WO2016143732A1 - (メタ)アクリル酸エステル化合物の製造方法 - Google Patents
(メタ)アクリル酸エステル化合物の製造方法 Download PDFInfo
- Publication number
- WO2016143732A1 WO2016143732A1 PCT/JP2016/056954 JP2016056954W WO2016143732A1 WO 2016143732 A1 WO2016143732 A1 WO 2016143732A1 JP 2016056954 W JP2016056954 W JP 2016056954W WO 2016143732 A1 WO2016143732 A1 WO 2016143732A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydroxyl group
- meth
- compound
- alcohol compound
- acrylic acid
- Prior art date
Links
- 0 *C(C(*)NC(*)(*)C(*)(*)NC(*)C(*)C([O+])I)C(*)O Chemical compound *C(C(*)NC(*)(*)C(*)(*)NC(*)C(*)C([O+])I)C(*)O 0.000 description 3
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/03—Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1616—Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
- B01J31/181—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
- B01J31/1825—Ligands comprising condensed ring systems, e.g. acridine, carbazole
- B01J31/183—Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/40—Regeneration or reactivation
- B01J31/4015—Regeneration or reactivation of catalysts containing metals
- B01J31/4023—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
- B01J31/403—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B41/00—Formation or introduction of functional groups containing oxygen
- C07B41/12—Formation or introduction of functional groups containing oxygen of carboxylic acid ester groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/52—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C67/54—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/533—Monocarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/54—Acrylic acid esters; Methacrylic acid esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/40—Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
- B01J2231/49—Esterification or transesterification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/842—Iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Definitions
- the present invention relates to a method for producing a (meth) acrylic acid ester compound of an alcohol compound having a tertiary hydroxyl group, particularly a polyvalent compound having a tertiary hydroxyl group and having a primary hydroxyl group and / or a secondary hydroxyl group.
- the present invention relates to a method for producing a (meth) acrylate compound by transesterifying an alcohol compound and an alkyl (meth) acrylate in the presence of an iron complex.
- Patent Document 1 discloses that a transesterification reaction between methyl methacrylate and an alcohol compound having a primary hydroxyl group or a secondary hydroxyl group is carried out in the presence of an iron catalyst to have a primary hydroxyl group or a secondary hydroxyl group. It is described that a methacrylic acid ester compound of an alcohol compound is obtained.
- Patent Document 2 discloses that a 3-hydroxy-3-methylbutyl (meth) ester is exchanged between 3-methylbutane-1,3-diol and methyl (meth) acrylate in the presence of an iron complex. It is described that acrylates are obtained.
- JP 55-143935 A Japanese Unexamined Patent Publication No. 64-039477
- Patent Document 1 specifically examines a method for obtaining a methacrylic acid ester of an alcohol compound having a tertiary hydroxyl group by an ester exchange reaction between an alkyl (meth) acrylate and an alcohol compound having a tertiary hydroxyl group. It has not been.
- Patent Document 2 when the reaction time is lengthened, the tertiary hydroxyl group contained in 3-methylbutane-1,3-diol is also esterified, so the reaction is monomethylated with 3-methylbutane-1,3-diol. It is said that it is necessary to stop after the ester is formed but before the diester is formed. Therefore, in Patent Document 2, a (meth) acrylic acid ester compound of an alcohol compound having a tertiary hydroxyl group is produced in a high yield by an ester exchange reaction between an alkyl methacrylate and an alcohol compound having a tertiary hydroxyl group. The conditions are not clarified.
- the present invention was made to produce a (meth) acrylic acid ester compound of an alcohol compound having a tertiary hydroxyl group.
- the object of the present invention is to provide an alkyl (meth) acrylate and a tertiary hydroxyl group. It is to provide a method for producing a (meth) acrylic acid ester compound in which all hydroxyl groups contained in the alcohol compound are esterified with a high yield by an ester exchange reaction with an alcohol compound, and preferably a tertiary compound.
- an alcohol compound having a tertiary hydroxyl group is converted into an ester exchange catalyst comprising an iron complex coordinated with a ligand represented by the following general formula (1) or general formula (2).
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkyl group, or a monovalent alicyclic ring. Or a monovalent aromatic ring group, or at least one of R 1 and R 2 , R 2 and R 3 and R 4 and R 5 is bonded to each other to form an alicyclic group or an aromatic ring group May be formed.
- the transesterification catalyst in an amount corresponding to 0.1 to 20 mol% of iron atoms with respect to the hydroxyl group of the alcohol compound.
- the alcohol compound is a polyhydric alcohol compound having a tertiary hydroxyl group and having a primary hydroxyl group and / or a secondary hydroxyl group, It is preferable that it is a compound represented by following General formula (3).
- R a represents a hydrogen atom or represents a monovalent hydrocarbon group having 1 to 4 carbon atoms
- R b represents a divalent hydrocarbon group having 1 to 4 carbon atoms
- R c And R d each independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms.
- the polyhydric alcohol compound is preferably isoprene glycol.
- the alcohol compound having a tertiary hydroxyl group as a raw material is a polyhydric alcohol compound having a primary hydroxyl group and / or a secondary hydroxyl group, and the resulting (meth) acrylic acid ester compound is A polyvalent ester compound in which all hydroxyl groups contained in the polyhydric alcohol compound are esterified is preferable.
