WO2016143120A1 - 交流回転機の制御装置および電動パワーステアリングの制御装置 - Google Patents

交流回転機の制御装置および電動パワーステアリングの制御装置 Download PDF

Info

Publication number
WO2016143120A1
WO2016143120A1 PCT/JP2015/057312 JP2015057312W WO2016143120A1 WO 2016143120 A1 WO2016143120 A1 WO 2016143120A1 JP 2015057312 W JP2015057312 W JP 2015057312W WO 2016143120 A1 WO2016143120 A1 WO 2016143120A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
detected
detection timing
rotating machine
Prior art date
Application number
PCT/JP2015/057312
Other languages
English (en)
French (fr)
Inventor
古川 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/057312 priority Critical patent/WO2016143120A1/ja
Priority to JP2017504524A priority patent/JP6324615B2/ja
Priority to US15/551,649 priority patent/US10566920B2/en
Priority to EP15884610.5A priority patent/EP3270509A4/en
Priority to CN201580077614.2A priority patent/CN107431454B/zh
Publication of WO2016143120A1 publication Critical patent/WO2016143120A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference

Definitions

  • the present invention relates to a control device for an AC rotating machine and a control device for an electric power steering capable of reducing a current detection error and a torque ripple caused thereby.
  • a conventional motor control device In a conventional motor control device, the maximum phase switching noise that makes current detection impossible is mixed into current detection of two phases other than the non-detectable phase by pasting the duty of the current non-detectable phase to 100%. Is preventing. Further, this conventional motor control device estimates the phase current value of the undetectable phase based on the detected phase current values of the two phases other than the undetectable phase (see, for example, Patent Document 1).
  • the prior art has the following problems.
  • the motor control device disclosed in Patent Document 1 has a high potential side switching element when the on-time of the maximum phase low potential side switching element is smaller than the phase current detection time ts. Is kept on and the low-potential side switching element is kept off, so that switching noise is not mixed into the phase current values of the two phases other than the maximum phase.
  • Patent Document 1 in order to secure the phase current detection time ts, it is necessary to detect the phase current after ts / 2 from the center of one carrier cycle. For example, if Dth is 90% and the modulation rate is about 100%, mixing of noise can be prevented by using Patent Document 1.
  • the present invention has been made to solve the above-described problems, and even when only one phase is detectable, the AC rotation that can reduce the current detection error and the torque ripple caused thereby. It is an object to obtain a control device for a machine and a control device for an electric power steering.
  • the control device for an AC rotating machine includes an AC rotating machine having an x-phase winding of three or more phases, an angle detector that detects an angle of the AC rotating machine, and a phase of each phase of the x-phase winding.
  • a current detector for detecting the current a voltage command calculator for performing feedback control so that the deviation between the current detected by the current detector and the current command is zero for each phase, and calculating an x-phase voltage command;
  • a power converter that applies a voltage to the x-phase winding based on the x-phase voltage command, and the current detector detects a current of at least one of the x-phases at the current detection timing.
  • the x-phase detection current acquired at the past current detection timing and the one-phase that could be detected at the current current detection timing Detection current of Detection at the current detection timing based on the angle change amount which is the difference between the angle of the AC motor at the past current detection timing detected by the degree detector and the angle of the AC motor at the current detection timing.
  • the possible (x-1) phase current is estimated by calculation.
  • the present invention when the current of the (x-1) phase among the x phases cannot be detected, the one phase detection current that can be detected this time, the x phase detection current that has been acquired in the past, From the current angle change amount ⁇ until this time, an undetectable (x ⁇ 1) phase current can be calculated to obtain a highly accurate estimated value.
  • a control device for an AC rotating machine and a control device for an electric power steering capable of reducing a current detection error and a torque ripple caused thereby.
  • Embodiment 1 of this invention It is a figure which shows the whole structure of the control apparatus of the AC rotary machine in Embodiment 1 of this invention.
  • Embodiment 1 of this invention it is the figure which showed an example of the concrete modulation system.
  • Embodiment 1 of this invention it is the figure which illustrated the change of Iq with respect to 1 period of electrical angles.
  • Embodiment 1 of this invention it is the figure which showed the change of the three-phase electric current with respect to 1 period of electrical angles.
  • Embodiment 1 of this invention it is explanatory drawing at the time of reducing the error of the electric current detection value which generate
  • Embodiment 2 of this invention it is the figure which compared the change of the approximation error with respect to angle variation
  • FIG. 1 is a diagram showing an overall configuration of a control device for an AC rotating machine according to Embodiment 1 of the present invention.
  • an AC rotating machine 1 is a permanent magnet type synchronous rotating machine having three-phase windings U, V, and W.
  • the AC rotating machine 1 may be a field winding type same machine rotating machine.
  • the DC power supply 10 outputs DC voltage Vdc to power converter 5 described later.
  • the DC power supply 10 includes all devices that output a DC voltage, such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier.
  • the angle detector 2 is a position detector such as a Hall element, resolver, or encoder, and detects the rotational position ⁇ of the AC rotating machine 1. Further, instead of the angle detector 2, a technique for estimating the angle based on a detected current detected by a current detector 3 described later may be used.
  • the current detector 3 calculates detected currents Iu, Iv, and Iw from currents Iu_raw, Iv_raw, and Iw_raw detected using a current detector such as a shunt resistor or a Hall element.
  • the voltage command calculator 4 calculates voltage commands Vu, Vv, and Vw for driving the AC rotating machine 1 and outputs them to the power converter 5.
  • the voltage command calculator 4 sets the current command of the AC rotating machine 1 as a control command as a calculation method of the voltage commands Vu, Vv, Vw, and controls the detected currents Iu, Iv, Iw output from the current detector 3.
  • current feedback control for calculating the voltage commands Vu, Vv, Vw by proportional integral control can be used.
  • the power converter 5 performs pulse width modulation (PWM modulation) on the basis of the voltage commands Vu, Vv, and Vw output from the voltage command calculator 4, so that the pulse width corresponding to the voltage commands Vu, Vv, and Vw The switching signals Qup to Qwn having are generated.
  • PWM modulation pulse width modulation
  • the power converter 5 converts the DC voltage Vdc input from the DC power supply 10 by turning on and off the semiconductor switches Sup to Swn based on the generated switching signals Qup to Qwn, thereby converting the power of the AC rotating machine 1 to 3.
  • a voltage is applied to the phase windings U, V, W.
  • the switches Sup to Swn a switch in which a semiconductor switch such as an IGBT, a bipolar transistor, or a MOS power transistor and a diode are connected in antiparallel can be used.
  • the switching signals Qup to Qwn mean the following signals, respectively.
  • Switching signal Qup On-off signal of U-phase high potential side switching element
  • Sup Switching signal Qun On-off signal of U-phase low potential side switching element
  • Sun Switching signal Qvp On-off signal of V-phase high potential side switching element
  • Switching signal Qvn V ON / OFF signal of phase low potential side switching element
  • Switching signal Qwp ON / OFF signal of W phase high potential side switching element Swp
  • Switching signal Qwn ON / OFF signal of W phase low potential side switching element Swn
  • the voltage supplied to the power converter 5 is determined by the DC voltage Vdc. For this reason, when the PWM conversion is performed, the power converter 5 uses various known modulation methods in order to improve the voltage utilization rate.
  • FIG. 2 is a diagram showing an example of a specific modulation scheme in Embodiment 1 of the present invention.
  • the horizontal axis represents the electrical angle [deg]
  • the vertical axis represents the ratio to the DC voltage Vdc (hereinafter referred to as Duty)
  • Du is the U phase Duty
  • Dv is the V phase Duty
  • Dw is the W phase.
  • Each Duty is represented.
