (zh) * 2019-11-18 2022-07-29 京东方科技集团股份有限公司 显示面板封装结构、显示面板和显示装置
CN111341940A (zh) * 2020-03-18 2020-06-26 上海晶合光电科技有限公司 一种oled器件封装结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009362A (zh) * 2007-01-31 2007-08-01 清华大学 一种有机发光器件
CN103594639A (zh) * 2012-08-15 2014-02-19 海洋王照明科技股份有限公司 有机电致发光器件以及制备方法
WO2014076132A1 (de) * 2012-11-14 2014-05-22 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement
CN104659074A (zh) * 2015-03-17 2015-05-27 京东方科技集团股份有限公司 一种oled基板、其制造方法、面板及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656192B1 (ko) * 2004-11-24 2006-12-12 이병철 전면발광형 유기이엘 디스플레이 소자
JP4702009B2 (ja) * 2005-11-22 2011-06-15 セイコーエプソン株式会社 発光装置および電子機器
CN101908532B (zh) * 2009-06-05 2014-04-09 清华大学 薄型双面显示oled装置及其制备方法
CN102024710B (zh) 2009-09-18 2012-08-29 展晶科技(深圳)有限公司 光电元件的制造方法、封装结构及其封装装置
KR20120118335A (ko) * 2011-04-18 2012-10-26 삼성디스플레이 주식회사 유기 발광 조명 장치
KR101883389B1 (ko) * 2011-06-13 2018-08-31 삼성디스플레이 주식회사 유기 발광 표시 장치
CN103855316B (zh) * 2012-11-30 2016-08-03 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
KR102135320B1 (ko) * 2013-07-17 2020-07-20 삼성디스플레이 주식회사 유기 발광 표시 장치의 제조 장치 및 유기 발광 표시 장치의 제조 방법
CN104037337B (zh) * 2014-06-09 2017-05-24 京东方科技集团股份有限公司 有机电致发光显示面板及其封装方法、显示装置
CN203983342U (zh) * 2014-06-11 2014-12-03 京东方科技集团股份有限公司 一种有机发光器件、有机发光显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009362A (zh) * 2007-01-31 2007-08-01 清华大学 一种有机发光器件
CN103594639A (zh) * 2012-08-15 2014-02-19 海洋王照明科技股份有限公司 有机电致发光器件以及制备方法
WO2014076132A1 (de) * 2012-11-14 2014-05-22 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement
CN104659074A (zh) * 2015-03-17 2015-05-27 京东方科技集团股份有限公司 一种oled基板、其制造方法、面板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891619B2 (en) 2018-02-19 2024-02-06 City Of Hope Adeno-associated virus compositions for restoring F8 gene function and methods of use thereof

Also Published As

Publication number Publication date
CN104659074B (zh) 2019-04-09
US20170018729A1 (en) 2017-01-19
US10103358B2 (en) 2018-10-16
CN104659074A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2016145757A1 (zh) 一种oled基板、其制造方法、面板及显示装置
KR102290118B1 (ko) Oled 디스플레이 및 그 제작 방법
US10243174B2 (en) OLED packaging structure and manufacturing method thereof and display device
US10050230B1 (en) OLED display and manufacturing method thereof
US20200127216A1 (en) Oled display apparatus
WO2017049627A1 (zh) 柔性有机电致发光器件的封装结构、柔性显示装置
WO2016201723A1 (zh) Oled器件的封装结构及其封装方法
KR102636736B1 (ko) 표시 장치
KR102505255B1 (ko) 디스플레이 장치
WO2019218629A1 (zh) 显示面板、显示终端及显示母板
KR20110018785A (ko) 유기 발광 표시 장치
JP6637134B2 (ja) 高熱伝導率の封止基板を含む有機発光表示装置
CN103996691A (zh) 显示装置
KR20120109081A (ko) 유기 발광 표시 장치
JP6773734B2 (ja) 封止層を含む有機発光表示装置
WO2021068337A1 (zh) 显示面板及显示装置
KR20120042365A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
WO2017008486A1 (zh) 封装方法、显示面板及显示装置
WO2021128540A1 (zh) 显示面板及其制作方法
KR20150137186A (ko) 벤더블 유기발광다이오드 표시장치
WO2020124805A1 (zh) 显示屏及显示装置
KR102316864B1 (ko) 표시 장치
CN109473460B (zh) 显示面板及其封装方法及电子设备
WO2020191859A1 (zh) 一种有机发光二极管显示面板、显示模组及电子装置
KR102623200B1 (ko) 플렉서블 기판과 이를 포함하는 플렉서블 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15121843

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885139

Country of ref document: EP

Kind code of ref document: A1