- the alcohol compound having a tertiary hydroxyl group as a raw material is a diol compound represented by the following general formula (3), and the resulting (meth) acrylic acid ester compound is a diester compound. It is preferable.
- the (meth) acrylic acid ester compound is preferably a di (meth) acrylic acid ester of isoprene glycol.
- the production method of the present invention may have a step (II) of dehydrating the transesterification catalyst used in the step (I) in advance.
- the step (II) is preferably a method of dehydrating the transesterification catalyst using an azeotropic solvent of water in the presence of the alcohol compound.
- the production method of the present invention may include a step (III) of distilling the reaction solution obtained in the step (I).
- all alcohol compounds having a tertiary hydroxyl group for example, polyhydric alcohol compounds having a tertiary hydroxyl group and having a primary and / or secondary hydroxyl group, Hydroxyl groups can be esterified in one pot, and (meth) acrylic acid ester compounds can be produced at low cost. Further, isoprene glycol di (meth) acrylate can be obtained in high yield from isoprene glycol which is an alcohol compound having a tertiary hydroxyl group and alkyl (meth) acrylate.
- methacryl and acryl may be collectively referred to as “(meth) acryl”.
- the method for producing a (meth) acrylic acid ester compound of the present invention comprises a step (I) of transesterifying an alcohol compound having a tertiary hydroxyl group with an alkyl (meth) acrylate using a specific transesterification catalyst.
- the alcohol compound having a tertiary hydroxyl group used in the present invention is not particularly limited, and a known compound can be used.
- the alcohol compound having a tertiary hydroxyl group may be a monohydric alcohol compound or a polyhydric alcohol compound such as a dihydric alcohol compound (diol compound).
- Examples of the monohydric alcohol compound include t-butyl alcohol, t-amyl alcohol, 2-methyl-3-buten-2-ol, and the like.
- polyhydric alcohol compound examples include a compound (diol compound) represented by the following general formula (3) having a tertiary hydroxyl group and having a primary hydroxyl group and / or a secondary hydroxyl group. It is done.
- R a represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms
- R b represents a divalent hydrocarbon group having 1 to 4 carbon atoms
- R c and R d represent And each independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms.
- Examples of the compound represented by the general formula (3) include isoprene glycol, 4-methyl-2,4-pentanediol, 5-methyl-3,5-hexanediol, and 6-methyl-4,6-heptane.
- the alkyl (meth) acrylate used in the present invention is not particularly limited, but the alkyl group is methyl, ethyl, n-propyl, iso-propyl, n-butyl, or the like because of the ease of distilling off the alcohol produced by the reaction.
- a compound having a lower alkyl group such as iso-butyl and t-butyl is used.
- the transesterification catalyst used in the present invention is an iron complex in which a ligand represented by the following general formula (1) or general formula (2) is coordinated.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkyl group, or a monovalent fat.
- a cyclic group or a monovalent aromatic ring group, or at least one of R 1 and R 2 , R 2 and R 3, and R 4 and R 5 are bonded to each other to form an alicyclic group or an aromatic ring Group may be formed
- Examples of the ligand represented by the formula (1) or (2) include N, N′-bis (salicylidene) ethylenediamine, N, N′-bis (salicylidene) orthophenyleneethylenediamine, and N, N ′.
- Examples of the iron complex represented by the formula (1) or (2) include N, N′-bis (salicylidene) ethylenediamine iron (II) and N, N′-bis (salicylidene) orthophenylene ethylenediamine iron. (II), N, N′-bis (1-methyl-3-oxobutylidene) -4-methylorthophenyleneethylenediamine iron (II). Among these, N, N′-bis (salicylidene) ethylenediamine iron (II) is preferably used.
- the (meth) acrylic acid ester compound produced by the production method of the present invention is preferably an ester compound in which all hydroxyl groups of the alcohol compound having a tertiary hydroxyl group are esterified.
- an ester exchange reaction using an acid catalyst when a polyhydric alcohol compound having a tertiary hydroxyl group and having a primary hydroxyl group and / or a secondary hydroxyl group is used as a raw material, Alternatively, as the esterification of the secondary hydroxyl group proceeds, the tertiary hydroxyl group may undergo a dehydration reaction, and the yield of the target product may be reduced.
- the transesterification catalyst comprising the iron complex of the present invention is neutral.
- the production method of the present invention comprises a polyvalent ester compound having a tertiary hydroxyl group and all the hydroxyl groups of a polyhydric alcohol compound having a primary hydroxyl group and / or a secondary hydroxyl group esterified. Suitable for manufacturing.
- examples of the (meth) acrylic acid ester compound include t-butyl acrylate, t-butyl methacrylate, t-amyl acrylate, t-amyl methacrylate. 2-methyl-3-butene-2-acrylate, 2-methyl-3-butene-2-methacrylate and the like.
- the alcohol compound having a tertiary hydroxyl group is, for example, a diol compound represented by the following general formula (3) having a tertiary hydroxyl group and having a primary hydroxyl group and / or a secondary hydroxyl group.