  • the following equation (8) can be obtained from the above equation (3) and the above equation (7). That is, when the electrical angle changes by ⁇ using the three-phase detection currents Iu0, Iv0, and Iw0 acquired in the past at the electrical angle ⁇ 0 and the one-phase current Iu1 that can be detected when the electrical angle changes by ⁇ .
  • the undetectable two-phase currents Iv1 and Iw1 can be calculated by the following equation (8).
  • T represents an output torque
  • Kt represents a torque constant
  • Iq represents a q-axis current
  • the current is a single phase that can detect Iv at 30 deg, Iw at 150 deg, and Iu at 270 deg.
  • two-phase currents other than the maximum phase can be detected.
  • FIG. 3 is a diagram illustrating a change in Iq with respect to one cycle of electrical angle in the first embodiment of the present invention. As shown in FIG. 3, when Iq monotonously increases during one electrical angle cycle, a state where current is detected every time 1 deg changes is considered.
  • the angle between the voltage vector and the current vector on the dq axis varies depending on the inductance, magnetic flux, rotation speed, etc.
  • the phase angles of the voltage vector and the current vector are equal.
  • FIG. 4 is a diagram showing changes in three-phase current with respect to one cycle of electrical angle in the first embodiment of the present invention.
  • the phase angles of the voltage vector and the current vector are equal, the three-phase currents Iu, Iv, Iw change as shown in FIG.
  • FIG. 5 is an explanatory diagram relating to an error of a current detection value that occurs at the timing of one-phase detection that is three times in one electrical angle cycle in the first embodiment of the present invention.
  • the detected value is only shifted, but the voltage command calculator 4 controls using Iq including this error.
  • the voltage command is shifted and the actual Iq is deviated from the expected value.
  • an error of Iq appears as a torque ripple with a third electrical angle.
  • FIG. 6 shows a case where the error of the current detection value generated at the timing of the one-phase detection three times in one electrical angle cycle is reduced by performing the arithmetic processing in the first embodiment of the present invention. It is explanatory drawing of.
  • the one-phase current that can be detected this time the three-phase current acquired in the past, and the angle from the past to this time
  • the error that occurs in Iq is almost zero, as shown in FIG.
  • the detection obtained this time is detected.
  • the three-phase detection currents Ia_old, Ib_old, Ic_old acquired in the past and the angle change ⁇ from the past to the present, the undetectable two-phase currents Ib, Ic It can be estimated by calculation.
  • the case of two-phase detection is taken as an example, and the case where, for example, the one before 1 deg is used as the three-phase detection current acquired in the past has been described.
  • the estimation errors of the detection currents of the two phases that cannot be detected are accumulated.
  • control device for an AC rotating machine can be applied to electric power steering using an AC rotating machine that generates torque that assists the steering torque of the steering system.
  • an electric power steering control device capable of constituting a steering system with a small torque ripple and noise.
  • Embodiment 2 the above formula (5) to which the approximate expression of the trigonometric function related to the minute angle change amount is applied in the estimation calculation is used. However, in the high rotation range where the angle change is large, ⁇ increases and the approximation error increases.
  • FIG. 7 is a diagram comparing changes in the approximation error with respect to the angle change amount ⁇ when Expressions (5) and (11) are used in Embodiment 2 of the present invention, and the horizontal axis indicates ⁇ [deg. ], The vertical axis is an approximation error.
  • 10 deg is changed, an approximation error of 1.5% is included when the above equation (5) is applied, but the approximation error is greatly reduced by using the approximation of the above equation (11).
  • the approximate expression may be made higher-order, such as the following expression (13), in which SIN is also approximated considering the second term. .
  • FIG. 8 is a diagram comparing changes in the approximation error with respect to the angle change amount ⁇ when Expressions (11) and (13) are used in Embodiment 2 of the present invention, and the horizontal axis indicates ⁇ [deg. ], The vertical axis is an approximation error.
  • the detection obtained this time Based on the possible one-phase detection current Ia, the three-phase detection currents Ia_old, Ib_old, Ic_old acquired in the past, and the angle change amount ⁇ from the past to the present, it is impossible to detect using the above equation (12)
  • the two-phase currents Ib and Ic can be calculated.
  • Embodiment 3 In the first embodiment and the second embodiment, the control device for the AC rotating machine having the three-phase winding has been described.
  • the AC rotating machine to be applied is generalized as an AC rotating machine having an x-phase winding (x is a natural number of 3 or more), and then the estimation calculation according to the present invention is performed. A method for applying the processing will be specifically described.
  • FIG. 9 is a diagram showing an overall configuration of a control device for an AC rotating machine according to Embodiment 3 of the present invention.
  • an AC rotating machine 1a is a permanent magnet type synchronous rotating machine having an x-phase winding.
  • the AC rotating machine 1a may be a field winding type same machine rotating machine.
  • the DC power supply 10 outputs DC voltage Vdc to power converter 5a described later.
  • the DC power supply 10 includes all devices that output a DC voltage, such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier.
  • the angle detector 2 is a position detector such as a Hall element, a resolver, or an encoder, and detects the rotational position ⁇ of the AC rotating machine 1a. Further, instead of the angle detector 2, a technique for estimating the angle based on a detected current detected by a current detector 3a described later may be used.
  • the current detector 3a calculates detected currents I1, I2, ..., Ix from currents I1_raw, I2_raw, ..., Ix_raw detected using a current detector such as a shunt resistor or a Hall element.
  • the voltage command calculator 4a calculates voltage commands V1, V2,..., Vx for driving the AC rotating machine 1 and outputs them to the power converter 5a.
  • the voltage command calculator 4a sets the current command of the AC rotating machine 1a as a control command as a calculation method of the voltage commands V1, V2,..., Vx, and detects the detected currents I1, I2,.
  • current feedback control for calculating the voltage commands V1, V2,..., Vx by proportional-integral control can be used.
  • the power converter 5a performs pulse width modulation (PWM modulation) based on the voltage commands V1, V2,..., Vx output from the voltage command calculator 4a, so that the voltage commands V1, V2,. Switching signals Q1p to Qxn having corresponding pulse widths are generated.
  • PWM modulation pulse width modulation
  • the power converter 5a converts the DC voltage Vdc input from the DC power source 10 by turning on and off the semiconductor switches S1p to Sxn based on the generated switching signals Q1p to Qxn, thereby converting the x of the AC rotating machine 1a. A voltage is applied to each of the phase windings.
  • semiconductor switches such as IGBTs, bipolar transistors, and MOS power transistors and diodes connected in antiparallel can be used.
  • the switching signals Q1p to Qxn mean the following signals, respectively.
  • Switching signal Q1p ON / OFF signal of first phase high potential side switching element S1p
  • Switching signal Q1n ON / OFF signal of first phase low potential side switching element S1n
  • Switching signal Q2p ON / OFF signal of second phase high potential side switching element S2p
  • Switching signal Q2n ON / OFF signal of second-phase low-potential side switching element S2n
  • Switching signal Qxp ON / OFF signal of x-phase high potential side switching element Sxp
  • Switching signal Qxn ON / OFF signal of x-phase low potential side switching element Sxn
  • I2 ′ is given by the following equation (18) according to the equations (16) and (17).
  • the detection current in 'of the other phase can be calculated in the same manner and is given by the following equation (19).
  • the current of (x ⁇ 1) phase among x phases cannot be detected.
  • the x-phase detection current acquired in the past, and the angle change amount ⁇ from the past to this time the current of the (x ⁇ 1) phase that cannot be detected Can be calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 3相以上であるx相巻線を有する交流回転機と、角度検出器と、電流検出器と、電圧指令演算器と、電力変換器とを備え、電流検出器は、今回の電流検出タイミングにおいて、x相のうちの少なくとも1相の電流を検出することができ、多くとも(x-1)相の電流が検出不可能な場合には、過去の電流検出タイミングにおいて取得したx相検出電流と、今回の電流検出タイミングにおいて検出することができた1相の検出電流と、過去から今回の電流検出タイミングまでの角度変化量と、に基づいて、今回の電流検出タイミングにおいて検出不可能であった(x-1)相の電流を演算により推定する。

