WO2016132963A1 - リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 - Google Patents
リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2016132963A1 WO2016132963A1 PCT/JP2016/053775 JP2016053775W WO2016132963A1 WO 2016132963 A1 WO2016132963 A1 WO 2016132963A1 JP 2016053775 W JP2016053775 W JP 2016053775W WO 2016132963 A1 WO2016132963 A1 WO 2016132963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- composite oxide
- lithium
- secondary battery
- iron manganese
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
- C01F17/229—Lanthanum oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- This embodiment relates to a lithium iron manganese based composite oxide and a lithium ion secondary battery using the same.
- a lithium ion secondary battery comprising a positive electrode including a lithium iron manganese-based composite oxide as a positive electrode active material and a negative electrode including a material capable of occluding and releasing lithium ions as a negative electrode active material is expected as a high energy density secondary battery.
- Patent Document 1 discloses a lithium ion secondary battery using a lithium iron manganese composite oxide as a positive electrode active material.
- Patent Documents 2 to 6 disclose techniques related to surface coating.
- the lithium ion secondary battery disclosed in the patent document has a problem in that the capacity of the secondary battery decreases with a charge / discharge cycle.
- An object of the present embodiment is to provide a lithium iron manganese based composite oxide that can provide a lithium ion secondary battery that has a high capacity retention rate in a charge / discharge cycle and that suppresses gas generation due to the charge / discharge cycle. To do.
- the lithium iron manganese-based composite oxide according to the present embodiment has a layered rock salt structure, and has the following formula (1): Li x M 1 (yp) Mn p M 2 (zq) Fe q O (2- ⁇ ) (1) (In the above formula (1), 1.05 ⁇ x ⁇ 1.32, 0.33 ⁇ y ⁇ 0.63, 0.06 ⁇ z ⁇ 0.50, 0 ⁇ p ⁇ 0.63, 0.06 ⁇ q ⁇ 0.50, 0 ⁇ ⁇ ⁇ 0.80, y ⁇ p, z ⁇ q, M 1 is at least one element of Ti and Zr, and M 2 is selected from the group consisting of Co, Ni, and Mn. Is at least one element selected) At least a part of the surface of the lithium iron manganese composite oxide represented by the formula (1) is covered with an oxide of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu.
- the lithium iron manganese-based composite oxide according to the present embodiment has a layered rock salt structure, and has the following formula (1): Li x M 1 (yp) Mn p M 2 (zq) Fe q O (2- ⁇ ) (1) (In the above formula (1), 1.05 ⁇ x ⁇ 1.32, 0.33 ⁇ y ⁇ 0.63, 0.06 ⁇ z ⁇ 0.50, 0 ⁇ p ⁇ 0.63, 0.06 ⁇ q ⁇ 0.50, 0 ⁇ ⁇ ⁇ 0.80, y ⁇ p, z ⁇ q, M 1 is at least one element of Ti and Zr, and M 2 is selected from the group consisting of Co, Ni, and Mn.
- At least one element selected At least a part of the surface of the lithium iron manganese-based composite oxide represented by the formula: at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu, and Ge, Mo, Zr, Al and V It is coated with a complex oxide with at least one metal selected from the group consisting of:
- the positive electrode active material for a lithium ion secondary battery according to this embodiment includes the lithium iron manganese based composite oxide.
- the positive electrode for a lithium ion secondary battery according to this embodiment includes the positive electrode active material for a lithium ion secondary battery.
- the lithium ion secondary battery according to the present embodiment includes the positive electrode for a lithium ion secondary battery and a negative electrode.
- a lithium iron manganese-based composite oxide that can provide a lithium ion secondary battery that has a high capacity retention rate in a charge / discharge cycle and that suppresses gas generation due to the charge / discharge cycle. it can.
- the lithium iron manganese-based composite oxide according to the present embodiment has a layered rock salt structure, and has the following formula (1): Li x M 1 (yp) Mn p M 2 (zq) Fe q O (2- ⁇ ) (1) (In the above formula (1), 1.05 ⁇ x ⁇ 1.32, 0.33 ⁇ y ⁇ 0.63, 0.06 ⁇ z ⁇ 0.50, 0 ⁇ p ⁇ 0.63, 0.06 ⁇ q ⁇ 0.50, 0 ⁇ ⁇ ⁇ 0.80, y ⁇ p, z ⁇ q, M 1 is at least one element of Ti and Zr, and M 2 is selected from the group consisting of Co, Ni, and Mn. Oxidation of at least one metal selected from the group consisting of La, Pr, Nd, Sm, and Eu, wherein at least a part of the surface of the lithium iron manganese composite oxide represented by It is covered with objects.
- the lithium iron manganese composite oxide according to this embodiment has a layered rock salt structure, and at least a part of the surface of the lithium iron manganese composite oxide represented by the formula (1) is La, Pr. , Nd, Sm, and Eu, and a complex oxide of at least one metal selected from the group consisting of Ge, Mo, Zr, Al, and V.
- a lithium iron manganese-based composite oxide having a layered rock-salt structure in which Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) is dissolved Compared to the lithium nickel manganese composite oxide and lithium cobalt manganese composite oxide in which Me 2 contains at least Ni or Co instead of Fe, a positive electrode active material for a lithium ion secondary battery (hereinafter also referred to as a positive electrode active material). When it is used, it is excellent in that a high energy density lithium ion secondary battery (hereinafter also referred to as a secondary battery) can be obtained. However, in the lithium iron manganese based composite oxide, oxygen is easily released in the charge / discharge cycle after activation.
- the structure of the positive electrode active material changes from a layered rock salt structure to a spinel structure, and thus the capacity of the secondary battery decreases. Further, since Li 2 O is generated on the negative electrode by the desorbed oxygen, the capacity of the secondary battery is reduced. Furthermore, since the secondary battery swells due to the desorption of oxygen and the resistance increases, the capacity of the secondary battery decreases.
- the lithium iron manganese complex oxide (hereinafter also referred to as complex oxide) according to this embodiment is a complex oxide having a specific composition represented by the formula (1), and at least a part of the surface is the It is coated with a specific oxide or composite oxide. Since at least a part of the surface of the lithium iron manganese complex oxide is coated with the specific oxide or complex oxide, oxygen can be desorbed from the lithium iron manganese complex oxide in the charge / discharge cycle. It can be physically suppressed. Moreover, it becomes possible to suppress generation
- the composite oxide according to the present embodiment when used, the capacity of the secondary battery is maintained even in the charge / discharge cycle, and not only a high capacity retention rate is obtained, but also the generation of gas during the charge / discharge cycle. It is suppressed. Details of this embodiment will be described below.
- the composite oxide represented by the formula (1) contains at least Mn.
- the composition p of Mn is 0 ⁇ p ⁇ 0.63. When 0 ⁇ p, lithium can be included excessively. Further, by satisfying p ⁇ 0.63, Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) take a solid solution state. Can do.
- p is preferably 0.10 ⁇ p ⁇ 0.60, more preferably 0.20 ⁇ p ⁇ 0.55, and still more preferably 0.30 ⁇ p ⁇ 0.50.
- M 1 is at least one element of Ti and Zr.
- the y of the composition yp of M 1 is 0.33 ⁇ y ⁇ 0.63. When 0.33 ⁇ y, excess lithium can be contained. Further, by satisfying y ⁇ 0.63, Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) are in a solid solution state. Can do.
- y is preferably 0.35 ⁇ y ⁇ 0.60, more preferably 0.40 ⁇ y ⁇ 0.55, and still more preferably 0.45 ⁇ y ⁇ 0.50.