- examples of the (meth) acrylic acid ester compound include isoprene glycol diacrylate, isoprene glycol dimethacrylate, 4-methyl-2,4-pentanediol diacrylate, and 4-methyl-2,4-pentanediol dimethacrylate.
- R a represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms
- R b represents a divalent hydrocarbon group having 1 to 4 carbon atoms
- R c And R d each independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms.
- the lower the water content of the reaction solution the higher the production rate of the (meth) acrylic acid ester compound of the target alcohol compound having a tertiary hydroxyl group and the higher the yield.
- the water content in the reaction system (in the reaction solution) for exchange is 1000 ppm or less, preferably 600 ppm or less, and more preferably 100 ppm or less.
- the water content in the reaction system exceeds 1000 ppm, the transesterification activity with respect to the tertiary hydroxyl group is reduced, the reaction time is prolonged, the polymerization reaction is likely to occur simultaneously, and the yield is lowered.
- the method for keeping the water content in the reaction system low is not particularly limited as long as the water content in the reaction system can be kept low.
- the transesterification catalyst comprising the iron complex of the present invention is not decomposed and deactivated by moisture unlike the titanium alcoholate which is a generally known transesterification catalyst, and therefore the dehydration of the reaction system was performed before the reaction. Or after starting the reaction. For example, before performing the reaction, using a solvent that azeotropes with water, water contained in the raw materials used is removed by azeotropic dehydration, a solvent that azeotropes with water is added to the reaction system, and the water is removed.
- Examples thereof include a method of carrying out the reaction while performing azeotropic distillation, or a method of adsorbing and removing moisture contained in the raw material to be used using a desiccant such as molecular sieve.
- a step (II) of dehydrating the transesterification catalyst used in the step (I) in advance.
- a method of dehydrating the transesterification catalyst using an azeotropic solvent of water in the presence of the alcohol compound is preferable from the viewpoint of shortening the heat history for the alkyl (meth) acrylate.
- azeotropic solvent known solvents can be used as long as they do not inhibit the transesterification reaction, and examples thereof include toluene, xylene, 2-butanone, dioxane, benzene, and cyclohexane.
- a method of adsorbing and removing moisture can be used by passing the reflux liquid through a tower filled with a drying agent such as molecular sieve.
- the molar ratio of the hydroxyl group and alkyl (meth) acrylate contained in the alcohol having a tertiary hydroxyl group as a starting material is appropriately selected in consideration of economy, boiling point, azeotropic property, etc. However, it is usually 1: 1 to 1:50, preferably 1: 1 to 1:20.
- the amount of the transesterification catalyst used in the production method of the present invention is usually from 0.1 to 10 iron atoms relative to the hydroxyl group of the alcohol compound having a tertiary hydroxyl group (when there are a plurality of hydroxyl groups, the total number of hydroxyl groups).
- An amount corresponding to 20 mol% preferably an amount corresponding to 0.5 to 15 mol%, more preferably an amount corresponding to 1 to 10 mol%. If the amount used is too large, the cost becomes too high, and if the amount used is too small, the reaction time becomes too long and the productivity tends to decrease.
- the reaction temperature in the production method of the present invention is usually 70 to 150 ° C., preferably 80 to 120 ° C., more preferably 90 to 110 ° C.
- the lower the reaction temperature the longer the reaction time and the lower the productivity.
- the reaction pressure may be normal pressure, but may be reduced to facilitate removal of the produced methanol.
- the reaction time is usually 200 hours or less, preferably 150 hours or less, more preferably 100 hours or less from the viewpoint of productivity.
- a reaction solvent may be used.
- known solvents can be used except for those which cause side reactions with alcohol compounds, (meth) acrylic acid ester compounds, etc., or inhibit transesterification, and water and by-produced alcohols. It can be appropriately selected in consideration of the azeotropy with and the reaction temperature.
- the reaction solvent include toluene, xylene, 2-butanone, dioxane, benzene, cyclohexane and the like.
- the reaction liquid obtained by the above step (I) may be further subjected to a distillation step (III) for removing unreacted raw materials and the like.
- a distillation step (III) for removing unreacted raw materials and the like.
- Examples of the distillation method include thin film distillation and distillation using a packed tower.
- a polymerization inhibitor In the production method of the present invention, it is preferable to add a polymerization inhibitor and / or introduce oxygen into the reaction system in order to prevent concurrent polymerization reactions.
- a polymerization inhibitor a known substance can be used without any particular limitation.
- hydroquinone, hydroquinone monomethyl ether, di-t-butylhydroxytoluene, phenothiazine, N, N′-dinaphthyl-p-phenylenediamine and the like can be used alone. Or they can be used in combination.
- the water content of the charged raw material and the water content of the fraction were measured by the Karl Fischer moisture measurement method. The water content was determined.
- Water content (g) of the charged raw material weight of the charged raw material (g) ⁇ moisture content of the charged raw material (ppm)
- Moisture content of fraction (g) weight of fraction (g) ⁇ water content of fraction (ppm)
- Water content of reaction solution (ppm) ⁇ water content of raw material charged (g) ⁇ water content of fraction (g) ⁇ / weight of reaction solution (g) ⁇ 1000000
- the water content of the reaction liquid was determined by measuring the water content of the fraction returning to the reaction system through the molecular sieve by the Karl Fischer moisture measurement method.
