WO2016133145A1 - バッテリ温調装置及びバッテリ温調システム - Google Patents

バッテリ温調装置及びバッテリ温調システム Download PDF

Info

Publication number
WO2016133145A1
WO2016133145A1 PCT/JP2016/054633 JP2016054633W WO2016133145A1 WO 2016133145 A1 WO2016133145 A1 WO 2016133145A1 JP 2016054633 W JP2016054633 W JP 2016054633W WO 2016133145 A1 WO2016133145 A1 WO 2016133145A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat
temperature control
evaporator
battery temperature
Prior art date
Application number
PCT/JP2016/054633
Other languages
English (en)
French (fr)
Inventor
壮史 平澤
池田 匡視
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to JP2017500725A priority Critical patent/JP6754352B2/ja
Priority to CN201680004760.7A priority patent/CN107112611B/zh
Publication of WO2016133145A1 publication Critical patent/WO2016133145A1/ja
Priority to US15/680,410 priority patent/US10525786B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery temperature control apparatus and a battery temperature control system for transferring heat generated from a battery to a capacitor fin and / or an evaporator using a heat conducting member.
  • a battery installed in a vehicle and used for traveling a blower fan separately provided for air conditioning in a vehicle interior, and separately provided for air conditioning in a vehicle interior, provided separately for vehicle air conditioning
  • a system has been proposed that includes a heat exchanger that cools the air by heat exchange with the air flowing through the refrigerant flowing through the refrigerant to the battery, and the evaporator that is the heat exchanger shares the refrigerant with the cabin air conditioning ( Patent Document 1).
  • Patent Document 1 Although the battery is cooled by supplying the air cooled by the refrigerant to the battery, there is a problem that the heat transfer efficiency is not sufficient because the air is interposed. Furthermore, in Patent Document 1, since it is difficult to make the flow of air uniform, the difference in the path of the air (for example, the difference between the upstream side and the downstream side of the air flow) Since the temperature of the air supplied to the battery cell changes, it takes time to cool the battery, and there is also a problem that the temperature of the battery cell may vary.
  • a heat pipe is brought into contact with the battery module, the other end is connected to the heat sink, and the heat generated by the battery is transported to the heat sink.
  • a system has been proposed that includes a cooling water passage that penetrates the inside of the heat storage material, a cooling water pipe connected to the cooling water passage, an electric pump, and a radiator while including the material (Patent Document 2) .
  • Patent Document 2 the battery module is cooled through the heat pipe to the cooling water pipe, but in the water-cooled system, there is a problem that the traveling distance of the vehicle becomes short because the mass is heavy. . Further, since the electric pump, which is essential for generating the water flow, consumes a large amount of power, there is also a problem that the traveling distance of the vehicle becomes short also from this point.
  • a cooling device for a vehicle there is provided a vehicle cooling device equipped with one or more heat pipes adapted to penetrate at least two or more refrigerant flow passage pipes passing through the same cooling system core portion. It is proposed (patent document 3).
  • an object of the present invention is to provide a battery temperature control apparatus and a battery temperature control system which are excellent in uniformity of heat transfer efficiency and temperature control performance and can prevent increase in mass and power consumption.
  • An aspect of the present invention comprises a battery having a battery cell, and a heat conducting member thermally connected to the battery at one end, the other end of the heat conducting member being a fin of a capacitor or
  • the evaporator is a battery temperature control device connected thermally.
  • the battery and the fins or the evaporator of the capacitor are thermally connected via the heat conducting member.
  • the heat generated from the battery is thermally transported from the battery to one end of the heat conducting member, and one end of the heat conducting member
  • the heat transported to the part is transported from one end of the heat transfer member to the other end.
  • the heat transported to the other end of the heat transfer member is transferred from the other end of the heat transfer member to an evaporator thermally connected to the other end of the heat transfer member.
  • the heat transported to the evaporator is released from the evaporator to the outside.
  • the battery and the capacitor are thermally connected to prevent heat transferred from the capacitor from the capacitor to the other end of the heat conducting member when the battery is cooled. Therefore, the other end of the heat conducting member is thermally connected to the fin of the capacitor. Thereby, the battery can be cooled by the same operation as the battery cooling operation by the above-mentioned battery and the evaporator being thermally connected.
  • the heat conducting member is thermally connected to the evaporator without being thermally connected to the fins of the condenser.
  • the heat conducting member is thermally connected to the fins of the capacitor without being thermally connected to the evaporator.
  • a battery having a battery cell, and a first heat conducting member and a second heat conducting member thermally connected to the battery at one end, the first heat conducting member and the second heat conducting member The other end of the heat conducting member is thermally connected to the fin of the capacitor, and the other end of the second heat conducting member is thermally connected to the evaporator.
  • a plurality of heat conducting members are prepared, and at least one heat conducting member is thermally connected to the fins of the capacitor There is a mode in which it is thermally connected to the evaporator without being connected, and another heat conducting member is thermally connected to the fins of the condenser without being thermally connected to the evaporator.
  • An aspect of the present invention is the battery temperature control device, wherein the heat transfer member is a heat pipe.
  • An aspect of the present invention is the battery temperature control device, wherein the other end of the heat transfer member is detachable from the fin and / or the evaporator of the capacitor.
  • An aspect of the present invention is the battery temperature control device, wherein the evaporator and / or the condenser form a heat pump mechanism.
  • the evaporator and / or the condenser are disposed in a fluid flow path, and the flow path is a plurality of paths at a position downstream of the fluid flow of the evaporator and / or the condenser.
  • At least one of the paths is connected to the flow path at a position upstream of the fluid flow of the evaporator and / or the condenser, thereby closing the circulation to the external environment. It is a battery temperature control system in which a path is formed.
  • the fluid reaching the downstream side of the evaporator and / or the condenser is returned from the downstream side to the upstream side of the evaporator and / or the condenser via the circulation path.
  • An aspect of the present invention is the battery temperature control device, wherein the circulation path is provided with a valve mechanism as selection means of the path.
  • At least one of the paths is connected to the flow path at a position upstream of the fluid flow of the evaporator and / or the condenser, thereby closing the circulation to the external environment.
  • It is a battery temperature control apparatus in which the path
  • the other end of the heat conducting member is thermally connected to the evaporator which is a component for conditioning the cabin of the automobile and / or the fin of the condenser which is a component for conditioning the cabin of the automobile.
  • An aspect of the present invention is the battery temperature control device, wherein the circulation path does not pass through an engine room and a cabin of the automobile.
  • An aspect of the present invention is a battery temperature control device, wherein a fan for generating the air flow is provided.
  • An aspect of the present invention is the battery temperature control device, wherein the air flow is derived from the traveling wind of a car.
  • traveling air is used to obtain an air flow, instead of the above-described fan that is a means for generating the air flow.
  • a battery having a battery cell, a thermally conductive member thermally connected to the battery at one end, and a thermally connected at the other end of the thermally conductive member
  • a battery temperature control system comprising a condenser fin and / or an evaporator, wherein when the battery is cooled, the heat conduction member transports the heat of the battery to the condenser fin and / or the evaporator. It is a key system.
  • the aspect of the present invention further includes another heat conducting member, one end of the other heat conducting member is thermally connected to the battery, and the other end of the other heat conducting member is It is a battery temperature control system which is thermally connected to a heat generating part and transports the heat of the heat generating part to the battery by the other heat conducting member when the battery is heated.