- the formula (1) satisfies y ⁇ p. Further, the composition yp of M 1 may be zero. That is, the composite oxide represented by the formula (1) may not include M 1 . Mn and M 1 in the formula (1) correspond to Me 1 of the Li 2 Me 1 O 3 .
- the composite oxide represented by the formula (1) contains at least Fe.
- the composition q of Fe is 0.06 ⁇ q ⁇ 0.50.
- a lithium iron manganese system complex oxide can be activated.
- q is preferably 0.10 ⁇ q ⁇ 0.45, more preferably 0.13 ⁇ q ⁇ 0.40, and still more preferably 0.16 ⁇ q ⁇ 0.30.
- M 2 is at least one element selected from the group consisting of Co, Ni and Mn.
- z is preferably 0.08 ⁇ z ⁇ 0.45, more preferably 0.10 ⁇ z ⁇ 0.40, and further preferably 0.12 ⁇ z ⁇ 0.30.
- the formula (1) satisfies z ⁇ q. Further, the composition zq of M 2 may be zero. That is, the complex oxide represented by the formula (1) may not contain M 2 . Fe and M 2 in the formula (1) correspond to Me 2 of the LiMe 2 O 2 .
- the composition x of Li is 1.05 ⁇ x ⁇ 1.32.
- the capacity can be increased.
- Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) are in a solid solution state.
- x is preferably 1.08 ⁇ x ⁇ 1.30, more preferably 1.12 ⁇ x ⁇ 1.28, and still more preferably 1.16 ⁇ x ⁇ 1.26.
- ⁇ in the composition 2- ⁇ of oxygen atoms is a parameter indicating oxygen deficiency, and 0 ⁇ ⁇ ⁇ 0.80.
- the capacity can be increased.
- ⁇ ⁇ 0.80 the crystal structure can be stabilized.
- ⁇ is preferably 0.02 ⁇ ⁇ ⁇ 0.50, more preferably 0.04 ⁇ ⁇ ⁇ 0.30, and further preferably 0.06 ⁇ ⁇ ⁇ 0.20. Note that ⁇ varies depending not only on the mixing ratio of Me 1 and Me 2 but also on the method of synthesizing the composite oxide.
- composition of each element in the formula (1) is a value measured by inductively coupled plasma emission spectrometry for Li and by inductively coupled plasma mass spectrometry for other elements. Moreover, the composition of each element in the formula (1) does not include an inorganic substance used for surface coating.
- the composite oxide represented by the formula (1) has a layered rock salt structure. Since the composite oxide has a layered rock salt structure, charge and discharge can be stably repeated. Whether or not it has a layered rock salt structure can be determined by X-ray diffraction analysis. Further, it is not necessary that the entire complex oxide has a layered rock salt type structure, and it is sufficient that at least a part of the complex oxide has a layered rock salt type structure.
- the lithium iron manganese based composite oxide according to the present embodiment has at least a part of the surface of at least one metal oxide selected from the group consisting of La, Pr, Nd, Sm, and Eu, or La, Pr. And a composite oxide of at least one metal selected from the group consisting of Nd, Sm and Eu and at least one metal selected from the group consisting of Ge, Mo, Zr, Al and V. . At least part of the surface of the lithium iron manganese complex oxide is physically covered with the specific oxide or complex oxide, so that oxygen is retained inside the lithium iron manganese complex oxide even in the charge / discharge cycle. And desorption of oxygen to the outside can be suppressed.
- oxide A At least one metal oxide selected from the group consisting of La, Pr, Nd, Sm and Eu (hereinafter also referred to as oxide A) is used.
- La oxide and Sm oxide are preferable from the viewpoint of easy handling and stability.
- Sm oxide is more preferable from the viewpoint of suppressing gas generation.
- These may use 1 type and may use 2 or more types together.
- the oxide A is coated with a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V (hereinafter also referred to as oxide B) is mixed. Also good.
- oxide B a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V
- oxide B a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V
- oxide B a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V
- oxide B a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V
- oxide B a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V
- oxide B a mixture in which at least one metal oxide selected from the group consisting of Ge, Mo, Zr, Al and V
- Ge oxide is more preferable from the viewpoint of suppressing gas generation.
- the coating is selected from the group consisting of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu (hereinafter also referred to as metal A) and Ge, Mo, Zr, Al and V. It is also possible to use a composite oxide (hereinafter also referred to as composite oxide A) with at least one kind of metal (hereinafter also referred to as metal B).
- the composite oxide A is at least one metal selected from the group consisting of La and Sm, and at least selected from the group consisting of Ge, Zr, and Al from the viewpoint of ease of handling and stability.
- a composite oxide with a kind of metal is preferable, and a composite oxide of Sm and Ge is more preferable from the viewpoint of suppressing gas generation. These may use 1 type and may use 2 or more types together.
- the ratio of the metal A and the metal B (metal A: metal B) in the composite oxide A is preferably 1: 0.5 to 1: 2.0, particularly preferably 1: 1.
- the coating amount is preferably 0.1% by mass or more and 15% by mass or less.
- the coating amount is more preferably 0.2% by mass or more and 10% by mass or less, further preferably 0.5% by mass or more and 5% by mass or less, and 1% by mass or more and 3% by mass or less. It is particularly preferred.
- the capacity retention rate and the gas generation amount can be improved by increasing the coating amount, the initial discharge capacity may be lowered, and therefore the coating amount is preferably 3% by mass or less.
- the shapes of the oxide A, the mixture of the oxide A and the oxide B, and the composite oxide A are particularly limited as long as they cover at least part of the surface of the lithium iron manganese composite oxide. It may not be layered or particulate.
- the method for producing a lithium iron manganese composite oxide according to this embodiment has a layered rock salt structure, and at least a part of the surface of the lithium iron manganese composite oxide satisfying the formula (1) is the specific oxidation. If it is coat
- a lithium iron manganese composite oxide having a layered rock salt structure and satisfying the formula (1) and a hydrolyzable compound that is a raw material of the specific oxide or composite oxide are mixed in a solution. And after making it react, the said specific oxide or complex oxide can be coat
- the method for producing lithium iron manganese based composite oxide before coating with the specific oxide or composite oxide is not particularly limited, and heating such as firing or hydrothermal treatment is performed on a metal raw material containing at least lithium, manganese, iron and the like. It can manufacture by processing. On the other hand, in order to obtain a lithium iron manganese-based composite oxide having more excellent electrochemical characteristics, it is preferable to mix constituent metal elements other than lithium more uniformly. From this viewpoint, for example, a method of obtaining a composite hydroxide such as iron or manganese from the liquid phase and firing it with a lithium compound is preferable. This method can be broadly divided into a composite hydroxide production process for producing a composite hydroxide containing a constituent metal other than lithium and a firing process for firing the composite hydroxide in the presence of lithium.
- the composite hydroxide can be prepared by dropping a water-soluble salt of a constituent metal into an alkaline aqueous solution, performing air oxidation as necessary, and aging the hydroxide.
- the water-soluble salt of the constituent metal is not particularly limited, and examples thereof include anhydrous salts and hydrates such as nitrate, sulfate, chloride, and acetate of the constituent metal.
- the alkali source is not particularly limited, and examples thereof include lithium hydroxide and hydrates thereof, sodium hydroxide, potassium hydroxide, and aqueous ammonia. These may use 1 type and may use 2 or more types together.
- the composite hydroxide can be obtained by gradually dropping a water-soluble salt of a constituent metal into an alkaline aqueous solution over several hours.