- the correlation between the reaction time and the reduction rate can be estimated, and the reduction rate is calculated from the assumed reaction times of Examples 1 and 2 and Comparative Example 1 described later. Then, the gelation of the reaction solution was evaluated. If the reduction rate is less than 20 mol%, the reaction solution is easy to handle, and if it is 20 mol% or more, the reaction solution is difficult to handle.
- Example 1 In a 50 mL three-necked flask equipped with a reflux tower, dropping funnel, thermometer, fractionator and drying tube, 0.64 g (2 mmol) of N, N′-bis (salicylidene) ethylenediamine iron (II) and 1.04 g of isoprene glycol (10 mmol), 40 g (400 mmol) of methyl methacrylate, 0.08 g of phenothiazine, and 0.2 g of tridecane were added, and the flask was kept at 120 ° C. so that the internal temperature of the flask would be 100 to 105 ° C. under normal pressure stirring conditions.
- FIG. 1 shows the result of tracking the change with time.
- Example 2 The reaction was performed in the same manner as in Example 1 except that the water content of the reaction solution during the reaction was 585 ppm and the reaction time was 5 hours. Sampling the reaction solution after a certain time (0 hour, 1 hour, 2 hours, 3 hours, 5 hours) from the start of the reaction, quantitatively analyzing the sampled reaction solution according to Test Example 2, and tracking the change over time As shown in FIG.
- Example 1 From the result of Example 1, the reaction time assumed to obtain isoprene glycol dimethacrylate in a high yield of 99.9% or more is about 40 hours, and from the result of Example 2, it is assumed. The reaction time is about 100 hours. On the other hand, from the result of Comparative Example 1, the expected reaction time is about 350 hours.
- Table 1 shows the results of sampling the reaction solution after a certain time (3 hours, 5 hours, 7 hours, 9 hours, and 11 hours) from the start of the reaction, and performing gelation evaluation on the sampled reaction solution according to Test Example 3. .
- the conversion rate of isoprene glycol monomethacrylate and isoprene glycol dimethacrylate decreased after 7 hours from the start of the reaction, and the decrease rate at 11 hours after the start of the reaction was about 5 mol%. It became.
- Example 3 In a 50 mL three-necked flask equipped with a packed column with a side tube packed with 30 g of molecular sieve (4A), a condenser, a thermometer and a drying tube, 0.51 g (1) of N, N′-bis (salicylidene) ethylenediamine iron (II) .6 mmol), 4.16 g (40 mmol) of isoprene glycol, and 35 g of toluene, and placed in an oil bath in which the flask was set to 130 ° C. so that the internal temperature of the flask would be 110 to 112 ° C. under normal pressure stirring conditions.
- 4A molecular sieve
- 4A molecular sieve
- II ethylenediamine iron
- the water content of the reaction solution during the reaction was 0.1 ppm.
- the reaction solution after a certain time (0 hour, 1 hour, 2 hours, 3 hours, 5 hours, 7 hours) from the start of the reaction is sampled, the sampled reaction solution is quantitatively analyzed according to Test Example 1, and isoprene glycol to isoprene glycol.
- Table 2 shows the results of tracking the change over time in the conversion rate to dimethacrylate (mol%).
- Example 4 In a 100 mL three-necked flask equipped with a packed column with a side tube packed with 20 g of molecular sieve (4A), a condenser, a thermometer and a drying tube, 0.51 g (1) of N, N′-bis (salicylidene) ethylenediamine iron (II) .6 mmol), 4.16 g (40 mmol) of isoprene glycol, 80 g (800 mmol) of methyl methacrylate, 0.16 g of phenothiazine, and 0.8 g of tridecane, and the internal temperature of the flask was adjusted to 100 to 105 under normal pressure stirring conditions.
- the flask was immersed in an oil bath set at 120 ° C. so as to be at 0 ° C., and the reaction was carried out for 7 hours while returning all the distillate distilling through the molecular sieve to return to the reaction system.
- the water content of the reaction solution during the reaction was 0.3 ppm.
- the reaction solution after a certain time (0 hour, 1 hour, 2 hours, 3 hours, 5 hours, 7 hours) from the start of the reaction is sampled, the sampled reaction solution is quantitatively analyzed according to Test Example 1, and isoprene glycol to isoprene glycol.
- Table 2 shows the results of tracking the change over time in the conversion rate to dimethacrylate (mol%).
- the alcohol compound having a tertiary hydroxyl group can be obtained by keeping the water content of the reaction system (reaction liquid) for transesterification low within the range specified in the present application. It is necessary to carry out the transesterification reaction between benzene and alkyl (meth) acrylate more efficiently in a shorter time.
- the production method of the present invention comprises (meth) an alcohol compound having a tertiary hydroxyl group, preferably a polyhydric alcohol compound having a tertiary hydroxyl group and having a primary hydroxyl group and / or a secondary hydroxyl group.