Description

交流回転機の制御装置および電動パワーステアリングの制御装置
 本発明は、電流検出誤差およびそれにより生じるトルクリプルを低減することのできる交流回転機の制御装置および電動パワーステアリングの制御装置に関するものである。
 従来のモータ制御装置においては、電流検出不能相のDutyを100%に張り付けることにより、電流検出が不能となる最大相のスイッチングノイズが、検出不能相以外の2相の電流検出に混入することを防止している。また、この従来のモータ制御装置は、検出不能相の相電流値を、検出不能相以外の2相の相電流検出値に基づいて推定している(例えば、特許文献1参照)。
特許5396948号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1のモータ制御装置は、相電流検出時間tsを確保するために、最大相の低電位側スイッチング素子のオン時間が、相電流検出時間tsよりも小さい場合には、高電位側スイッチング素子をオン、低電位側スイッチング素子をオフとしたままとすることにより、最大相以外の2相の相電流値にスイッチングノイズが混入しないようにしている。
 特許文献1の図4によると、相電流検出時間tsを確保するためには、キャリア1周期の中央よりts/2だけ後ろで、相電流を検出する必要がある。例えば、Dthを90%としたときに、変調率が100%程度の場合であれば、特許文献1のようにすることでノイズの混入を防止できる。
 しかしながら、変調率が増加してきた場合には、中間相のDUTYがDthを超えてくる。このため、電流検出タイミングにおいて、低電位側スイッチング素子がオン状態となっているのは、最小相のみとなり、検出可能相が1相のみとなる。この場合には、検出可能2相から残り1相を推定する特許文献1の方法は、適用できない。
 本発明は、前記のような課題を解決するためになされたものであり、検出可能相が1相のみとなった場合にも、電流検出誤差およびそれにより生じるトルクリプルを低減することのできる交流回転機の制御装置および電動パワーステアリングの制御装置を得ることを目的とする。
 本発明に係る交流回転機の制御装置は、3相以上であるx相巻線を有する交流回転機と、交流回転機の角度を検出する角度検出器と、x相巻線のそれぞれの相の電流を検出する電流検出器と、それぞれの相について、電流検出器による検出電流と電流指令との偏差が零となるようにフィードバック制御を行い、x相電圧指令を演算する電圧指令演算器と、x相電圧指令に基づいて、x相巻線に電圧を印加する電力変換器とを備え、電流検出器は、今回の電流検出タイミングにおいて、x相のうちの少なくとも1相の電流を検出することができ、多くとも(x-1)相の電流が検出不可能な場合には、過去の電流検出タイミングにおいて取得したx相検出電流と、今回の電流検出タイミングにおいて検出することができた1相の検出電流と、角度検出器によって検出された過去の電流検出タイミングにおける交流電動機の角度と今回の電流検出タイミングにおける交流電動機の角度との差分である角度変化量と、に基づいて、今回の電流検出タイミングにおいて検出不可能であった(x-1)相の電流を演算により推定するものである。
 本発明によれば、x相のうち(x-1)相の電流が検出不可能な場合に、今回取得の検出可能な1相の検出電流と、過去に取得したx相検出電流と、過去から今回までの角度変化量Δθとに基づいて、検出不能な(x-1)相の電流を演算し、高精度な推定値を得ることができる構成を備えている。この結果、検出可能相が1相のみとなった場合にも、電流検出誤差およびそれにより生じるトルクリプルを低減することのできる交流回転機の制御装置および電動パワーステアリングの制御装置を得ることができる。
本発明の実施の形態1における交流回転機の制御装置の全体構成を示す図である。 本発明の実施の形態1において、具体的な変調方式の一例を示した図である。 本発明の実施の形態1において、電気角1周期に対するIqの変化を例示した図である。 本発明の実施の形態1において、電気角1周期に対する3相電流の変化を示した図である。 本発明の実施の形態1において、電気角1周期で3回ある1相検出のタイミングで発生する電流検出値の誤差に関する説明図である。 本発明の実施の形態1において、演算処理を行うことで、電気角1周期で3回ある1相検出のタイミングで発生する電流検出値の誤差を低減した場合の説明図である。 本発明の実施の形態2において、数式(5)、(11)を用いた場合の、角度変化量Δθに対する近似誤差の変化を比較した図である。 本発明の実施の形態2において、数式(11)、(13)を用いた場合の、角度変化量Δθに対する近似誤差の変化を比較した図である。 本発明の実施の形態3における交流回転機の制御装置の全体構成を示す図である。
 以下、本発明の交流回転機の制御装置および電動パワーステアリングの制御装置の好適な実施の形態につき図面を用いて説明する。なお、各図において、同一または相当部材、部位については、同一符号を付して説明する。
 実施の形態1.
 図1は、本発明の実施の形態1における交流回転機の制御装置の全体構成を示す図である。図1において、交流回転機1は、3相巻線U、V、Wを有する永久磁石型同期回転機である。なお、本実施の形態1では、交流回転機1として永久磁石型同期回転機を用いる場合について説明するが、交流回転機1は、界磁巻線型同機回転機であってもよい。
 直流電源10は、後述する電力変換器5に対して直流電圧Vdcを出力する。この直流電源10としては、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する全ての機器が含まれる。
 角度検出器2は、ホール素子やレゾルバ、エンコーダ等の位置検出器であり、交流回転機1の回転位置θを検出する。また、角度検出器2の代わりとして、後述する電流検出器3より検出された検出電流などに基づいて角度を推定する技術を用いてもよい。
 電流検出器3は、シャント抵抗やホール素子等の電流検出器を用いて検出した電流Iu_raw、Iv_raw、Iw_rawから、検出電流Iu、Iv、Iwを演算する。