- the temperature at which the water-soluble salt of the constituent metal is dropped is preferably 60 ° C. or less from the viewpoint of suppressing the generation of impurities such as spinel ferrite.
- the water-soluble salt of the constituent metal is dropped at 0 ° C. or lower, it is preferable to prevent the solution from solidifying by adding ethanol or the like as an antifreeze to the alkaline aqueous solution. It is preferable to ripen the hydroxide by wet-oxidizing the hydroxide obtained after the dropwise addition by blowing air at room temperature for several hours or more. The resulting mature product is washed with water and filtered to obtain the desired composite hydroxide.
- a predetermined lithium compound is added to the composite hydroxide according to the composition formula and mixed, and then fired in a predetermined atmosphere. Then, in order to remove an excess lithium compound as needed, a lithium iron manganese system complex oxide which has the target composition formula is obtained by performing washing processing, filtration, and drying.
- the lithium compound is not particularly limited, and an anhydride or hydrate such as lithium carbonate, lithium hydroxide, lithium nitrate, or lithium acetate can be used. These may use 1 type and may use 2 or more types together.
- the firing temperature is preferably 1000 ° C. or less from the viewpoint of preventing Li volatilization.
- an air atmosphere an inert gas atmosphere, a nitrogen atmosphere, an oxygen atmosphere, or the like can be used.
- a lithium iron manganese based composite oxide before coating with an inorganic substance having a target composition can be produced.
- chloride, hydroxide, carbonate, nitrate, acetate, alcoholate, etc. containing La, Pr, Nd, Sm, Eu, Ge, Mo, Zr, Al, V and the like are preferable. . These may use 1 type and may use 2 or more types together.
- the concentration of each of these aqueous solutions or these alcohol solutions is not particularly limited, but is preferably 0.002 to 0.05% by mass. When the concentration is 0.002% by mass or more, the time required for evaporation of water or alcohol is shortened, so that the production efficiency is improved. Further, when the concentration is 0.05% by mass or less, the raw material is sufficiently dissolved, and a homogeneous mixed solution is obtained.
- the dried product obtained by drying can be fired. Firing can be performed in a vacuum, in an air atmosphere, in an inert atmosphere, in hydrogen, nitrogen, or a mixed atmosphere thereof, but is preferably performed in an air atmosphere from the viewpoint of cost reduction.
- the firing temperature is preferably 350 to 800 ° C. When the firing temperature is 350 ° C. or higher, the reaction is completed and no reaction impurities or the like remain. Moreover, when the firing temperature is 800 ° C. or lower, the reaction with lithium in the lithium iron-manganese composite oxide can be suppressed, and mixing of lithium compounds as impurities can be prevented.
- the drying method is not particularly limited, and examples thereof include a drying method using a rotary evaporator, a spray dryer and the like in addition to a normal drying method.
- the positive electrode active material for a lithium ion secondary battery according to the present embodiment includes the lithium iron manganese based composite oxide according to the present embodiment.
- the positive electrode active material includes the lithium iron manganese composite oxide according to the present embodiment, desorption of oxygen is suppressed even in the charge / discharge cycle, and the capacity of the secondary battery is maintained.
- the proportion of the lithium iron manganese based composite oxide according to this embodiment contained in the positive electrode active material for a lithium ion secondary battery according to this embodiment is preferably 80% by mass or more, and 90% by mass or more. Is more preferably 95% by mass or more. In addition, this ratio is 100 mass%, ie, the positive electrode active material for lithium ion secondary batteries which concerns on this embodiment may consist of the lithium iron manganese system complex oxide which concerns on this embodiment.
- the positive electrode for lithium ion secondary batteries according to the present embodiment includes the positive electrode active material for lithium ion secondary batteries according to the present embodiment.
- the positive electrode can be produced by applying the positive electrode active material according to the present embodiment on a positive electrode current collector.
- a positive electrode current collector For example, it can be produced by mixing the positive electrode active material according to this embodiment, a conductivity imparting agent, a binder, and a solvent, applying the mixture onto the positive electrode current collector, and drying.
- a conductivity imparting agent a carbon material such as ketjen black, a metal material such as Al, a conductive oxide, or the like can be used.
- the binder polyvinylidene fluoride, acrylic resin, polytetrafluoroethylene resin, or the like can be used.
- the solvent N-methylpyrrolidone or the like can be used.
- the positive electrode current collector a metal thin film mainly containing aluminum or the like can be used. The thickness of the positive electrode current collector is not particularly limited, but can be, for example, 5 to 50 ⁇ m.
- the addition amount of the conductivity imparting agent may be 1 to 10% by mass, and preferably 2 to 7% by mass. When the addition amount is 1% by mass or more, sufficient conductivity can be maintained. Moreover, since the ratio of positive electrode active material mass can be enlarged because this addition amount is 10 mass% or less, the capacity
- the addition amount of the binder may be 1 to 10% by mass, and preferably 2 to 7% by mass. When the addition amount is 1% by mass or more, generation of positive electrode peeling can be prevented. Moreover, since the ratio of positive electrode active material mass can be enlarged because this addition amount is 10 mass% or less, the capacity
- the thickness of the positive electrode is not particularly limited, but can be, for example, 50 to 500 ⁇ m, and preferably 100 to 400 ⁇ m.
- the lithium ion secondary battery according to the present embodiment includes the positive electrode for a lithium ion secondary battery according to the present embodiment and a negative electrode.
- FIG. 1 shows an example of the secondary battery according to this embodiment.
- a positive electrode is configured by forming a positive electrode active material layer 1 containing a positive electrode active material according to the present embodiment on a positive electrode current collector 1A.
- the negative electrode is comprised by forming the negative electrode active material layer 2 on the negative electrode collector 2A.
- These positive electrode and negative electrode are disposed so as to face each other through the separator 3 while being immersed in an electrolytic solution.
- the positive electrode is connected to the positive electrode tab 1B, and the negative electrode is connected to the negative electrode tab 2B.
- This power generation element is accommodated in the exterior body 4, and the positive electrode tab 1B and the negative electrode tab 2B are exposed to the outside.
- a solution in which a lithium salt as a supporting salt is dissolved in a solvent can be used.
- the solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate ( DEC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxy Chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-diox
- lithium salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, and LiBr, LiI, LiSCN, LiCl, imides and the like . These may use 1 type and may use 2 or more types together.
- the concentration of the lithium salt as the supporting salt can be, for example, 0.5 to 3.0 mol / L, and preferably 0.7 to 2.0 mol / L. Sufficient electric conductivity can be obtained when the concentration of the lithium salt is 0.5 mol / L or more. Moreover, when the density
- a polymer electrolyte obtained by adding a polymer or the like to the solvent of the electrolytic solution and solidifying the electrolytic solution into a gel may be used.
- the negative electrode active material a material capable of inserting and extracting lithium can be used.
- the negative electrode active material include carbon materials such as graphite, hard carbon, soft carbon, and amorphous carbon, Li metal, Si oxide such as Si, Sn, Al, and SiO, Sn oxide, and Li 4 Ti 5 O. 12 , Ti oxide such as TiO 2 , V-containing oxide, Sb-containing oxide, Fe-containing oxide, Co-containing oxide and the like can be used. These negative electrode active materials may be used alone or in combination of two or more.
- SiO as the negative electrode active material from the viewpoint that the irreversible capacity is offset by the relationship with the positive electrode active material according to the present embodiment.
- the negative electrode can be produced, for example, by mixing the negative electrode active material, a conductivity imparting agent, a binder, and a solvent, applying the mixture onto the negative electrode current collector, and drying.