- An acrylic ester compound can be produced efficiently and inexpensively in one pot. Therefore, the production method of the present invention is useful for producing a large amount of (meth) acrylic acid ester of an alcohol compound having a tertiary hydroxyl group on an industrial scale.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明の製造方法においては、前記アルコール化合物の水酸基に対し、鉄原子0.1~20mol%に相当する量の前記エステル交換触媒が用いられることが好ましい。
本発明の製造方法においては、前記多価アルコール化合物は、イソプレングリコールが好ましい。
本発明の製造方法においては、前記(メタ)アクリル酸エステル化合物はイソプレングリコールのジ(メタ)アクリル酸エステルであることが好ましい。
前記一般式(3)で表される化合物としては、例えば、イソプレングリコール、4-メチル-2,4-ペンタンジオール、5-メチル-3,5-ヘキサンジオール、6-メチル-4,6-ヘプタンジオール、7-メチル-5,7-オクタンジオール、4-メチル-1,4-ペンタンジオール、5-メチル-1,5-ヘキサンジオール、6-メチル-1,6-ヘプタンジオール、3-メチル-1,3-ペンタンジオール、3-メチル-1,3-ヘキサンジオール、3-プロピル-1,3-ヘキサンジオール、3-エチル-1,3-ヘプタンジオール、3-メチル-1,3-ノナンジオール、4-メチル-1,4-ヘキサンジオール、5-メチル-1,5-ヘプタンジオール、6-メチル-1,6-オクタンジオールなどが挙げられる。
前記式(1)又は式(2)で表される配位子としては、例えば、N,N’-ビス(サリチリデン)エチレンジアミン、N,N’-ビス(サリチリデン)オルトフェニレンエチレンジアミン、N,N’-ビス(1-メチル-3-オキソブチリデン)-4-メチルオルトフェニレンエチレンジアミン等が挙げられる。
本発明の製造方法では、例えば、目的物がイソプレングリコールジメタクリレートの場合には、原料の第3級水酸基を有するアルコール化合物としてイソプレングリコール、(メタ)アクリル酸アルキルとしてメタクリル酸メチルが好適に用いられる。
フィルター濾過した反応液をガスクロマトグラフィーで分析し、トリデカンを内部標準として、イソプレングリコール、イソプレングリコールモノメタクリレート、イソプレングリコールジメタクリレートを定量した。
装置:GC-2014(島津製作所社製)
カラム:DB-1 0.25mmφ×30mm、膜厚0.25μm(アジレント社製)
インジェクション温度:280℃
カラム温度:50℃で5分保持、10℃/分で280℃まで昇温、その後、3分間保持。
FID検出器温度:280℃
キャリアガス:ヘリウム、カラム流速1.5mL/分
注入量:0.2μL
実施例1、2及び比較例1においては、カールフィッシャー水分測定法により、仕込んだ原料の水分量と留分の水分量を測定し、以下の式に従って、反応液の含水率を求めた。
仕込んだ原料の水分量(g)=仕込んだ原料の重量(g)×仕込んだ原料の含水率(ppm)
留分の水分量(g)=留分の重量(g)×留分の含水率(ppm)
反応液の含水率(ppm)={仕込んだ原料の水分量(g)-留分の水分量(g)}/反応液の重量(g)×1000000
実施例3及び4においては、カールフィッシャー水分測定法により、モレキュラーシーブを通して、反応系に戻る留分の水分量を測定し、反応液の含水率を求めた。
装置:CA-100(三菱化学社製)
陽極液:アクアミクロンAX(三菱化学社製)
陰極液:アクアミクロンCXU(三菱化学社製)
注入量: 0.2g
反応液のゲル化評価は、反応液の粘性が高まることによって、反応終了後の反応器からの取り出しや、蒸留における反応液の取り扱いが容易であるか否かの指標である。具体的には、後述する参考例の系で、試験例1に従って反応液を分析し、イソプレングリコールモノメタクリレート及びイソプレングリコールジメタクリレートの各転化率を測定することで、イソプレングリコールモノメタクリレートとイソプレングリコールジメタクリレートの理論的な総転化率100mol%と、測定された総添加率とを比較し、その差を減少率として算出した。前記減少率を反応時間に対してプロットすることにより、反応時間と減少率の相関を見積もることができ、後述する実施例1、2及び比較例1の想定される反応時間から前記減少率を算出し、反応液のゲル化評価を実施した。前記減少率が20mol%未満であれば、反応液の取り扱いは容易であり、20mol%以上であれば、反応液の取り扱いは困難である。
還流塔、滴下ロート、温度計、分留受器及び乾燥管を取り付けた50mL三口フラスコに、N,N’-ビス(サリチリデン)エチレンジアミン鉄(II)0.64g(2mmol)、イソプレングリコール1.04g(10mmol)、メタクリル酸メチル40g(400mmol)、フェノチアジン0.08g、トリデカン0.2gを仕込んだ後、常圧攪拌条件下で、フラスコの内温を100~105℃になるようにフラスコを120℃に設定したオイルバスに浸漬し、分留受器に留出してくる留分を取り出しつつ、留分と同体積のメタクリル酸メチルを連続滴下しながら、15時間反応を行った。なお、反応中の反応液の含水率は66ppmであった。反応開始から一定時間(0時間、1時間、2時間、3時間、5時間、7時間、11時間、15時間)後の反応液をサンプリングし、サンプリングした反応液を試験例2に従って定量分析し、その経時変化を追跡した結果を図1に示す。
反応中の反応液の含水率が585ppmであったこと、反応時間を5時間としたこと以外は、実施例1と同様にして反応を行った。反応開始から一定時間(0時間、1時間、2時間、3時間、5時間)後の反応液をサンプリングし、サンプリングした反応液を試験例2に従って定量分析し、その経時変化を追跡した結果を図2に示す。
反応中の反応液の含水率が1818ppmであったこと、反応時間を5時間としたこと以外は、実施例1と同様にして反応を行った。反応開始から一定時間(0時間、1時間、2時間、3時間、5時間)後の反応液をサンプリングし、サンプリングした反応液を試験例2に従って定量分析し、その経時変化を追跡した結果を図3に示す。