 電圧指令演算器4は、交流回転機1を駆動するための電圧指令Vu、Vv、Vwを演算し、電力変換器5へ出力する。電圧指令演算器4は、電圧指令Vu、Vv、Vwの演算方法として、交流回転機1の電流指令を制御指令として設定し、電流検出器3より出力された検出電流Iu、Iv、Iwと制御指令との偏差を零とすべく、比例積分制御によって電圧指令Vu、Vv、Vwを演算する電流フィードバック制御などを使用することができる。
 電力変換器5は、電圧指令演算器4から出力された電圧指令Vu、Vv、Vwに基づいてパルス幅変調(PWM変調)を実行することによって、電圧指令Vu、Vv、Vwに応じたパルス幅を持つスイッチング信号Qup~Qwnを生成する。
 さらに、電力変換器5は、生成したスイッチング信号Qup~Qwnに基づき、半導体スイッチSup~Swnをオンオフすることによって、直流電源10から入力した直流電圧Vdcを電力変換して、交流回転機1の3相巻線U、V、Wに電圧を印加する。なお、スイッチSup~Swnとしては、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等の半導体スイッチとダイオードを逆並列に接続したものを用いることができる。
 ここで、スイッチング信号Qup~Qwnは、それぞれ、以下の信号を意味している。
  スイッチング信号Qup:U相高電位側スイッチング素子Supのオンオフ信号
  スイッチング信号Qun:U相低電位側スイッチング素子Sunのオンオフ信号
  スイッチング信号Qvp:V相高電位側スイッチング素子Svpのオンオフ信号
  スイッチング信号Qvn:V相低電位側スイッチング素子Svnのオンオフ信号
  スイッチング信号Qwp:W相高電位側スイッチング素子Swpのオンオフ信号
  スイッチング信号Qwn:W相低電位側スイッチング素子Swnのオンオフ信号
 直流電圧Vdcにより、電力変換器5に供給される電圧は、決まっている。このため、電力変換器5は、PWM変調を行う際には、電圧利用率を向上させるために、公知の各種変調方法を用いることとなる。
 図2は、本発明の実施の形態1において、具体的な変調方式の一例を示した図である。例えば、この図2に示すように変調した場合について考える。図2において、横軸は、電気角[deg]、縦軸は、直流電圧Vdcに対する比(以下Dutyという)であり、Duは、U相Duty、Dvは、V相Duty、Dwは、W相Dutyをそれぞれ表している。
 電気角1周期の中で、常時、最大相を100%とすることで、低電位側スイッチング素子側にシャント抵抗を設けた場合には、シャント抵抗を導電する電流を小さくすることができる。しかしながら、電気角1周期の中で、最大相と中間相が同時に100%となるタイミングが3回存在する。このため、それらのタイミングでは、3相のうち1相しか電流を検出することができない。
 ここでは、図2の変調方法における1相のみしか検出できないタイミングを取り上げて説明したが、3相のうち1相のみが電流検出誤差が小さいという場合も、同様の考え方が適用できることはいうまでもない。
 電気角がθ0のときの3相電流Iu0、Iv0、Iw0は、下式(1)のように与えられる。
Figure JPOXMLDOC01-appb-M000005
 ここからΔθ変化したときの3相電流Iu1、Iv1、Iw1は、下式(2)のように与えられる。
Figure JPOXMLDOC01-appb-M000006
 ここで、電気角がθ0のときに、上式(1)で示した3相の検出電流Iu0、Iv0、Iw0が得られ、そこから電気角がΔθ変化したときに、上式(2)で示した3相の検出電流のうちの1相の検出電流Iu1のみが得られた場合を例に、説明する。上式(1)を変形すると、下式(3)が得られる。
Figure JPOXMLDOC01-appb-M000007
 また、上式(2)を変形すると、下式(4)が得られる。
Figure JPOXMLDOC01-appb-M000008
 微小変化量に関する検討の中でよく用いられる下式(5)のような近似を適用すると、上式(4)から下式(6)が得られる。
Figure JPOXMLDOC01-appb-M000009
 さらに、I0とI1の差がI0に対して微小な場合には、上式(6)を、下式(7)のように近似することができる。
Figure JPOXMLDOC01-appb-M000010
 上述したような近似が成立する場合には、上式(3)および上式(7)から、下式(8)を得ることができる。すなわち、電気角θ0において過去に取得した3相検出電流Iu0、Iv0、Iw0と、電気角がΔθ変化したときに検出可能な1相の電流Iu1とを用いて、電気角がΔθ変化したときに検出不可能な2相の電流Iv1、Iw1を、下式(8)により演算することができる。
Figure JPOXMLDOC01-appb-M000011
 ここでは、電気角がΔθ変化したときに検出可能な1相のみの電流としてIu1が得られた場合について説明したが、Iv1やIw1が得られたときも同様に考えられる。このため、(a、b、c)=(u、v、w)または(a、b、c)=(v、w、u)または(a、b、c)=(w、u、v)として、a、b、cを用いて一般化したときには、上式(8)は、下式(9)で表すことができる。なお、下式(9)においては、電気角θ0において過去に取得したそれぞれの検出電流に対して、oldの添字を付している。
Figure JPOXMLDOC01-appb-M000012
 次に、上式(9)により検出不可能な2相の電流を演算した場合の効果について説明する。交流回転機1が表面磁石型モータ(SPM)であるとすると、出力トルクは、下式(10)で与えられる。
Figure JPOXMLDOC01-appb-M000013
 上式(9)において、Tは、出力トルク、Ktは、トルク定数、Iqは、q軸電流を表す。なお、ここでは、簡単のため、表面磁石型の交流回転機1を用いた場合について説明するが、インセット型や埋め込み磁石型などの交流回転機1を用いた場合にも、同様の効果を得ることができる。また、3相のうちの1相の電流は、3相の電流の総和が0になることを利用して算出してもよいことはいうまでもない。
 図2において1相検出となるタイミングは、30deg、150deg、270degの3箇所であり、30degではIv、150degではIw、270degではIu、が検出できる1相の電流となる。一方、これら3箇所以外の電気角では、最大相以外の2相の電流が検出できる。