  • the battery since the battery is thermally connected to the existing condenser fins and / or the evaporator via the heat conducting member, it is not necessary to use a water-cooled system or a refrigerant, and the mass and Power consumption can be prevented from increasing. Further, since the temperature of the battery is controlled via the heat conducting member, it is not necessary to use air cooled by the refrigerant, and as a result, excellent heat transfer efficiency and uniformity of temperature control performance can be obtained. Also, if the battery is thermally connected to the fins and / or the evaporator of the existing capacitor through the heat conducting member, the evaporator or the capacitor is not operating (the air conditioning system is not operating). The heat generated by the battery, if any, is transported to the condenser fins and / or the evaporator, which is relatively cooler than the battery. Thus, the power consumption for cooling the battery can be reduced.
  • the heat conduction member transports the heat of each battery cell, a gap or a duct between the battery cells for flowing the temperature control fluid becomes unnecessary, and the size of the battery container is greatly increased. Can be made smaller, which is advantageous for space saving. Furthermore, since the size of the battery container can be significantly reduced, the number of battery cells can be significantly increased in the same space, and as a result, an increase in charge capacity can also be realized.
  • the heat transfer efficiency of the heat transfer member is improved by the heat transfer member being the heat pipe, so that the temperature control efficiency of the battery is further improved.
  • the inside of the heat pipe is hollow, the battery temperature control system can be further reduced in weight.
  • the other end of the heat conducting member is removable from the fins and / or the evaporator of the condenser, thereby improving the transportability and the attachment of the battery temperature control system.
  • the flow path is branched into a plurality of paths so that the heat generated from the battery is transferred from the evaporator and / or the condenser to a desired place. It can be transported reliably.
  • the battery temperature control system mounted on a vehicle and having a circulation path closed to the external environment allows heat generated from the battery to be generated in the cabin or engine room of the vehicle. It can be reliably prevented from being transported to the desired place.
  • the battery temperature control system 1 has a battery 11 provided with a plurality of battery cells 12, and a heat thermally connected to the battery 11 and one end 14.
  • a pipe 13 and an evaporator (heat pump evaporator) 16 thermally connected to the heat pipe 13 by being in direct contact with the other end 15 of the heat pipe 13 are provided. That is, the evaporator 16 is in direct contact with the other end 15 of the heat pipe 13.
  • the battery 11 is provided with a heat receiving plate 10 in contact with the side surface of each battery cell 12.
  • the heat receiving plate 10 and the battery cell 12 are thermally connected by the surface portion of the heat receiving plate 10 being in contact with the side surface portion of the battery cell 12.
  • the heat receiving plate 10 and the one end 14 of the heat pipe 13 are thermally connected by the one end 14 of the heat pipe 13 being in direct contact with the rear surface of the heat receiving plate 10. Therefore, the battery 11 and the heat pipe 13 are thermally connected via the heat receiving plate 10.
  • the heat pipe 13 has a contact portion with the heat receiving plate 10 of the battery 11 and a contact portion with the evaporator 16, that is, one end 14 and the other, in order to improve the thermal connectivity with the battery 11 and the evaporator 16.
  • the end 15 is processed into a flat shape.
  • the evaporator 16 includes a main body 17, a supply header 18 for supplying liquefied refrigerant to the main body 17, and a discharge header 19 for discharging the refrigerant vaporized in the main body 17. Is equipped.
  • the refrigerant is vaporized in the main body portion 17 so as to take heat from the main body portion 17 and cool the evaporator 16.
  • the main body portion 17 is provided with a plurality (11 in FIG. 2) of flow paths 20 of a refrigerant (indicated by an arrow in the drawing).
  • the radiation fin 21 of the shape of a circle is arrange
  • each of the ten corrugated heat dissipating fins 21 is partitioned by a partition plate 24 to form eleven flow paths 20.
  • a refrigerant supply port 22 is provided in the supply header portion 18, and the refrigerant supply port 22 is connected to one opening portion of each flow path 20 of the main body portion 17 via an internal space of the supply header portion 18. It is in communication. Further, the discharge header portion 19 is provided with a refrigerant discharge port 23, and the refrigerant discharge port 23 is provided at the other opening of the flow passage 20 of the main body portion 17 via the internal space of the discharge header portion 19. It is in communication with the unit. Accordingly, the liquid refrigerant supplied from the refrigerant supply port 22 of the supply header portion 18 passes through the internal space of the supply header portion 18 and the respective flow channels 20 (11 in FIG. 2) of the main body portion 17.
  • the other end 15 of the heat pipe 13 is in contact with the outer surface of the supply header 18 of the evaporator 16 to make the heat pipe 13 and an evaporator 16 are thermally connected.
  • the heat pipe 13 in order to increase the contact area between the supply header portion 18 of the evaporator 16 and the other end 15 of the heat pipe 13, the heat pipe 13 is the other end 15 of the heat pipe 13. It is bent in the vicinity and is L-shaped.
  • the evaporator 16 is cooled by the refrigerant, the heat generated from the battery 11 is transported by the heat pipe 13 to the evaporator 16, and as a result, the battery is cooled. Further, even when the evaporator 16 is not operating, the heat generated from the battery 11 that has been heated is transported by the heat pipe 13 to the evaporator 16 that is relatively cooler than the battery 11.
  • two evaporators 16 of the battery temperature control system 1 are used. That is, in the battery temperature control system 2, the heat pipe 13 is thermally connected to the two evaporators 16 and 16 '.
  • the other end 15 of the heat pipe 13 is not only thermally connected to the supply header portion 18 of the first evaporator 16, but also for discharging the second evaporator 16 ′.
  • the header portion 19 is also thermally connected.
  • the heat pipe 13 and the first evaporator 16 are thermally
  • the heat pipe 13 and the second evaporator 16 ' are thermally connected by the fact that the rear surface side of the other end 15 of the heat pipe 13 is in direct contact with the outer surface of the discharge header 19 of the second evaporator 16'. It is connected.
  • the other end 15 of the heat pipe 13 is sandwiched between the first evaporator 16 and the second evaporator 16 ′, whereby the cooling performance for the battery 11 is further improved.
  • the other end 15 of the heat pipe 13 is in direct contact with the refrigerant flow path 30 provided in the evaporator 36.
  • one battery 11 and one evaporator 36 are thermally connected via one linear heat pipe 13.
  • the flow path 30 has a waved meandering shape having a bent portion 31 and a straight portion 32 which are bent in a semicircular shape.
  • the other end 15 of the heat pipe 13 is in contact with the inside of the bent portion 31 at the bent portion 31 where the flow path 30 is bent in a semicircular shape.
  • the flow path 30 is formed by opposing two partition plates 34 meandering in a wave shape.
  • a plurality of (10 in FIG. 5) bent portions 31 are formed in the flow path 30, and accordingly, a plurality of (11 in FIG. 5) linear portions 32 are formed.
  • a plurality of corrugated radiation fins 21 are provided on the portion other than the bent portion 31 of the partition plate 34 which forms the flow path 30 and which meanders in a wave shape. 10 and 10 are arranged in FIGS. In the evaporator 36, the flow path 30 and the corrugated heat radiation fin 21 are thermally connected by the direct contact of the straight portion 32 of the partition plate 34 forming the flow path 30 with the corrugated heat radiation fin 21.
  • the other end 15 of the heat pipe 13 has a shape corresponding to the shape of the bent portion 31 of the flow passage 30. That is, when the shape in the thickness direction of the other end 15 is semicircular, the thermal connectivity between the heat pipe 13 and the flow path 30 is improved.
  • a refrigerant discharge port 37 for discharging the refrigerant from the flow path 30 is formed in the portion. Therefore, the refrigerant (indicated by the arrow in the figure) supplied from the refrigerant supply port 35 into the flow path 30 flows along the flow path 30 so as to stitch between the ten corrugated heat dissipating fins 21.
  • the refrigerant is discharged from the refrigerant discharge port 37 to the outside of the evaporator 36.
  • a plurality (10 in FIG. 7) of bending portions 31 in which the flow path 30 is bent in a semicircular shape (a plurality (10 in FIG. 7)
  • one straight heat pipe 13 is in direct contact with the two bent portions 31 respectively.
  • the other end 15 of the heat pipe 13 is in contact with the inside of the bending portion 31 at the bending portion 31 where the flow path 30 is bent in a semicircular shape.