モレキュラーシーブ(4A)20gを充填した側管付充填塔、冷却器、温度計及び乾燥管を取り付けた50mL三口フラスコに、N,N’-ビス(サリチリデン)エチレンジアミン鉄(II)0.64g(2mmol)、イソプレングリコール1.04g(10mmol)、メタクリル酸メチル40g(400mmol)、フェノチアジン0.08g、トリデカン0.2gを仕込んだ後、常圧攪拌条件下で、フラスコの内温を100~105℃になるようにフラスコを120℃に設定したオイルバスに浸漬し、モレキュラーシーブを通して、留出してくる留分を全還流させ、反応系に戻しながら、11時間反応を行った。反応開始から一定時間(3時間、5時間、7時間、9時間、11時間)後の反応液をサンプリングし、サンプリングした反応液を試験例3に従ってゲル化評価を実施した結果を表1に示す。
モレキュラーシーブ(4A)30gを充填した側管付充填塔、冷却器、温度計及び乾燥管を取り付けた50mL三口フラスコに、N,N’-ビス(サリチリデン)エチレンジアミン鉄(II)0.51g(1.6mmol)、イソプレングリコール4.16g(40mmol)、トルエン35gを仕込んだ後、常圧攪拌条件下で、フラスコの内温を110~112℃になるようにフラスコを130℃に設定したオイルバスに浸漬し、留出してくる留分をモレキュラーシーブに通して4時間全還流させることにより、N,N’-ビス(サリチリデン)エチレンジアミン鉄(II)を溶解し、触媒-イソプレングリコール-トルエン溶液を得た。このトルエン溶液からトルエンを減圧留去し、黒赤色の触媒-イソプレングリコール溶液を得た。
モレキュラーシーブ(4A)20gを充填した側管付充填塔、冷却器、温度計及び乾燥管を取り付けた100mL三口フラスコに、N,N’-ビス(サリチリデン)エチレンジアミン鉄(II)0.51g(1.6mmol)、イソプレングリコール4.16g(40mmol)、メタクリル酸メチル80g(800mmol)、フェノチアジン0.16g、トリデカン0.8gを仕込んだ後、常圧攪拌条件下で、フラスコの内温を100~105℃になるようにフラスコを120℃に設定したオイルバスに浸漬し、モレキュラーシーブを通して、留出してくる留分を全還流させ、反応系に戻しながら、7時間反応を行った。なお、反応中の反応液の含水率は0.3ppmであった。反応開始から一定時間(0時間、1時間、2時間、3時間、5時間、7時間)後の反応液をサンプリングし、サンプリングした反応液を試験例1に従って定量分析し、イソプレングリコールからイソプレングリコールジメタクリレートへの転化率(mol%)の経時変化を追跡した結果を表2に示す。
Claims (11)
- 第3級水酸基を有するアルコール化合物を、下記一般式(1)又は一般式(2)で表される配位子が配位された鉄の錯体からなるエステル交換触媒を用いて、(メタ)アクリル酸アルキルとエステル交換反応を行う工程(I)を有する(メタ)アクリル酸エステル化合物の製造方法であって、エステル交換反応系内の含水率が1000ppm以下であることを特徴とする(メタ)アクリル酸エステル化合物の製造方法。
- 前記アルコール化合物の水酸基に対し、鉄原子0.1~20mol%に相当する量の前記エステル交換触媒が用いられる請求項1に記載の製造方法。
- 前記アルコール化合物が、第3級水酸基を有し、かつ、第1級水酸基及び/又は第2級水酸基を有する多価アルコール化合物である請求項1又は2に記載の製造方法。
- 前記多価アルコール化合物がイソプレングリコールである請求項1から4のいずれかに記載の製造方法。
- 原料である第3級水酸基を有するアルコール化合物が第1級水酸基及び/又は第2級水酸基を有する多価アルコール化合物であり、得られる(メタ)アクリル酸エステル化合物が、該多価アルコール化合物に含まれる全ての水酸基がエステル化された多価エステル化合物である請求項1から5のいずれかに記載の製造方法。
- 前記(メタ)アクリル酸エステル化合物がイソプレングリコールのジ(メタ)アクリル酸エステルである請求項1から7のいずれかに記載の製造方法。
- 工程(I)に用いるエステル交換触媒をあらかじめ脱水する工程(II)を有する請求項1から8のいずれかに記載の製造方法。
- 前記工程(II)が、前記アルコール化合物と共存下、水の共沸溶媒を用いて、前記エステル交換触媒を脱水する方法である請求項9に記載の製造方法。
- さらに工程(I)で得られた反応液を蒸留する工程(III)を有する請求項1から10のいずれかに記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/557,232 US20180050975A1 (en) | 2015-03-12 | 2016-03-07 | Method for producing (meth) acrylate ester compounds |
EP16761700.0A EP3269701B1 (en) | 2015-03-12 | 2016-03-07 | Method for producing (meth)acrylate ester compounds |
KR1020177026248A KR102443104B1 (ko) | 2015-03-12 | 2016-03-07 | (메타)아크릴산 에스테르 화합물의 제조 방법 |
CN201680015054.2A CN107428664B (zh) | 2015-03-12 | 2016-03-07 | (甲基)丙烯酸酯化合物的制造方法 |
JP2017505321A JP6633612B2 (ja) | 2015-03-12 | 2016-03-07 | (メタ)アクリル酸エステル化合物の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-049344 | 2015-03-12 | ||
JP2015049344 | 2015-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016143732A1 true WO2016143732A1 (ja) | 2016-09-15 |
Family
ID=56880061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056954 WO2016143732A1 (ja) | 2015-03-12 | 2016-03-07 | (メタ)アクリル酸エステル化合物の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180050975A1 (ja) |
EP (1) | EP3269701B1 (ja) |
JP (1) | JP6633612B2 (ja) |
KR (1) | KR102443104B1 (ja) |
CN (1) | CN107428664B (ja) |
TW (1) | TW201641480A (ja) |