 図3は、本発明の実施の形態1において、電気角1周期に対するIqの変化を例示した図である。この図3のように、電気角1周期の間にIqが単調増加する場合に、1deg変化するごとに電流検出する状態を考える。
 dq軸上での電圧ベクトルと電流ベクトルのなす角は、インダクタンス、磁束、回転数などによって変化する。ここでは、説明を簡単化するため、電圧ベクトルと電流ベクトルの位相角は、等しい状態であるとする。
 図4は、本発明の実施の形態1において、電気角1周期に対する3相電流の変化を示した図である。電圧ベクトルと電流ベクトルの位相角が等しい状態のとき、3相電流Iu、Iv、Iwは、図4のように変化する。
 図5は、本発明の実施の形態1において、電気角1周期で3回ある1相検出のタイミングで発生する電流検出値の誤差に関する説明図である。電気角1周期で3回ある1相検出のタイミングにおいて、検出可能な1相の電流を使用せずに、前回検出の3相電流で得られたIqをそのまま使用した場合には、図5のように、Iqの時間変化分だけ、Iqに誤差を生じることとなる。
 この時点では、検出値がずれているのみであるが、電圧指令演算器4は、この誤差を含むIqを用いて制御する。この結果、電圧指令がずれて、実Iqが期待値からずれる。ここで、出力トルクは、上式(10)のように、Iqに比例するため、Iqの誤差が電気角3次のトルクリプルとして表れる。
 これに対して、図6は、本発明の実施の形態1において、演算処理を行うことで、電気角1周期で3回ある1相検出のタイミングで発生する電流検出値の誤差を低減した場合の説明図である。電気角1周期で3回ある1相検出のタイミングにおいて、上式(9)のように、今回検出可能な1相の電流と、過去に取得した3相の電流と、過去から今回までの角度変化量Δθを用いて、検出不可能な2相の電流を演算により求めた場合には、Iqに生じる誤差は、この図6に示すように、ほぼ0となっている。
 この結果、検出可能な1相を使用した演算処理を行わなかった場合に生じていた図5のような電気角3次のトルクリプルを、図6に示すように、大きく低減させることができる。
 以上のように、実施の形態1によれば、1相の電流Iaが検出可能であり、3相のうちの残りの2相の電流Ib、Icが検出不可能な場合に、今回取得の検出可能な1相の検出電流Iaと、過去に取得した3相検出電流Ia_old、Ib_old、Ic_oldと、過去から今回までの角度変化量Δθとに基づいて、検出不能な2相の電流Ib、Icを演算により推定することができる。
 この結果、検出可能な1相の検出電流Iaを使用してIb、Icを推定演算することなしに、過去に検出可能であったIb_old、Ic_oldを今回値として代用した場合に生じる電流検出誤差およびそれにより生じるトルクリプルを、大幅に低減できるとともに、オープンループ制御となる領域を低減できる、という従来にない優れた効果を得ることができる。
 なお、上述した具体例においては、1相検出となる前後は、2相検出となる場合を例として、過去に取得の3相検出電流として、例えば1deg前のものを用いる場合について説明した。これに対して、連続して1相検出となる状態が続く場合には、検出不能2相の検出電流の推定誤差が、累積していくことになる。
 その場合には、過去に取得の3相検出電流として、少なくとも2相が検出可能だったときに得られた電流値を用いることにより、検出不能2相の検出電流での推定誤差の累積を抑制するという、従来にない優れた効果を得ることができる。
 さらに、本実施の形態1における交流回転機の制御装置は、ステアリング系の操舵トルクを補助するトルクを発生する交流回転機を用いた電動パワーステアリングに適用することができる。この適用により、トルクリプルおよび騒音の小さい操舵系を構成することが可能な電動パワーステアリングの制御装置を実現することができる。
 実施の形態2.
 先の実施の形態1では、推定演算において、微小な角度変化量に関する三角関数の近似式を適用した上式(5)を用いた。しかしながら、角度変化が大きい高回転域では、Δθが大きくなり、近似誤差が大きくなる。
 そこで、COSの近似式として、テイラー展開した場合の第2項までを考慮した下式(11)を適用することで、高回転でも誤差を抑制することができる。
Figure JPOXMLDOC01-appb-M000014
 図7は、本発明の実施の形態2において、数式(5)、(11)を用いた場合の、角度変化量Δθに対する近似誤差の変化を比較した図であり、横軸は、Δθ[deg]、縦軸は、近似誤差である。10deg変化している場合には、上式(5)を適用すると、1.5%の近似誤差が含まれてしまうが、上式(11)の近似を用いることで、近似誤差が大幅に低減されていることがわかる。
 上式(11)を適用する場合も、先の実施の形態1と同様に、(a、b、c)=(u、v、w)または(a、b、c)=(v、w、u)または(a、b、c)=(w、u、v)として、a、b、cを用いて一般化すると、上式(11)は、下式(12)で表すことができる。
Figure JPOXMLDOC01-appb-M000015
 なお、さらに精度が必要な場合には、下式(13)のような、SINも第2項までを考慮した近似とするなど、近似式を高次にしていけばよいことはいうまでもない。
Figure JPOXMLDOC01-appb-M000016
 図8は、本発明の実施の形態2において、数式(11)、(13)を用いた場合の、角度変化量Δθに対する近似誤差の変化を比較した図であり、横軸は、Δθ[deg]、縦軸は、近似誤差である。
 なお、高次にすればするほど、近似誤差は低減できるが、検出電流を推定演算により求める際の処理負荷は増大することになる。このため、近似誤差の低減率の大きい上式(12)までの形が、効果と背反のバランスがとれたものであるといえる。
 以上のように、実施の形態2によれば、1相の電流Iaが検出可能であり、3相のうちの残りの2相の電流Ib、Icが検出不可能な場合に、今回取得の検出可能な1相の検出電流Iaと、過去に取得した3相検出電流Ia_old、Ib_old、Ic_oldと、過去から今回までの角度変化量Δθとに基づいて、上式(12)を用いて、検出不能な2相の電流Ib、Icを演算することができる。