- a conductivity imparting agent for example, a carbon material, a conductive oxide, or the like can be used.
- the binder polyvinylidene fluoride, acrylic resin, styrene butadiene rubber, imide resin, imidoamide resin, polytetrafluoroethylene resin, polyamic acid, or the like can be used.
- the solvent N-methylpyrrolidone or the like can be used.
- As the negative electrode current collector a metal thin film mainly containing aluminum, copper, or the like can be used.
- the thickness of the negative electrode current collector is not particularly limited, but can be, for example, 5 to 50 ⁇ m, and preferably 10 to 40 ⁇ m.
- the thickness of the negative electrode is not particularly limited, but can be, for example, 10 to 100 ⁇ m, and preferably 20 to 70 ⁇ m.
- the secondary battery according to the present embodiment can be manufactured by assembling using the positive electrode according to the present embodiment.
- the positive electrode and the negative electrode according to the present embodiment are arranged to face each other with no electrical contact through the separator.
- a porous film containing polyethylene, polypropylene (PP), polyimide, polyamide, or the like can be used.
- the one in which the positive electrode and the negative electrode are arranged opposite to each other with a separator interposed between them is cylindrical or laminated and accommodated in the exterior body.
- a battery can, a laminate film that is a laminate of a synthetic resin and a metal foil, or the like can be used.
- a positive electrode tab is connected to the positive electrode, and a negative electrode tab is connected to the negative electrode, so that these electrode tabs are exposed to the outside of the outer package.
- the secondary battery can be manufactured by sealing the exterior body while leaving a part, injecting an electrolyte from the part, and sealing the exterior body. Moreover, you may perform an activation process before use of this secondary battery.
- the shape of the positive electrode and the negative electrode arranged opposite to each other with a separator interposed therebetween is not particularly limited, and may be a wound type, a laminated type, or the like. Further, the secondary battery may be a coin type, a laminate type, or the like. The shape of the secondary battery can be a square shape, a cylindrical shape, or the like.
- Example 1 ⁇ Synthesis of lithium iron manganese complex oxide> Iron nitrate (III), manganese chloride (II), and nickel nitrate (II) weighed so as to have a predetermined atomic ratio were dissolved in distilled water to prepare an aqueous metal salt solution (total amount 0.25 mol / batch). Separately, a 1.25 mol / L aqueous solution of lithium hydroxide was prepared, ethanol was added to make it antifreeze, and then cooled to ⁇ 10 ° C. in a thermostatic bath. A composite hydroxide was prepared by gradually dropping the metal salt aqueous solution into the alkaline solution over 2 hours or more. The alkali solution containing the composite hydroxide after the dropping was taken out from the thermostatic bath, air was blown into the solution to perform wet oxidation for 2 days, and then the composite hydroxide was aged at room temperature.
- the composite hydroxide after aging was washed with water and filtered, and then added with an equimolar amount of lithium carbonate as compared with the molar amount charged, and calcined at 850 ° C. for 5 hours in the air. After calcination, the product is pulverized, washed several times with distilled water, filtered, and dried at 100 ° C., so that lithium iron manganese-based composite oxide Li 1.20 Mn 0.47 Ni 0.16 Fe 0 .16 O 1.89 was obtained.
- 0.2 g of samarium nitrate was dissolved in 10 ml of water.
- the obtained solution was spray coated onto 20 g of the synthesized lithium iron manganese composite oxide before coating.
- the obtained slurry-like mixture was dried overnight in a 120 ° C. air constant temperature bath.
- the powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Sm oxide.
- XRD X-ray diffraction measurement
- the slurry was applied onto a positive electrode current collector that was an aluminum foil having a thickness of 20 ⁇ m, and the slurry was dried to produce a positive electrode having a thickness of 175 ⁇ m.
- a slurry containing 85% by mass of SiO having an average particle size of 15 ⁇ m and 15% by mass of polyamic acid was mixed with a solvent to prepare a slurry.
- the slurry was applied onto a negative electrode current collector which was a copper foil having a thickness of 10 ⁇ m, and the slurry was dried to prepare a negative electrode having a thickness of 46 ⁇ m.
- the produced negative electrode was annealed at 350 ° C. for 3 hours in a nitrogen atmosphere to cure the polyamic acid.
- the lithium ion secondary battery is charged to 4.5 V at a constant current of 40 mA / g per positive electrode active material in a constant temperature bath at 45 ° C., and further at a constant voltage of 4.5 V until a current of 5 mA / g is reached. Charged. Thereafter, the lithium ion secondary battery was discharged to 1.5 V at a current of 10 mA / g. The lithium ion secondary battery is charged to 4.5 V at a constant current of 40 mA / g per positive electrode active material in a constant temperature bath at 45 ° C., and further at a constant voltage of 4.5 V until a current of 5 mA / g is reached.
- a charge / discharge cycle of discharging to 1.5 V with a current of 40 mA / g was repeated 40 times. From the ratio of the discharge capacity obtained in the first cycle and the discharge capacity obtained in the 40th cycle, the capacity retention rate after 40 cycles was determined.
- the initial discharge capacity after the activation treatment in Example 1 was 250 mAh / g, and the capacity retention rate after 40 cycles was 90%.
- the amount of gas generated after 40 cycles was 4 ml / g.
- the amount of gas generated was evaluated by Archimedes method for the volume change of the cell before and after the cycle. The results are shown in Table 1.
- Example 2 Using lanthanum nitrate instead of samarium nitrate as a raw material, a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with La oxide was synthesized in the same manner as in Example 1. From the same X-ray diffraction measurement and EDX analysis as in Example 1, it was confirmed that the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was coated with La oxide. The coating amount with La oxide was 1% by mass. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 3 By using praseodymium nitrate instead of samarium nitrate as a raw material, a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Pr oxide was synthesized in the same manner as in Example 1. From the same X-ray diffraction measurement and EDX analysis as in Example 1, it was confirmed that the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was covered with Pr oxide. Moreover, the coating amount by Pr oxide was 1 mass%. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 4 By using europium nitrate instead of samarium nitrate as a raw material, a composite oxide in which part of the surface of the lithium iron manganese composite oxide was coated with Eu oxide was synthesized in the same manner as in Example 1. From the same X-ray diffraction measurement and EDX analysis as in Example 1, it was confirmed that the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was covered with Eu oxide. The coating amount with Eu oxide was 1% by mass. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 5 Using neodymium nitrate instead of samarium nitrate as a raw material, a composite oxide in which part of the surface of the lithium iron manganese composite oxide was coated with Nd oxide was synthesized in the same manner as in Example 1. From the same X-ray diffraction measurement and EDX analysis as in Example 1, it was confirmed that the complex oxide was a complex oxide having a layered rock salt structure in which a part of the surface was coated with Nd oxide. The coating amount with Nd oxide was 1% by mass. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 6 1.0 g of samarium nitrate was dissolved in 10 ml of water. A part of the surface of the lithium iron manganese composite oxide was Sm oxide in the same manner as in Example 1 except that the obtained solution was spray-coated on 20 g of the synthesized lithium iron manganese composite oxide. A composite oxide coated with was synthesized. From the same X-ray diffraction measurement and EDX analysis as in Example 1, it was confirmed that the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was coated with Sm oxide. Moreover, the coating amount by Sm was 5 mass%. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 7 0.2 g of germanium oxide and 0.048 g of lithium hydroxide were dissolved in 10 ml of water. The obtained solution was spray-coated on 20 g of the lithium iron manganese based composite oxide synthesized in Example 1 before coating. The resulting slurry mixture was dried overnight in a 110 ° C. air constant temperature bath. The powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which part of the surface of the lithium iron manganese composite oxide was coated with Ge oxide. A solution obtained by dissolving 0.2 g of samarium nitrate in 10 ml of water was spray-coated on 20 g of lithium iron manganese composite oxide coated with the Ge oxide.