WO (1) | WO2016143732A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017226619A (ja) * | 2016-06-22 | 2017-12-28 | 株式会社クラレ | (メタ)アクリル酸エステル化合物の製造方法 |
JP2018104360A (ja) * | 2016-12-27 | 2018-07-05 | 株式会社クラレ | エステルの製造方法 |
JP2021526518A (ja) * | 2019-05-09 | 2021-10-07 | エルジー・ケム・リミテッド | (メタ)アクリル酸エステル系化合物製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020226271A1 (ko) * | 2019-05-09 | 2020-11-12 | 주식회사 엘지화학 | (메트)아크릴산 에스테르계 화합물 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55143935A (en) * | 1979-03-28 | 1980-11-10 | Kyowa Gas Chem Ind Co Ltd | Ester exchange |
US4904814A (en) * | 1987-02-13 | 1990-02-27 | Ciba-Geigy Corporation | Process for the preparation of tert-alkyl esters |
JPH06340584A (ja) * | 1993-06-01 | 1994-12-13 | Nippon Oil & Fats Co Ltd | t−ブチル(メタ)アクリレートの製造法 |
JPH07133252A (ja) * | 1993-10-21 | 1995-05-23 | Nippon Oil & Fats Co Ltd | 第三級アルコールのメタクリル酸エステルの製造法 |
JP2004035728A (ja) * | 2002-07-03 | 2004-02-05 | Mitsubishi Gas Chem Co Inc | ジ(メタ)アクリレートモノマー、及びその製造法 |
JP2004091613A (ja) * | 2002-08-30 | 2004-03-25 | Mitsubishi Rayon Co Ltd | 架橋性モノマー、およびそれを用いた熱可塑性架橋ポリマー |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6434947A (en) * | 1987-07-30 | 1989-02-06 | Kyowa Gas Chem Ind Co Ltd | Acrylic acid esters |
US5072027A (en) * | 1988-10-06 | 1991-12-10 | Hitachi Chemical Company, Ltd. | Process for producing methacrylic acid esters |
JP4818103B2 (ja) * | 2004-06-17 | 2011-11-16 | 旭化成ケミカルズ株式会社 | ジアルキルカーボネートとジオールの製造方法 |
FR2890961B1 (fr) * | 2005-09-21 | 2007-11-23 | Inst Francais Du Petrole | Procede perfectionne de fabrication d'esters ethyliques a partir de corps gras d'origine naturelle |
GB201009969D0 (en) * | 2010-06-15 | 2010-07-21 | Ecosynth Bvba | Transesterification process using mixed salt acetylacetonates catalysts |
TW201204464A (en) * | 2010-07-23 | 2012-02-01 | Military Academy | Catalyst for esterification and polyesterification, using method and product thereof |
JP6137766B2 (ja) * | 2014-03-28 | 2017-05-31 | 国立大学法人九州大学 | 鉄触媒によるエステル交換反応 |
-
2016
- 2016-03-07 EP EP16761700.0A patent/EP3269701B1/en active Active
- 2016-03-07 US US15/557,232 patent/US20180050975A1/en not_active Abandoned
- 2016-03-07 JP JP2017505321A patent/JP6633612B2/ja active Active
- 2016-03-07 WO PCT/JP2016/056954 patent/WO2016143732A1/ja active Application Filing
- 2016-03-07 KR KR1020177026248A patent/KR102443104B1/ko active IP Right Grant
- 2016-03-07 CN CN201680015054.2A patent/CN107428664B/zh active Active
- 2016-03-10 TW TW105107282A patent/TW201641480A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55143935A (en) * | 1979-03-28 | 1980-11-10 | Kyowa Gas Chem Ind Co Ltd | Ester exchange |
US4904814A (en) * | 1987-02-13 | 1990-02-27 | Ciba-Geigy Corporation | Process for the preparation of tert-alkyl esters |
JPH06340584A (ja) * | 1993-06-01 | 1994-12-13 | Nippon Oil & Fats Co Ltd | t−ブチル(メタ)アクリレートの製造法 |
JPH07133252A (ja) * | 1993-10-21 | 1995-05-23 | Nippon Oil & Fats Co Ltd | 第三級アルコールのメタクリル酸エステルの製造法 |
JP2004035728A (ja) * | 2002-07-03 | 2004-02-05 | Mitsubishi Gas Chem Co Inc | ジ(メタ)アクリレートモノマー、及びその製造法 |
JP2004091613A (ja) * | 2002-08-30 | 2004-03-25 | Mitsubishi Rayon Co Ltd | 架橋性モノマー、およびそれを用いた熱可塑性架橋ポリマー |
Non-Patent Citations (1)
Title |
---|
See also references of EP3269701A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017226619A (ja) * | 2016-06-22 | 2017-12-28 | 株式会社クラレ | (メタ)アクリル酸エステル化合物の製造方法 |
JP2018104360A (ja) * | 2016-12-27 | 2018-07-05 | 株式会社クラレ | エステルの製造方法 |
JP2021526518A (ja) * | 2019-05-09 | 2021-10-07 | エルジー・ケム・リミテッド | (メタ)アクリル酸エステル系化合物製造方法 |
JP7130303B2 (ja) | 2019-05-09 | 2022-09-05 | エルジー・ケム・リミテッド | (メタ)アクリル酸エステル系化合物製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6633612B2 (ja) | 2020-01-22 |
CN107428664A (zh) | 2017-12-01 |
CN107428664B (zh) | 2020-07-10 |
KR20170128338A (ko) | 2017-11-22 |
TW201641480A (zh) | 2016-12-01 |
JPWO2016143732A1 (ja) | 2017-12-28 |
KR102443104B1 (ko) | 2022-09-14 |
EP3269701A4 (en) | 2018-03-28 |
EP3269701A1 (en) | 2018-01-17 |
US20180050975A1 (en) | 2018-02-22 |
EP3269701B1 (en) | 2019-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016143732A1 (ja) | (メタ)アクリル酸エステル化合物の製造方法 | |
TWI731927B (zh) | 從異構物混合物製造單體之方法 | |
JP7139329B2 (ja) | ポリシロキサン(メタ)アクリレートの製造のための非毒性触媒 | |
CN103153463A (zh) | 回收和再循环钌均相催化剂的方法 | |
JP2014237723A5 (ja) | ||
JP2020536080A (ja) | ジメチルアミノアルキル(メタ)アクリレートの製造方法 | |
WO2018074305A1 (ja) | ジオール、ジオールの製造方法、ジ(メタ)アクリレートおよびジ(メタ)アクリレートの製造方法 | |
EP3668835A1 (en) | Method for the preparation of a monothiocarbonate compound | |
CN103304516A (zh) | 一种制备β-氨基酮、酯、腈和酰胺衍生物的方法 | |
JP6866371B2 (ja) | 鉄錯体の製造方法及び鉄錯体を用いたエステル化合物の製造方法 | |
Fan et al. | Progressive Studies on the Novel Samarium‐Catalyzed Diastereoselective Tandem Semipinacol Rearrangement/Tishchenko Reduction of Secondary α‐Hydroxy Epoxides | |
JP5523076B2 (ja) | ビニルイミダゾール系化合物の製造方法 | |
JPWO2018221314A1 (ja) | 重合禁止剤および当該重合禁止剤を用いた(メタ)アクリル酸エステルの製造方法、精留物 | |
JP5519017B2 (ja) | アミノアルキルアルコキシシランの製造方法 | |
JP6260530B2 (ja) | グリシジル(メタ)アクリレートの製造方法 | |
JP7167538B2 (ja) | エステル組成物、(メタ)アクリレート組成物、エステル組成物の製造方法、(メタ)アクリレート組成物の製造方法 | |
JP2017226619A (ja) | (メタ)アクリル酸エステル化合物の製造方法 | |
JP2016210690A (ja) | (メタ)アクリル酸エステル化合物の製造方法 | |
JP6723915B2 (ja) | エステルの製造方法 | |
KR101098519B1 (ko) | 시클로펜타디엔 유도체 제조용 조성물 및 시클로펜타디엔유도체의 제조방법 | |
JP6085032B2 (ja) | アルキルスズ化合物 | |
JP5315810B2 (ja) | シクロプロパンカルボン酸エステル類の製造方法 | |
US8431716B2 (en) | Preparation of alkylimidazolidone (meth)acrylates in water | |
JP6350910B2 (ja) | アジドアミン誘導体の製造方法 | |
JP2018020993A (ja) | ジオキソラン(メタ)アクリル酸エステルの製造方法、ジオキソラン(メタ)アクリル酸エステル、及びその組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16761700 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017505321 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15557232 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016761700 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177026248 Country of ref document: KR Kind code of ref document: A |