 この結果、検出可能な1相の検出電流Iaを使用してIb、Icを推定演算することなしに、過去に検出可能であったIb_old、Ic_oldを今回値として代用した場合に生じる電流検出誤差およびそれにより生じるトルクリプルを、高回転域まで大幅に低減できるとともに、オープンループ制御となる領域を低減できる、という従来にない優れた効果を得ることができる。
 実施の形態3.
 先の実施の形態1および実施の形態2では、3相巻線を有する交流回転機の制御装置について説明した。これに対して、本実施の形態3では、適用対象となる交流回転機を、x相巻線(xは3以上の自然数)を有する交流回転機として一般化した上で、本発明による推定演算処理を適用する方法について、具体的に説明する。
 図9は、本発明の実施の形態3における交流回転機の制御装置の全体構成を示す図である。図9において、交流回転機1aは、x相巻線を有する永久磁石型同期回転機である。なお、本実施の形態3では、交流回転機1aとして永久磁石型同期回転機を用いる場合について説明するが、交流回転機1aは、界磁巻線型同機回転機であってもよい。
 直流電源10は、後述する電力変換器5aに対して直流電圧Vdcを出力する。この直流電源10としては、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する全ての機器が含まれる。
 角度検出器2は、ホール素子やレゾルバ、エンコーダ等の位置検出器であり、交流回転機1aの回転位置θを検出する。また、角度検出器2の代わりとして、後述する電流検出器3aより検出された検出電流などに基づいて角度を推定する技術を用いてもよい。
 電流検出器3aは、シャント抵抗やホール素子等の電流検出器を用いて検出した電流I1_raw、I2_raw、…、Ix_rawから、検出電流I1、I2、…、Ixを演算する。
 電圧指令演算器4aは、交流回転機1を駆動するための電圧指令V1、V2、…、Vxを演算し、電力変換器5aへ出力する。電圧指令演算器4aは、電圧指令V1、V2、…、Vxの演算方法として、交流回転機1aの電流指令を制御指令として設定し、電流検出器3aより出力された検出電流I1、I2、…、Ixと制御指令との偏差を零とすべく、比例積分制御によって電圧指令V1、V2、…、Vxを演算する電流フィードバック制御などを使用することができる。
 電力変換器5aは、電圧指令演算器4aから出力された電圧指令V1、V2、…、Vxに基づいてパルス幅変調(PWM変調)を実行することによって、電圧指令V1、V2、…、Vxに応じたパルス幅を持つスイッチング信号Q1p~Qxnを生成する。
 さらに、電力変換器5aは、生成したスイッチング信号Q1p~Qxnに基づき、半導体スイッチS1p~Sxnをオンオフすることによって、直流電源10から入力した直流電圧Vdcを電力変換して、交流回転機1aのx相巻線のぞれぞれに電圧を印加する。なお、スイッチS1p~Sxnとしては、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等の半導体スイッチとダイオードを逆並列に接続したものを用いることができる。
 ここで、スイッチング信号Q1p~Qxnは、それぞれ、以下の信号を意味している。
  スイッチング信号Q1p:第1相高電位側スイッチング素子S1pのオンオフ信号
  スイッチング信号Q1n:第1相低電位側スイッチング素子S1nのオンオフ信号
  スイッチング信号Q2p:第2相高電位側スイッチング素子S2pのオンオフ信号
  スイッチング信号Q2n:第2相低電位側スイッチング素子S2nのオンオフ信号
  …
  スイッチング信号Qxp:第x相高電位側スイッチング素子Sxpのオンオフ信号
  スイッチング信号Qxn:第x相低電位側スイッチング素子Sxnのオンオフ信号
 電気角をθとすると、x相電流I1、I2、…、Ixは、下式(14)のように与えられる。以下では、xが2k+1で表される奇数の場合について説明する。
Figure JPOXMLDOC01-appb-M000017
 また、上式(14)の状態から角度がΔθ進んだ位置での、x相電流I1’、I2’、…、Ix’は、下式(15)のように与えられる。
Figure JPOXMLDOC01-appb-M000018
 上式(14)を変形することで、下式(16)を得る。
Figure JPOXMLDOC01-appb-M000019
 一方、上式(15)を変形することで、下式(17)を得る。
Figure JPOXMLDOC01-appb-M000020
 式(16)および式(17)により、I2’は、下式(18)で与えられる。
Figure JPOXMLDOC01-appb-M000021
 他相の検出電流in’も、同様に算出でき、下式(19)で与えられる。
Figure JPOXMLDOC01-appb-M000022
 つまり、下式(20)を用いることにより、検出不可能な(x-1)相の電流を推定することが可能である。
Figure JPOXMLDOC01-appb-M000023
 同様の考え方で、xが2k+2で表される偶数の場合についても、下式(21)を用いることにより、検出不可能な(x-1)相の電流を推定することが可能である。
Figure JPOXMLDOC01-appb-M000024
 以上のように、実施の形態3によれば、x相巻線(xは3以上の自然数)を有する交流回転機において、x相のうち(x-1)相の電流が検出不可能な場合に、今回取得の検出可能な1相の検出電流と、過去に取得したx相検出電流と、過去から今回までの角度変化量Δθとに基づいて、検出不能な(x-1)相の電流を演算することができる。
 この結果、検出可能な1相の検出電流を使用してIb、Icを推定演算することなしに、過去に検出可能であったIb_old、Ic_oldを今回値として代用した場合に生じる電流検出誤差およびそれにより生じるトルクリプルを、大幅に低減できるとともに、オープンループ制御となる領域を低減できる、という従来にない優れた効果を得ることができる。
 なお、本実施の形態3での推定式では、SINΔθおよびCOSΔθをそのまま使用した。しかしながら、先の実施の形態1または実施の形態2で述べたように、テイラー展開したΔθの多項式を推定式に用いても、同様の効果を得られることはいうまでもない。