- the obtained slurry-like mixture was dried overnight in a 120 ° C. air constant temperature bath.
- the powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Ge oxide and Sm oxide.
- XRD X-ray diffraction measurement
- Example 8 By using europium nitrate instead of samarium nitrate as a raw material, a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Eu oxide and Ge oxide was synthesized in the same manner as in Example 7. According to the same X-ray diffraction measurement and EDX analysis as in Example 7, the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was covered with Eu oxide and Ge oxide. confirmed. Moreover, the coating amount by Eu oxide and Ge oxide was 2 mass%. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 9 A solution obtained by dissolving 0.2 g of samarium nitrate and 0.2 g of zirconium nitrate in 20 ml of water was spray-coated on 20 g of the lithium iron manganese composite oxide before coating synthesized in Example 1. The obtained slurry-like mixture was dried overnight in a 120 ° C. air constant temperature bath. The powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Sm oxide and Zr oxide.
- the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was coated with Sm oxide and Zr oxide. confirmed. Moreover, the coating amount by Sm oxide and Zr oxide was 2 mass%.
- a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Example 10 0.5 g of germanium oxide and 0.12 g of lithium hydroxide were dissolved in 25 ml of water. The obtained solution was spray-coated on 20 g of the lithium iron manganese based composite oxide synthesized in Example 1 before coating. The resulting slurry mixture was dried overnight in a 110 ° C. air constant temperature bath. The powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which part of the surface of the lithium iron manganese composite oxide was coated with Ge oxide. A solution obtained by dissolving 0.5 g of samarium nitrate in 25 ml of water was spray-coated on 20 g of lithium iron manganese composite oxide coated with the Ge oxide.
- the obtained slurry-like mixture was dried overnight in a 120 ° C. air constant temperature bath.
- the powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Ge oxide and Sm oxide.
- XRD X-ray diffraction measurement
- Example 11 By changing the initial composition, Li 1.26 Mn 0.52 Ni 0.11 Fe 0.11 O 2 was prepared and covered with Sm oxide. Were prepared and evaluated. The initial discharge capacity after the activation treatment was 260 mAh / g. The results are shown in Table 1.
- Example 12 A lithium ion secondary battery was prepared in the same manner as in Example 6 except that Li 1.26 Mn 0.52 Ni 0.11 Fe 0.11 O 2 was prepared and the Sm oxide was coated by changing the initial composition. Were prepared and evaluated. The initial discharge capacity after the activation treatment was 258 mAh / g. The results are shown in Table 1.
- Example 13 Li 1.26 Mn 0.52 Ni 0.11 Fe 0.11 O 2 was prepared by changing the initial composition, and lithium was applied in the same manner as in Example 7 except that Ge oxide and Sm oxide were coated. An ion secondary battery was produced and evaluated. The initial discharge capacity after the activation treatment was 260 mAh / g. The results are shown in Table 1.
- Example 14 Li 1.26 Mn 0.52 Ni 0.11 Fe 0.11 O 2 was prepared by changing the initial composition, and lithium was applied in the same manner as in Example 10 except that Ge oxide and Sm oxide were coated. An ion secondary battery was produced and evaluated. The initial discharge capacity after the activation treatment was 258 mAh / g. The results are shown in Table 1.
- Example 15 A solution obtained by dissolving 0.5 g of samarium nitrate and 1.0 g of aluminum nitrate in 20 ml of water was synthesized in Examples 11 to 14, and the lithium iron manganese-based composite oxide Li 1.26 Mn 0 before coating was synthesized. Spray applied to 20 g of .52 Ni 0.11 Fe 0.11 O 2 . The obtained slurry-like mixture was dried overnight in a 120 ° C. air constant temperature bath. The powder was heat-treated at 400 ° C. for 3 hours in an air atmosphere to obtain a composite oxide in which a part of the surface of the lithium iron manganese composite oxide was coated with Sm oxide and Al oxide.
- the composite oxide was a composite oxide having a layered rock salt structure in which a part of the surface was coated with Sm oxide and Al oxide. confirmed. Moreover, the coating amount by Sm oxide and Al oxide was 5 mass%.
- a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 using the composite oxide. The results are shown in Table 1.
- Comparative Example 1 The same as in Example 1 except that lithium iron manganese-based composite oxide Li 1.19 Mn 0.47 Ni 0.16 Fe 0.17 O 1.99 whose surface was not coated was used as the positive electrode active material. A lithium ion secondary battery was prepared and evaluated. The initial discharge capacity after activation in this Comparative Example 1 was 250 mAh / g, and the capacity retention rate after 40 cycles was 87%. The amount of gas generated after 40 cycles was 8 ml / g.
- the oxide or composite oxide coating according to the present embodiment can not only suppress the capacity drop in the cycle, but also reduce the amount of gas generated per positive electrode active material. Note that most of the coatings obtained in Examples 7 to 10 and 13 to 15 exist as a mixture of two kinds of oxides, but it is presumed that they are partly complexed and exist as complex oxides.