  • one battery 11 is thermally connected to each heat pipe 13 as in the battery temperature control system 3.
  • a plurality of (two in FIG. 7) batteries 11 are thermally connected to one evaporator 36. From the above, in the battery temperature control system 4, the plurality of batteries 11 can be cooled simultaneously by one evaporator 36.
  • the evaporator 16 used in the battery temperature control system 1 according to the first embodiment is in the vicinity of the other end 15
  • an L-shaped heat pipe 13 is thermally connected between the flow passage 20-1 and the flow passage 20-2 adjacent to each other.
  • the evaporator 56 of the battery temperature control system 5 has a plurality (10 in FIGS. 8 and 9) for thermally connecting the heat pipes 13 between the flow paths 20-1 and the flow paths 20-2 adjacent to each other. ) Of the corrugated heat radiation fins 21, the corrugated heat radiation fins 21-1 disposed between the flow passage 20-1 and the flow passage 20-2 are shorter than the other corrugated heat radiation fins 21. The space between the end surface of the other end 15 of the heat pipe 13 and the bent portion is inserted in the direction parallel to the flow path 20 in the space 50 created thereby.
  • the outer shape corresponding to the shape of the space portion 50 is provided in order to further improve the thermal connectivity between the flow path 20 and the heat pipe 13, and the other of the heat pipes 13 is
  • a metal block 51 (for example, a block of aluminum, an aluminum alloy, or the like) having a shape of an internal space corresponding to the outer shape of the end portion 15 is used. That is, by fitting the other end 15 of the heat pipe 13 into the internal space of the metal block 51, the inner surface of the metal block 51 is in contact with the outer surface of the other end 15 of the heat pipe 13. The other end 15 of the heat pipe 13 is thermally connected.
  • the flow path 20-1, the flow path 20-2, and the metal block 51 adjacent to each other are provided.
  • the flow path 20-1, the flow path 20-2, and the metal block 51 adjacent to each other are thermally connected in contact with the outer surface.
  • the other end 15 of the heat pipe 13 is thermally connected via the metal block 51 to a portion between the flow passage 20-1 and the flow passage 20-2 adjacent to each other.
  • the other end 15 of the heat pipe 13 is thermally connected to the evaporator 56 by inserting and inserting the metal block 51 into the space 50. Attachment and detachment with respect to the evaporator 56 is easy and reliable.
  • the material of the container of the heat pipe 13 used in the battery temperature control system of the present invention is not particularly limited, and metals such as copper, copper alloy, stainless steel and the like can be mentioned. Further, the working fluid of the heat pipe 13 is not particularly limited, and, for example, water, alcohol, chlorofluorocarbon substitute, etc. can be mentioned.
  • the other end 15 of the heat pipe 13 is thermally connected to the evaporators 16, 36, 56, but instead, it is thermally connected to a condenser (condenser of a heat pump) It may be connected.
  • the other end 15 of the heat pipe 13 is thermally connected to the evaporators 16, 36, 56.
  • the evaporators 16, 36, 56 instead of the evaporators 16, 36, 56, not only the evaporators 16, 36, 56 And the fins of the capacitor may be thermally connected.
  • a plurality of heat pipes are prepared, and at least one heat pipe (second heat pipe) 13 is not thermally connected to the fins of the condenser as in each of the above embodiments, and the evaporators 16, 36 are not thermally connected.
  • another heat pipe first heat pipe
  • the condenser may form a heat pump mechanism with the evaporators 16, 36, 56, for example, like a heating and cooling device of a car, or may not form the heat pump mechanism with the evaporators 16, 36, 56.
  • the heat pipe 13 is used as the heat transfer member, but the heat transfer member is a structure having the heat pipe 13 or the like and the working fluid in the internal space of the member.
  • the material is not limited to the above, and may be a rod-like, plate-like, pipe-like, metal (eg, copper etc.) member or graphite.
  • the above-mentioned heat conduction member can be suitably selected by conditions, such as required amount of transportation heat, transportation distance, and cost, and may combine two or more sorts of heat conduction members suitably.
  • the other end 15 of the heat pipe 13 is thermally connected to the evaporator by being in direct contact with the supply header, the discharge header or the flow path of the evaporator.
  • the other end 15 of the heat pipe 13 may be thermally connected to the evaporator by being in contact with the radiation fin portion 21 of the evaporators 16, 36, 56.
  • the battery 11 and the evaporators 16, 36, 56 are thermally connected via the single heat pipe 13.
  • a heat pipe shorter than the heat pipe 13 is used.
  • a plurality of short heat pipes may be thermally connected in the heat transport direction.
  • the evaporator is, for example, disposed in a fluid flow path.
  • the evaporator is, for example, an evaporator of a heating and cooling system of a car
  • the evaporator is disposed in a flow path in which an air flow generated by a blower fan of on-vehicle air conditioning or an air flow derived from traveling wind when the vehicle travels.
  • the flow path is branched into a plurality of paths at a position downstream of the air flow of the evaporator, whereby the air flow that has received the heat emitted from the battery is one of the plurality of paths. Can flow into two routes.
  • the above configuration allows the heat generated from the battery to be reliably dissipated from the evaporator to the desired location using one particular path. That is, the heat generated from the battery can be reliably prevented from being transported to a place (for example, a cabin or an engine room) which is undesirable for the vehicle.
  • the circulation path closed with respect to an external environment is formed by the structure which one specific path mentioned above was connected with the said flow path in the position of the upstream of the said airflow of an evaporator.
  • the heat generated from the battery can be reliably prevented from being transported to the undesired place via the evaporator.
  • the circulation route not to pass through an undesired place, it is possible to more reliably prevent the heat generated from the battery from being transported to the undesired place.
  • a valve mechanism can be mentioned, for example.
  • the heat conducting member thermally connected at one end with the battery having a plurality of battery cells not only functions to cool the battery but also functions to heat the battery.
  • the temperature is cooled below the temperature suitable for use.
  • a battery can be heated to raise the battery to a temperature suitable for use.
  • a plurality of heat conducting members are prepared, the other end of at least one heat conducting member is thermally connected to the fin or evaporator of the capacitor, and the other end of the other heat conducting member is thermally connected to the heating portion It may be connected to
  • the above aspect makes it easier to adjust the temperature of the battery to a temperature range suitable for use.
  • piping of engine cooling water can be mentioned as the heat generating portion.
  • a branched piping for thermally connecting to the other end of the heat conducting member is separately provided, and a piping for flowing engine cooling water is selected in the branching portion.
  • the aspect which installs a valve can be mentioned.
  • the engine cooling flowing through the branched piping is operated by operating the valve so that the engine cooling water heated by the engine flows to the branched piping (heat generating portion) Heat is transported from the water to the other end of the heat transfer member.
  • the heat transported to the other end of the heat conducting member is transported from the other end of the heat conducting member to one end.
  • the heat transported to one end of the heat transfer member is transferred from one end of the heat transfer member to a battery thermally connected to one end of the heat transfer member.
  • the heat transported to the battery heats the battery and raises the battery to a temperature suitable for use.
  • the heat generating portion for example, in the case of an electric car or a fuel cell car, a pipe of a heater or a condenser can be mentioned in place of the pipe of engine cooling water heated by the engine.
  • the evaporator was arrange
  • the evaporator may be disposed in a flow path, for example, a flow path of liquid nitrogen or liquid helium for cryogenic cooling, a rare gas excellent in thermal conductivity, cooling water, a cooling organic solvent, or the like.
  • the battery temperature control device and the battery temperature control system according to the present invention are excellent in uniformity of heat transfer efficiency and temperature control performance, prevent increase in mass and power consumption, and realize downsizing or increase in capacity of the battery. For example, it is highly useful in the field of temperature control of a battery having a battery cell mounted in a car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 熱伝達効率と温調性能の均一性に優れ、質量と消費電力の増大化を防止できるバッテリ温調装置及びバッテリ温調システムを提供する。 バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された熱伝導部材と、該熱伝導部材の他方の端部にて熱的に接続されたコンデンサのフィン及び/またはエバポレータと、を備えたバッテリ温調装置及びバッテリ温調システム。

Description

バッテリ温調装置及びバッテリ温調システム
 本発明は、熱伝導部材を用いて、バッテリから発せられる熱をコンデンサのフィン及び/またはエバポレータへ輸送するバッテリ温調装置及びバッテリ温調システムに関する。
 従来のバッテリ温調システムとしては、車両に設置され走行に用いられるバッテリと、車室内空調用と別に設けられ、バッテリへの送風を発生させるブロワファンと、車室内空調用と別に設けられ、内部を流れる冷媒とバッテリへ送る、送風との熱交換により送風を冷却する熱交換器を備え、熱交換器であるエバポレータは、冷媒を車室内空調と共用するようにしたシステムが提案されている(特許文献1)。
 しかし、特許文献1では、冷媒にて冷却した空気をバッテリに供給することでバッテリの冷却を行っているが、空気を介しているため熱伝達効率が十分ではないという問題があった。さらに、特許文献1では、空気の流れを均一にすることが困難であることから、空気の経路の違い(例えば、空気の流れの上流側と下流側の違い)によって、バッテリを構成する個々のバッテリセルに供給される空気の温度が変わってしまうので、バッテリの冷却に時間を要し、かつバッテリセルの温度にばらつきが生じてしまうという問題もあった。
 また、他のバッテリ温調システムとして、バッテリモジュールにヒートパイプを接触させ、他端をヒートシンクに接続し、バッテリで発生した熱をヒートシンクへ輸送するよう構成するとともに、ヒートシンク内部にはパラフィンなどの蓄熱材を包含しているとともに、蓄熱材内部を貫通する冷却水通路と、冷却水通路と接続した冷却水配管と電動ポンプとラジエータとを備える構成とするシステムが提案されている(特許文献2)。
 しかし、特許文献2では、冷却水配管にヒートパイプを介してバッテリモジュールを冷却しているが、水冷式のシステムでは、質量が重いので、車両の走行距離が短くなってしまうという問題があった。また、水流を生成するために必須となる電動ポンプは消費電力が大きいので、この点からも、車両の走行距離が短くなってしまうという問題があった。
 また、車両用の冷却装置として、同一の冷却系コア部を経由する少なくとも2つ以上の冷媒流路パイプを貫通するようになっている1つ以上のヒートパイプが装着された車両用冷却装置が提案されている(特許文献3)。
 しかし、特許文献3の、同一の冷却系コア部を設置して冷却するシステムでは、車両の質量や冷媒を冷却するための消費電力が増してしまうので、やはり、車両の走行距離が短くなってしまうという問題があった。
国際公開2008/026386号公報 特開平11-204151号公報 特開2012-112373号公報
 上記事情に鑑み、本発明の目的は、熱伝達効率と温調性能の均一性に優れ、質量と消費電力の増大化を防止できるバッテリ温調装置及びバッテリ温調システムを提供することである。
 本発明の態様は、バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された熱伝導部材と、を備え、該熱伝導部材の他方の端部にコンデンサのフィンまたはエバポレータが熱的に接続されたバッテリ温調装置である。
 上記態様では、熱伝導部材を介して、バッテリとコンデンサのフィンまたはエバポレータが熱的に接続されている。バッテリとエバポレータが熱的に接続されることでバッテリを冷却する場合には、バッテリから発せられた熱が、バッテリから熱伝導部材の一方の端部へ熱輸送され、熱伝導部材の一方の端部へ輸送された熱は、熱伝導部材の一方の端部から他方の端部へ輸送される。熱伝導部材の他方の端部へ輸送された熱は、熱伝導部材の他方の端部から熱伝導部材の他方の端部と熱的に接続されたエバポレータへ輸送される。エバポレータへ輸送された熱は、エバポレータから外部へ放出される。
 一方、バッテリとコンデンサが熱的に接続されることで、バッテリを冷却する場合には、コンデンサから発せられた熱が、コンデンサから熱伝導部材の他方の端部へ熱輸送されるのを防止するために、コンデンサのフィンに熱伝導部材の他方の端部を熱的に接続することとなる。これにより、上記したバッテリとエバポレータが熱的に接続されることによるバッテリの冷却作用と同様の作用にてバッテリを冷却することができる。
 上記態様のうち、バッテリをエバポレータのみで冷却する場合の構成は、熱伝導部材がコンデンサのフィンとは熱的に接続されずにエバポレータと熱的に接続される。バッテリをコンデンサのフィンのみで冷却する場合の構成は、熱伝導部材がエバポレータとは熱的に接続されずにコンデンサのフィンと熱的に接続される。上記各種態様は、バッテリ温調システムの使用状況に応じて適宜選択できる。
 本発明の態様は、バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された、第1の熱伝導部材及び第2の熱伝導部材と、を備え、前記第1の熱伝導部材の他方の端部がコンデンサのフィンに熱的に接続され、前記第2の熱伝導部材の他方の端部がエバポレータに熱的に接続されたバッテリ温調装置である。
 バッテリとエバポレータ及びコンデンサのフィンとが熱伝導部材を介して熱的に接続されている構成としては、複数の熱伝導部材を用意し、少なくとも1つの熱伝導部材がコンデンサのフィンとは熱的に接続されずにエバポレータと熱的に接続され、かつ他の熱伝導部材がエバポレータとは熱的に接続されずにコンデンサのフィンと熱的に接続される態様が挙げられる。
 本発明の態様は、前記熱伝導部材が、ヒートパイプであるバッテリ温調装置である。
 本発明の態様は、前記熱伝導部材の他方の端部が、前記コンデンサのフィン及び/またはエバポレータと着脱可能であるバッテリ温調装置である。
 本発明の態様は、前記エバポレータ及び/またはコンデンサが、ヒートポンプ機構を形成しているバッテリ温調装置である。
 本発明の態様は、前記エバポレータ及び/またはコンデンサが、流体の流れる流路に配置され、該流路が、該エバポレータ及び/またはコンデンサの、該流体の流れの下流側の位置において、複数の経路に分岐されているバッテリ温調装置である。
 本発明の態様は、前記経路の少なくとも1つが、前記エバポレータ及び/またはコンデンサの、前記流体の流れの上流側の位置において前記流路と接続されることにより、外部環境に対して閉鎖された循環経路が形成されているバッテリ温調システムである。上記態様では、エバポレータ及び/またはコンデンサの下流側へ達した流体は、該下流側から循環経路を介してエバポレータ及び/またはコンデンサの上流側へ返送される。
 本発明の態様は、前記循環経路が、前記経路の選択手段として弁機構を備えるバッテリ温調装置である。
 本発明の態様は、前記経路の少なくとも1つが、前記エバポレータ及び/またはコンデンサの、前記流体の流れの上流側の位置において前記流路と接続されることにより、外部環境に対して閉鎖された循環経路が形成されているバッテリ温調装置であって、自動車に搭載され、前記流体の流れが気流であるバッテリ温調装置である。
 上記態様では、自動車のキャビンを空調する部品であるエバポレータ及び/または自動車のキャビンを空調する部品であるコンデンサのフィンに、熱伝導部材の他方の端部が熱的に接続されている。
 本発明の態様は、前記循環経路が、前記自動車のエンジンルーム内及びキャビン内を経由しないバッテリ温調装置である。
 本発明の態様は、前記気流を生成するためのファンが、設けられているバッテリ温調装置である。
 本発明の態様は、前記気流が、自動車の走行風に由来するバッテリ温調装置である。この態様では、気流の生成手段である上記ファンに代えて、気流を得るために走行風が利用されている。
 本発明の態様は、バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された熱伝導部材と、該熱伝導部材の他方の端部にて熱的に接続されたコンデンサのフィン及び/またはエバポレータと、を備えたバッテリ温調システムであって、前記バッテリを冷却する場合、前記バッテリの熱を前記熱伝導部材で前記コンデンサのフィン及び/またはエバポレータへ輸送するバッテリ温調システムである。
 本発明の態様は、他の熱伝導部材を更に備え、前記他の熱伝導部材の一方の端部は、前記バッテリと熱的に接続され、前記他の熱伝導部材の他方の端部は、発熱部と熱的に接続され、前記バッテリを加熱する場合、前記発熱部の熱を前記他の熱伝導部材で前記バッテリへ輸送するバッテリ温調システムである。
 本発明の態様によれば、熱伝導部材を介して、バッテリが既存のコンデンサのフィン及び/またはエバポレータと熱的に接続されているので、水冷式システムや冷媒を使用する必要がなく、質量と消費電力の増大化を防止できる。また、熱伝導部材を介してバッテリを温調するので、冷媒にて冷却した空気を使用する必要がなく、結果、優れた熱伝達効率と温調性能の均一性を得ることができる。また、熱伝導部材を介して、バッテリが既存のコンデンサのフィン及び/またはエバポレータと熱的に接続されていることにより、エバポレータやコンデンサが稼働していない(エアコンシステムが稼働していない)場合であっても、バッテリから発せられた熱が、バッテリよりも相対的に低温であるコンデンサのフィン及び/またはエバポレータへ輸送される。よって、バッテリの冷却のための消費電力を低減できる。
 また、本発明の態様によれば、熱伝導部材により各バッテリセルの熱を輸送するため、温調用の流体を流すためのバッテリセル間の隙間やダクトが不要となり、バッテリ容器の大きさを大幅に小さくすることができ、省スペース化に有利である。さらには、バッテリ容器の大きさを大幅に小さくすることができるので、同じスペースであれば、バッテリセル数を大幅に増加することができ、結果、充電容量の増大を実現することもできる。
 本発明の態様によれば、熱伝導部材がヒートパイプであることにより、熱伝導部材の熱輸送効率が向上するので、バッテリの温調効率がさらに向上する。また、ヒートパイプの内部は中空なので、バッテリ温調システムをより軽量化できる。
 本発明の態様によれば、熱伝導部材の他方の端部が、コンデンサのフィン及び/またはエバポレータと着脱可能であることにより、バッテリ温調システムの搬送性と取り付け性が向上する。
 本発明の態様によれば、エバポレータ及び/またはコンデンサの下流側において、流路が、複数の経路に分岐されていることにより、バッテリから発せられた熱がエバポレータ及び/またはコンデンサから所望の場所へ確実に輸送できる。
 本発明の態様によれば、自動車に搭載され、外部環境に対して閉鎖された循環経路を有するバッテリ温調システムであることにより、バッテリから発せられた熱が自動車のキャビンやエンジンルーム等の不所望な場所へ輸送されるのを確実に防止できる。
第1実施形態例に係るバッテリ温調システムの斜視図である。 第1実施形態例に係るバッテリ温調システムのエバポレータの説明図である。 図2のエバポレータの部分拡大図である。 第2実施形態例に係るバッテリ温調システムの斜視図である。 第3実施形態例に係るバッテリ温調システムの斜視図である。 第3実施形態例に係るバッテリ温調システムのエバポレータの説明図である。 第4実施形態例に係るバッテリ温調システムの斜視図である。 第5実施形態例に係るバッテリ温調システムの斜視図である。 第5実施形態例に係るバッテリ温調システムの説明図である。
 以下に、本発明の第1実施形態例に係るバッテリ温調システムについて、図面を用いながら説明する。図1に示すように、第1実施形態例に係るバッテリ温調システム1は、複数のバッテリセル12を備えたバッテリ11と、バッテリ11と一方の端部14にて熱的に接続されたヒートパイプ13と、ヒートパイプ13の他方の端部15と直接接することでヒートパイプ13と熱的に接続されたエバポレータ(ヒートポンプの蒸発器)16とを備えている。つまり、エバポレータ16は、ヒートパイプ13の他方の端部15と直接接している。
 バッテリ11には、各バッテリセル12の側面部と接した受熱プレート10が備えられている。受熱プレート10の表面部がバッテリセル12の側面部と接することで、受熱プレート10とバッテリセル12が熱的に接続されている。また、ヒートパイプ13の一方の端部14が、受熱プレート10の裏面部と直接接することで、受熱プレート10と、ヒートパイプ13の一方の端部14が熱的に接続されている。従って、受熱プレート10を介して、バッテリ11とヒートパイプ13が熱的に接続されている。
 ヒートパイプ13は、バッテリ11及びエバポレータ16との熱的接続性を向上させるために、バッテリ11の受熱プレート10との接触部及びエバポレータ16との接触部、すなわち、一方の端部14と他方の端部15が、扁平状に加工されている。
 図1に示すように、エバポレータ16は、本体部17と、液化した冷媒を本体部17へ供給する供給用ヘッダー部18と、本体部17にて気化した冷媒を排出する排出用ヘッダー部19とを備えている。冷媒は本体部17にて気化することで本体部17から熱を奪い、エバポレータ16を冷却する。
 図2、3に示すように、本体部17は、冷媒(図中の矢印で示す。)の流路20が複数(図2では11個)設けられ、それぞれの流路20の間にはコルゲート状の放熱フィン21が配置されている。図2では10個のコルゲート状の放熱フィン21のそれぞれが、仕切り板24によって仕切られることで、11個の流路20が形成されている。
 供給用ヘッダー部18には冷媒供給口22が設けられており、冷媒供給口22は、供給用ヘッダー部18の内部空間を介して、本体部17のそれぞれの流路20の一方の開口部と連通している。また、排出用ヘッダー部19には冷媒排出口23が設けられており、冷媒排出口23は、排出用ヘッダー部19の内部空間を介して、本体部17のそれぞれの流路20の他方の開口部と連通している。従って、供給用ヘッダー部18の冷媒供給口22から供給された液体状の冷媒は、供給用ヘッダー部18の内部空間を介して、本体部17のそれぞれの流路20(図2では11個の流路20)へ流入し、それぞれの流路20の一方の開口部から他方の開口部へ流れる間に気化していく。流路20にて冷媒が気化していくにあたり、流路20の間に配置された放熱フィン21(図2では10個の放熱フィン21)を介して、冷媒が本体部17から熱を奪うことで、エバポレータ16が冷却される。気化した冷媒はそれぞれの流路20の他方の開口部から排出用ヘッダー部19の内部空間を介して、冷媒排出口23へ流され、冷媒排出口23からエバポレータ16外部へ放出される。
 図1に示すように、第1実施形態例に係るバッテリ温調システム1では、エバポレータ16の供給用ヘッダー部18の外面に、ヒートパイプ13の他方の端部15が接触することで、ヒートパイプ13とエバポレータ16が熱的に接続されている。バッテリ温調システム1では、エバポレータ16の供給用ヘッダー部18と、ヒートパイプ13の他方の端部15との接触面積を増大させるために、ヒートパイプ13は、ヒートパイプ13の他方の端部15近傍で曲げ加工され、L字状となっている。
 上記の通り、冷媒によってエバポレータ16が冷却されているので、バッテリ11から発せられた熱はヒートパイプ13によってエバポレータ16へ輸送され、結果、バッテリが冷却される。また、エバポレータ16が稼働していない場合でも、昇温したバッテリ11から発せられた熱は、バッテリ11よりも相対的に低温であるエバポレータ16へ、ヒートパイプ13によって輸送される。
 次に、本発明の第2実施形態例に係るバッテリ温調システムについて、図面を用いながら説明する。なお、バッテリ温調システム1と同じ構成要素については、同じ符号を用いて説明する。
 図4に示すように、第2実施形態例に係るバッテリ温調システム2では、バッテリ温調システム1のエバポレータ16が2つ使用されている。すなわち、バッテリ温調システム2では、ヒートパイプ13は、2つのエバポレータ16、16’と熱的に接続されている。
 バッテリ温調システム2では、ヒートパイプ13の他方の端部15は、第1のエバポレータ16の供給用ヘッダー部18と熱的に接続されているだけでなく、第2のエバポレータ16’の排出用ヘッダー部19とも熱的に接続されている。具体的には、第1のエバポレータ16の供給用ヘッダー部18の外面に、ヒートパイプ13の他方の端部15の表面側が直接接することで、ヒートパイプ13と第1のエバポレータ16が熱的に接続され、第2のエバポレータ16’の排出用ヘッダー部19の外面に、ヒートパイプ13の他方の端部15の裏面側が直接接することで、ヒートパイプ13と第2のエバポレータ16’が熱的に接続されている。
 バッテリ温調システム2では、ヒートパイプ13の他方の端部15が第1のエバポレータ16と第2のエバポレータ16’に挟持されることで、バッテリ11に対する冷却性能がさらに向上する。
 次に、本発明の第3実施形態例に係るバッテリ温調システムについて、図面を用いながら説明する。なお、バッテリ温調システム1、2と同じ構成要素については、同じ符号を用いて説明する。
 図5に示すように、第3実施形態例に係るバッテリ温調システム3では、エバポレータ36に設けられた冷媒の流路30にヒートパイプ13の他方の端部15が直接接している。バッテリ温調システム3では、1つの直線状のヒートパイプ13を介して、1つのバッテリ11と1つのエバポレータ36が熱的に接続されている。
 バッテリ温調システム3では、流路30は、半円状に曲げられている曲げ部31と直線部32とを有した、波状に蛇行した形状である。流路30が半円状に曲げられている曲げ部31に、ヒートパイプ13の他方の端部15が曲げ部31の内側から接している。流路30は、波状に蛇行した2枚の仕切り板34を対向させることにより、形成されている。バッテリ温調システム3では、流路30に、複数(図5では10個)の曲げ部31が形成され、それに伴い直線部32が複数(図5では11個)形成されている。
 図5、6に示すように、エバポレータ36では、流路30を形成する波状に蛇行した仕切り板34の曲げ部31以外の部位、すなわち、直線部32に、コルゲート状の放熱フィン21が複数(図5、6では10個)配置されている。エバポレータ36では、流路30を形成する仕切り板34の直線部32がコルゲート状の放熱フィン21と直接接することで、流路30とコルゲート状の放熱フィン21が熱的に接続されている。
 また、図5に示すように、ヒートパイプ13の他方の端部15は、流路30の曲げ部31の形状に対応する形状となっている。すなわち、他方の端部15の厚さ方向の形状が、半円形状であることで、ヒートパイプ13と流路30との熱的接続性が向上する構成となっている。
 図6に示すように、エバポレータ36では、波状に蛇行した流路30の一方の端部に冷媒を流路30に供給するための冷媒供給口35と波状に蛇行した流路30の他方の端部に冷媒を流路30から排出するための冷媒排出口37が形成されている。従って、冷媒供給口35から流路30内に供給された冷媒(図中の矢印で示す。)は、流路30に沿って、10個のコルゲート状の放熱フィン21の間を縫うように流れていき、冷媒排出口37からエバポレータ36の外部へ排出される。
 次に、本発明の第4実施形態例に係るバッテリ温調システムについて、図面を用いながら説明する。なお、バッテリ温調システム1、2、3と同じ構成要素については、同じ符号を用いて説明する。
 図7に示すように、第4実施形態例に係るバッテリ温調システム4では、流路30が半円状に曲げられている複数(図7では10個)の曲げ部31のうち、複数(図7では2個)の曲げ部31に、それぞれ、1つの直線状のヒートパイプ13が直接接している。バッテリ温調システム4でも、バッテリ温調システム3と同様に、流路30が半円状に曲げられている曲げ部31に、ヒートパイプ13の他方の端部15が曲げ部31の内側から接している。また、バッテリ温調システム4でも、バッテリ温調システム3と同様に、それぞれのヒートパイプ13に、1つのバッテリ11が熱的に接続されている。
 つまり、バッテリ温調システム4では、1つのエバポレータ36に複数(図7では2つ)のバッテリ11が熱的に接続されている。上記から、バッテリ温調システム4では、1つのエバポレータ36にて、複数のバッテリ11を同時に冷却できる。
 次に、本発明の第5実施形態例に係るバッテリ温調システムについて、図面を用いながら説明する。なお、バッテリ温調システム1、2、3、4と同じ構成要素については、同じ符号を用いて説明する。
 図8、9に示すように、第5実施形態例に係るバッテリ温調システム5では、第1実施形態例に係るバッテリ温調システム1にて使用したエバポレータ16について、他方の端部15近傍で曲げ加工され、L字状となっているヒートパイプ13が、相互に隣接する流路20-1と流路20-2との間に熱的に接続された態様となっている。
 バッテリ温調システム5のエバポレータ56では、相互に隣接する流路20-1と流路20-2との間にヒートパイプ13を熱的に接続させるために、複数(図8、9では10個)のコルゲート状の放熱フィン21のうち、流路20-1と流路20-2との間に配置されたコルゲート状の放熱フィン21-1が、他のコルゲート状の放熱フィン21よりも短尺化され、それによって生じた空間部50に、ヒートパイプ13の他方の端部15の端面から曲げ加工された部位までの間が、流路20に対して平行方向に挿入されている。
 また、バッテリ温調システム5では、流路20とヒートパイプ13との熱的接続性をより向上させるために、空間部50の形状に対応した外形状を有し、且つヒートパイプ13の他方の端部15の外形状に対応した内部空間の形状を有する金属ブロック51(例えば、アルミニウム、アルミニウム合金等のブロック)を使用している。すなわち、金属ブロック51の内部空間にヒートパイプ13の他方の端部15を嵌合することにより、金属ブロック51の内面とヒートパイプ13の他方の端部15の外面が接して、金属ブロック51とヒートパイプ13の他方の端部15が熱的に接続される。さらに、ヒートパイプ13の他方の端部15が嵌合された金属ブロック51を空間部50に嵌挿することにより、相互に隣接する流路20-1、流路20-2と金属ブロック51の外面とが接して、相互に隣接する流路20-1、流路20-2と金属ブロック51とが熱的に接続される。これにより、相互に隣接する流路20-1と流路20-2との間の部位に、金属ブロック51を介してヒートパイプ13の他方の端部15が熱的に接続された状態となる。
 バッテリ温調システム5では、金属ブロック51を空間部50に嵌挿することにより、ヒートパイプ13の他方の端部15がエバポレータ56と熱的に接続された状態となるので、ヒートパイプ13は、エバポレータ56に対する着脱が容易かつ確実となる。
 本発明のバッテリ温調システムで使用するヒートパイプ13のコンテナの材質は、特に限定されず、銅、銅合金、ステンレス鋼等の金属を挙げることができる。また、ヒートパイプ13の作動液としては、特に限定されず、例えば、水、アルコール、代替フロン等を挙げることができる。
 次に、本発明の他の実施形態例に係るバッテリ温調システムについて、説明する。上記各実施形態例では、ヒートパイプ13の他方の端部15は、エバポレータ16、36、56と熱的に接続されていたが、これに代えて、コンデンサ(ヒートポンプの凝縮器)と熱的に接続してもよい。
 また、上記各実施形態例では、ヒートパイプ13の他方の端部15は、エバポレータ16、36、56と熱的に接続されていたが、これに代えて、エバポレータ16、36、56だけでなく、コンデンサのフィンとも熱的に接続してもよい。この場合、複数のヒートパイプを用意し、上記各実施形態例のように、少なくとも1つのヒートパイプ(第2のヒートパイプ)13がコンデンサのフィンとは熱的に接続されずにエバポレータ16、36、56と熱的に接続され、さらに、他のヒートパイプ(第1のヒートパイプ)がエバポレータ16、36、56とは熱的に接続されずにコンデンサのフィンと熱的に接続された態様が挙げられる。
 また、上記コンデンサは、例えば、自動車の冷暖房装置のように、エバポレータ16、36、56とヒートポンプ機構を形成していてもよく、エバポレータ16、36、56とヒートポンプ機構を形成していなくてもよい。また、上記各実施形態例では、熱輸送手段である熱伝導部材としてヒートパイプ13を使用したが、熱伝導部材は、ヒートパイプ13や、それに類する、部材の内部空間に作動液を有する構造体に限定されず、棒状、板状、パイプ状等の、金属(例えば、銅等)部材やグラファイトでもよい。必要な輸送熱量、輸送距離、コストなどの条件により、上記熱伝導部材は、適宜選択可能であり、また、複数種の熱伝導部材を、適宜、組み合わせてもよい。
 また、上記各実施形態例では、ヒートパイプ13の他方の端部15は、エバポレータの、供給用ヘッダー部、排出用ヘッダー部または流路と直接接することで、エバポレータと熱的に接続されていたが、これに代えて、ヒートパイプ13の他方の端部15は、エバポレータ16、36、56の放熱フィン部21と接することで、エバポレータと熱的に接続されてもよい。
 また、上記各実施形態例では、バッテリ11とエバポレータ16、36、56は1本のヒートパイプ13を介して熱的に接続されていたが、これに代えて、ヒートパイプ13よりも短いヒートパイプを複数用意し、この複数の短いヒートパイプを熱輸送方向に熱的に接続する態様としてもよい。複数の短いヒートパイプを熱輸送方向に熱的に接続することにより、より多くの熱量を輸送でき、また凍結した作動液の解凍をより確実に実施できる。
 次に、上記各実施形態例で使用されるエバポレータの配置について以下に説明する。エバポレータは、例えば、流体の流れる流路に配置される。エバポレータが、例えば、自動車の冷暖房装置のエバポレータである場合には、車載空調のブロワファンにより生じる気流または車両走行時の走行風に由来する気流の流れる流路にエバポレータは配置されている。該流路が、該エバポレータの、該気流の下流側の位置において、複数の経路に分岐されていることにより、バッテリから発せられた熱を受熱した気流が、複数の経路のうちの特定の1つの経路へ流入することができる。上記構成によって、バッテリから発せられた熱を、特定の1つの経路を使用して、エバポレータから所望の適切な場所へ確実に逃がすことができる。すなわち、バッテリから発せられた熱は、自動車にとって不所望な場所(例えば、キャビンやエンジンルーム等)へ熱輸送されることを確実に防止できる。
 また、上記した特定の1つの経路が、エバポレータの、前記気流の上流側の位置において、前記流路と接続された構成であることによって、外部環境に対して閉鎖された循環経路が形成されていると、バッテリから発せられた熱が、エバポレータを介して不所望な場所へ輸送されるのを確実に防止できる。さらに、上記循環経路が、そもそも、不所望な場所を経由しない構成とすることにより、バッテリから発せられた熱が不所望な場所へ輸送されるのをより確実に防止できる。上記複数の経路の選択手段としては、例えば、弁機構を挙げることができる。
 また、本発明のバッテリ温調システムのうち、複数のバッテリセルを有するバッテリと一方の端部において熱的に接続された熱伝導部材は、バッテリを冷却する作用だけでなく、バッテリを加熱する作用にも使用することができる。例えば、ヒートパイプ等の熱伝導部材の他方の端部を、コンデンサのフィン及び/またはエバポレータに代えて、発熱部と熱的に接続することにより、使用に適した温度よりも冷却された状態にあるバッテリを加熱して、使用に適した温度までバッテリを昇温させることができる。
 また、熱伝導部材を複数用意し、少なくとも1つの熱伝導部材の他方の端部がコンデンサのフィンまたはエバポレータと熱的に接続され、他の熱伝導部材の他方の端部が発熱部と熱的に接続される態様としてもよい。上記態様により、使用に適した温度範囲にバッテリの温度を調整することがより容易となる。
 上記発熱部としては、例えば、エンジンを有する自動車の場合には、エンジン冷却水の配管を挙げることができる。エンジン冷却水の配管については、例えば、別途、熱伝導部材の他方の端部と熱的に接続させるための分岐した配管を設け、該分岐部に、エンジン冷却水を流す配管を選択するためのバルブを設置する態様を挙げることができる。
 上記態様では、バッテリを昇温させる必要がある場合には、エンジンにより加熱されたエンジン冷却水が分岐した配管(発熱部)へ流れるようにバルブを操作することにより、分岐した配管を流れるエンジン冷却水から熱伝導部材の他方の端部へ熱が輸送される。熱伝導部材の他方の端部へ輸送された熱は、熱伝導部材の他方の端部から一方の端部へ輸送される。熱伝導部材の一方の端部へ輸送された熱は、熱伝導部材の一方の端部から熱伝導部材の一方の端部と熱的に接続されたバッテリへ輸送される。バッテリへ輸送された熱がバッテリを加熱し、使用に適した温度までバッテリを昇温させる。
 また、上記発熱部としては、例えば、電気自動車や燃料電池自動車の場合には、上記エンジンにより加熱されたエンジン冷却水の配管に代えて、ヒーターやコンデンサの配管を挙げることができる。
 また、上記実施態様の例では、エバポレータは、車載空調用ブロワファンにより生じる気流または走行風を導入したことによる気流の流れる流路に配置されていたが、これに代えて、他の流体の流れる流路、例えば、極低温冷却用の液体窒素や液体ヘリウム、熱伝導率に優れた希ガス類、冷却水、冷却用有機溶剤等の流れる流路に、エバポレータを配置してもよい。
 本発明のバッテリ温調装置及びバッテリ温調システムは、熱伝達効率と温調性能の均一性に優れ、質量と消費電力の増大化を防止し、バッテリの小型化もしくは大容量化を実現できるので、例えば、自動車に搭載されたバッテリセルを有するバッテリの温調の分野で利用価値が高い。
1、2、3、4、5       バッテリ温調システム
11              バッテリ
12              バッテリセル
13              ヒートパイプ
16、36、56        エバポレータ

Claims (14)

  1.  バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された熱伝導部材と、を備え、
    該熱伝導部材の他方の端部にコンデンサのフィンまたはエバポレータが熱的に接続されたバッテリ温調装置。
  2.  バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された、第1の熱伝導部材及び第2の熱伝導部材と、を備え、
    前記第1の熱伝導部材の他方の端部がコンデンサのフィンに熱的に接続され、前記第2の熱伝導部材の他方の端部がエバポレータに熱的に接続されたバッテリ温調装置。
  3.  前記熱伝導部材が、ヒートパイプである請求項1または2に記載のバッテリ温調装置。
  4.  前記熱伝導部材の他方の端部が、前記コンデンサのフィン及び/またはエバポレータと着脱可能である請求項1乃至3のいずれか1項に記載のバッテリ温調装置。
  5.  前記エバポレータ及び/またはコンデンサが、ヒートポンプ機構を形成している請求項1乃至4のいずれか1項に記載のバッテリ温調装置。
  6.  前記エバポレータ及び/またはコンデンサが、流体の流れる流路に配置され、該流路が、該エバポレータ及び/またはコンデンサの、該流体の流れの下流側の位置において、複数の経路に分岐されている請求項1乃至5のいずれか1項に記載のバッテリ温調装置。
  7.  前記経路の少なくとも1つが、前記エバポレータ及び/またはコンデンサの、前記流体の流れの上流側の位置において前記流路と接続されることにより、外部環境に対して閉鎖された循環経路が形成されている請求項6に記載のバッテリ温調装置。
  8.  前記循環経路が、前記経路の選択手段として弁機構を備える請求項6または7に記載のバッテリ温調装置。
  9.  前記経路の少なくとも1つが、前記エバポレータ及び/またはコンデンサの、前記流体の流れの上流側の位置において前記流路と接続されることにより、外部環境に対して閉鎖された循環経路が形成されているバッテリ温調装置であって、自動車に搭載され、前記流体の流れが気流である請求項5乃至8のいずれか1項に記載のバッテリ温調装置。
  10.  前記循環経路が、前記自動車のエンジンルーム内及びキャビン内を経由しない請求項9に記載のバッテリ温調装置。
  11.  前記気流を生成するためのファンが、設けられている請求項9または10に記載のバッテリ温調装置。
  12.  前記気流が、自動車の走行風に由来する請求項9または10に記載のバッテリ温調装置。
  13.  バッテリセルを有するバッテリと、該バッテリと一方の端部にて熱的に接続された熱伝導部材と、該熱伝導部材の他方の端部にて熱的に接続されたコンデンサのフィン及び/またはエバポレータと、を備えたバッテリ温調システムであって、
     前記バッテリを冷却する場合、前記バッテリの熱を前記熱伝導部材で前記コンデンサのフィン及び/またはエバポレータへ輸送するバッテリ温調システム。
  14.  他の熱伝導部材を更に備え、
     前記他の熱伝導部材の一方の端部は、前記バッテリと熱的に接続され、前記他の熱伝導部材の他方の端部は、発熱部と熱的に接続され、
     前記バッテリを加熱する場合、前記発熱部の熱を前記他の熱伝導部材で前記バッテリへ輸送する請求項13に記載のバッテリ温調システム。
PCT/JP2016/054633 2015-02-18 2016-02-18 バッテリ温調装置及びバッテリ温調システム WO2016133145A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017500725A JP6754352B2 (ja) 2015-02-18 2016-02-18 バッテリ温調装置及びバッテリ温調システム
CN201680004760.7A CN107112611B (zh) 2015-02-18 2016-02-18 电池温度调节装置以及电池温度调节系统
US15/680,410 US10525786B2 (en) 2015-02-18 2017-08-18 Battery temperature control device and battery temperature control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-029932 2015-02-18
JP2015029932 2015-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/680,410 Continuation US10525786B2 (en) 2015-02-18 2017-08-18 Battery temperature control device and battery temperature control system

Publications (1)

Publication Number Publication Date
WO2016133145A1 true WO2016133145A1 (ja) 2016-08-25

Family

ID=56692191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054633 WO2016133145A1 (ja) 2015-02-18 2016-02-18 バッテリ温調装置及びバッテリ温調システム

Country Status (4)

Country Link
US (1) US10525786B2 (ja)
JP (1) JP6754352B2 (ja)
CN (1) CN107112611B (ja)
WO (1) WO2016133145A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047533A1 (ja) * 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP2018088305A (ja) * 2016-11-28 2018-06-07 昭和電工株式会社 冷却装置
JP2018181761A (ja) * 2017-04-20 2018-11-15 株式会社フジクラ 車載バッテリ冷却構造
KR20190041415A (ko) * 2017-10-12 2019-04-22 한온시스템 주식회사 열 커패시터를 이용한 하이브리드 및 완전 전기 자동차들을 위한 배터리 열 관리 시스템
WO2020026894A1 (ja) * 2018-07-31 2020-02-06 株式会社デンソー サーモサイフォン式温調装置およびその組付方法
CN115406275A (zh) * 2022-07-28 2022-11-29 西安空间无线电技术研究所 一种可控快速响应相变储热系统、加工方法及传热方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638169B2 (ja) * 2016-07-19 2020-01-29 本田技研工業株式会社 車両用空調装置
ES2919949T3 (es) * 2016-12-02 2022-07-29 Guangzhou Xaircraft Tech Co Ltd Vehículo aéreo no tripulado, módulo de batería y método para controlar la carga y la descarga
CN109962320A (zh) * 2017-12-22 2019-07-02 青岛市比亚迪汽车有限公司 一种动力电池加热系统及其控制方法
JP2020046102A (ja) * 2018-09-18 2020-03-26 シャープ株式会社 空気調和機
CN111376692B (zh) * 2018-12-29 2022-06-07 宇通客车股份有限公司 一种车辆、多支路温度调节液冷电源系统及其控制方法
KR102083611B1 (ko) * 2019-04-25 2020-03-02 엘지이노텍 주식회사 열변환장치
US20210257686A1 (en) * 2020-02-17 2021-08-19 Baidu Usa Llc Battery cell holder structure with heat transfer assembly
CN112701377B (zh) * 2020-12-26 2023-08-15 北京蓄力赛新能源科技有限公司 一种具有防自燃结构的新能源电池
CN113113696A (zh) * 2021-04-12 2021-07-13 上海工程技术大学 一种电池热管理系统
CN117650312B (zh) * 2024-01-30 2024-04-26 深圳市科瑞隆科技有限公司 一种耐高温的聚合物锂电池组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026386A1 (fr) * 2006-08-30 2008-03-06 Calsonic Kansei Corporation Système de refroidissement d'accumulateur pour véhicule
WO2010064614A1 (ja) * 2008-12-04 2010-06-10 カルソニックカンセイ株式会社 発熱体ユニットの冷却装置
JP2012510697A (ja) * 2008-11-28 2012-05-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング バッテリモジュール
JP4952867B2 (ja) * 2010-07-07 2012-06-13 パナソニック株式会社 貯湯式給湯システムとその運転方法
JP2013062023A (ja) * 2010-02-23 2013-04-04 Bosch Corp バッテリパック
JP2014229480A (ja) * 2013-05-22 2014-12-08 株式会社デンソー 電池温調システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204151A (ja) 1998-01-08 1999-07-30 Nissan Motor Co Ltd 電気自動車のバッテリ冷却装置
JP2007255857A (ja) * 2006-03-24 2007-10-04 Calsonic Kansei Corp エバポレータ
DE102007010750B3 (de) * 2007-02-27 2008-09-04 Daimler Ag Elektrochemische Einzelzelle für eine Batterie, Verwendung einer Einzelzelle und Verwendung einer Batterie
US8329325B2 (en) * 2010-02-18 2012-12-11 Denso International America, Inc. Battery cooling with mist evaporation and condensation
US8785024B2 (en) * 2010-02-23 2014-07-22 GM Global Technology Operations LLC Combination of heat pipe and louvered fins for air-cooling of Li-Ion battery cell and pack
JP5766993B2 (ja) 2010-11-25 2015-08-19 現代自動車株式会社Hyundaimotor Company 車両用マルチ冷却装置
US8646177B2 (en) 2010-12-07 2014-02-11 General Electric Company Method and apparatus for mounting a rotor blade on a wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026386A1 (fr) * 2006-08-30 2008-03-06 Calsonic Kansei Corporation Système de refroidissement d'accumulateur pour véhicule
JP2012510697A (ja) * 2008-11-28 2012-05-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング バッテリモジュール
WO2010064614A1 (ja) * 2008-12-04 2010-06-10 カルソニックカンセイ株式会社 発熱体ユニットの冷却装置
JP2013062023A (ja) * 2010-02-23 2013-04-04 Bosch Corp バッテリパック
JP4952867B2 (ja) * 2010-07-07 2012-06-13 パナソニック株式会社 貯湯式給湯システムとその運転方法
JP2014229480A (ja) * 2013-05-22 2014-12-08 株式会社デンソー 電池温調システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047533A1 (ja) * 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP2018088305A (ja) * 2016-11-28 2018-06-07 昭和電工株式会社 冷却装置
JP2018181761A (ja) * 2017-04-20 2018-11-15 株式会社フジクラ 車載バッテリ冷却構造
KR20190041415A (ko) * 2017-10-12 2019-04-22 한온시스템 주식회사 열 커패시터를 이용한 하이브리드 및 완전 전기 자동차들을 위한 배터리 열 관리 시스템
KR102208716B1 (ko) 2017-10-12 2021-01-29 한온시스템 주식회사 열 커패시터를 이용한 하이브리드 및 완전 전기 자동차들을 위한 배터리 열 관리 시스템
US11444346B2 (en) 2017-10-12 2022-09-13 Hanon Systems Battery thermal management system for hybrid and full electric vehicles using heat capacitor
WO2020026894A1 (ja) * 2018-07-31 2020-02-06 株式会社デンソー サーモサイフォン式温調装置およびその組付方法
JP2020020515A (ja) * 2018-07-31 2020-02-06 株式会社デンソー サーモサイフォン式温調装置およびその組付方法
JP7099144B2 (ja) 2018-07-31 2022-07-12 株式会社デンソー サーモサイフォン式温調装置
CN115406275A (zh) * 2022-07-28 2022-11-29 西安空间无线电技术研究所 一种可控快速响应相变储热系统、加工方法及传热方法

Also Published As

Publication number Publication date
CN107112611B (zh) 2020-04-21
US10525786B2 (en) 2020-01-07
CN107112611A (zh) 2017-08-29
JPWO2016133145A1 (ja) 2017-11-30
US20170341483A1 (en) 2017-11-30
JP6754352B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2016133145A1 (ja) バッテリ温調装置及びバッテリ温調システム
JP5757502B2 (ja) バッテリ温度調節ユニット及びバッテリ温度調節装置
US20110318626A1 (en) Battery module
US9968013B2 (en) Cooling arrangement for components disposed in an interior of a switch cabinet
US20150219367A1 (en) Thermoelectric heat exchanger capable of providing two different discharge temperatures
KR20190044180A (ko) 차량용 배터리 냉각 장치
JP2020100389A (ja) 車両、熱交換プレート、及び電池パック
WO2019039188A1 (ja) 電池温調装置および外部熱源供給装置
JP2011175911A (ja) 電池冷却/加熱構造及び電池モジュール
KR101316355B1 (ko) 히트펌프를 이용한 전기자동차의 난방장치
EP2518424B1 (en) Thermoelectric heat exchanger capable of providing two different discharge temperatures
CN109378421A (zh) 一种电池箱、电池散热系统以及电动车
WO2019039187A1 (ja) 電池温調装置
US11031535B2 (en) Thermoelectric power generation system
WO2019093230A1 (ja) 機器温調装置
WO2019134967A1 (en) Heat exchange device and method and system including that kind of device for thermal management of a battery
WO2019123881A1 (ja) 機器温調装置
US8893521B2 (en) Multi-cooling module for vehicle
JP2019113301A (ja) 機器温調装置
WO2015072128A1 (ja) 配管構造、それを用いた冷却装置、および冷媒蒸気輸送方法
KR20110100002A (ko) 상변화 물질을 포함하는 이중 증발기
US20150040603A1 (en) Assembly Including A Heat Exchanger And A Mounting On Which Said Exchanger Is Mounted
JP7541797B2 (ja) 車両、熱交換プレート、及び電池パック
JP2019086275A (ja) 機器温調装置
CN220021275U (zh) 冷却板、动力电池总成、热管理系统和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752531

Country of ref document: EP

Kind code of ref document: A1