Claims (10)

  1.  3相以上であるx相巻線を有する交流回転機と、
     前記交流回転機の角度を検出する角度検出器と、
     前記x相巻線のそれぞれの相の電流を検出する電流検出器と、
     それぞれの相について、前記電流検出器による検出電流と電流指令との偏差が零となるようにフィードバック制御を行い、x相電圧指令を演算する電圧指令演算器と、
     前記x相電圧指令に基づいて、前記x相巻線に電圧を印加する電力変換器と
     を備え、
     前記電流検出器は、
      今回の電流検出タイミングにおいて、x相のうちの少なくとも1相の電流を検出することができ、多くとも(x-1)相の電流が検出不可能な場合には、過去の電流検出タイミングにおいて取得したx相検出電流と、前記今回の電流検出タイミングにおいて検出することができた1相の検出電流と、前記角度検出器によって検出された前記過去の電流検出タイミングにおける前記交流電動機の角度と前記今回の電流検出タイミングにおける前記交流電動機の角度との差分である角度変化量と、に基づいて、前記今回の電流検出タイミングにおいて検出不可能であった前記(x-1)相の電流を演算により推定する
     交流回転機の制御装置。
  2.  前記過去の電流検出タイミングにおいて取得した前記x相検出電流は、
      x相すべてが前記電流検出器によって検出可能であった場合には、前記電流検出器により検出されたそれぞれの電流値で構成され、
      x相のうちの1相以外が前記電流検出器によって検出可能であった場合には、前記電流検出器により検出された(x-1)相分の電流値と、x相すべての電流の総和が零となることを利用して検出不可能であった残りの1相の電流を演算で求めた電流値とで構成される
     請求項1に記載の交流回転機の制御装置。
  3.  前記交流回転機の前記x相巻線が奇数であり、kを自然数として、x=2k+1で表され、前記今回の電流検出タイミングにおいて、x=1に相当する相の電流が検出可能であり、多くともx=2~2k+1までに相当する各相の電流が検出不可能であったとし、添字oldが前記過去の電流検出タイミングを意味し、Δθが前記角度変化量に相当するとした場合に、
     前記電流検出器は、以下の推定式
    Figure JPOXMLDOC01-appb-M000001
    により、前記今回の電流検出タイミングにおいて検出不可能であった前記(x-1)相の電流を推定演算する
     請求項1または2に記載の交流回転機の制御装置。
  4.  前記交流回転機の前記x相巻線が偶数であり、kを自然数として、x=2k+2で表され、前記今回の電流検出タイミングにおいて、x=1に相当する相の電流が検出可能であり、多くともx=2~2k+2までに相当する各相の電流が検出不可能であったとし、添字oldが前記過去の電流検出タイミングを意味し、Δθが前記角度変化量に相当するとした場合に、
     前記電流検出器は、以下の推定式
    Figure JPOXMLDOC01-appb-M000002
    により、前記今回の電流検出タイミングにおいて検出不可能であった前記(x-1)相の電流を推定演算する
     請求項1または2に記載の交流回転機の制御装置。
  5.  前記電流検出器は、前記推定式において、COSΔθを1、SINΔθをΔθに近似して、推定演算を行う
     請求項3または4に記載の交流回転機の制御装置。
  6.  前記電流検出器は、前記推定式において、COSΔθを1-Δθ2/2、SINΔθをΔθに近似して、推定演算を行う
     請求項3または4に記載の交流回転機の制御装置。
  7.  前記電流検出器は、前記推定式において、COSΔθを1-Δθ2/2、SINΔθをΔθ-Δθ3/6に近似して、推定演算を行う
     請求項3または4に記載の交流回転機の制御装置。
  8.  前記交流回転機の前記x相巻線はu相、v相、w相からなる3相であり、3相を一般化してa相、b相、c相とし、(a、b、c)=(u、v、w)または(a、b、c)=(v、w、u)または(a、b、c)=(w、u、v)としたときに、前記今回の電流検出タイミングにおいて、前記a相の電流が検出可能であり、前記b相および前記c相の電流が検出不可能であったとし、添字oldが前記過去の電流検出タイミングを意味し、Δθが前記角度変化量に相当するとした場合に、
     前記電流検出器は、以下の推定式
    Figure JPOXMLDOC01-appb-M000003
    により、前記今回の電流検出タイミングにおいて検出不可能であった前記b相および前記c相の電流を推定演算する
     請求項1から3のいずれか1項に記載の交流回転機の制御装置。
  9.  前記交流回転機の前記x相巻線はu相、v相、w相からなる3相であり、3相を一般化してa相、b相、c相とし、(a、b、c)=(u、v、w)または(a、b、c)=(v、w、u)または(a、b、c)=(w、u、v)としたときに、前記今回の電流検出タイミングにおいて、前記a相の電流が検出可能であり、前記b相および前記c相の電流が検出不可能であったとし、添字oldが前記過去の電流検出タイミングを意味し、Δθが前記角度変化量に相当するとした場合に、
     前記電流検出器は、以下の推定式
    Figure JPOXMLDOC01-appb-M000004
    により、前記今回の電流検出タイミングにおいて検出不可能であった前記b相および前記c相の電流を推定演算する
     請求項1から3のいずれか1項に記載の交流回転機の制御装置。
  10.  請求項1から9のいずれか1項に記載の交流回転機の制御装置を備え、
     前記電圧指令演算器は、ステアリング系の操舵トルクを補助するトルクを、前記交流回転機が発生するように、前記x相電圧指令を演算する
     電動パワーステアリングの制御装置。
PCT/JP2015/057312 2015-03-12 2015-03-12 交流回転機の制御装置および電動パワーステアリングの制御装置 WO2016143120A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/057312 WO2016143120A1 (ja) 2015-03-12 2015-03-12 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2017504524A JP6324615B2 (ja) 2015-03-12 2015-03-12 交流回転機の制御装置および電動パワーステアリングの制御装置
US15/551,649 US10566920B2 (en) 2015-03-12 2015-03-12 Control device for AC rotary machine and control device for electric power steering
EP15884610.5A EP3270509A4 (en) 2015-03-12 2015-03-12 Ac rotating electric machine control device and electric power steering control device
CN201580077614.2A CN107431454B (zh) 2015-03-12 2015-03-12 交流旋转电机的控制装置和电动助力转向系统的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057312 WO2016143120A1 (ja) 2015-03-12 2015-03-12 交流回転機の制御装置および電動パワーステアリングの制御装置