- the lithium ion secondary battery according to the present embodiment has a high energy density and is excellent in cycle characteristics. it can.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
LixM1 (y-p)MnpM2 (z-q)FeqO(2-δ) (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)
で示されるリチウム鉄マンガン系複合酸化物の表面の少なくとも一部が、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物により被覆されている。
LixM1 (y-p)MnpM2 (z-q)FeqO(2-δ) (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)
で示されるリチウム鉄マンガン系複合酸化物の表面の少なくとも一部が、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属と、Ge、Mo、Zr、AlおよびVからなる群から選択される少なくとも一種の金属との複合酸化物により被覆されている。
本実施形態に係るリチウム鉄マンガン系複合酸化物は、層状岩塩型構造を有し、下記式(1)
LixM1 (y-p)MnpM2 (z-q)FeqO(2-δ) (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)で示されるリチウム鉄マンガン系複合酸化物の表面の少なくとも一部が、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物により被覆されている。
本実施形態に係るリチウム鉄マンガン系複合酸化物の製造方法は、層状岩塩型構造を有し、前記式(1)を満たすリチウム鉄マンガン系複合酸化物の表面の少なくとも一部が前記特定の酸化物または複合酸化物により被覆されていれば特に限定されない。例えば、層状岩塩型構造を有し、前記式(1)を満たすリチウム鉄マンガン系複合酸化物と、前記特定の酸化物または複合酸化物の原料である加水分解性の化合物とを溶液中で混合し、反応させた後、熱処理することにより該リチウム鉄マンガン系複合酸化物の表面の少なくとも一部に前記特定の酸化物または複合酸化物を被覆させることができる。具体的には、以下に示す方法が挙げられる。
複合水酸化物は、構成金属の水溶性塩をアルカリ水溶液中に滴下することにより析出させ、必要に応じて空気酸化を行い、水酸化物を熟成することによって作製することができる。構成金属の水溶性塩としては、特に限定されず、構成金属の硝酸塩、硫酸塩、塩化物、酢酸塩などの無水塩や水和物等が挙げられる。アルカリ源も特に限定されず、水酸化リチウムおよびその水和物、水酸化ナトリウム、水酸化カリウム、アンモニア水等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。複合水酸化物は、アルカリ水溶液に対して、構成金属の水溶性塩を数時間程度かけて徐々に滴下することで得られる。構成金属の水溶性塩を滴下する温度は、スピネルフェライトなどの不純物生成を抑制する観点から、60℃以下で行うことが好ましい。また0℃以下で構成金属の水溶性塩の滴下を行う場合には、アルカリ水溶液に不凍液としてエタノール等を加えて溶液の固化を防ぐことが好ましい。滴下後得られる水酸化物に対して、室温で数時間以上空気を吹き込むことにより水酸化物を湿式酸化して熟成することが好ましい。得られた熟成物を水洗、濾過することにより、目的の複合水酸化物が得られる。
前記複合水酸化物に対して、組成式に従い所定のリチウム化合物を加えて混合した後、所定の雰囲気下で焼成を行う。その後、必要に応じて余剰のリチウム化合物を除去するために水洗処理、濾過、乾燥を行うことにより、目的の組成式を有するリチウム鉄マンガン系複合酸化物が得られる。リチウム化合物は特に限定されず、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム等の無水物または水和物を用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。焼成温度はLiの揮発を防ぐ観点から1000℃以下が好ましい。焼成雰囲気としては、空気雰囲気、不活性ガス雰囲気、窒素雰囲気、酸素雰囲気などを用いることができる。このような工程を経て、目的の組成を有する無機物による被覆前のリチウム鉄マンガン系複合酸化物が作製できる。
本実施形態に係るリチウムイオン二次電池用正極活物質は、本実施形態に係るリチウム鉄マンガン系複合酸化物を含む。正極活物質が本実施形態に係るリチウム鉄マンガン系複合酸化物を含むことにより、充放電サイクルにおいても酸素の脱離が抑制され、二次電池の容量が維持される。
本実施形態に係るリチウムイオン二次電池用正極(以下、正極とも示す)は、本実施形態に係るリチウムイオン二次電池用正極活物質を含む。
本実施形態に係るリチウムイオン二次電池は、本実施形態に係るリチウムイオン二次電池用正極と、負極とを備える。
<リチウム鉄マンガン系複合酸化物の合成>
所定原子比となるように秤量した硝酸鉄(III)、塩化マンガン(II)、および硝酸ニッケル(II)を蒸留水に溶解させ、金属塩水溶液(全量0.25mol/バッチ)を作製した。これとは別に、1.25mol/Lの水酸化リチウム水溶液を調製し、エタノールを加えて不凍化した後、恒温槽にて-10℃に冷却した。このアルカリ溶液に前記金属塩水溶液を2時間以上かけて徐々に滴下することにより、複合水酸化物を作製した。滴下後の複合水酸化物を含むアルカリ溶液を恒温槽より取り出し、該溶液に空気を吹き込んで2日間湿式酸化を行った後、複合水酸化物を室温にて熟成させた。
正極活物質である、リチウム鉄マンガン系複合酸化物Li1.20Mn0.47Ni0.16Fe0.16O1.89の表面の一部がSm酸化物で被覆されたリチウム鉄マンガン系複合酸化物を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含む混合物を、溶媒に混合してスラリーを調製した。該スラリーを厚み20μmのアルミニウム箔である正極集電体上に塗布し、該スラリーを乾燥させて、厚み175μmの正極を作製した。
平均粒子径が15μmのSiOを85質量%、ポリアミック酸を15質量%含む混合物を、溶媒に混合してスラリーを調製した。該スラリーを厚み10μmの銅箔である負極集電体上に塗布し、該スラリーを乾燥させて、厚み46μmの負極を作製した。作製した負極を窒素雰囲気下350℃で3時間アニールし、ポリアミック酸を硬化させた。
前記正極および前記負極を成形した後、多孔質のフィルムセパレータを挟んで積層した。その後、該正極および該負極にそれぞれ正極タブおよび負極タブを溶接し、発電要素を作製した。該発電要素をアルミニウムラミネートフィルムである外装体で包み、該外装体の3辺を熱融着により封止した。その後、適度な真空度にて、該外装体内に1mol/LのLiPF6を含むEC/DEC電解液を注入した。その後、減圧下にて該外装体の残りの1辺を熱融着して封止し、活性化処理前のリチウムイオン二次電池を作製した。
前記活性化処理前のリチウムイオン二次電池について、正極活物質あたり20mA/gの電流で4.5Vまで充電した後、正極活物質あたり20mA/gの電流で1.5Vまで放電するサイクルを2回繰り返した。その後、一旦外装体の封止部を破り、減圧することで二次電池内部のガスを抜き、再封止することによりリチウムイオン二次電池を作製した。
前記リチウムイオン二次電池を、45℃の恒温槽中で、正極活物質あたり40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電した。その後、該リチウムイオン二次電池を10mA/gの電流で1.5Vまで放電した。該リチウムイオン二次電池を、45℃の恒温槽中で、正極活物質あたり40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電した後、40mA/gの電流で1.5Vまで放電する充放電サイクルを40回繰り返した。1サイクル目に得られた放電容量と、40サイクル目に得られた放電容量との比から、40サイクル後の容量維持率を求めた。本実施例1における活性化処理後の初期放電容量は250mAh/gであり、40サイクル後の容量維持率は90%であった。また、40サイクル後のガス発生量は4ml/gであった。ガス発生量は、サイクル前後のセルの体積変化をアルキメデス法により評価した。結果を表1に示す。
原料として硝酸サマリウムの代わりに硝酸ランタンを用いて、実施例1と同様にリチウム鉄マンガン系複合酸化物の表面の一部がLa酸化物により被覆された複合酸化物を合成した。実施例1と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がLa酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、La酸化物による被覆量は1質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
原料として硝酸サマリウムの代わりに硝酸プラセオジムを用いて、実施例1と同様にリチウム鉄マンガン系複合酸化物の表面の一部がPr酸化物により被覆された複合酸化物を合成した。実施例1と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がPr酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Pr酸化物による被覆量は1質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
原料として硝酸サマリウムの代わりに硝酸ユーロピウムを用いて、実施例1と同様にリチウム鉄マンガン系複合酸化物の表面の一部がEu酸化物により被覆された複合酸化物を合成した。実施例1と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がEu酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Eu酸化物による被覆量は1質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
原料として硝酸サマリウムの代わりに硝酸ネオジムを用いて、実施例1と同様にリチウム鉄マンガン系複合酸化物の表面の一部がNd酸化物により被覆された複合酸化物を合成した。実施例1と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がNd酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Nd酸化物による被覆量は1質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
硝酸サマリウム1.0gを水10mlに溶解させた。得られた溶液を合成した被覆前のリチウム鉄マンガン系複合酸化物20gへスプレー塗布した以外は、実施例1と同様の手法で、リチウム鉄マンガン系複合酸化物の表面の一部がSm酸化物により被覆された複合酸化物を合成した。実施例1と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がSm酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Smによる被覆量は5質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
酸化ゲルマニウム0.2gと水酸化リチウム0.048gを水10mlに溶解させた。得られた溶液を、実施例1で合成した被覆前のリチウム鉄マンガン系複合酸化物20gへスプレー塗布した。得られたスラリー状の混合物を110℃の空気恒温槽で1晩乾燥させた。その粉末を空気雰囲気下、400℃で3時間熱処理することにより、前記リチウム鉄マンガン系複合酸化物の表面の一部がGe酸化物により被覆された複合酸化物を得た。硝酸サマリウム0.2gを水10mlに溶解させることで得られた溶液を、前記Ge酸化物を被覆したリチウム鉄マンガン系複合酸化物20gへスプレー塗布した。得られたスラリー状の混合物を120℃の空気恒温槽で1晩乾燥させた。その粉末を空気雰囲気下、400℃で3時間熱処理することにより、前記リチウム鉄マンガン系複合酸化物の表面の一部がGe酸化物とSm酸化物により被覆された複合酸化物を得た。また、X線回折測定(XRD)の回折パターンから、この物質が層状岩塩型構造を有することが確認された。また、被覆によるピークシフトは観察されず、母材のリチウム鉄マンガン系複合酸化物の構造にほとんど変化はなかった。SEM像とEDX分析の結果、リチウム鉄マンガン系複合酸化物の表面全体ではなく、表面の一部がGe酸化物とSm酸化物により被覆されていることが分かった。また、Ge酸化物とSm酸化物による被覆量は2質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
原料として硝酸サマリウムの代わりに硝酸ユーロピウムを用いて、実施例7と同様にリチウム鉄マンガン系複合酸化物の表面の一部がEu酸化物とGe酸化物により被覆された複合酸化物を合成した。実施例7と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がEu酸化物とGe酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Eu酸化物とGe酸化物による被覆量は2質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
硝酸サマリウム0.2gと硝酸ジルコニウム0.2gを水20mlに溶解させることで得られた溶液を、実施例1で合成した被覆前のリチウム鉄マンガン系複合酸化物20gへスプレー塗布した。得られたスラリー状の混合物を120℃の空気恒温槽で1晩乾燥させた。その粉末を空気雰囲気下、400℃で3時間熱処理することにより、前記リチウム鉄マンガン系複合酸化物の表面の一部がSm酸化物とZr酸化物により被覆された複合酸化物を得た。実施例7と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がSm酸化物とZr酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Sm酸化物とZr酸化物による被覆量は2質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
酸化ゲルマニウム0.5gと水酸化リチウム0.12gを水25mlに溶解させた。得られた溶液を、実施例1で合成した被覆前のリチウム鉄マンガン系複合酸化物20gへスプレー塗布した。得られたスラリー状の混合物を110℃の空気恒温槽で1晩乾燥させた。その粉末を空気雰囲気下、400℃で3時間熱処理することにより、前記リチウム鉄マンガン系複合酸化物の表面の一部がGe酸化物により被覆された複合酸化物を得た。硝酸サマリウム0.5gを水25mlに溶解させることで得られた溶液を、前記Ge酸化物を被覆したリチウム鉄マンガン系複合酸化物20gへスプレー塗布した。得られたスラリー状の混合物を120℃の空気恒温槽で1晩乾燥させた。その粉末を空気雰囲気下、400℃で3時間熱処理することにより、前記リチウム鉄マンガン系複合酸化物の表面の一部がGe酸化物とSm酸化物により被覆された複合酸化物を得た。また、X線回折測定(XRD)の回折パターンから、この物質が層状岩塩型構造を有することが確認された。また、被覆によるピークシフトは観察されず、母材のリチウム鉄マンガン系複合酸化物の構造にほとんど変化はなかった。SEM像とEDX分析の結果、リチウム鉄マンガン系複合酸化物の表面全体ではなく、表面の一部がGe酸化物とSm酸化物により被覆されていることが分かった。また、Ge酸化物とSm酸化物による被覆量は5質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
初期の組成を変えることで、Li1.26Mn0.52Ni0.11Fe0.11O2を作製し、Sm酸化物を被覆した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価を行った。活性化処理後の初期放電容量は260mAh/gであった。結果を表1に示す。
初期の組成を変えることで、Li1.26Mn0.52Ni0.11Fe0.11O2を作製し、Sm酸化物を被覆した以外は、実施例6と同様にリチウムイオン二次電池を作製し、評価を行った。活性化処理後の初期放電容量は258mAh/gであった。結果を表1に示す。
初期の組成を変えることで、Li1.26Mn0.52Ni0.11Fe0.11O2を作製し、Ge酸化物とSm酸化物を被覆した以外は、実施例7と同様にリチウムイオン二次電池を作製し、評価を行った。活性化処理後の初期放電容量は260mAh/gであった。結果を表1に示す。
初期の組成を変えることで、Li1.26Mn0.52Ni0.11Fe0.11O2を作製し、Ge酸化物とSm酸化物を被覆した以外は、実施例10と同様にリチウムイオン二次電池を作製し、評価を行った。活性化処理後の初期放電容量は258mAh/gであった。結果を表1に示す。
硝酸サマリウム0.5gと硝酸アルミニウム1.0gを水20mlに溶解させることで得られた溶液を、実施例11から14にて合成した被覆前のリチウム鉄マンガン系複合酸化物Li1.26Mn0.52Ni0.11Fe0.11O2 20gへスプレー塗布した。得られたスラリー状の混合物を120℃の空気恒温槽で1晩乾燥させた。その粉末を空気雰囲気下、400℃で3時間熱処理することにより、前記リチウム鉄マンガン系複合酸化物の表面の一部がSm酸化物とAl酸化物により被覆された複合酸化物を得た。実施例7と同様のX線回折測定とEDX分析により、該複合酸化物は表面の一部がSm酸化物とAl酸化物により被覆された、層状岩塩型構造を有する複合酸化物であることが確認された。また、Sm酸化物とAl酸化物による被覆量は5質量%であった。該複合酸化物を用いて実施例1と同様にリチウムイオン二次電池を作製し、評価した。結果を表1に示す。
正極活物質として、表面が被覆されていないリチウム鉄マンガン系複合酸化物Li1.19Mn0.47Ni0.16Fe0.17O1.99を用いた以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。本比較例1における活性化後の初期放電容量は250mAh/gであり、40サイクル後の容量維持率は87%であった。また、40サイクル後のガス発生量は8ml/gであった。
正極活物質として、表面が被覆されていないリチウム鉄マンガン系複合酸化物Li1.26Mn0.52Ni0.11Fe0.11O2を用いた以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。本比較例2における活性化後の初期放電容量は260mAh/gであった。結果を表1に示す。
1A 正極集電体
1B 正極タブ
2 負極活物質層
2A 負極集電体
2B 負極タブ
3 セパレータ
4 外装体
Claims (10)
- 層状岩塩型構造を有し、下記式(1)
LixM1 (y-p)MnpM2 (z-q)FeqO(2-δ) (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)
で示されるリチウム鉄マンガン系複合酸化物の表面の少なくとも一部が、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物により被覆されたリチウム鉄マンガン系複合酸化物。 - 前記リチウム鉄マンガン系複合酸化物の表面の少なくとも一部が、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物と、Ge、Mo、Zr、AlおよびVからなる群から選択される少なくとも一種の金属の酸化物との混合物により被覆されている請求項1に記載のリチウム鉄マンガン系複合酸化物。
- 層状岩塩型構造を有し、下記式(1)
LixM1 (y-p)MnpM2 (z-q)FeqO(2-δ) (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)
で示されるリチウム鉄マンガン系複合酸化物の表面の少なくとも一部が、La、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属と、Ge、Mo、Zr、AlおよびVからなる群から選択される少なくとも一種の金属との複合酸化物により被覆されたリチウム鉄マンガン系複合酸化物。 - 請求項1に記載のLa、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属の酸化物、請求項2に記載の前記混合物、または請求項3に記載のLa、Pr、Nd、SmおよびEuからなる群から選択される少なくとも一種の金属と、Ge、Mo、Zr、AlおよびVからなる群から選択される少なくとも一種の金属との複合酸化物の含有量が、0.1質量%以上、15質量%以下であるリチウム鉄マンガン系複合酸化物。
- 前記式(1)において、qが0.16≦q≦0.45を満たす請求項1から4のいずれか1項に記載のリチウム鉄マンガン系複合酸化物。
- 前記式(1)において、δが0.02≦δ≦0.50を満たす請求項1から5のいずれか1項に記載のリチウム鉄マンガン系複合酸化物。
- 請求項1から6のいずれか1項に記載のリチウム鉄マンガン系複合酸化物を含むリチウムイオン二次電池用正極活物質。
- 請求項7に記載のリチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。
- 請求項8に記載のリチウムイオン二次電池用正極と、負極とを備えるリチウムイオン二次電池。
- 前記負極が、負極活物質としてSiOを含む請求項9に記載のリチウムイオン二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/551,853 US10847788B2 (en) | 2015-02-20 | 2016-02-09 | Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same |
JP2017500617A JP6481907B2 (ja) | 2015-02-20 | 2016-02-09 | リチウム鉄マンガン系複合酸化物、それを用いたリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015031704 | 2015-02-20 | ||
JP2015-031704 | 2015-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132963A1 true WO2016132963A1 (ja) | 2016-08-25 |
Family
ID=56692082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053775 WO2016132963A1 (ja) | 2015-02-20 | 2016-02-09 | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10847788B2 (ja) |
JP (1) | JP6481907B2 (ja) |
WO (1) | WO2016132963A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018063835A (ja) * | 2016-10-12 | 2018-04-19 | 日本電気株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極およびリチウムイオン二次電池 |
WO2018096889A1 (ja) * | 2016-11-24 | 2018-05-31 | 日本電気株式会社 | 非水電解液、及びリチウムイオン二次電池 |
JP2018152256A (ja) * | 2017-03-14 | 2018-09-27 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7438204B2 (ja) * | 2018-10-02 | 2024-02-26 | ビーエーエスエフ ソシエタス・ヨーロピア | 少なくとも部分的にコーティングされた電極活物質の製造方法 |
JP7085135B2 (ja) * | 2018-10-12 | 2022-06-16 | トヨタ自動車株式会社 | 正極活物質および該正極活物質を備える二次電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06150928A (ja) * | 1992-11-10 | 1994-05-31 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JP2008063211A (ja) * | 2006-03-20 | 2008-03-21 | National Institute Of Advanced Industrial & Technology | リチウムマンガン系複合酸化物およびその製造方法 |
JP2010212228A (ja) * | 2009-02-13 | 2010-09-24 | Hitachi Maxell Ltd | 非水二次電池 |
WO2013118661A1 (ja) * | 2012-02-06 | 2013-08-15 | 日本電気株式会社 | リチウムイオン電池およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19922522A1 (de) | 1999-05-15 | 2000-11-16 | Merck Patent Gmbh | Beschichtete Lithium-Mischoxid-Partikel und deren Verwendung |
JP4604237B2 (ja) | 2003-10-01 | 2011-01-05 | 独立行政法人産業技術総合研究所 | 層状岩塩型構造を有するリチウム−鉄−マンガン複合酸化物、リチウムイオン二次電池用正極材料、リチウムイオン二次電池 |
US8535832B2 (en) | 2009-08-27 | 2013-09-17 | Envia Systems, Inc. | Metal oxide coated positive electrode materials for lithium-based batteries |
US9843041B2 (en) | 2009-11-11 | 2017-12-12 | Zenlabs Energy, Inc. | Coated positive electrode materials for lithium ion batteries |
JP5149926B2 (ja) | 2010-03-05 | 2013-02-20 | 株式会社日立製作所 | リチウムイオン二次電池用正極、リチウムイオン二次電池、これを搭載した乗り物および電力貯蔵システム |
-
2016
- 2016-02-09 US US15/551,853 patent/US10847788B2/en active Active
- 2016-02-09 JP JP2017500617A patent/JP6481907B2/ja active Active
- 2016-02-09 WO PCT/JP2016/053775 patent/WO2016132963A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06150928A (ja) * | 1992-11-10 | 1994-05-31 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JP2008063211A (ja) * | 2006-03-20 | 2008-03-21 | National Institute Of Advanced Industrial & Technology | リチウムマンガン系複合酸化物およびその製造方法 |
JP2010212228A (ja) * | 2009-02-13 | 2010-09-24 | Hitachi Maxell Ltd | 非水二次電池 |
WO2013118661A1 (ja) * | 2012-02-06 | 2013-08-15 | 日本電気株式会社 | リチウムイオン電池およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
HAIXING MENG ET AL.: "Pr6O11-Coated High Capacity Layered Li[Li0.17Ni0.17CO0.10Mn0.56]O2 as a Cathode Material for Lithium Ion Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 161, no. 10, 2014, pages A1564 - A1571 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018063835A (ja) * | 2016-10-12 | 2018-04-19 | 日本電気株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極およびリチウムイオン二次電池 |
WO2018096889A1 (ja) * | 2016-11-24 | 2018-05-31 | 日本電気株式会社 | 非水電解液、及びリチウムイオン二次電池 |
JP2018152256A (ja) * | 2017-03-14 | 2018-09-27 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180069236A1 (en) | 2018-03-08 |
JPWO2016132963A1 (ja) | 2017-11-30 |
JP6481907B2 (ja) | 2019-03-13 |
US10847788B2 (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5008328B2 (ja) | 非水電解質二次電池用の正極活物質、その製造方法及びそれを用いた非水電解質二次電池 | |
JP6116800B2 (ja) | 正極活物質、これを採用した正極及びリチウム電池、並びにその製造方法 | |
JP5601337B2 (ja) | 活物質及びリチウムイオン二次電池 | |
JP6603966B2 (ja) | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 | |
JP5495300B2 (ja) | リチウムイオン二次電池 | |
WO2013015007A1 (ja) | 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池 | |
JP5079291B2 (ja) | 非水電解質二次電池 | |
JP5999090B2 (ja) | 二次電池用活物質 | |
JP6481907B2 (ja) | リチウム鉄マンガン系複合酸化物、それを用いたリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 | |
JP6252890B2 (ja) | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 | |
JP7336648B2 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
WO2013024621A1 (ja) | リチウムイオン電池 | |
WO2016021684A1 (ja) | 正極及びそれを用いた二次電池 | |
JP2009176583A (ja) | リチウム二次電池 | |
JP6249270B2 (ja) | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 | |
KR20180083432A (ko) | Li 이온 2차 전지용 부극 재료 및 그의 제조 방법, Li 이온 2차 전지용 부극 그리고 Li 이온 2차 전지 | |
JP2022095988A (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
CN107172888B (zh) | 非水电解质二次电池用正极活性物质及非水电解质二次电池 | |
KR101655241B1 (ko) | 리튬폴리실리케이트가 코팅된 리튬 망간 복합 산화물의 제조방법, 상기 제조방법에 의하여 제조된 리튬 이차 전지용 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이차 전지 | |
JP6800417B2 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極およびリチウムイオン二次電池 | |
JP2023540364A (ja) | リチウム二次電池用正極活物質、その製造方法、およびこれを含むリチウム二次電池 | |
JP6746983B2 (ja) | リチウム鉄マンガン系複合活物質構造、それを用いたリチウムイオン二次電池、及び製造方法 | |
JP5742765B2 (ja) | 活物質及びリチウムイオン二次電池 | |
WO2015019483A1 (ja) | 非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池 | |
JP6249269B2 (ja) | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752349 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500617 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15551853 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16752349 Country of ref document: EP Kind code of ref document: A1 |