Publications (1)

Publication Number Publication Date
WO2016143120A1 true WO2016143120A1 (ja) 2016-09-15

Family

ID=56878853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057312 WO2016143120A1 (ja) 2015-03-12 2015-03-12 交流回転機の制御装置および電動パワーステアリングの制御装置

Country Status (5)

Country Link
US (1) US10566920B2 (ja)
EP (1) EP3270509A4 (ja)
JP (1) JP6324615B2 (ja)
CN (1) CN107431454B (ja)
WO (1) WO2016143120A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329584B2 (en) 2018-03-05 2022-05-10 Mitsubishi Electric Cornoration Control device for ac rotating machine, and control device for electric power steering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159391A (ja) * 2002-11-05 2004-06-03 Nissan Motor Co Ltd 3相交流電動機の制御装置
JP2009089552A (ja) * 2007-10-02 2009-04-23 Nsk Ltd モータ駆動制御装置及びモータ駆動制御装置を使用した電動パワーステアリング装置
JP2013225994A (ja) * 2012-04-22 2013-10-31 Denso Corp 交流電動機の制御装置
JP2014155326A (ja) * 2013-02-08 2014-08-25 Denso Corp 回転電機駆動システム
JP2014212602A (ja) * 2013-04-17 2014-11-13 トヨタ自動車株式会社 モータ駆動装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343599B2 (ja) * 2009-02-10 2013-11-13 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5396948B2 (ja) 2009-03-17 2014-01-22 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5161180B2 (ja) * 2009-09-17 2013-03-13 日立アプライアンス株式会社 モータ駆動装置、インバータ装置、コンバータ装置、及び冷凍空調機器
JP5292363B2 (ja) * 2010-06-30 2013-09-18 株式会社日立製作所 交流電動機の制御装置及び制御方法
CN102582679B (zh) * 2011-01-07 2015-06-17 本田技研工业株式会社 电动助力转向装置
JP5398861B2 (ja) * 2012-03-07 2014-01-29 三菱電機株式会社 多重巻線モータの駆動装置
JP5527559B2 (ja) * 2012-04-22 2014-06-18 株式会社デンソー 交流電動機の制御装置
JP5757304B2 (ja) 2012-11-01 2015-07-29 株式会社デンソー 交流電動機の制御装置
CN103346723B (zh) * 2013-05-22 2016-01-13 四川长虹电器股份有限公司 一种无位置传感器控制装置及位置检测方法
JP2014241690A (ja) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159391A (ja) * 2002-11-05 2004-06-03 Nissan Motor Co Ltd 3相交流電動機の制御装置
JP2009089552A (ja) * 2007-10-02 2009-04-23 Nsk Ltd モータ駆動制御装置及びモータ駆動制御装置を使用した電動パワーステアリング装置
JP2013225994A (ja) * 2012-04-22 2013-10-31 Denso Corp 交流電動機の制御装置
JP2014155326A (ja) * 2013-02-08 2014-08-25 Denso Corp 回転電機駆動システム
JP2014212602A (ja) * 2013-04-17 2014-11-13 トヨタ自動車株式会社 モータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270509A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329584B2 (en) 2018-03-05 2022-05-10 Mitsubishi Electric Cornoration Control device for ac rotating machine, and control device for electric power steering

Also Published As

Publication number Publication date
CN107431454A (zh) 2017-12-01
JPWO2016143120A1 (ja) 2017-06-08
CN107431454B (zh) 2020-07-03
US20180034397A1 (en) 2018-02-01
EP3270509A4 (en) 2018-12-12
EP3270509A1 (en) 2018-01-17
JP6324615B2 (ja) 2018-05-16
US10566920B2 (en) 2020-02-18

Similar Documents

Publication Publication Date Title
JP4746667B2 (ja) 電動機の相電流推定装置および電動機の磁極位置推定装置
JP5155344B2 (ja) 電動機の磁極位置推定装置
JP6735827B2 (ja) 電力変換装置
US8963462B2 (en) Driving apparatus for multiplex-winding rotary machine
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
JP5900600B2 (ja) 電動機の磁極位置推定装置およびそれを用いた制御装置
JP6266161B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
CN101809857A (zh) 旋转电机的控制装置
JP6488626B2 (ja) モータ制御装置、モータシステム、モータ制御プログラム
JP2013017294A (ja) スイッチング回路の制御装置
CN109728761B (zh) 马达驱动控制装置
WO2012066800A1 (ja) 電流検出装置及びモータ制御装置
JP4722002B2 (ja) Pwmインバータ制御装置及びpwmインバータ制御方法並びに冷凍空調装置
JP6685452B1 (ja) 回転電機の制御装置
JP5165545B2 (ja) 電動機の磁極位置推定装置
JP6233428B2 (ja) モータ制御装置およびモータ制御方法
JP6324615B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2010088260A (ja) 電動機の相電流推定装置
JP6203418B2 (ja) 電力変換装置およびその制御方法、電動パワーステアリングの制御装置
US9935575B2 (en) Power conversion device and control method for same, and electric power steering control device
JP2013021869A (ja) スイッチング回路の制御装置
JP2010130752A (ja) 電動機の相電流推定装置
JP5186352B2 (ja) 電動機の磁極位置推定装置
JP2020031469A (ja) モータ駆動制御装置
TW202241043A (zh) 交流馬達控制裝置及具備該控制裝置之驅動系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504524

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015884610

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE