WO2016129444A1 - 抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット - Google Patents

抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット Download PDF

Info

Publication number
WO2016129444A1
WO2016129444A1 PCT/JP2016/052989 JP2016052989W WO2016129444A1 WO 2016129444 A1 WO2016129444 A1 WO 2016129444A1 JP 2016052989 W JP2016052989 W JP 2016052989W WO 2016129444 A1 WO2016129444 A1 WO 2016129444A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
phosphor
bound
nanoparticles
integrated
Prior art date
Application number
PCT/JP2016/052989
Other languages
English (en)
French (fr)
Inventor
高橋 優
拓司 相宮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016574744A priority Critical patent/JP6740906B2/ja
Publication of WO2016129444A1 publication Critical patent/WO2016129444A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to antibody-bound phosphor-integrated nanoparticles, a method for producing antibody-bound phosphor-integrated nanoparticles, and an immunostaining kit.
  • pathological diagnosis is performed as one of medical diagnosis.
  • a pathologist diagnoses a disease from data indicating the result of a biopsy performed on a tissue piece collected from a human body, and informs a clinician whether treatment or surgery is necessary.
  • the medical doctor decides the drug treatment policy, and the surgical doctor decides whether or not to perform the operation.
  • tissue specimen In order to provide data for the diagnosis, a tissue specimen (tissue specimen) is prepared by slicing a tissue specimen obtained by organ excision or needle biopsy to a thickness of several microns, In order to obtain various findings after dyeing treatment, observation using an optical microscope or a fluorescence microscope is widely performed. In many cases, tissue sections are prepared by dehydrating and fixing paraffin blocks to fix the collected tissues, then slicing them to a thickness of several ⁇ m and removing the paraffin.
  • tissue section hardly absorbs and scatters light and is almost colorless and transparent
  • morphological observation staining for observing the cell morphology of the tissue section hematoxylin using two dyes, hematoxylin and eosin
  • HE staining morphological observation staining for observing the cell morphology of the tissue section
  • other morphological observation staining include Papanicolaou staining (Pap staining) used for cytodiagnosis.
  • immunostaining is performed on the tissue sections and the like of the subject.
  • a fluorescently labeled antibody is specifically bound to an in vivo molecule (antigen) whose expression level increases or decreases depending on the presence or absence of the disease, and the amount of the antigen associated with the disease is determined from the amount of the fluorescent signal. To be done. Thereby, data for diagnosing whether or not the subject suffers from the target disease is provided.
  • a technique for fluorescently labeling an antigen by directly or indirectly binding a nanoparticle (phosphor-aggregated nanoparticle) in which a fluorescent dye is encapsulated in a particle or fixed on a particle surface (phosphor-aggregated nanoparticle) is known. .
  • Patent Document 1 two or more kinds of fluorescent substance-encapsulated silica nanoparticles having different excitation wavelengths and fluorescence wavelengths are prepared by using different encapsulating fluorescent dyes, and 1M dithiothreitol (DTT) is used as a primary antibody.
  • Two or more kinds of antibodies eg, anti-ER antibody and anti-ER2 antibody
  • SH group introduction two or more kinds of antibodies
  • each fluorescent silica nanoparticle modified with maleimide is modified with each reduced antibody (anti-ER antibody, anti-ER2 antibody).
  • An example is disclosed that allows binding to the surface and staining different detection proteins simultaneously on the same section.
  • Patent Document 2 discloses a method of fluorescently staining the antigen by binding a primary antibody covalently bound with phosphor-aggregated nanoparticles to the antigen on the tissue section (primary antibody method), and an antigen on the tissue section.
  • primary antibody method a primary antibody covalently bound with phosphor-aggregated nanoparticles to the antigen on the tissue section
  • secondary antibody method an antigen on the tissue section.
  • the secondary antibody linked to the phosphor-aggregated nanoparticles through a covalent bond is bound to the primary antibody to fluorescently stain the antigen (secondary antibody method)
  • After preparing phosphor-integrated nanoparticles added with biotin (or avidin) and secondary antibody added with avidin (or biotin), and binding the primary antibody to the antigen on the tissue section A method of binding the secondary antibody to a primary antibody, and further fluorescently labeling the antigen by dynamically binding phosphor-aggregated nanoparticles to the secondary antibody via a streptavidin-bio
  • the immunostaining method described in Patent Document 2 using biotin (or avidin) -coupled phosphor-integrated nanoparticles is an antibody.
  • the staining is superior to the immunostaining method described in Patent Document 1 using the bound phosphor nanoparticles.
  • the immunostaining method of Patent Document 2 when two or more types of antigens are present and multiple immunostaining is performed in which each antigen is dyed with a fluorescent dye having a different wavelength, the immunostaining method is not used for immunostaining of all types of antigens. Can not.
  • biotin-avidin is uniformly applied to the connecting portion between the secondary antibody and the phosphor-integrated nanoparticles.
  • binding it is impossible to fix phosphor-aggregated nanoparticles having different fluorescence wavelengths corresponding to the type of antigen, and it is impossible to separate two or more types of antigens.
  • biotin-avidin binding which is excellent in binding ability, can be used only for immunostaining of at least one type of antigen.
  • Patent Document 1 As described, it is necessary to use phosphor-integrated nanoparticles directly conjugated with antibodies. If it is an immunostaining method, the antibody can be specifically bound according to the type of antigen, and phosphor-aggregated nanoparticles having different wavelengths can be fixed according to the type of antigen. .
  • the phosphor-integrated nanoparticles directly bound with the antibody as described in Patent Document 1 have room for improvement in the staining efficiency of immunostaining and the intensity (that is, sensitivity) of the fluorescence signal, and are being stored. There were problems such as agglomeration.
  • “low sensitivity” means that the number of bright spots decreases even if immunostaining is performed by reacting with the same concentration of phosphor-integrated nanoparticles and reaction time (that is, under the same conditions).
  • the present invention has been made in view of the above problems, and is capable of improving the staining efficiency of immunostaining and suppressing molecular aggregation, and a method for producing antibody-binding phosphor-integrated nanoparticles and antibody-binding phosphor-integrated nanoparticles And it aims at providing an immuno-staining kit.
  • the present inventors have found that the cause of aggregation in the invention of Patent Document 1 is weak and is due to strong reduction using dithiothreitol (DTT). If the primary antibody is strongly reduced using DTT as in the invention of Patent Document 1, many thiol groups are generated in the molecule of the primary antibody. As a result, as shown in FIGS. 3 and 4, the antibody SH group and the maleimide group on the surface of the phosphor-integrated nanoparticle have a large number of bonds, and the antibody molecule has a small number of SH groups (for example, one). Only), the number of free maleimide groups consumed by the above binding is increased, and the number of antibodies that can bind to the phosphor-integrated nanoparticles is greatly reduced. In addition, during storage, as shown in FIG. 3, the phosphor-aggregated nanoparticles and the antibody are likely to be enlarged due to the above-described binding, thereby causing molecular aggregation and precipitation.
  • DTT dithiothreitol
  • the present inventors When reducing the disulfide bond (—S—S—) moiety in an antibody molecule, the present inventors reduce the number of SH groups introduced into one antibody molecule as much as possible by adjusting the degree of reduction. It was found that the above-mentioned aggregation (see FIG. 3) can be suppressed by adjusting, and the present invention has been achieved.
  • antibody-bound phosphor-integrated nanoparticles reflecting one aspect of the present invention include an antibody and a phosphor-integrated nanoparticle, wherein a disulfide bond ( ⁇ An antibody-bound phosphor-integrated nanoparticle that is bound by a reaction between an SH group generated by reducing (S—S—) and a binding group on the surface of the phosphor-integrated nanoparticle,
  • S—S— an antibody-bound phosphor-integrated nanoparticle that is bound by a reaction between an SH group generated by reducing (S—S—) and a binding group on the surface of the phosphor-integrated nanoparticle
  • the number of streptavidins in which disulfide bonds are reduced to SH groups using 2-iminothiolane can be bound to a predetermined number of binding groups within the unit area of the surface of the phosphor-integrated nanoparticles is expressed as nmol. if you did this,
  • a method for producing antibody-bound phosphor-integrated nanoparticles reflecting one aspect of the present invention includes: Reducing the disulfide bond portion of the antibody with a reducing agent so that the number of SH groups / the number of antibodies is 1 to 5; A method for producing antibody-bound phosphor-integrated nanoparticles, comprising a step of binding the antibody after reduction to a phosphor-integrated nanoparticle having a binding group.
  • an immunostaining reagent kit reflecting one aspect of the present invention includes an antibody reagent including a primary antibody that binds to an antigen on a tissue section, and the phosphor-integrated nanoparticle.
  • An immunostaining reagent kit comprising a labeling reagent containing particles.
  • an immunostaining method reflecting one aspect of the present invention uses the antibody-binding fluorescent substance-integrated nanoparticles or the immunostaining reagent kit, and uses the antibody-binding fluorescence.
  • antibody-bound phosphor-integrated nanoparticles a method for producing phosphor-assembled nanoparticles, and an immunostaining reagent kit that can improve the efficiency of immunostaining and suppress molecular aggregation during storage.
  • the antibody portion of the phosphor-aggregated nanoparticles to which the antibody is bound is specifically bound to the antigen or the primary antibody bound to the antigen, and the antigen is fluorescently stained.
  • FIG. 1 is a view showing an example of antibody-coupled phosphor-integrated nanoparticles according to the present invention.
  • the antibody-bound phosphor-integrated nanoparticles can be used, for example, when the reduction treatment is performed on a disulfide bond (-SS-) present in an untreated antibody molecule / number of SH groups / number of antibodies. 1 to 5 (1 in the example of FIG. 1), the disulfide bond portion of the antibody is reduced with a reducing agent, and the reduced antibody is converted into a phosphor-integrated nanoparticle having a bond group (eg, maleimide group). It is obtained by bonding to particles.
  • a bond group eg, maleimide group
  • FIG. 2 shows the primary antibody method.
  • the primary antibody portion of the antibody-bound phosphor-integrated nanoparticles directly binds to the antigen on the tissue section, and the antigen is fluorescently labeled.
  • the right side of FIG. 2 shows the secondary antibody method.
  • the secondary antibody method after the primary antibody binds to the antigen on the tissue section, the secondary antibody portion of the antibody-bound phosphor-aggregated nanoparticles binds to the primary antibody and the antigen is fluorescently labeled.
  • FIG. 3 is a view showing a state in a dispersion of antibody-bound phosphor-integrated nanoparticles according to the prior art.
  • FIG. 4 shows a part of FIG. 3 and shows a case where the bonding group is a maleimide group.
  • FIG. 5 is a diagram illustrating a problem that occurs when multiple immunostaining is performed on two or more antigens by the conventional biotin-avidin method. As shown in FIG.
  • the antibody-bound fluorescence-integrated nanoparticles according to the present invention include an SH group generated by reduction of a disulfide bond (-SS-) of the antibody and the phosphor-integrated nanoparticles, and the phosphor-integrated nanoparticles.
  • a binding group eg maleimide group
  • the phosphor-integrated nanoparticles are nanometer-order particles in which phosphors are integrated. By using such phosphor-integrated nanoparticles, it is possible to increase the amount of fluorescence emitted per particle, that is, the brightness of a bright spot marking a predetermined biomolecule, compared to the phosphor itself.
  • the term “phosphor” refers to a general substance that emits light in a process from an excited state to a ground state by being excited by irradiation with external X-rays, ultraviolet rays, or visible rays. Therefore, the “phosphor” in the present invention is not limited to the transition mode when returning from the excited state to the ground state, but is a substance that emits narrowly defined fluorescence that is light emission accompanying deactivation from the excited singlet. It may be a substance that emits phosphorescence, which is light emission accompanying deactivation from a triplet.
  • the “phosphor” referred to in the present invention is not limited by the light emission lifetime after blocking the excitation light. Therefore, it may be a substance known as a phosphorescent substance such as zinc sulfide or strontium aluminate. Such phosphors can be broadly classified into organic phosphors (fluorescent dyes) and inorganic phosphors.
  • organic phosphors examples include fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (registered trademark, manufactured by Invitrogen Corporation) dye molecules, BODIPY (registered trademark, manufactured by Invitrogen Corporation) dyes Molecule, cascade (registered trademark, Invitrogen) dye molecule, coumarin dye molecule, NBD (registered trademark) dye molecule, pyrene dye molecule, Texas Red (registered trademark) dye molecule, cyanine dye molecule, perylene dye Examples thereof include substances known as organic fluorescent dyes, such as dye molecules and oxazine dye molecules.
  • inorganic phosphor examples include quantum dots containing II-VI group compounds, III-V group compounds, or group IV elements as components ("II-VI group quantum dots", " Or III-V quantum dots ”or“ IV quantum dots ”). You may use individually or what mixed multiple types.
  • the quantum dots may be commercially available. Specific examples include, but are not limited to, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, and Ge.
  • a quantum dot having the above quantum dot as a core and a shell provided thereon.
  • the core is CdSe and the shell is ZnS
  • CdSe / ZnS when the core is CdSe and the shell is ZnS, it is expressed as CdSe / ZnS.
  • CdSe / ZnS, CdS / ZnS, InP / ZnS, InGaP / ZnS, Si / SiO 2 , Si / ZnS, Ge / GeO 2 , Ge / ZnS, and the like can be used, but are not limited thereto.
  • Quantum dots may be subjected to surface treatment with an organic polymer or the like as necessary.
  • organic polymer or the like as necessary. Examples thereof include CdSe / ZnS having a surface carboxy group (manufactured by Invitrogen), CdSe / ZnS having a surface amino group (manufactured by Invitrogen), and the like.
  • the production method of the phosphor-integrated nanoparticles itself is not particularly limited, and can be produced by a known method. In general, a production method can be used in which phosphors are gathered together using a resin or silica as a base material (the phosphors are immobilized inside or on the surface of the base material).
  • Examples of a method for producing phosphor-integrated nanoparticles using organic phosphors include a method of forming resin particles having a diameter of nanometer order by fixing a fluorescent dye, which is a phosphor, inside or on the surface of a matrix made of resin. Can do.
  • the method for preparing the phosphor-integrated nanoparticles is not particularly limited.
  • a (co) monomer for synthesizing a resin (thermoplastic resin or thermosetting resin) that forms the matrix of the phosphor-integrated nanoparticles While (co) polymerizing the phosphor, a method of adding the phosphor and incorporating the phosphor into the inside or the surface of the (co) polymer can be used.
  • thermoplastic resin for example, polystyrene, polyacrylonitrile, polyfuran, or a similar resin
  • thermosetting resin for example, polyxylene, polylactic acid, glycidyl methacrylate, polymelamine, polyurea, polybenzoguanamine, polyamide, phenol resin, polysaccharide or similar resin
  • Thermosetting resins, particularly melamine resins are preferred in that elution of the dye encapsulated in the dye resin can be suppressed by treatments such as dehydration, penetration, and encapsulation using an organic solvent such as xylene.
  • polystyrene nanoparticles encapsulating an organic fluorescent dye can be obtained by a copolymerization method using an organic dye having a polymerizable functional group described in US Pat. No. 4,326,008 (1982), or US Pat. No. 5,326,692 (1992). ), And can be used as phosphor-integrated nanoparticles.
  • silica nanoparticles in which an organic phosphor is immobilized inside or on the surface of a matrix made of silica can also be produced.
  • the method for synthesizing FITC-encapsulated silica nanoparticles described in Langmuir Vol. 8, Vol. 2921 (1992) can be referred to.
  • silica nanoparticles encapsulating various fluorescent dyes can be synthesized and used as phosphor-integrated nanoparticles.
  • Examples of a method for producing phosphor-integrated nanoparticles using an inorganic phosphor include a method of forming silica nanoparticles in which quantum dots, which are phosphors, are fixed inside or on the surface of a matrix made of silica. This production method can be referred to the synthesis of CdTe-containing silica nanoparticles described in New Journal of Chemistry Vol. 33, p. 561 (2009).
  • the silica beads are treated with a silane coupling agent to aminate the ends, and semiconductor fine particles as phosphors having carboxy group ends are amided on the surface of the silica beads.
  • a method for collecting phosphors to form phosphor-integrated nanoparticles is also exemplified.
  • a reverse micelle method and a mixture of organoalkoxysilane and alkoxide having an organic functional group with good adsorptivity to semiconductor nanoparticles at the molecular end as a glass precursor are used.
  • glass-like particles in which semiconductor nanoparticles are dispersed and fixed are formed to form phosphor-integrated nanoparticles.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • phosphor-integrated nanoparticles can be produced by immobilizing inorganic phosphors inside or on the surface of a matrix made of resin.
  • polymer nanoparticles encapsulating quantum dots can be prepared using the method of impregnating quantum nanoparticles into polystyrene nanoparticles described in Nature Biotechnology Vol. 19, p. 631 (2001).
  • the average particle size of the phosphor-integrated nanoparticles is preferably from 150 nm to 800 nm, more preferably from 150 nm to 500 nm, from the viewpoint of fluorescence signal intensity.
  • the average particle size of the phosphor-integrated nanoparticles can be examined by a known measurement method.
  • the phosphor-integrated nanoparticles are observed with a transmission electron microscope (TEM), and the number-average particle size of the particle size distribution is obtained therefrom.
  • the particle size distribution of the semiconductor nanoparticles is measured by the dynamic light scattering method. And the method etc. which are calculated
  • it can be measured by, for example, a gas adsorption method, a light scattering method, an X-ray small angle scattering method (SAXS), or a method of measuring an average particle diameter by observation with a scanning electron microscope (SEM).
  • SAXS X-ray small angle scattering method
  • SEM scanning electron microscope
  • the surface of the phosphor-integrated nanoparticles may be optionally modified with a hydrophilic polymer.
  • the hydrophilic polymer include polyethylene glycol, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl methyl oxazoline, Polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropyl methacrylate, polyhydroxyethyl acrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyaspartamide, synthetic polyamino acid, etc. Can be mentioned.
  • antibody The antibody used in the present invention is selected according to the use, for example, an antibody (primary antibody) against an antigen (eg, HER2 etc.) associated with a disease (malignant tumor etc.), or an antigen-antibody reaction with the primary antibody Means a secondary antibody to an n-th antibody that bind to each other (hereinafter also referred to as “predetermined antibody”). Any of these antibodies is subjected to a reduction treatment as described later.
  • predetermined antibody a secondary antibody to an n-th antibody that bind to each other
  • the term “antibody” is used to include any antibody fragment or derivative, and includes, for example, Fab, Fab ′ 2 , CDR, humanized antibody, multifunctional antibody, single chain antibody (ScFv) and the like. .
  • antigens examples include proteins (polypeptides, oligopeptides, etc.) and amino acids (including modified amino acids), and the proteins or amino acids and carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids. Or a complex with these modified molecules.
  • antigens tumor markers, signal transduction substances, hormones, etc.
  • the antigen include, for example, TNF- ⁇ (Tumor Necrosis Factor ⁇ ), IL, in addition to antigens related to cancer such as cancer growth regulator, metastasis regulator, growth regulator receptor, and metastasis regulator receptor.
  • Inflammatory cytokines such as the ⁇ 6 (Interleukin-6) receptor and virus-related molecules such as RSV F protein are also included in the “antigen”.
  • proteins derived from cancer-related genes include ALK, FLT3, AXL, FLT4 (VEGFR3, DDR1, FMS (CSF1R), DDR2, EGFR (ERBB1), HER4 (ERBB4), EML4.
  • Proteins derived from breast cancer-related genes that can serve as the above antigens are ATM, BRCA1, and BRCA2. , BRCA3, CCND1, E-Cadherin, ERBB2, ETV6, FGFR1, HRAS, KRAS, NRAS, NTRK3, p53, and PTEN Further, as a protein derived from a gene related to a carcinoid tumor, the antigen can be used. Include BCL2, BRD4, CCND1, CDKN1A, CDKN2A, CTNNB1, HES1, MAP2, MEN1, NF1, NOTCH1, NUT, RAF, SDHD, and VEGFA.
  • proteins that can be used as the antigen and are derived from lung cancer-related genes include ALK, PTEN, CCND1, RASSF1A, CDKN2A, RB1, EGFR, RET, EML4, ROS1, KRAS2, TP53, and MYC.
  • proteins derived from liver cancer-related genes that can serve as the antigen include Axin1, MALAT1, b-catenin, p16 INK4A, c-ERBB-2, p53, CTNNB1, RB1, and Cy.
  • Alpha, PRCC, ASPSCR1, PSF, CLTC, TFE3, p54nrb / NONO, and TFEB are examples of proteins that can be used as the antigen and are derived from kidney cancer-related genes.
  • proteins that can serve as the antigen and are derived from thyroid cancer-related genes include AKAP10, NTRK1, AKAP9, RET, BRAF, TFG, ELE1, TPM3, H4 / D10S170, and TPR.
  • proteins derived from ovarian cancer-related genes that can be used as the antigen include AKT2, MDM2, BCL2, MYC, BRCA1, NCOA4, CDKN2A, p53, ERBB2, PIK3CA, GATA4, RB, HRAS, RET, KRAS, and RNASET2.
  • proteins that can serve as the antigen and are derived from prostate cancer-related genes can be mentioned as proteins that can serve as the antigen and are derived from prostate cancer-related genes.
  • proteins that can be used as the antigen and derived from bone tumor-related genes include CDH11, COL12A1, CNBP, OMD, COL1A1, THRAP3, COL4A5, and USP6.
  • proteins derived from the immune system include PD-L1, PD-1, and B7.1.
  • linking group examples include a maleimide group, an aldehyde group, a bromoacetamide group (iodoacetamide group, bromoacetamide group) and the like that are capable of binding reaction with the SH group, and are functional groups capable of binding reaction with the SH group. If there is, it is not limited to these.
  • the maleimide group is preferable because it has good reactivity with the SH group and is easy to obtain and use a reagent for introduction into the phosphor-integrated nanoparticles.
  • the method for introducing the binding group to the surface of the phosphor-integrated nanoparticles is not particularly limited.
  • a monomer having a binding group in the side chain is mainly used. Examples thereof include a method of introducing a binding group into the phosphor-integrated nanoparticles by polymerizing at the chain portion, or a method of introducing a linker having a binding group by binding to the surface of the phosphor-integrated nanoparticles.
  • the method using the latter linker is specifically bifunctional having a binding group at one end of the above-described hydrophilic polymer and a functional group (including the same group as the binding group) at the other end.
  • This linker molecule is prepared, and the functional group is bonded to a functional group other than the bonding group introduced to the surface of the phosphor-integrated nanoparticle. Examples of this combination of bonds include a combination of an amino group-NHS group, a group having an azide group-carbon triple bond, and the like.
  • Method of directly introducing a binding group into phosphor-integrated nanoparticles for example, when phosphor-aggregated nanoparticles based on polystyrene are produced and a maleimide group is introduced into the polystyrene portion, Japanese Patent Application Laid-Open No. 2007-2007 As described in -23120, in the state where the phenyl group of the polystyrene chain is chloromethylated, a Cl exchange etherification reaction is carried out between the OH group of the N-hydroxymethylmaleimide and the chloromethyl group to thereby convert the maleimide group. There is a way to introduce.
  • the maleimide group is collected by dehydration condensation etherification reaction with the OH group of N-hydroxymethylmaleimide. It can be introduced on the surface of the nanoparticles.
  • an acidic or basic known etherification catalyst can be used.
  • the basic catalyst alkali metal or alkaline earth metal hydroxides, oxides, carbonates, bicarbonates, etc. can be used, and one or more of these can be mixed. Can be used.
  • inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as p-toluenesulfonic acid, trichloroacetic acid and acetic acid can be used. Good. A hydrotalcite solid catalyst can also be used.
  • a functional group (bonding group) capable of binding to an SH group is introduced on the surface of the phosphor-integrated nanoparticle and the amount thereof are determined by, for example, a method of measuring a wavelength peak and area corresponding to binding by FT-IR, or It can be examined using a kit or measurement method for quantifying the binding group.
  • a kit or measurement method for quantifying the binding group For example, when quantifying a maleimide group (binding group), it can be quantified using an “Amplite TM fluorescent maleimide quantification kit” (manufactured by Cosmo Bio).
  • DNPH 2,4-dinitrophenylhydrazine
  • an aldehyde group on the surface of a phosphor-integrated nanoparticle is reacted with DNPH to form a DNPH derivative, and the DNPH derivative is subjected to high performance liquid chromatography (HPLC) to be adsorbed and eluted on a column.
  • HPLC high performance liquid chromatography
  • This is a method for analyzing and quantifying aldehyde groups from the absorbance (Abs. 360 nm) of the fraction of the eluate corresponding to.
  • the amount introduced can be examined by quantifying the halogen produced as a by-product by actually reacting with an SH group by a known method.
  • the density of bonding groups on the surface of phosphor-integrated nanoparticles The number of moles of the linking group (maleimide group etc.) present per surface (1 mm 2 ) of the phosphor-integrated nanoparticles is not particularly limited as long as it has a predetermined number of linking groups that can react with the SH group of the antibody. It is preferably 2 ⁇ 10 ⁇ 14 mol to 5 ⁇ 10 ⁇ 13 mol.
  • the total surface area of the phosphor-integrated nanoparticles was calculated from 4 ⁇ r 2 with the average particle diameter (nm) measured as described above being the radius (r), and from the number of linking groups (number of moles) determined above.
  • the number of bonding groups (number of moles) / particle surface area 1 mm 2 can be calculated.
  • the method for producing antibody-bound phosphor-aggregated nanoparticles according to the present invention is a method for producing phosphor-aggregated nanoparticles, wherein the disulfide bond of the antibody is adjusted so that the number of SH groups / number of antibodies is 1 to 5 or less.
  • the number of SH groups / the number of antibodies is 1, for example, when an antibody fragment or the like is used, one disulfide bond (-SS-bond) existing in the antibody fragment molecule is present. This means a case where the antibody fragment is divided into two and each molecule becomes an antibody fragment having one SH group.
  • [Reduction step] (Reduction of disulfide bond)
  • the reduction in the reduction step is carried out in a pH buffer solution (eg, phosphate buffer solution (including PBS), etc.) having a buffer capacity around pH 6-8, such as 25-100 mM trau tree gent (2-iminothiolane hydrochloride).
  • a pH buffer solution eg, phosphate buffer solution (including PBS), etc.
  • a buffer capacity around pH 6-8 such as 25-100 mM trau tree gent (2-iminothiolane hydrochloride).
  • the reduction means that the ratio (antibody / SA ratio) of the molar amount capable of binding to a predetermined number of binding groups within an area (eg, 1 mm 2 ) is 2 or more. If a trau tree gent in the above concentration range (25 to 100 mM) is used, approximately the same reduction can be achieved.
  • the number of SH groups introduced into one antibody molecule (SH group) by adjusting each condition such as the temperature of the reduction reaction described later, the pH of the reduction reaction and / or the concentration of the reducing agent and the antibody.
  • the number of antibodies / the number of antibodies is adjusted to be as small as possible (for example, 1 to 5).
  • binding groups eg, maleimide groups
  • Many antibodies can be bound.
  • reducing agent Since the amount of disulfide bond (SS bond) reduction varies greatly depending on the type of reducing agent, examples of suitable reducing agents for carrying out the reduction include 2-mercaptoethanol, 3-mercapto-1,2, and the like.
  • suitable reducing agents for carrying out the reduction include 2-mercaptoethanol, 3-mercapto-1,2, and the like.
  • One or more selected from the group consisting of propanediol, glutathione ( ⁇ -L-glutamyl-L-cysteinylglycine), tris (2-carboxyethyl) phosphine hydrochloride and cysteine, 2-mercaptoethylamine Can be mentioned.
  • PH buffer The reduction in the reduction step is preferably carried out in a neutral pH buffer solution in which the reducing agent used can exert the reducing power.
  • a neutral pH buffer solution in which the reducing agent used can exert the reducing power.
  • usable pH buffer include phosphate buffer (including PBS), trishydroxymethylaminomethane (Tris) buffer, and glycine buffer.
  • the reduction pH is pH 7.0 to 8.5 when 2-mercaptoethanol is used, pH 3.5 to 7.0 when 3-mercapto-1,2-propanediol is used, and glutathione ( ⁇ -L- PH 7.0-8.5 when using glutamyl-L-cysteinylglycine, pH 7.0-8.5 when using tris (2-carboxyethyl) phosphine hydrochloride, and cysteine Examples include pH 7.5 to 9.0, and when 2-mercaptoethylamine is used, pH 6.5 to 8.0.
  • reaction temperature / reaction time As a temperature condition for the reduction reaction, a range of 4 ° C. to 40 ° C., preferably 35 ° C. to 37 ° C. can be selected.
  • the reaction time of the reduction reaction varies depending on the temperature conditions, but in the case of 4 ° C. to 8 ° C., a range of 8 hours to 36 hours, preferably 12 hours to 24 hours is selected. Examples include a method in which a range of 240 minutes, preferably 30 minutes to 180 minutes is selected, and the reaction solution is simply left at room temperature for treatment.
  • the reducing agent is used, not only the temperature and time of the reduction treatment, but also the molar ratio of the antibody to be reduced and the reducing agent is important.
  • the molar concentration of the reducing agent is 100,000,000,000 to 10,000,000,000 with respect to 1 mole of the antibody before reduction. 1,000 mol is preferred.
  • examples of the final concentration of the antibody in the reaction solution include, for example, 1 pmol / L to 100 pmol / L, preferably 1 to 10 pmol / L.
  • the range of the final concentration of the reducing agent to be included in the reaction solution is as follows. The final concentration is 0.01 M to 0.2 M for 2-mercaptoethanol, and the final concentration is 0 for 3-mercapto-1,2-propanediol.
  • the final concentration is preferably 0.05M to 0.15M, and in the case of 2-mercaptoethylamine, the final concentration is preferably 0.01M to 0.3M.
  • the SH group in the antibody molecule is quantified by, for example, using an SH group quantification kit such as a known SH group quantification reagent (for example, 5,5′-Dithiobis (2-nitrobenzoic acid), same product code: D029, product name: DTNB). It can carry out by well-known methods, such as a method to use.
  • SH group quantification kit such as a known SH group quantification reagent (for example, 5,5′-Dithiobis (2-nitrobenzoic acid), same product code: D029, product name: DTNB). It can carry out by well-known methods, such as a method to use.
  • Binding step (Binding of antibody after reduction and phosphor-integrated nanoparticles)
  • the phosphor-integrated nanoparticles surface-modified with the above-described binding group (maleimide group or the like) and the antibody having the SH group after reduction (eg, anti-HER2 antibody) are mixed in a pH buffer solution, This is a step of bonding both molecules.
  • the molar ratio of the antibody and the phosphor-integrated nanoparticles in the binding reaction is such that the antibody having an SH group after reduction is from 100,000 mol to 100,000 in terms of 1 mol of the phosphor-integrated nanoparticles. 1,000 moles are preferably used.
  • the temperature and time of the binding reaction are preferably left at room temperature (1 to 40 ° C.) for 1 to 12 hours from the viewpoint of sufficiently performing the binding reaction.
  • the binding reaction can be stopped by adding about 30 to 50 nmol of a reducing agent such as mercaptoethanol to the reaction solution.
  • the pH buffer solution described above can be used as the pH buffer solution used in the binding step. Moreover, it is desirable that the pH buffer used for the binding reaction contains a chelating agent. This is because when metal ions are present in the reaction solution, the metal ions react with the SH groups of the antibody molecules, and the reaction between the antibody SH groups and the binding groups on the surface of the phosphor-integrated nanoparticles is inhibited.
  • Usable chelating agents include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriamipentaacetic acid (DTPA), N, N-dicarboxymethylglutamic acid tetrasodium salt (GLDA), N ′-( 2-hydroxyethyl) ethylenediamine-N, N, N′-triacetic acid (HEDTA), glycol ether diamine-N, N, N ′, N′-tetraacetic acid (GEDTA), triethylenetetraamine hexaacetic acid (TTHA), Examples thereof include hydroxyethyliminodiacetic acid (HIDA) and dihydroxyethylglycine (DHEG).
  • concentration of the chelating agent in the buffer solution is not limited as long as it does not affect the binding reaction, and may be about 1 to 10 mM, for example.
  • a washing step can optionally be provided after the bonding step.
  • the reaction solution after the binding step is centrifuged (eg, 10000 g, 60 minutes), and the pelleted antibody-bound phosphor-aggregated nanoparticles are dispersed in the pH buffer solution and centrifuged again. This is a step of repeating this operation 2 to 3 times as a series of operations.
  • the pH buffer solution at this time is preferably a pH buffer solution containing the above-mentioned chelating agent (such as PBS containing EDTA).
  • the number of antibodies bound to the particle surface per unit area (in the following example, 1 mm 2 ) of antibody-bound phosphor-integrated nanoparticles can be examined, for example, by the following (1) and (2).
  • the antibody (eg, anti-HER antibody) bound to the surface of the phosphor-integrated nanoparticles is itself a protein.
  • protein quantification kits based on the BCA method or the like (eg, “Bio-Rad Protein Assay” (manufactured by Bio-Rad), etc.), purification treatment (gel filtration, Measure the total weight (mg) of antibody bound to the surface of the phosphor-aggregated nanoparticles by quantifying the protein in the dispersion of antibody-bound phosphor-aggregated nanoparticles after performing centrifugation, etc.) Can do.
  • the phosphor-integrated nanoparticle in the dispersion can be obtained from the formula: total antibody weight (mg) / antibody molecular weight (eg, 138,000 Da in the case of anti-HER2 antibody).
  • the number of moles of antibody bound to the surface of the particle can be calculated. Further, the number of antibodies bound to the surface of the phosphor-integrated nanoparticles can be calculated from the number of moles and the Avogadro constant.
  • the formula of the surface area of the sphere phosphors per particle from 4 ⁇ r 2
  • the surface area (average) of the integrated nanoparticles can be calculated. Then, by means of measuring particles present in the dispersion of the antibody-bound phosphor-integrated nanoparticles (particle counter (eg, “Liquid Particle Counter” (manufactured by Rion Co., Ltd.)) or a method described later) Measure the number of phosphor-integrated nanoparticles present in.
  • particle counter eg, “Liquid Particle Counter” (manufactured by Rion Co., Ltd.)
  • the total surface area of the phosphor-integrated nanoparticles in the dispersion can be calculated from the surface area (average) per particle ⁇ the number of particles.
  • the number of moles (or number) of antibodies per 1 mm 2 of the particle surface can be calculated from the above formula of moles (or number) of antibodies / total surface area.
  • the total number of pigment particles in the dispersion may be calculated by collecting the phosphor-integrated nanoparticles in the dispersion, measuring the dry weight, and dividing the dry weight by the weight of one particle. it can.
  • the weight of one particle can be calculated by multiplying the specific gravity of the particle (the density of the matrix, which can be regarded as 1, for example) by the average particle volume of the particle.
  • the average particle volume of the particles can be calculated from the particle size of the pigment particles confirmed with an electron microscope.
  • the streptavidin having an SH group after reduction is phosphor.
  • the molar amount (hereinafter referred to as SA molar amount (or number of SAs)) capable of binding to a predetermined number of binding groups (functional groups capable of binding to SH groups such as maleimide groups) on the surface of the integrated nanoparticles is substantially constant. Therefore, on the basis of this SA molar amount (or the number of SAs), the molar amount (or number) of the reduced antibody molecules bound to a predetermined number of binding groups is the relative value of the SA molar amount (or number). Can be expressed as
  • the maleimide groups are uniformly introduced as bonding groups on the surface of the phosphor-integrated nanoparticles and the maleimide groups present in 1 mm 2 of the particles are defined as “a predetermined number of bonding groups”.
  • the molar amount (or number) of reduced antibodies bound to a given number of binding groups is determined.
  • the former can be expressed as a relative value (antibody / SA) to the latter.
  • the antibody-bound phosphor-integrated nanoparticles according to the present invention have an antibody / SA ratio of 2 or more, and the ratio of antibody / SA ⁇ 2 is determined by the reduction treatment with 2-iminothiolane as described above. This is achieved by reducing the number of SH groups per antibody molecule to 1-5. By such reduction, the number of SH groups per antibody molecule can be reduced as much as possible, and more antibodies can be bound to a predetermined number of binding groups present on the surface of the phosphor-integrated nanoparticles.
  • the immunostaining reagent kit includes a labeling reagent containing antibody-bound fluorescent substance-integrated nanoparticles.
  • a labeling reagent containing antibody-bound fluorescent substance-integrated nanoparticles.
  • the antibody portion of the antibody-bound phosphor-integrated nanoparticles is not a primary antibody but a 2nd to nth antibody, it may optionally further comprise a solution of primary to n-1 primary antibodies (antibody reagent). .
  • the concentration of the antibody-bound phosphor-integrated nanoparticles in the labeling reagent is not particularly limited, but is preferably equal to or higher than the final concentration at the time of immunostaining, for example, set to 0.05 nM to 5 mM.
  • the storage conditions for the labeling reagent since the antibody is contained in the labeling reagent, it is preferable to store it under the same conditions as the storage conditions for the antibody, for example, it is preferable to store it at a low temperature of ⁇ 20 ° C. to 4 ° C. . It is desirable to store the labeling reagent in a plurality of containers for the purpose of avoiding repeated freezing and thawing.
  • the phosphor-integrated nanoparticles are semiconductor particles, it is preferable to store them in a light-shielded manner from the viewpoint that when the semiconductor portion receives light, the organic resolution is exhibited and the antibody is decomposed.
  • the dispersion medium of the antibody-bound phosphor-integrated nanoparticles is preferably a neutral pH buffer solution such as PBS from the viewpoint of preventing the antibody portion from being decomposed by alkali or acid.
  • the immunostaining method according to the present invention includes an immunostaining reaction step in which antibody-bound phosphor-aggregated nanoparticles are immobilized on an antigen and fluorescently stained, and is performed through the following series of steps including the immunostaining reaction step. It is preferable.
  • the tissue section may be purchased from a commercially available one.
  • the tissue of a subject human, dog, cat, etc.
  • the tissue section of the subject is first fixed with formalin or the like, dehydrated with alcohol, then treated with xylene, and immersed in high temperature paraffin to embed the paraffin into a tissue section.
  • Deparaffinization treatment step A tissue section is immersed in xylene to remove paraffin.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, xylene may be exchanged during the immersion.
  • the tissue section is immersed in ethanol to remove xylene.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Further, if necessary, ethanol may be exchanged during the immersion.
  • the tissue section is immersed in water (eg, distilled water) to remove ethanol.
  • water eg, distilled water
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Moreover, you may exchange water in the middle of immersion as needed.
  • Activation treatment step When immunohistochemical staining is performed as histochemical staining, it is preferable to perform activation treatment of a target biomolecule according to a known method.
  • the activation conditions are not particularly defined, but as the activation liquid, 0.01 M citrate buffer (pH 6.0), 1 mM ethylenediaminetetraacetic acid (EDTA) solution (pH 8.0), 5% urea, 0.1 M Tris
  • a heating device an autoclave, a microwave, a pressure cooker, a water bath, etc. can be used.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the heat treatment temperature for the activation treatment can be 50 to 130 ° C., and the heat treatment time can be 5 to 30 minutes.
  • the sections after activation treatment are immersed in PBS placed in a container and washed.
  • the temperature is not particularly limited, but can be performed at room temperature.
  • the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, PBS may be replaced during the immersion.
  • Immunostaining reaction step In the immunostaining reaction step, antibody-bound phosphor-aggregated nanoparticles are immobilized on an antigen on a tissue section (such as an antigen related to a disease to be pathologically diagnosed), and the antigen is fluorescently labeled. It is a process to do.
  • the step of fluorescently labeling the antigen by fixing the phosphor-integrated nanoparticle to the antigen through the binding between the antibody portion and the antigen Yes
  • the antibody portion of the antibody-bound phosphor-aggregated nanoparticles is a 2nd to nth antibody
  • the 1st to (n-1) th antibody was bound to the antigen on the tissue section and then bound to the antigen.
  • the 2nd to nth antibodies are bound to the 1st to (n-1) th antibodies, and the phosphor-aggregated nanoparticles are immobilized on the antigen to fluorescently label the antigen.
  • a solution in which antibody-bound phosphor-integrated nanoparticles are dispersed in a pH buffer solution is placed on a tissue section, and the antigen and antibody-bound phosphor-integrated nanoparticles are collected.
  • the antibody reagent is placed on a tissue section to bind the antigen to the 1st to (n-1) th antibody, and then the 1 to (1)-( n-1)
  • the reaction in the immunostaining reaction step include an example in which a dispersion of the antibody-bound phosphor-integrated nanoparticles is placed on a tissue section and reacted at 4 ° C. overnight.
  • the blocking treatment may be omitted by previously containing a blocking agent in a range of 1% by weight or less in a pH buffer solution used as a dispersion medium.
  • a blocking agent include biological substances such as bovine serum albumin (BSA), casein ( ⁇ -casein, ⁇ -casein, ⁇ -casein) and gelatin.
  • the two or more kinds of phosphor-integrated nanoparticles have the emission wavelength bands that do not overlap each other from the viewpoint of ease of detection.
  • the phosphor-integrated nanoparticles may be prepared using two or more kinds of phosphors whose emission wavelength bands do not overlap each other.
  • the antibody it is necessary to select an antibody that recognizes a unique epitope for each of two or more antigens for each phosphor-integrated nanoparticle.
  • washing step After the immunostaining reaction step, it is preferable to perform a washing step of washing the tissue section with PBS to remove unreacted phosphor-integrated nanoparticles.
  • a washing step for example, a washing step in which a tissue section is immersed in PBS adjusted to room temperature (1 to 30 ° C.) and left for 0.5 to 1 hour can be performed.
  • PBS or the like may be exchanged during the immersion.
  • the tissue section is stained with hematoxylin / eosin staining (HE staining) to obtain cell shape of the tissue section and positional information of each part of the cell. Therefore, the morphological observation processing step can be arbitrarily performed. Along with this staining, the tissue section may be subjected to processing such as penetration and encapsulation for observation.
  • HE staining for example, an immunostained section is stained with Mayer's hematoxylin solution for 5 minutes and then stained with hematoxylin, and then the tissue sample is washed with running water at 45 ° C. for 3 minutes, and then 5% with 1% eosin solution. Perform eosin staining with minute staining.
  • Bright field observation is performed in order to acquire distribution information of cells of tissue sections or cell organs to be stained in the tissue.
  • a tissue section that has been subjected to hematoxylin / eosin staining (HE staining) after immunostaining as described above is observed with an optical microscope.
  • HE staining hematoxylin / eosin staining
  • eosin used for morphological observation staining can not only observe in a bright field, but also emits autofluorescence when irradiated with excitation light of a predetermined wavelength, so that an excitation light with an appropriate wavelength and output is applied to a stained tissue sample. Irradiation can be observed with a fluorescence microscope.
  • HER2 protein as an antigen to be detected as another staining
  • a 4 ⁇ objective lens of an optical microscope is used under irradiation with appropriate illumination light.
  • the objective lens is switched to 10 times, it is confirmed whether the positive findings are localized in the cell membrane or the cytoplasm, and if necessary, further searching is performed with the objective lens 20 times.
  • Fluorescence observation Using a fluorescence microscope, the number of fluorescent bright spots or emission luminance is measured from a wide-field microscope image for the stained section. An excitation light source and a fluorescence detection optical filter corresponding to the absorption maximum wavelength and fluorescence wavelength of the fluorescent substance used are selected. The number of bright spots or emission luminance can be measured by using commercially available image analysis software, for example, all bright spot automatic measurement software G-Count manufactured by Zeonstrom Co., Ltd. Note that image analysis itself using a microscope is well known, and for example, a technique disclosed in Japanese Patent Laid-Open No. 9-197290 can be used.
  • the field of view of the microscopic image is preferably 3 mm 2 or more, more preferably 30 mm 2 or more, and further preferably 300 mm 2 or more. Based on the number of bright spots and / or emission luminance measured from the microscopic image, the expression level of the protein (described above) derived from the specific gene of interest is evaluated.
  • the antibody-binding phosphor-integrated nanoparticles used according to the type of antigen are classified for each type. Excitation and emission are performed, and the number of fluorescent bright spots and emission luminance are measured for each antigen type.
  • a fluorescence filter that cuts the overlapping bands is used for each type of antigen. It is desirable to observe.
  • a pathological tissue section in which a protein to be detected by immunostaining is expressed is prepared, and (1) when immunostaining and fluorescence observation described above are performed using antibody-bound phosphor-aggregated nanoparticles, a predetermined section is obtained. The number of specific bright spots measured in the observation field, (2) The number of particles visually confirmed after storing the labeling reagent containing the antibody-bound phosphor-integrated nanoparticles under predetermined conditions (after the aggregation confirmation test) The staining performance of antibody-bound phosphor-integrated nanoparticles can be evaluated by the presence or absence of aggregation / sedimentation.
  • the bound fluorescent aggregated nanoparticles have the same staining ability as in the biotin-avidin method (eg, Comparative Example 1 described later) without aggregation, sedimentation and antibody denaturation. It is possible. Whether or not it is a specific bright spot depends on whether or not the same HER2 antigen expression position is identified by staining the same pathological section with another staining method such as DAB, It can be judged whether it is a bright spot.
  • the IHC method is a method described in “HER2 Examination Guide Third Edition” (prepared by Satsuki Trastuzumab Pathology Committee in September 2009), and the IHC method score is an evaluation standard described in “HER2 Examination Guide Third Edition” (See Table 1 below).
  • An antibody-bound phosphor-integrated nanoparticle according to the present invention includes an SH group generated by reducing the disulfide bond (-SS-) of the antibody and the above-described antibody-phosphor-integrated nanoparticle.
  • Antibody-bound phosphor-aggregated nanoparticles that are bound by reaction with a binding group (eg, maleimide group) on the surface of the phosphor-aggregated nanoparticles, and using 2-iminothiolane to disulfide bond SH
  • a binding group eg, maleimide group
  • 2-iminothiolane to disulfide bond SH When the streptavidin reduced to a group can bind to a predetermined number of binding groups within a unit area (eg, 1 mm 2 ) on the surface of the phosphor-integrated nanoparticles, the antibody Is bound to the predetermined number of binding groups is 2 nmol or more, so that a sufficient amount of antibody is bound to the surface of the phosphor-integrated nanop
  • linking group is a maleimide group
  • the binding group is one or more selected from the group consisting of a maleimide group, an aldehyde group or a bromoacetamide group
  • it can react with the SH group of the antibody to form a stable covalent bond. From the viewpoint of being able to.
  • the above-mentioned antibody is 2-mercaptoethanol, 3-mercapto-1,2-propanediol, glutathione ( ⁇ -L-glutamyl-L-cysteinylglycine), tris (2-carboxyethyl) phosphine hydrochloride and
  • glutathione ⁇ -L-glutamyl-L-cysteinylglycine
  • tris (2-carboxyethyl) phosphine hydrochloride
  • the secondary antibody binds to the primary antibody at a plurality of positions. Therefore, a plurality of secondary antibodies, that is, a plurality of (species) phosphors are associated with one primary antibody. It can be labeled with integrated nanoparticles. Therefore, by using the secondary antibody, a sensitization effect and a color synthesis effect of the staining dye can be obtained.
  • the disulfide bond portion of the antibody is adjusted so that the number of SH groups / number of antibodies is as small as possible (preferably 1 to 5, for example).
  • the number of SH groups introduced into one antibody molecule can be kept low by the above reduction step, so that a larger number of antibodies against a predetermined number of binding groups on the surface of the phosphor-integrated nanoparticles are obtained.
  • the reducing agent used for the oxidation-reduction is 2-mercaptoethanol, 3-mercapto-1,2-propanediol, glutathione ( ⁇ -L-glutamyl-L-cysteinylglycine), tris (2-carboxyl)
  • the reduction step can be suitably carried out if it is one or more selected from the group consisting of (ethyl) phosphine hydrochloride, cysteine, and 2-mercaptoethylamine.
  • an immunostaining reagent kit comprising an antibody reagent containing a primary antibody that binds to an antigen on a tissue section, and a labeling reagent containing the antibody-bound phosphor-aggregated nanoparticles, a certain period of time from manufacture
  • An immunostaining kit having the above-described effect without agglutination caused by visual observation even if it is too much is provided.
  • An immunostaining method comprising an immunostaining reaction step in which the antibody-bound phosphor-aggregated nanoparticles or the immunostaining reagent kit described above is used to immobilize the antibody-bound phosphor-aggregated nanoparticles on an antigen and perform fluorescence staining; In this case, a sufficiently specific bright spot can be obtained.
  • the staining target is an antigen to be pathologically diagnosed
  • a disease ((malignant) tumor or the like) to be pathologically diagnosed can be detected with higher accuracy than before.
  • TAMRA-encapsulated silica nanoparticles TAMRA-encapsulated silica nanoparticles encapsulating TAMRA (registered trademark) (5-carboxytetramethylrhodamine) (hereinafter simply referred to as “TAMRA”), which is a fluorescent dye, by the methods of the following steps (1-1) to (1-4) (Phosphor-integrated nanoparticles) were prepared.
  • Step (1-1) 2 mg of TAMRA N-hydroxysuccinimide ester derivative (TAMRA-NHS ester) and 400 ⁇ L (1.796 mmol) of tetraethoxysilane were mixed.
  • Step (1-3) The mixture prepared in step (1-1) was added to the mixture prepared in step (1-2) while stirring at room temperature. Stirring was performed at room temperature for 12 hours from the start of addition.
  • the average particle size of the TAMRA-encapsulated silica nanoparticles was 100 nm, and the variation coefficient of the average particle size was 15%. there were.
  • Example 1 As shown below, after introducing a maleimide group into the TAMRA-encapsulated silica nanoparticles (phosphor-integrated nanoparticles) produced in Production Example 1 and introducing SH groups into the anti-HER2 antibody, the TAMRA-encapsulated silica nanoparticles and anti-antibodies Antibody-bound TAMRA-encapsulated silica nanoparticles (primary antibody-bound phosphor-integrated nanoparticles) were produced by binding to HER2 antibody.
  • TAMRA-encapsulated silica nanoparticles were prepared by the following steps (2-1) to (2-7).
  • 3-aminopropyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., LS-3150 or KBE-903; see the following formula (1)
  • Step (2-3) After adding ethanol to disperse the sediment, the above centrifugation was performed again. Washing with ethanol and pure water was performed once by the same procedure. When the FT-IR measurement of the amino group-modified TAMRA-encapsulated silica nanoparticles obtained was performed, spectral absorption derived from the amino group could be observed, confirming that the amino group was modified.
  • PBS phosphate buffer saline
  • EDTA ethylenediaminetetraacetic acid
  • Step (2-5) SM (PEG) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleimidepropionamid)-) with a final concentration of 10 mM with respect to the solution prepared in step (2-4) dodecaethyleneglycol] ester) and the mixture was allowed to react at room temperature for 1 hour.
  • SM (PEG) 12 manufactured by Thermo Scientific, succinimidyl-[(N-maleimidepropionamid)-
  • Step (2-6) The reaction solution was centrifuged at 10,000 g for 60 minutes, and the supernatant was removed.
  • Step (2-7) PBS containing 2 mM of EDTA was added to disperse the precipitate, and then the centrifugation was performed again. The washing
  • Step (3-1) 100 ⁇ g of anti-HER2 antibody (“Anti-HER2 rabbit monoclonal antibody (4B5)”, molecular weight 148,000 g / mol, manufactured by Ventana) was dissolved in 100 ⁇ L of PBS. To this antibody solution, 0.002 mL (0.2 ⁇ 10 ⁇ 5 mol) of 1M 2-mercaptoethanol was added and reacted at pH 8.5 at room temperature for 30 minutes to reduce the antibody.
  • Step (4-1) 0.01 ⁇ g of maleimide group-modified TAMRA-encapsulated silica nanoparticles obtained through step (2-7) and 10 ⁇ g of anti-HER2 antibody having SH groups obtained through step (3-2) Were mixed in 1 mL of PBS, and a reaction for binding both molecules was performed at room temperature for 1 hour.
  • Step (4-2) 4 ⁇ L of 10 mM 2-mercaptoethanol was added to the reaction solution after Step (4-1) to stop the binding reaction.
  • Step (4-3) The solution from step (4-2) was centrifuged at 10,000 g for 60 minutes, and the supernatant was removed. Thereafter, PBS containing 2 mM of EDTA was added to disperse the precipitate, and then the centrifugation was performed again. The washing
  • Immunostaining was performed as described below using a kit of an immunostaining reagent containing a dispersion (labeling reagent) of the anti-HER2 antibody-bound TAMRA-encapsulated silica nanoparticles.
  • HER2 positive control slides PS-09001, HER2 3+, 2+, 1+, 0
  • Pathology Laboratories were used.
  • HER2 staining concentration of each tissue section described above was observed by DAB staining, and HER2 high expression (HER2 3+), HER2 expression (HER2 2+), HER2 low expression (HER2 +), HER2 negative (HER2) It was confirmed that the tissue array slide of 141119-1 lot was immunostained.
  • the “HER2 3+”, “HER2 2+”, “HER2 +”, and “HER2 ⁇ ” correspond to the scores “3+”, “1+”, and “0” of the IHC method determination criteria in Table 1 above, respectively.
  • Step (2C) The tissue section of the tissue array slide that had undergone the step (2B) was immersed in PBS for 30 minutes.
  • Step (4A) Tissue sections of the tissue array slide that had undergone step (3A) were each immersed in PBS for 30 minutes.
  • HE staining immunostained tissue sections were stained with Mayer's hematoxylin solution for 5 minutes to perform hematoxylin staining. The sections were then washed with running water at 45 ° C. for 3 minutes.
  • eosin staining was performed by staining with 1% eosin solution for 5 minutes. Then, the operation which was immersed in pure ethanol for 5 minutes was performed 4 times, and washing
  • the excitation light was set to 545 to 565 nm by passing through an optical filter.
  • the range of the fluorescence wavelength (nm) to be observed was set to 570 to 590 nm by passing through an optical filter.
  • the excitation wavelength condition at the time of microscopic observation and image acquisition was such that the irradiation energy in the vicinity of the center of the field of view was 900 W / cm @ 2 for excitation at 550 nm.
  • the exposure time at the time of image acquisition was arbitrarily set (for example, set to 4000 ⁇ sec) so as not to saturate the luminance of the image.
  • a microscope image taken with a fluorescence microscope or the like a portion where the luminance exceeds a predetermined threshold is measured as a bright spot, and the number of phosphor-integrated nanoparticles per cell and the intensity of the fluorescence signal are measured. Calculated.
  • the number of bright spots specific to HER2 was 3800 (see Table 2).
  • Example 1 is the same as Example 1 except that “3-mercapto-1,2-propanediol” (product number 139-16452, manufacturer Wako Pure Chemical Industries, Ltd.) was used in place of 1M 2-mercaptoethanol used in Example 1. Similarly, production of antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed. As a result, the relative value of “antibody / SA” was 3.5, and no aggregation or sedimentation of particles was observed. Further, the number of bright spots specific to HER2 was 5600 (see Table 2).
  • Example 3 Example 1 except that “glutathione ( ⁇ -L-glutamyl-L-cysteinylglycine)” (product number G0074, manufacturer, Tokyo Kasei) was used in place of 1M 2-mercaptoethanol used in Example 1.
  • glutathione ⁇ -L-glutamyl-L-cysteinylglycine
  • product number G0074 manufacturer, Tokyo Kasei
  • production of antibody-bound TAMRA-encapsulated silica nanoparticles, an aggregation confirmation test, immunostaining, and the like were performed.
  • the relative value of “antibody / SA” was 4.2, and no aggregation or sedimentation of particles was observed.
  • the number of bright spots specific to HER2 was 5400 (see Table 2).
  • Example 4 Instead of 1M 2-mercaptoethanol used in Example 1, “Tris (2-carboxyethyl) phosphine hydrochloride” (product number 322-91081 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, Production of antibody-bound TAMRA-encapsulated silica nanoparticles, an aggregation confirmation test, immunostaining, and the like were performed in the same manner as in Example 1 except that Maker Wako Pure Chemicals) was used. As a result, the relative value of “antibody / SA” was 3.8, and no aggregation or sedimentation of particles was observed. Further, the number of bright spots specific to HER2 was 5500 (see Table 2).
  • Example 5 Except for using “cysteine” (product number 013-05133 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, manufacturer Wako Pure Chemical Industries, Ltd.) instead of 1M mercaptoethanol used in Example 1.
  • cysteine product number 013-05133 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, manufacturer Wako Pure Chemical Industries, Ltd.
  • 1M mercaptoethanol 1M mercaptoethanol used in Example 1.
  • production of antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed.
  • the relative value of “antibody / SA” was 3.5, and no aggregation or sedimentation of particles was observed.
  • the number of bright spots specific to HER2 was 4800 (see Table 2).
  • Example 6 Except for using “2-mercaptoethylamine” (product number 20408 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, manufacturer Thermo SCIENTIFIC) instead of 1M mercaptoethanol used in Example 1.
  • 2-mercaptoethylamine product number 20408 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, manufacturer Thermo SCIENTIFIC
  • production of antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed.
  • the relative value of “antibody / SA” was 4.8, and no aggregation or sedimentation of particles was observed.
  • the number of bright spots specific to HER2 was 6000 (see Table 2).
  • Example 1 (Immunostaining by biotin-avidin method)
  • SA-bound TAMRA-encapsulated silica nanoparticles bound with streptavidin (SA) and anti-HER2 antibody bound to biotin (primary antibody) as follows
  • the obtained biotin-conjugated anti-HER2 antibody was bound to the antigen (HER2) on the tissue section, and then the TAMRA-encapsulated silica nanoparticles were bound to the anti-HER2 antibody via a streptavidin-biotin bond.
  • an aggregation confirmation test and immunostaining were performed in the same manner as in Example 1.
  • particle aggregation and sedimentation occurred, and the number of bright spots was 6200 (see Table 2).
  • the value of “antibody / SA” is 1.0 because the comparative example 1 is used as a reference.
  • Step (1'-1) 0.1 mg of TAMRA-encapsulated silica nanoparticles produced in Production Example 1 were dispersed in 1.5 mL of ethanol, and 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-3150 or KBE). -903) The surface of the particles was aminated by adding 2 ⁇ L and reacting for 8 hours.
  • Step (1'-2) Amination-treated TAMRA-encapsulated silica nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of ethylenediaminetetraacetic acid (EDTA).
  • EDTA ethylenediaminetetraacetic acid
  • SM (PEG) 12 manufactured by Thermo Scientific, succinimidyl-[(N-maleimidopropionamide) -dodecaethylene glycol] ester was mixed to a final concentration of 10 mM and reacted for 1 hour.
  • Step (1'-3) The mixture is centrifuged at 10,000 G for 20 minutes, the supernatant is removed, PBS containing 2 mM of EDTA is added, the precipitate is dispersed, and then the centrifugation is performed. I went again. By performing washing by the same procedure three times, TAMRA-encapsulated silica nanoparticles having a maleimide group at the end were obtained.
  • Step (1'-5) A dispersion containing 0.67 nM of TAMRA-encapsulated silica nanoparticles modified with the maleimide group was prepared using PBS containing 2 mM of EDTA, and 40 ⁇ L of the dispersion and SH group were introduced. The total amount of the above streptavidin (corresponding to 0.04 mg) (740 ⁇ L) was mixed and reacted at room temperature for 1 hour.
  • Step (1′-6) 4 ⁇ L of 10 mM mercaptoethanol was added to the reaction solution to stop the reaction. After concentrating the obtained solution with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin (SA) -bound TAMRA-encapsulated silica nanoparticles.
  • SA streptavidin
  • the amount (g) of streptavidin was quantified by a BCA method with respect to 0.01 mL of a dispersion of SA-bonded TAMRA-encapsulated silica nanoparticles.
  • Step A After the activation treatment step of Example 1, the tissue array slide was washed with PBS, 10% goat serum (manufactured by Nichirei) was added, and the mixture was allowed to stand at room temperature for 1 hour. After washing the tissue array slide with PBS, the biotinylated anti-HER2 antibody solution (concentration 0.05 nM) was dropped onto the entire tissue section of the tissue array slide and allowed to stand at room temperature for 30 minutes. Thereafter, the tissue array slide was washed with PBS, and then a dispersion of SA-bound TAMRA-encapsulated silica nanoparticles (particle concentration 0.05 nM) was dropped onto the entire tissue section and reacted at room temperature for 2 hours.
  • Example 2 Antibody-bound TAMRA-encapsulated silica nanoparticles as in Example 1 except that “Traut's Reagent” (product number I6256-100MG, manufacturer Sigma-Aldrich) was used instead of 1M 2-mercaptoethanol used in Example 1. Production, aggregation confirmation test and immunostaining were conducted. As a result, the relative value of “antibody / SA” was 0.8, and particle aggregation and sedimentation were observed. The number of bright spots specific to HER2 was 500 (see Table 2).
  • Example 3 Antibody-binding TAMRA inclusion in the same manner as in Example 1 except that “Biotin Labeling Kit-SH” (Product No. LK10, manufacturer Dojindo Chemical Co., Ltd.) was used instead of 1M 2-mercaptoethanol used in Example 1. Production of silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed. As a result, the relative value of “antibody / SA” was 1.2, and particle aggregation and sedimentation were observed. The number of bright spots specific to HER2 was 1600 (see Table 2).
  • Example 1 except that 1M “(+/ ⁇ )-dithiothreitol” (product number 041-08971, manufacturer Wako Pure Chemical Industries, Ltd.) was used instead of 1M 2-mercaptoethanol used in Example 1.
  • 1M “(+/ ⁇ )-dithiothreitol” product number 041-08971, manufacturer Wako Pure Chemical Industries, Ltd.
  • production of antibody-bound TAMRA-encapsulated silica nanoparticles, an aggregation confirmation test, immunostaining, and the like were performed.
  • the relative value of “antibody / SA” was 1.8, and particle aggregation and sedimentation were observed.
  • the number of bright spots specific to HER2 was 2500 (see Table 2).
  • results of HER2 staining using fluorescent dye-containing resin particles (primary antibody binding type) (Results and discussion)
  • the primary antibody-binding immunostaining was performed using the anti-HER2 antibody-bound TAMRA-encapsulated nanoparticles produced according to the production method of the present invention
  • the number of bright spots specific to HER2 measured was 3800 to 6000 (implementation)
  • the anti-HER2 antibody-bound TAMRA-encapsulated nanoparticles produced according to the conventional production method were used (Comparative Examples 2 to 4)
  • the number of bright spots was 500 to 2500
  • SA-bound TAMRA-encapsulated nanoparticles were obtained.
  • Comparative Example 1 When it was used (Comparative Example 1), the number of bright spots close to 6200 was measured (see Table 2).
  • SA streptavidin
  • the SA may bind to endogenous biotin. It seems that non-specific bright spots are included. Therefore, considering that, the anti-HER2 antibody-bound TAMRA-encapsulating nanoparticles of Examples 1 to 6 have a sufficiently specific number of bright spots, and have sufficient staining ability for immunostaining. I can say that.
  • phosphor nanoparticles are indirectly bound to an antigen using a biotin-avidin bond (that is, an SA-binding phosphor).
  • a biotin-avidin bond that is, an SA-binding phosphor.
  • the antigen-antibody binding is used to bind the phosphor nanoparticles directly or indirectly to the antigen (ie primary antibody-bound phosphor nanoparticles or secondary antibody binding). Immunostaining (using phosphor nanoparticles) is required.
  • Examples 1-6 which are primary antibody-binding immunostaining methods based on the present invention
  • Examples 7-12 which are secondary antibody-binding immunostaining methods based on the present invention.
  • Table 3 the results of Comparative Examples 5 to 7 described later, which is a secondary antibody-binding immunostaining method based on the prior art.
  • the secondary antibody-binding immunostaining method tends to have better staining than the primary antibody-binding immunostaining method. It can be seen that immunostaining with better staining than the conventional secondary antibody binding type can be performed.
  • Example 7 In Example 1, instead of the anti-HER2 antibody (“anti-HER2 rabbit monoclonal antibody (4B5)” manufactured by Ventana), an anti-rabbit IgG antibody (biotin-labeled anti-rabbit manufactured by Nichirei Co., Ltd.) was used as a secondary antibody capable of binding to the antibody. IgG antibody) was used to produce anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles (secondary antibody-bound phosphor-integrated nanoparticles). Furthermore, in place of the immunostaining reaction step of Example 1, the following immunostaining reaction step was performed. Otherwise, immunostaining, agglutination confirmation test and the like were performed in the same manner as in Example 1. As a result, the relative value of “antibody / SA” was 2.1, and no aggregation or sedimentation of particles was observed. The number of bright spots specific to HER2 was 4000 (see Table 3).
  • Example 8 Example 7 and Example 7 were used except that “3-mercapto-1,2-propanediol” (product number 139-16452, manufacturer Wako Pure Chemical Industries, Ltd.) was used instead of 1M 2-mercaptoethanol used in Example 7. Similarly, production of anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed. As a result, the relative value of “antibody / SA” was 3.8, and no aggregation or sedimentation of particles was observed. Further, the number of bright spots specific to HER2 was 5800 (see Table 3).
  • Example 9 Example 1 except that “glutathione ( ⁇ -L-glutamyl-L-cysteinylglycine)” (product number G0074, manufacturer, Tokyo Kasei) was used instead of 1M 2-mercaptoethanol used in Example 7.
  • glutathione ⁇ -L-glutamyl-L-cysteinylglycine
  • 1M 2-mercaptoethanol used in Example 7.
  • production of anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles an aggregation confirmation test, immunostaining, and the like were performed.
  • the relative value of “antibody / SA” was 4.6, and no aggregation or sedimentation of particles was observed.
  • the number of bright spots specific to HER2 was 5900 (see Table 3).
  • Example 10 Instead of 1M 2-mercaptoethanol used in Example 7, “Tris (2-carboxyethyl) phosphine hydrochloride” (product number 322-91081 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, The production of anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles, an aggregation confirmation test, immunostaining, and the like were performed in the same manner as in Example 7 except that the manufacturer Wako Pure Chemical Industries) was used. As a result, the relative value of “antibody / SA” was 4.0, and no aggregation or sedimentation of particles was observed. Further, the number of bright spots specific to HER2 was 5600 (see Table 3).
  • Example 11 instead of 1M 2-mercaptoethanol used in Example 7, “cysteine” (product number 013-05133 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, manufacturer Wako Pure Chemical Industries) was used. Except for the above, production of anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed in the same manner as in Example 7. As a result, the relative value of “antibody / SA” was 3.4, and no aggregation or sedimentation of particles was observed. The number of bright spots specific to HER2 was 5000 (see Table 3).
  • Example 12 In place of 1M 2-mercaptoethanol used in Example 7, “2-mercaptoethylamine” (product number 20408 HTMLCONTROL Forms.HTML: Hidden.1 HTMLCONTROL Forms.HTML: Hidden.1, manufacturer Thermo SCIENTIFIC) was used. Except that, the production of anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were carried out in the same manner as in Example 7. As a result, the relative value of “antibody / SA” was 4.9, and no aggregation or sedimentation of particles was observed. The number of bright spots specific to HER2 was 6200 (see Table 3).
  • Example 5 A secondary antibody was bound in the same manner as in Example 7 except that “Traut's Reagent” (product number I6256-100MG, manufacturer Sigma-Aldrich) was used instead of 1M 2-mercaptoethanol used in Example 7. Production of antibody-bound TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed. As a result, the relative value of “antibody / SA” was 1.0, and particle aggregation and sedimentation were observed. The number of bright spots specific to HER2 was 600 (see Table 3).
  • Example 6 Anti-rabbit IgG antibody binding as in Example 7 except that “Biotin Labeling Kit-SH” (Product No. LK10, manufacturer Dojindo Chemical Co., Ltd.) was used instead of 1M 2-mercaptoethanol used in Example 7. Production of TAMRA-encapsulated silica nanoparticles, aggregation confirmation test, immunostaining, and the like were performed. As a result, the relative value of “antibody / SA” was 1.5, and particle aggregation and sedimentation were observed. The number of bright spots specific to HER2 was 1400 (see Table 3).
  • Example 7 Example 7 except that 1M “(+/ ⁇ )-dithiothreitol” (Product No. 041-08971, manufacturer Wako Pure Chemical Industries, Ltd.) was used instead of 1M 2-mercaptoethanol used in Example 7.
  • 1M 2-mercaptoethanol used in Example 7.
  • production of anti-rabbit IgG antibody-bound TAMRA-encapsulated silica nanoparticles, an aggregation confirmation test, immunostaining, and the like were performed (see Table 3).
  • the relative value of “antibody / SA” was 1.7, and particle aggregation and sedimentation were observed.
  • the number of bright spots specific to HER2 was 2300 (see Table 3).
  • results of HER2 staining using fluorescent dye-containing resin particles (secondary antibody binding type) (Results and discussion)
  • secondary antibody-binding immunostaining using a primary antibody (anti-HER2 rabbit antibody) and a secondary antibody (anti-rabbit IgG antibody) -conjugated TAMRA-encapsulated nanoparticle produced according to the production method of the present invention measurement was performed.
  • the number of bright spots specific to HER2 was 4000 to 6000 (Examples 7 to 12), and the anti-HER2 antibody-bound TAMRA-encapsulating nanoparticles produced according to the conventional production method were used (Comparative Examples 5 to 7).
  • the number of bright spots was significantly higher than the number of bright spots of 600 to 2300 and was close to the number of bright spots of 6200 when using SA-bound TAMRA-encapsulated nanoparticles (Comparative Example 1) (see Table 3).
  • the results of Examples 7-12 of the secondary antibody binding type were slightly higher than the results of Examples 1-6 of the primary antibody binding type (3800-6100 bright spots, see Table 2). . From this result, it is understood that immunostaining can be performed without any problems even with secondary antibody-binding immunostaining using TAMRA-encapsulated nanoparticles bound with a secondary antibody, and it is also inferred that it can be applied to multiple immunostaining. Can do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

[課題]本発明は、分子凝集による免疫染色の染色効率低下を抑制することができる抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色試薬キットの提供を課題とする。 [解決手段]抗体と蛍光体集積ナノ粒子とが、当該抗体のジスルフィド結合(-S-S-)を還元することによって生成したSH基と、当該蛍光体集積ナノ粒子の表面にある結合基との反応によって結合している、抗体結合蛍光体集積ナノ粒子であって、2-イミノチオランを使用してジスルフィド結合をSH基に還元したストレプトアビジンが、前記蛍光体集積ナノ粒子の表面の単位面積内にある所定数の結合基に対して結合しうる数をnモルと表した場合、前記抗体が前記所定数の結合基に対して結合している数が2nモル以上である、抗体結合蛍光体集積ナノ粒子とする。

Description

抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット
 本発明は、抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キットに関する。
 従来、医学的診断の1つとして病理診断が行なわれている。病理医は人体から採取した組織片に対して行った生体検査の結果を示すデータから病気を診断し、治療や手術の要不要を臨床医に伝える。患者の状態と病理診断によって、内科系医師は薬物治療方針、外科系の医師は手術を行うか否かを決定する。
 前記診断のためのデータを提供するために、臓器摘出や針生検によって得た組織検体を厚さ数ミクロン程度に薄切して組織切片(組織標本)を作成し、組織切片に対して所定の染色処理を行った後、様々な所見を得るために光学顕微鏡や蛍光顕微鏡を用いて観察することが広く行われている。多くの場合、組織切片は、採取した組織を固定するため脱水し、パラフィンブロック化した後、数μmの厚さに薄切りし、パラフィンを取り除いて作製される。ここで、組織切片は光を殆ど吸収および散乱せず無色透明に近いため、上記観察に先立って、組織切片の細胞形態を観察するための形態観察染色(ヘマトキシリンおよびエオジンの2つの色素を用いるヘマトキシリン・エオジン染色(HE染色))が標準的に行われる。他の形態観察染色としては、例えば細胞診用いられるパパニコロウ染色(Pap染色)等が挙げられる。
 さらに、被験者が対象疾患に罹患しているか否かを判断するためのデータを提供するために、被験者の組織切片等について免疫染色が行われている。この免疫染色では、例えば、前記罹患の有無によって発現量が増減する生体内の分子(抗原)に蛍光標識した抗体を特異的に結合させ、蛍光シグナルの量から疾患に関連する抗原の量を定量することが行われる。これにより、被験者が対象の疾患に罹患しているか否かを診断するためのデータが提供される。ここで、蛍光色素を粒子に内包または粒子表面に固定して集積したナノ粒子(蛍光体集積ナノ粒子)を抗体に直接的または間接的に結合させて抗原を蛍光標識する技術が知られている。
 たとえば、特許文献1では、内包する蛍光色素を異ならせることで励起波長および蛍光波長が異なる蛍光物質内包シリカナノ粒子を2種以上調製し、1Mジチオスレイトール(DTT)を用いて1次抗体としての2種以上の抗体(例;抗ER抗体、抗ER2抗体)をそれぞれ還元(SH基導入)した後、還元後の各抗体(抗ER抗体、抗ER2抗体)をマレイミド修飾した各蛍光シリカナノ粒子の表面に結合させ、同一切片上で異なる検出タンパク質を同時に染色することが可能としている例が開示されている。
 また、特許文献2には、蛍光体集積ナノ粒子が共有結合した1次抗体を組織切片上の抗原に結合させることで前記抗原を蛍光染色する方法(1次抗体法)、組織切片上の抗原に1次抗体を結合させた状態で、蛍光体集積ナノ粒子と共有結合を介して連結された2次抗体を前記1次抗体に結合させて抗原を蛍光染色する方法(2次抗体法)、ビオチン(またはアビジン)を付加した蛍光体集積ナノ粒子と、アビジン(またはビオチン)を付加した2次抗体とをそれぞれ調製し、組織切片上の抗原に対して1次抗体を結合させた後、該1次抗体に対して前記2次抗体を結合させ、さらに、該2次抗体に対してストレプトアビジン-ビオチン結合を介して蛍光体集積ナノ粒子を動的に結合させて前記抗原を蛍光標識する方法(ビオチン-アビジン法)が記載されている。
国際公開2012/029342号 特開2014-174018号公報
 ビオチン-アビジン反応による結合は抗原-抗体反応による結合よりも結合力が強いため、ビオチン(またはアビジン)結合蛍光体集積ナノ粒子を利用する特許文献2に記載されたような免疫染色法は、抗体結合蛍光体ナノ粒子を利用する特許文献1に記載されたような免疫染色法よりも染色性に優れている。しかしながら、特許文献2の免疫染色法は、抗原が2種類以上存在し、各抗原を異なる波長の蛍光色素で染め分ける多重免疫染色を行う場合、その全ての種類の抗原の免疫染色において用いることはできない。すなわち、抗原の種類に応じて1次抗体と2次抗体とがそれぞれの抗原へ適正に固定されたとしても、2次抗体と蛍光体集積ナノ粒子との間の連結部分に一律にビオチン-アビジン結合を用いると、抗原の種類に対応して互いに異なる蛍光波長の蛍光体集積ナノ粒子を固定するということができず、2種以上の抗原を染め分けることはできない。
 そのため、多重免疫染色においては、結合性に優れるビオチン-アビジン結合は、多くとも1種類の抗原の免疫染色だけにしか利用することはできず、他の抗原の免疫染色には、特許文献1に記載されているように、抗体を直接結合させた蛍光体集積ナノ粒子を使用する必要がある。免疫染色法であれば、該抗体が抗原の種類に応じて特異的に結合して抗原の種類別にそれぞれ波長の異なる蛍光体集積ナノ粒子を固定させることができる、各種抗原を染め分けることができる。
 しかしながら、特許文献1に記載されているような抗体を直接結合させた蛍光体集積ナノ粒子には、免疫染色の染色効率や蛍光シグナルの強度(つまり感度)に改善の余地があり、また保存中に凝集を生じるなどの問題があった。ここで「感度が低い」とは、同じ蛍光体集積ナノ粒子濃度、反応時間(つまり、同一条件)で反応させて免疫染色しても、輝点数が少なくなるということを意味している。
 本発明は、上記問題に鑑みてなされたものであり、免疫染色の染色効率を向上させ、分子凝集を抑制することができる抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キットの提供をすることを目的とする。
 本発明者らは、特許文献1の発明において蛍光シグナルが弱く凝集が起こる原因がジチオスレイトール(DTT)を用いて強力に還元していることにあることを見出した。特許文献1の発明のように、DTTを用いて1次抗体を強力に還元すると、1次抗体の分子中に多くのチオール基が生成してしまう。その結果、図3や図4に示すように、抗体のSH基と蛍光体集積ナノ粒子の表面にあるマレイミド基との結合が多:多となり、抗体分子中にSH基数が少数(例えば1つだけ)存在する場合に比べると、上記結合で消費されるフリーのマレイミド基の数が多くなって、蛍光体集積ナノ粒子に結合できる抗体数が非常に少なくなる。その上、貯蔵中に、図3に示すように、蛍光体集積ナノ粒子と抗体とが上記結合により巨大化して分子凝集および沈殿を引き起こしやすい。
 本発明者らは、抗体分子中のジスルフィド結合(-S-S-)部分を還元する際に、還元の程度を調節することにより抗体1分子中に導入するSH基の数を極力減らすように調節することで、上記凝集(図3参照)が抑えられることを見出して本発明に至った。
 すなわち、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した抗体結合蛍光体集積ナノ粒子は、抗体と蛍光体集積ナノ粒子とが、当該抗体のジスルフィド結合(-S-S-)を還元することによって生成したSH基と、当該蛍光体集積ナノ粒子の表面にある結合基との反応によって結合している、抗体結合蛍光体集積ナノ粒子であって、
 2-イミノチオランを使用してジスルフィド結合をSH基に還元したストレプトアビジンが、前記蛍光体集積ナノ粒子の表面の単位面積内にある所定数の結合基に対して結合しうる数をnモルと表した場合、
 前記抗体が前記所定数の結合基に対して結合している数が2nモル以上である、抗体結合蛍光体集積ナノ粒子である。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した抗体結合蛍光体集積ナノ粒子を製造する方法は、
 SH基の数/抗体数が1以上~5以下となるように前記抗体のジスルフィド結合部分を還元剤により還元する工程、
 該還元後の抗体を、結合基を有する蛍光体集積ナノ粒子に結合させる工程を含む、抗体結合蛍光体集積ナノ粒子の製造方法である。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した免疫染色試薬キットは、組織切片上の抗原に結合する1次抗体を含む抗体試薬と、前記蛍光体集積ナノ粒子を含んだ標識試薬と、を備えた免疫染色試薬キットである。
 上述した目的のうち少なくとも一つを実現するための、本発明の一側面を反映した免疫染色法は、上記抗体結合蛍光体集積ナノ粒子、または上記の免疫染色試薬キットを用い、前記抗体結合蛍光体集積ナノ粒子を抗原に固定して蛍光染色する免疫染色反応工程を含む、免疫染色法である。
 本発明によれば、免疫染色の効率が向上し、貯蔵中の分子凝集も抑制することができる抗体結合蛍光体集積ナノ粒子、蛍光体集積ナノ粒子の製造方法および免疫染色試薬キットが提供される。また、本発明によれば、抗体が結合した蛍光体集積ナノ粒子の抗体部分を、抗原または該抗原に結合した1次抗体に特異的に結合させて抗原を蛍光染色するものであり、前記抗体部分と結合可能な内因性の他の分子は存在しないことから、免疫染色で得られる輝点として非特異的な輝点の出現を抑えることができるという副次的な効果が得られる(アビジンが結合した蛍光体集積ナノ粒子を用いた場合に生じる、抗原を標識するためのビオチンではなく内因性のビオチンに多少は結合してしまうという問題を回避することが可能である)。
図1は、本発明に係る抗体結合蛍光体集積ナノ粒子の一例を示した図である。この抗体結合蛍光体集積ナノ粒子は、例えば、何ら処理していない抗体分子の中に存在するジスルフィド結合(-S-S-)に対して還元処理を施す際に、SH基の数/抗体数が1~5(図1の例では1)となるように記抗体のジスルフィド結合部分を還元剤により還元し、該還元後の抗体を、結合基(例;マレイミド基)を有する蛍光体集積ナノ粒子に結合させることで得られるものである。 本発明に係る免疫染色法の主な2つの態様を示したものである。図2の左側は、1次抗体法を示している。1次抗体法では、組織切片上の抗原に対して抗体結合蛍光体集積ナノ粒子の1次抗体部分が直接結合して抗原が蛍光標識される。図2の右側は、2次抗体法を示している。2次抗体法では、組織切片上の抗原に対して1次抗体が結合した後、抗体結合蛍光体集積ナノ粒子の2次抗体部分が1次抗体に結合して抗原が蛍光標識される。 図3は、従来技術に係る抗体結合蛍光体集積ナノ粒子の分散液中の状態を示した図である。抗体分子のジスルフィド結合(-S-S-)の多くが還元されてSH基に変換されており、1つの抗体分子のSH基が複数の蛍光体集積ナノ粒子の結合基と結合をしてしまうため、抗体分子が架橋剤のように機能して蛍光体集積ナノ粒子が連結され凝集沈降してしまい、凝集した抗体と蛍光体集積ナノ粒子のいずれもが免疫染色に寄与できなくなる。 図4は、図3の一部を表したものであり、結合基がマレイミド基の場合を示している。同一の蛍光体集積ナノ粒子の表面に存在する複数の結合基(例;マレイミド基等)が一つの抗体分子中に存在する複数のSH基に結合すると、本来はSH基とマレイミド基とが1:1でも結合できるところ、2:2で結合している分、結合基のリソースが奪われていることを示している。 図5は、従来のビオチンーアビジン法により2以上の抗原について多重免疫染色を行った場合に生じる問題を説明した図である。図5に示すように、ビオチン-ストレプトアビジン結合を介して2次抗体a、bと蛍光波長の異なる蛍光体集積ナノ粒子A、Bとを結合させようとすると、蛍光体集積ナノ粒子A(またはB)が抗原aにもbにも結合しうるので、抗原の種類別に染め分けることはできない。
 以下、本発明に係る抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キットについて、図1~図5を参照しながら説明する。
 本発明に係る抗体結合蛍光集積ナノ粒子は、抗体と蛍光体集積ナノ粒子とが、当該抗体のジスルフィド結合(-S-S-)を還元することによって生成したSH基と、当該蛍光体集積ナノ粒子の表面にある結合基(例;マレイミド基)との反応によって結合している、抗体結合蛍光体集積ナノ粒子であって、2-イミノチオランを使用してジスルフィド結合をSH基に還元したストレプトアビジンが、前記蛍光体集積ナノ粒子の表面の単位面積内にある所定数の結合基に対して結合しうる数をnモルと表した場合、前記抗体が前記所定数の結合基に対して結合している数が2nモル以上であるものである。
 《蛍光体集積ナノ粒子》
 蛍光体集積ナノ粒子は蛍光体を集積したナノメートルオーダーの粒子である。このような蛍光体集積ナノ粒子を用いることで、蛍光体自体と比較して、1粒子当たりの発する蛍光の量、すなわち所定の生体分子を標記する輝点の輝度を高めることができる。
 [蛍光体]
 本明細書において「蛍光体」とは、外部からのX線、紫外線または可視光線の照射を受けて励起し、励起状態から基底状態に到る過程において光を発光する物質一般を指す。したがって、本発明にいう「蛍光体」は、励起状態から基底状態に戻るときの遷移態様の如何を問うものでなく、励起一重項からの失活に伴う発光である狭義の蛍光を発する物質であってもよいし、三重項からの失活に伴う発光である燐光を発する物質であってもよい。
 また、本発明にいう「蛍光体」は、励起光を遮断してからの発光寿命によって限定されるものでもない。したがって、硫化亜鉛やアルミン酸ストロンチウム等の蓄光物質として知られている物質であってもよい。このような蛍光体は、有機蛍光体(蛍光色素)および無機蛍光体に大別することができる。
 [有機蛍光体]
 蛍光体としての使用可能な有機蛍光体の例としては、フルオレセイン系色素分子、ローダミン系色素分子、Alexa Fluor(登録商標、インビトロジェン社製)系色素分子、BODIPY(登録商標、インビトロジェン社製)系色素分子、カスケード(登録商標、インビトロジェン社)系色素分子、クマリン系色素分子、NBD(登録商標)系色素分子、ピレン系色素分子、Texas Red(登録商標)系色素分子、シアニン系色素分子、ペリレン系色素分子、オキサジン系色素分子等、有機蛍光色素として知られている物質を挙げることができる。
 具体的には、5-カルボキシ-フルオレセイン、6-カルボキシ-フルオレセイン、5,6-ジカルボキシ-フルオレセイン、6-カルボキシ-2’,4,4’,5’,7,7’-ヘキサクロロフルオレセイン、6-カルボキシ-2’,4,7,7’-テトラクロロフルオレセイン、6-カルボキシ-4’,5’-ジクロロ-2’,7’-ジメトキシフルオレセイン、ナフトフルオレセイン、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン 6G、テトラメチルローダミン、X-ローダミン、及びAlexa Fluor 350、Alexa Fluor 405、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 500、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、メトキシクマリン、エオジン、NBD、ピレン、Cy5、Cy5.5、Cy7等を挙げることができる。単独でも複数種を混合したものを用いてもよい。
 [無機蛍光体]
 蛍光体として使用可能な無機蛍光体の例としては、II-VI族化合物、III-V族化合物、又はIV族元素を成分として含有する量子ドット(それぞれ、「II-VI族量子ドット」、「III-V族量子ドット」、「IV族量子ドット」ともいう。)のいずれかを挙げることができる。単独でも複数種を混合したものを用いてもよい。量子ドットは、市販されているものでもよい。具体的には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、Si、Geが挙げられるが、これらに限定されない。
 上記量子ドットをコアとし、その上にシェルを設けた量子ドットを用いることもできる。以下、シェルを有する量子ドットの表記法として、コアがCdSe、シェルがZnSの場合、CdSe/ZnSと表記する。例えば、CdSe/ZnS、CdS/ZnS、InP/ZnS、InGaP/ZnS、Si/SiO2、Si/ZnS、Ge/GeO2、Ge/ZnS等を用いることができるが、これらに限定されない。
 量子ドットは必要に応じて、有機ポリマー等により表面処理が施されているものを用いてもよい。例えば、表面カルボキシ基を有するCdSe/ZnS(インビトロジェン社製)、表面アミノ基を有するCdSe/ZnS(インビトロジェン社製)等が挙げられる。
 《蛍光体集積ナノ粒子の製造方法》
 蛍光体集積ナノ粒子自体の製造方法は、特に制限されず、公知の方法により製造することができる。一般的には、樹脂またはシリカを母体として蛍光体をまとめ上げる(当該母体の内部または表面に蛍光体を固定化する)製造方法を用いることができる。
 [有機蛍光体の場合]
 有機蛍光体を用いた蛍光体集積ナノ粒子の製造方法として、蛍光体である蛍光色素を樹脂からなる母体の内部または表面に固定した、直径がナノメートルオーダーの樹脂粒子を形成させる方法を挙げることができる。この蛍光体集積ナノ粒子の調製方法は特に限定されるものではないが、例えば、蛍光体集積ナノ粒子の母体をなす樹脂(熱可塑性樹脂または熱硬化性樹脂)を合成するための(コ)モノマーを(共)重合させながら、蛍光体を添加し、当該(共)重合体の内部または表面に当該蛍光体を取り込ませる方法を用いることができる。
 上記の熱可塑性樹脂としては、例えば、ポリスチレン、ポリアクリロニトリル、ポリフラン、または、これに類する樹脂を好適に用いることができる。上記の熱硬化性樹脂としては、例えば、ポリキシレン、ポリ乳酸、グリシジルメタクリレート、ポリメラミン、ポリウレア、ポリベンゾグアナミン、ポリアミド、フェノール樹脂、多糖類またはこれに類する樹脂を好適に用いることができる。熱硬化性樹脂、特にメラミン樹脂は、キシレン等の有機溶媒を用いる脱水、透徹、封入などの処理によっても、色素樹脂に内包させた色素の溶出を抑制することができる点で好ましい。
 例えば、有機の蛍光色素(蛍光体)を内包したポリスチレンナノ粒子は、米国特許4326008(1982)に記載されている重合性官能基をもつ有機色素を用いた共重合法や、米国特許5326692(1992)に記載されているポリスチレンナノ粒子への蛍光有機色素の含浸法を用いて作製することができ、蛍光体集積ナノ粒子として用いることができる。
 一方で、有機蛍光体をシリカからなる母体の内部または表面に固定化したシリカナノ粒子を製造することもできる。そのような製造方法としては、ラングミュア 8巻 2921ページ(1992)に記載されているFITC内包シリカナノ粒子の合成方法を参考にすることができる。FITCの代わりに所望の蛍光色素を用いることで種々の蛍光色素を内包したシリカナノ粒子を合成することができ、蛍光体集積ナノ粒子として用いることができる。
 [無機蛍光体の場合]
 無機蛍光体を用いた蛍光体集積ナノ粒子の製造方法として、蛍光体である量子ドットをシリカからなる母体の内部または表面に固定した、シリカナノ粒子を形成させる方法が挙げられる。この製造方法は、ニュー・ジャーナル・オブ・ケミストリー 33巻 561ページ(2009)に記載されているCdTe内包シリカナノ粒子の合成を参考にすることができる。
 また、上記とは異なる蛍光体集積ナノ粒子の製造方法として、シリカビーズをシランカップリング剤で処理して末端をアミノ化し、カルボキシ基末端を有する蛍光体としての半導体微粒子をシリカビーズの表面にアミド結合により結合することで集積し、蛍光体集積ナノ粒子とする方法も挙げられる。
 さらに別の蛍光体集積ナノ粒子の製造方法として、逆ミセル法と、ガラスの前駆体として分子の末端に半導体ナノ粒子への吸着性が良い有機官能基を有する有機アルコキシシランとアルコキシドの混合物を用いたゾル-ゲル法とを組み合わせることにより、半導体ナノ粒子を内部に分散固定したガラス状の粒子を形成し、蛍光体集積ナノ粒子とする例が挙げられる。
 さらに別の蛍光体集積ナノ粒子の製造方法として、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)の存在化で、アミノ基末端の半導体ナノ粒子と、カルボキシ基末端の半導体ナノ粒子を混合し、半導体ナノ粒子間をアミド結合で介して結合することで半導体ナノ粒子を集積し、蛍光体集積ナノ粒子を製造する例が挙げられる。
 さらに、無機蛍光体を樹脂からなる母体の内部または表面に固定化して蛍光体集積ナノ粒子を製造することもできる。たとえば、量子ドットを内包したポリマーナノ粒子は、ネイチャー・バイオテクノロジー19巻631ページ(2001)に記載されているポリスチレンナノ粒子への量子ドットの含浸法を用いて作製することができる。
 [蛍光体集積ナノ粒子の平均粒子径]
 蛍光体集積ナノ粒子の平均粒子径は、蛍光シグナルの強度の観点から、150nm以上~800nm以下が好ましく、150nm以上~500nm以下がより好ましい。
 蛍光体集積ナノ粒子の平均粒子径は、公知の測定方法により調べることができる。例えば、透過型電子顕微鏡(TEM)により蛍光体集積ナノ粒子の粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法、動的光散乱法により半導体ナノ粒子の粒子径分布を測定し、その数平均粒子径として求める方法等が挙げられる。この他にも、例えば、ガス吸着法、光散乱法、X線小角散乱法(SAXS)、あるいは走査型電子顕微鏡(SEM)で観察して平均粒子径を計測する方法により測定できる。TEMを用いる場合、粒子径分布が広い場合には、視野内に入った粒子が全粒子を代表しているか否かに注意を払う必要がある。吸着法は、N2吸着等によりBET表面積を評価するものである。
 [表面修飾]
 蛍光体集積ナノ粒子の表面は任意に親水性高分子で修飾されていてもよい。該親水性高分子としては、例えば、ポリエチレングリコール、フィコール、ポリビニルアルコール、スチレン-無水マレイン酸交互共重合体、ジビニルエーテル-無水マレイン酸交互共重合体、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリビニルメチルオキサゾリン、ポリエチルオキサゾリン、ポリヒドロキシプロピルオキサゾリン、ポリヒドロキシプロピルメタアクリルアミド、ポリメタアクリルアミド、ポリジメチルアクリルアミド、ポリヒドロキシプロピルメタアクリレート、ポリヒドロキシエチルアクリレート、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアスパルトアミド、合成ポリアミノ酸などが挙げられる。
 《抗体》
 本発明で用いられる抗体は、用途に応じて選択される、例えば疾病(悪性腫瘍等)に関連する抗原(例;HER2等)に対する抗体(1次抗体)、または該1次抗体と抗原抗体反応により結合する2次抗体~n次抗体を意味する(以下「所定の抗体」と称することもある。)。これら抗体のいずれかに対して、後述するように還元処理がなされる。ここで、「抗体」という用語は、任意の抗体断片または誘導体を含む意味で用いられ、例えば、Fab、Fab'2、CDR、ヒト化抗体、多機能抗体、単鎖抗体(ScFv)などを含む。
 《抗原》
 上記抗原としては、例えば、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)であるが、該タンパク質またはアミノ酸と、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子との複合体なども含まれる。具体的には、例えば上記病理診断の対象となる疾病に関連する抗原(腫瘍マーカー、シグナル伝達物質、ホルモンなど)であり、特に限定されない。抗原として、例えば、がんの増殖制御因子,転移制御因子,増殖制御因子受容体および転移制御因子受容体等のがんに関連する抗原の他に、TNF-α(Tumor Necrosis Factor α),IL-6(Interleukin-6)受容体などの炎症性サイトカイン、RSV F蛋白質等のウィルス関連分子なども「抗原」に含まれる。
 この他にも、例えば、がん関連遺伝子由来のタンパク質である、HER2、TOP2A、HER3、EGFR、P53、METが挙げられる。さらに、上記抗原となりうるものであって各種癌関連遺伝子由来の蛋白質として知られているものとして、以下のものが挙げられる。また、上記抗原となりうるものであってチロシンキナーゼ関連遺伝子由来の蛋白質としては、ALK、FLT3、AXL、FLT4(VEGFR3、DDR1、FMS(CSF1R)、DDR2、EGFR(ERBB1)、HER4(ERBB4)、EML4-ALK、IGF1R、EPHA1、INSR、EPHA2、IRR(INSRR)、EPHA3、KIT、EPHA4、LTK、EPHA5、MER(MERTK)、EPHA6、MET、EPHA7、MUSK、EPHA8、NPM1-ALK、EPHB1、PDGFRα(PDGFRA)、EPHB2、PDGFRβ(PDGFRB)EPHB3、RET、EPHB4、RON(MST1R)、FGFR1、ROS(ROS1)、FGFR2、TIE2(TEK)、FGFR3、TRKA(NTRK1)、FGFR4、TRKB(NTRK2)、FLT1(VEGFR1)、TRKC(NTRK3)が挙げられる。また、上記抗原となりうるものであって乳がん関連の遺伝子由来の蛋白質としては、ATM、BRCA1、BRCA2、BRCA3、CCND1、E-Cadherin、ERBB2、ETV6、FGFR1、HRAS、KRAS、NRAS、NTRK3、p53、PTENが挙げられる。さらに、上記抗原となりうるものであってカルチノイド腫瘍に関連する遺伝子由来の蛋白質としては、BCL2、BRD4、CCND1、CDKN1A、CDKN2A、CTNNB1、HES1、MAP2、MEN1、NF1、NOTCH1、NUT、RAF、SDHD、VEGFAが挙げられる。また、上記抗原となりうるものであって大腸がん関連遺伝子由来の蛋白質として、APC、MSH6、AXIN2、MYH、BMPR1A、p53、DCC、PMS2、KRAS2(or Ki-ras)、PTEN、MLH1、SMAD4、MSH2、STK11、MSH6が挙げられる。さらに、上記抗原となりうるものであって肺がん関連の遺伝子由来の蛋白質としては、ALK、PTEN、CCND1、RASSF1A、CDKN2A、RB1、EGFR、RET、EML4、ROS1、KRAS2、TP53、MYCが挙げられる。また、上記抗原となりうるものであって肝臓がん関連の遺伝子由来の蛋白質としては、Axin1、MALAT1、b-catenin、p16 INK4A、c-ERBB-2、p53、CTNNB1、RB1、Cyclin D1、SMAD2、EGFR、SMAD4、IGFR2、TCF1、KRASが挙げられる。上記抗原となりうるものであって腎臓がん関連遺伝子由来の蛋白質として、Alpha、PRCC、ASPSCR1、PSF、CLTC、TFE3、p54nrb/NONO、TFEBが挙げられる。上記抗原となりうるものであって甲状腺がん関連遺伝子由来の蛋白質としては、AKAP10、NTRK1、AKAP9、RET、BRAF、TFG、ELE1、TPM3、H4/D10S170、TPRが挙げられる。上記抗原となりうるものであって卵巣がん関連遺伝子由来の蛋白質として、AKT2、MDM2、BCL2、MYC、BRCA1、NCOA4、CDKN2A、p53、ERBB2、PIK3CA、GATA4、RB、HRAS、RET、KRAS、RNASET2が挙げられる。さらに、上記抗原となりうるものであって前立腺がん関連遺伝子由来の蛋白質として、AR、KLK3、BRCA2、MYC、CDKN1B、NKX3.1、EZH2、p53、GSTP1、PTENが挙げられる。また、上記抗原となりうるものであって骨腫瘍関連遺伝子由来の蛋白質としては、CDH11、COL12A1、CNBP、OMD、COL1A1、THRAP3、COL4A5、USP6が挙げられる。また、免疫系由来のタンパク質として、PD-L1、PD-1、B7.1が挙げられる。
 《蛍光体集積ナノ粒子の表面の結合基修飾》
 蛍光体集積ナノ粒子と抗体との結合は、還元後の抗体が有するSH基と蛍光体集積ナノ粒子表面にある官能基との結合反応により達成されるので、蛍光体集積ナノ粒子の表面には、SH基と結合可能な官能基(結合基)を有している必要がある。
 結合基としては、SH基と結合反応可能な、マレイミド基、アルデヒド基、ブロモアセトアミド基(ヨードアセトアミド基、ブロモアセトアミド基)等を挙げることができるが、SH基と結合反応が可能な官能基であればこれらに限定されない。このうちマレイミド基は、SH基との反応性がよく、また蛍光体集積ナノ粒子に導入するための試薬も入手、利用しやすいことから好ましい。
 蛍光体集積ナノ粒子の表面に結合基を導入する方法としては、特に限定されず、例えば、樹脂を母体とする蛍光体集積ナノ粒子を製造する際に、結合基を側鎖に有するモノマーを主鎖部分で重合することで蛍光体集積ナノ粒子に結合基を導入する方法、または、結合基を有するリンカーを蛍光体集積ナノ粒子の表面に結合させて導入する方法を例示することができる。
 後者のリンカーを用いる方法は、具体的には、上述した親水性高分子の一端部に結合基を有し、他端部に官能基(結合基と同一の基を含む)を有する二官能性のリンカー分子を用意し、該官能基と蛍光体集積ナノ粒子表面に導入した結合基以外の官能基とを結合させる方法である。この結合の組合せとしては、アミノ基-NHS基、アジ基-炭素間三重結合を有する基、等の組合せを挙げることができる。
 (蛍光体集積ナノ粒子に結合基を直接導入する方法)
 蛍光体集積ナノ粒子に結合基を直接導入する方法の別の例としては、例えば、ポリスチレンを母体とする蛍光体集積ナノ粒子を製造し、そのポリスチレン部分にマレイミド基を導入する場合、特開2007-23120に記載されているように、ポリスチレン鎖のフェニル基をクロロメチル化した状態で、N-ヒドロキシメチルマレイミドのOH基とクロロメチル基との間でCl交換エーテル化反応をさせてマレイミド基を導入する方法がある。
 蛍光体集積ナノ粒子の表面または該表面に付加された前述の親水性高分子がOH基を有する場合には、N-ヒドロキシメチルマレイミドのOH基と脱水縮合エーテル化反応によりマレイミド基を蛍光体集積ナノ粒子の表面に導入することができる。この反応には酸性あるいは塩基性の公知のエーテル化触媒を使用することができる。例えば、塩基性の触媒としては、アルカリ金属やアルカリ土類金属の水酸化物、酸化物、炭酸塩、重炭酸塩等を使用することができ、これらのうち1種又は2種類以上混合して使用することができる。酸性の触媒としては、硫酸、塩酸、硝酸、リン酸等の無機酸やp-トルエンスルホン酸、トリクロロ酢酸、酢酸等の有機酸が使用することができ、これらの化合物は水和物の形態でもよい。また、ハイドロタルサイト類の固体触媒も使用することができる。
 (導入された結合基の確認)
 SH基と結合可能な官能基(結合基)が蛍光体集積ナノ粒子の表面に導入されたか否かおよびその量は、例えばFT―IRにより結合に該当する波長ピークと面積を計測する方法、または、結合基を定量するキットや測定方法を用いて調べることができる。例えば、マレイミド基(結合基)を定量する場合、「AmpliteTM 蛍光マレイミド定量キット」(コスモバイオ社製)を使用して定量することができる。アルデヒド基(結合基)を定量する場合は、2,4-ジニトロフェニルヒドラジン(2,4-dinitrophenylhydrazine;DNPH)法で定量する方法を挙げることができる。この方法は、蛍光体集積ナノ粒子表面のアルデヒド基とDNPHとを反応させてDNPH誘導体を形成し、該DNPH誘導体を高速液体クロマトグラフィー(HPLC)に供してカラムに吸着および溶出させて、DNPH誘導体に該当する溶出液のフラクションの吸光度(Abs.360nm)の吸収量からアルデヒド基を分析・定量する方法である。ハロアセトアミド基(ヨードアセトアミド基、ブロモアセトアミド基)の場合には、実際にSH基と反応させて副生されるハロゲンを公知の方法で定量することで導入量を調べることができる。
 (蛍光体集積ナノ粒子表面の結合基の密度)
 蛍光体集積ナノ粒子の表面(1mm2)当たりに存在する結合基(マレイミド基等)のモル数は、抗体のSH基と反応できる所定数の結合基を有していれば特に制限されないが、2×10-14モル~5×10-13モルであることが好ましい。なお、蛍光体集積ナノ粒子の総表面積については、前述したように測定した平均粒子径(nm)を半径(r)として4πr2により算出し、上記定量した結合基の数(モル数)とから、結合基の数(モル数)/粒子表面積1mm2として算出することができる。
 《抗体結合蛍光体集積ナノ粒子の製造方法》
 本発明に係る抗体結合蛍光体集積ナノ粒子の製造方法は、蛍光体集積ナノ粒子の製造方法であって、SH基の数/抗体数が1以上~5以下となるように前記抗体のジスルフィド結合部分を還元剤により還元する還元工程、該還元後の抗体を、結合基を有する蛍光体集積ナノ粒子に結合させる結合工程とを含むことを特徴としている。なお、SH基の数/抗体数が1となる場合とは、例えば、抗体フラグメント等を使用している場合に、抗体フラグメント分子内に存在する1つのジスルフィド結合(-S-S-結合)が還元され、抗体フラグメントが2つに分かれて各分子が一つSH基を持つ抗体フラグメントになる場合等を意味する。
 [還元工程](ジスルフィド結合の還元)
 還元工程の還元は、pH6~8程度の中性付近に緩衝能を有するpH緩衝液(例;リン酸緩衝液(PBSを含む)等)中に25~100mMトラウツリージェント(2-イミノチオラン塩酸塩)を溶解させたときに得られる還元力よりも弱い還元力で行われる抗体の還元であって、還元後の抗体と2-イミノチオランにより還元されたSAとの、蛍光体集積ナノ粒子表面の単位面積(例;1mm2)内にある所定数の結合基に結合可能なモル量の比(抗体/SA比)が2以上となる還元を意味する。なお、上記濃度範囲(25~100mM)のトラウツリージェントを使用すれば、ほぼ同程度の還元がなされる。
 上記還元をする場合、後述する還元反応の温度、還元反応のpHおよび/または還元剤と抗体の各濃度等の各条件を調節して、1つの抗体分子に導入するSH基の数(SH基の数/抗体数)を極力少数(例えば1~5)となるように調整することで行われる。このように抗体1分子に導入されるSH基の数を極力少なくすることで、蛍光体集積ナノ粒子表面の単位面積無いに存在する一定量の結合基(例;マレイミド基等)に対してより多く抗体を結合させることができる。なお、還元されやすい抗体分子中のジスルフィド結合部分は可変領域ではなくFC領域部分であるので還元後も抗体の抗原結合能が維持されやすいと考えられる(PIERCE / TaKaRa、[online]、タカラバイオ、[平成26年10月1日検索]、インターネット<URL:http://www.takara-bio.co.jp/goods/info/pdf/pierce#western.pdf>)。
 (還元剤)
 還元剤の種類によってジスルフィド結合(S―S結合)の還元量が大きく変化することから、上記還元を行うための好適な還元剤としては、例えば、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)、トリス(2-カルボキシエチル)ホスフィン塩酸塩およびシステイン、2-メルカプトエチルアミンからなる群から選択された1種または2種以上を挙げることができる。前述した2-イミノチオランを用いた還元よりも弱い還元力の所定の還元を実現することができれば、例示した還元剤の種類や還元条件(還元剤の濃度等)に限らず他の還元剤や還元条件を適用してもよい。
 (pH緩衝液)
 還元工程の還元は、使用する還元剤が還元力を発揮しうる中性領域のpH緩衝液中で実施することが望ましい。使用可能なpH緩衝液としては、例えば、リン酸緩衝液(PBSを含む)、トリスヒドロキシメチルアミノメタン(Tris)緩衝液、グリシン緩衝液を挙げることができる。
 (還元pH)
 還元時のpH(還元pH)がアルカリ側になるにつれて抗体分子に含まれるジスルフィド結合(S―S結合)の還元量が増加していくことから、還元pHを還元剤の還元能が発揮できるpH範囲内で、抗体1分子中にSH基が極力少く導入されるように調節する必要がある。還元pHとしては、還元剤にもよるが、pH6.5~7.5に調整する例が挙げられる。還元pHは、2-メルカプトエタノールを使用する場合はpH7.0~8.5、3-メルカプト-1,2-プロパンジオールを使用する場合はpH3.5~7.0、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)を使用する場合はpH7.0~8.5、トリス(2-カルボキシエチル)ホスフィン塩酸塩を使用する場合はpH7.0~8.5、およびシステインを使用する場合はpH7.5~9.0、2-メルカプトエチルアミンを使用する場合はpH6.5~8.0とする例が挙げられる。
 (反応温度・反応時間)
 還元反応の温度条件として4℃~40℃、好ましくは35℃~37℃の範囲を選択することができる。還元反応の反応時間は温度条件によって異なるが、4℃~8℃の場合、8時間~36時間、好ましくは12時間~24時間の範囲を選択し、35℃~37℃の場合、20分~240分、好ましくは30分~180分の範囲を選択し、かつ、単に反応溶液を室温放置して処理する方法等が例示できる。
 (抗体と還元剤の濃度)
 上記還元剤を用いる場合、還元処理の温度や時間のみならず、還元対象の抗体と還元剤とのモル比も重要である。前述のpH、温度及び反応時間で上記還元剤により還元処理を行なう場合、還元前の抗体の1モルに対し、還元剤のモル濃度は100,000,000,000~10,000,000,000,000モルとするのが好ましい。
 また、反応液中の抗体の終濃度としては、例えば1pmol/L~100pmol/L、好ましくは1~10pmol/Lとする例が挙げられる。また、反応液中に含める還元剤の終濃度の範囲としては、2-メルカプトエタノールの場合は終濃度0.01M~0.2M、3-メルカプト-1,2-プロパンジオールの場合は終濃度0.01M~0.4M、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)の場合は終濃度0.01M~0.2M、トリス(2-カルボキシエチル)ホスフィン塩酸塩の場合は終濃度0.03M~0.15M、システインの場合は終濃度0.05M~0.15M、2-メルカプトエチルアミンの場合は終濃度を0.01M~0.3Mとするのが好ましい。
 (抗体分子中のチオール基の定量)
 抗体分子中のSH基の定量は、例えば、公知のSH基定量試薬(例: 5,5'-Dithiobis(2-nitrobenzoic acid)同仁品コード:D029 製品名:DTNB)等のSH基定量キットを使用する方法等の公知の方法により行うことができる。
 [結合工程](還元後の抗体と蛍光体集積ナノ粒子との結合)
 結合工程は、前述の結合基(マレイミド基等)で表面修飾した蛍光体集積ナノ粒子と、上記還元後のSH基を有する抗体(例;抗HER2抗体)とをpH緩衝液中で混合し、両分子を結合させる工程である。なお、結合工程に続いて任意に後述する洗浄工程を行ってもよい。
 結合反応における抗体と蛍光体集積ナノ粒子のモル比は、反応効率を高める観点から、蛍光体集積ナノ粒子1モルに対して、還元後のSH基を有する抗体を100,000モル~100,000,000モル用いることが好ましい。結合反応の温度と時間は、結合反応を十分に行う観点から、室温(1~40℃)で1時間~12時間放置することが好ましい。なお、結合反応の停止は、反応液にメルカプトエタノール等の還元剤を30~50nmol程度添加することで行うことができる。
 (pH緩衝液)
 結合工程に使用するpH緩衝液として、前述したpH緩衝液を使用することができる。また、結合反応に使用するpH緩衝液はキレート剤を含有することが望ましい。金属イオンが反応液中に存在すると、金属イオンが抗体分子のSH基と反応してしまい、抗体のSH基と蛍光体集積ナノ粒子表面の結合基との反応が阻害されてしまうからである。使用可能なキレート剤としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、ジエチレントリアミペンタアセテート酸(DTPA)、N,N-ジカルボキシメチルグルタミン酸四ナトリウム塩(GLDA)、N’-(2-ヒドロキシエチル)エチレンジアミン-N,N,N’-三酢酸(HEDTA)、グリコールエーテルジアミン-N,N,N’,N’-四酢酸(GEDTA)、トリエチレンテトラアミン六酢酸(TTHA)、ヒドロキシエチルイミノジ酢酸(HIDA)、ジヒドロキシエチルグリシン(DHEG)などが例示される。緩衝液中のキレート剤の濃度は結合反応に影響がでなければ制限なく、例えば1~10mM程度でよい。
 [洗浄工程]
 結合工程の後に任意に洗浄工程を設けることができる。結合工程後の反応溶液に対して遠心分離処理(例;10000g,60分間)を行い、沈降したペレット状の抗体結合蛍光体集積ナノ粒子を前述のpH緩衝液に分散させて再度遠心処理を行う、という一連の操作を1回の洗浄として、この操作を2~3回繰り返す工程である。なお、このときのpH緩衝液としては前述のキレート剤を含むpH緩衝液(EDTAを含むPBS等)が好ましい。
 (粒子表面の単位面積内にある抗体数の計測)
 抗体結合蛍光体集積ナノ粒子の単位面積内(以下の例では1mm2)当たりの粒子表面に結合している抗体の数は、例えば、以下(1),(2)により調べることができる。(1)蛍光体集積ナノ粒子の表面に結合した抗体(例;抗HER抗体)は、それ自体はタンパク質である。そのため、BCA法等を原理としたタンパク質定量キット(例;「バイオ・ラッドプロテインアッセイ」(バイオ・ラッド(Bio-Rad)社製)等)を用いて、夾雑タンパク質を除く精製処理(ゲル濾過、遠心処理等)を行った後の抗体結合蛍光体集積ナノ粒子の分散液中のタンパク質の定量を行うことで、蛍光体集積ナノ粒子の表面に結合した抗体の全重量(mg)を計測することができる。
 そして、該抗体の分子量は既知であるため、抗体の全重量(mg)/抗体の分子量(例;抗HER2抗体の場合であれば138,000Da)の式から、分散液中の蛍光体集積ナノ粒子の表面に結合した抗体のモル数を算出することができる。さらに、該モル数とアボガドロ定数とから蛍光体集積ナノ粒子の表面に結合した抗体の個数を算出することができる。
(2)一方、上述したようにSEM等の電子顕微鏡で計測した蛍光体集積ナノ粒子の平均粒子径の半値を半径(r)として、球の表面積の公式:4πr2から1粒子当たりの蛍光体集積ナノ粒子の表面積(平均)を算出することができる。そして、上記抗体結合蛍光体集積ナノ粒子の分散液中に存在する粒子を計測する手段(パーティクルカウンタ(例;「Liquid Particle Counter」(リオン社製))や後述する方法)により、該分散液内に存在する蛍光体集積ナノ粒子の粒子数を計測する。1粒子当たりの表面積(平均)×上記粒子数から、上記分散液中の蛍光体集積ナノ粒子の全表面積を算出することができる。そして、上記の抗体のモル数(または個数)/全表面積の式から、粒子表面1mm2当たりの抗体のモル数(または個数)を算出することができる。
 [粒子を計測する手段]
 例えば、光散乱式の液中パーティクルカウンタ(Liquid Particle Counter  リオン社製等)を用いて測定することができる。あるいは、分散液中の蛍光体集積ナノ粒子を回収して乾燥重量を測定し、その乾燥重量を粒子1個の重量で除することで、その分散液中の色素粒子の総数を算出することもできる。粒子1個の重量は、粒子の比重(母体の密度、たとえば1とみなすことができるものとする)に、粒子の平均粒子体積を乗じることで算出することができる。粒子の平均粒子体積は、電子顕微鏡で確認した色素粒子の粒子径から算出することができる。
 [ストレプトアビジンを用いた基準について]
 前述した濃度範囲であれば2-イミノチオランを用いてストレプトアビジンを還元する際の還元条件が前述した還元工程の還元条件の範囲で変化しても、還元後のSH基を有するストレプトアビジンが蛍光体集積ナノ粒子の表面にある所定数の結合基(SH基と結合可能な官能基でマレイミド基等)に結合可能なモル量(以下SAモル量(またはSAの個数))は略一定の範囲となるため、このSAモル量(またはSAの個数)を基準として、還元処理した抗体分子が所定数の結合基に対して結合したモル量(または個数)をSAモル量(または個数)の相対値として表すことができる。
 例えば、蛍光体集積ナノ粒子の表面に結合基としてマレイミド基を一様に導入し、該粒子1mm2内に存在するマレイミド基を「所定数の結合基」とした場合、上述した方法により、この所定数の結合基に対して結合した還元後の抗体のモル量(または個数)を調べるとともに、この所定数の結合基に対して結合可能な還元後のストレプトアビジンのモル量(または個数)を調べて、前者を後者に対する相対値(抗体/SA)として表すことができる。
 ここで、本発明に係る抗体結合蛍光体集積ナノ粒子は、抗体/SAの比が2以上のものであり、この抗体/SA≧2の比は、前述したように2-イミノチオランによる還元処理よりも弱い還元力の還元であって、抗体1分子あたりのSH基の数が1~5となる還元により達成される。このような還元により、抗体1分子当たりのSH基の数を極力減らして、蛍光体集積ナノ粒子の表面に存在する所定数の結合基に対して、より多く抗体を結合させることができる。
 《免疫染色試薬キット》
 本発明に係る免疫染色試薬キットは、抗体結合蛍光体集積ナノ粒子を含む標識試薬を含むことを特徴とする。抗体結合蛍光体集積ナノ粒子の抗体部分が1次抗体でなく2~n次抗体である場合には、任意に1次~n-1次抗体の溶液(抗体試薬)をさらに含んでいてもよい。
 標識試薬中の抗体結合蛍光体集積ナノ粒子の濃度は、特に制限されないが、免疫染色の際の終濃度以上であることが好ましく、例えば、0.05nM~5mMに設定される。
 標識試薬の保存条件としては、標識試薬中に抗体が含まれることから、抗体の保存条件と同一の条件で保存するのが好ましく、例えば、-20℃~4℃の低温で保存するのが好ましい。凍結融解を繰り返さない目的で標識試薬を複数の容器に分けて保存することが望ましい。また、蛍光体集積ナノ粒子が半導体粒子である場合には、半導体部分が光を受けると有機質分解能を発揮し抗体が分解されてしまう観点から、遮光保存することが好ましい。
 また、抗体結合蛍光体集積ナノ粒子の分散媒はアルカリまたは酸による抗体部分の分解を防止する観点から、PBS等の中性付近のpH緩衝液が好ましい。
 《免疫染色法》
 本発明に係る免疫染色法は、抗体結合蛍光体集積ナノ粒子を抗原に固定して蛍光染色する免疫染色反応工程を含むものであり、免疫染色反応工程を含む下記一連の工程を経て実施されることが好ましい。
 《組織切片の調製》
 組織切片は、一般に市販されているものを購入してもよいが、例えば抗原について前述したところの各種のガンが疑われる被験者(ヒト、イヌ、ネコ等)の組織について一般的な病理組織診断に用いる公知の方法で調製することができる。この場合、まず被験者の組織切片をホルマリン等により固定し、アルコールで脱水処理した後、キシレン処理を行い、高温のパラフィン中に浸してパラフィン包埋を行うことで組織切片を作製することができる。
 (1)脱パラフィン処理工程
 キシレンに組織切片を浸漬させてパラフィンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また、必要により浸漬途中でキシレンを交換してもよい。
 ついで、エタノールに組織切片を浸漬させてキシレンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また、必要により浸漬途中でエタノールを交換してもよい。
 次に、水(例;蒸留水)に組織切片を浸漬させてエタノールを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また、必要により浸漬途中で水を交換してもよい。
 (2)賦活化処理工程
 組織化学染色として免疫組織化学染色を行う場合、公知の方法にならい、目的とする生体分子の賦活化処理を行うことが好ましい。賦活化条件に特に定めはないが、賦活液としては、0.01Mクエン酸緩衝液(pH6.0)、1mMエチレンジアミン四酢酸(EDTA)溶液(pH8.0)、5%尿素、0.1Mトリス塩酸緩衝液等を用いることができる。加熱機器としては、オートクレーブ、マイクロウェーブ、圧力鍋、ウォーターバス等を用いることができる。温度は特に限定されるものではないが、室温で行うことができる。賦活化処理の加熱処理の温度は50~130℃、加熱処理の時間は5~30分で行うことができる。
 ついで容器に入れたPBSに賦活処理後の切片を浸漬させて洗浄を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また必要により浸漬途中でPBSを交換してもよい。
 (3)免疫染色反応工程
 免疫染色反応工程は、組織切片上の抗原(病理診断の対象となる疾病に関連する抗原など)に対して抗体結合蛍光体集積ナノ粒子を固定させて抗原を蛍光標識する工程である。抗体結合蛍光体集積ナノ粒子の抗体部分が1次抗体である場合には、該抗体部分と抗原との結合を介して蛍光体集積ナノ粒子を前記抗原に固定して抗原を蛍光標識する工程であり、抗体結合蛍光体集積ナノ粒子の抗体部分が2~n次抗体である場合には、組織切片上の抗原に1~(n-1)次抗体を結合させた後、該抗原に結合した1~(n-1)次抗体に対して2~n次抗体を結合させて蛍光体集積ナノ粒子を抗原に固定して抗原を蛍光標識する工程である。
 具体的には、抗体結合蛍光体集積ナノ粒子をpH緩衝液に分散させた液(分散濃度例;0.05nM~0.5nM)を組織切片に載せて前記抗原と抗体結合蛍光体集積ナノ粒子の1次抗体部分を結合させるか、または、上記抗体試薬を組織切片に載せて抗原と1~(n-1)次抗体とを結合させた後、上記手順と同様にして、該1~(n-1)次抗体に抗体結合蛍光体集積ナノ粒子の2~n次抗体部分を結合させて抗原を蛍光標識する例が挙げられる。免疫染色反応工程の反応としては、例えば、上記抗体結合蛍光体集積ナノ粒子の分散液を組織切片上に載せて4℃で1晩反応させる例が挙げられる。
 抗体結合蛍光体集積ナノ粒子は抗体部分を有するので、分散媒として用いるpH緩衝液にあらかじめブロッキング剤を1重量%以下の範囲で含有させてブロッキング処理を省略してもよい。このようなブロッキング剤としては、ウシ血清アルブミン(BSA)、カゼイン(αカゼイン、βカゼイン、γカゼイン)、ゼラチン等の生物由来物質が挙げられる。
 (多重染色の場合)
 前記抗原が2種以上であり、これらをそれぞれ染め分ける多重染色を行う場合には、前述の抗体結合蛍光体集積ナノ粒子として、抗体および蛍光波長が異なる2種以上の蛍光体集積ナノ粒子を用いればよい。つまり、抗体結合蛍光体集積ナノ粒子の表面に結合させる抗体と、使用する蛍光体の蛍光波長とを、組織切片上の抗原の種類に応じて変更されているものを使用すればよい。
 また、2種以上の蛍光体集積ナノ粒子は、検出のしやすさの観点から、その発光波長の帯域が互いに重ならないものであることが望ましい。このような2種以上の蛍光体集積ナノ粒子を用いる場合、蛍光体集積ナノ粒子を作製する際に、発光波長の帯域が互いに重ならない2種以上の蛍光体を用いて作製すればよい。
 また、使用する抗体については、2種以上の抗原のそれぞれにユニークなエピトープを認識するような抗体を各蛍光体集積ナノ粒子について選択する必要がある。
 (4)洗浄工程
 免疫染色反応工程の後に、PBSにより組織切片を洗浄する洗浄工程を行って未反応の蛍光体集積ナノ粒子を除くことが好ましい。この洗浄工程としては、例えば、室温(1~30℃)に調節されたPBSに組織切片を浸漬させて0.5~1時間放置する洗浄工程を行うことができる。ここで、上記浸漬中にPBS等を交換してもよい。
 (5)形態観察用処理工程
 免疫染色反応工程の後に、組織切片に対してヘマトキシリン・エオシン染色(HE染色)等の染色を行って、組織切片の細胞の形状や細胞の各部の位置情報を得るための形態観察用処理工程を任意に行うことができる。この染色にともなって組織切片を観察用に透徹、封入すること等の処理を行ってもよい。HE染色は、例えば、免疫染色した切片をマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行い、その後、該組織試料を45℃の流水で3分間洗浄し、次に、1%エオシン液で5分間染色してエオシン染色を行う。
 (6)観察工程
 (明視野観察)
 明視野観察は、組織切片の細胞または組織内の染色対象とする細胞器官の分布情報を取得するために行われる。明視野観察の一般的な方法として、例えば、上記したように免疫染色の後にヘマトキシリン・エオシン染色(HE染色)を行った組織切片を光学顕微鏡で観察を行う。なお、形態観察染色に用いられるエオジンは、明視野において観察できるだけでなく、所定の波長の励起光を照射した時に自家蛍光も発するので、適切な波長および出力の励起光を染色された組織試料に照射することで、蛍光顕微鏡によっても観察できる。
 一方、その他の染色としてHER2タンパク質を検出対象の抗原として組織化学染色(DAB染色等)を行った場合の明視野観察においては、適切な照明光の照射下で、光学顕微鏡の4倍対物レンズを使用して、検体組織内の癌細胞のHER2タンパク陽性染色像、陽性染色の強度、陽性細胞率を観察する。次に対物レンズを10倍に切り替え、陽性所見が細胞膜か細胞質に局在するかを確認し、必要に応じてさらに対物レンズ20倍で検索する。
 (蛍光観察)
 染色した上記切片に対し蛍光顕微鏡を用いて、広視野の顕微鏡画像から蛍光の輝点の数又は発光輝度を計測する。用いた蛍光物質の吸収極大波長及び蛍光波長に対応した励起光源及び蛍光検出用光学フィルターを選択する。輝点数又は発光輝度の計測は、市販の画像解析ソフト、例えば、株式会社ジーオングストローム社製の全輝点自動計測ソフトG-Countを用いて行うことができる。なお、顕微鏡を使用した画像解析自体は周知であり、例えば、特開平9-197290に開示される手法を用いることができる。顕微鏡画像の視野は、3mm2以上であることが好ましく、30mm2以上であることがさらに好ましく、300mm2以上であることがさらに好ましい。顕微鏡画像から計測された輝点数、及び/又は発光輝度に基づいて、目的とする特定の遺伝子由来のタンパク質(前述)の発現量等を評価する。
 (多重染色の場合)
 一方、免疫染色反応工程で2種以上の抗体結合蛍光体集積ナノ粒子を用いて多重染色を行った場合については、抗原の種類に応じて使用した抗体結合蛍光体集積ナノ粒子を、その種類ごとに励起および発光させ、抗原種別に蛍光の輝点の数や発光輝度の計測等を行う。ここで、蛍光波長の帯域が一部重複する2種以上の蛍光体集積ナノ粒子を用いて免疫染色反応工程を行った場合、重複する帯域をカットする蛍光フィルターを用いて、抗原の種類ごとに観察等を行うことが望ましい。
 なお、取得した2種以上の蛍光免疫染色画像を合成して解析に用いてもよい。
 (抗体結合蛍光体集積ナノ粒子の評価)
 免疫染色の検出対象のタンパク質が発現している病理組織切片を用意し、これに対して(1)抗体結合蛍光体集積ナノ粒子を用いて上述した免疫染色および蛍光観察を行った際に所定の観察視野内に計測される特異的な輝点の数、(2)抗体結合蛍光体集積ナノ粒子を含む標識試薬を所定条件で保管した後(凝集確認試験後)に目視で確認される粒子の凝集・沈降の有無、によって抗体結合蛍光体集積ナノ粒子の染色性能を評価することができる。
 検出対象のタンパク質をHER2タンパク質として評価する場合、例えば、(1)HER2の発現がされているIHC法スコア=3の病理組織切片(下記表1参照)を用意して、上述した免疫染色および蛍光観察を行い、該蛍光観察で1視野当たり(組織切片の視野一杯にして撮像した画像で縦132μm×横176μmの矩形内)にHER2抗原に基づく特異的な輝点数が3000以上得られていること、および、(2)製造直後の抗体結合蛍光集積ナノ粒子を含む標識試薬を1週間4℃で保存した後に目視で観察した際に粒子の凝集沈降がないことを満たす場合に、評価対象の抗体結合蛍光集積ナノ粒子が凝集、沈降および抗体の変性せずに、ビオチン-アビジン法の場合(例;後述する比較例1)と同程度の染色能力を有すると判断することができる。なお、特異的な輝点かどうかは、例えばDAB法等の他の染色法により同一の病理切片を染色してHER2抗原の発現位置を特定し、この発現位置と一致しているか否かで特異的な輝点かどうかを判断することができる。
 また、IHC法とは、「HER2検査ガイド第三版」(2009年9月 トラスツズマブ病理部会作成)に記載の方法であり、IHC法スコアとは「HER2検査ガイド第三版」に記載の評価基準である(下記表1参照)。
Figure JPOXMLDOC01-appb-T000001
 以下、本発明に係る抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色試薬キットについての作用、効果を説明する。
 (1)本発明に係る抗体結合蛍光体集積ナノ粒子は、上述した抗体と蛍光体集積ナノ粒子とが、当該抗体のジスルフィド結合(-S-S-)を還元することによって生成したSH基と、当該蛍光体集積ナノ粒子の表面にある結合基(例;マレイミド基等)との反応によって結合している抗体結合蛍光体集積ナノ粒子であって、2-イミノチオランを使用してジスルフィド結合をSH基に還元したストレプトアビジンが、前記蛍光体集積ナノ粒子の表面の単位面積内(例;1mm2)にある所定数の結合基に対して結合しうる数をnモルと表した場合、前記抗体が前記所定数の結合基に対して結合している数が2nモル以上のものであることから、蛍光体集積ナノ粒子の表面に十分な量の抗体が結合されており、2nモル未満の従来技術に係る粒子とは異なり、免疫染色した際に組織切片上の抗原との抗原抗体反応の反応性が高まり、免疫染色をした際に特異的な輝点が免疫染色として問題ない精度で得られる。
 そのため、従来技術に係る粒子(2nモル未満のもの)では不可能であった多重免疫染色が可能となる。すなわち、抗体結合蛍光体集積ナノ粒子の表面に結合させる抗体と、使用する蛍光体の蛍光波長とを組織切片上の抗体の種類に応じて変更して抗体結合蛍光体集積ナノ粒子を製造し、各粒子を用いて免疫染色を行えば、各種抗原に対して蛍光波長の異なる蛍光体集積ナノ粒子が結合し、色分けした免疫染色(多重免疫染色)をすることができる。
 (2) 前記結合基がマレイミド基であれば、抗体のSH基と反応して安定な共有結合を形成することができる。また、前記結合基が、マレイミド基、アルデヒド基またはブロモアセトアミド基からなる群から選択された1種または2種以上であれば、抗体のSH基と反応して安定な共有結合を形成することができる観点から好ましい。
 (3)上記抗体が、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)、トリス(2-カルボキシエチル)ホスフィン塩酸塩およびシステイン、2-メルカプトエチルアミンからなる群から選択された1種または2種以上の還元剤によって処理されたものであれば、(1)で述べた免疫染色における反応性を好適に高めることができる。
 (4)上記抗体が2次抗体であれば、2次抗体は1次抗体に複数箇所で結合するため、一つの1次抗体に対して複数の2次抗体、すなわち複数(種)の蛍光体集積ナノ粒子で標識することができる。したがって、2次抗体を使用することで増感効果、染色色素の色合成効果が得られる。
 (5)本発明に係る抗体結合蛍光体集積ナノ粒子を製造方法は、SH基の数/抗体数が極力少数(好適には、例えば1~5)となるように前記抗体のジスルフィド結合部分を還元剤により還元する工程、該還元後の抗体を、結合基を有する蛍光体集積ナノ粒子に結合させる工程を含むものである。上記還元工程により、図1に示すように、抗体1分子に導入されるSH基の数が低く抑えられるので、蛍光体集積ナノ粒子の表面にある所定数の結合基に対してより多くの抗体を結合させることができる。ここで、抗体1分子中のSH基数が1に近い程、より多くの抗体を蛍光体集積ナノ粒子の表面に結合させることができる。
 (6)前記酸化還元に用いられる還元剤が、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)、トリス(2-カルボキシエチル)ホスフィン塩酸塩、システイン、2-メルカプトエチルアミンからなる群から選択された1種または2種以上であれば、上記還元工程を好適に行うことができる。
 (7)組織切片上の抗原に結合する1次抗体を含む抗体試薬と、上記抗体結合蛍光体集積ナノ粒子を含んだ標識試薬と、を備えた免疫染色試薬キットでれば、製造から一定期間過ぎても目視観察で凝集を生じず、上記効果を有する免疫染色キットが提供される。
 (8) 上記記載の抗体結合蛍光体集積ナノ粒子、または免疫染色試薬キットを用い、前記抗体結合蛍光体集積ナノ粒子を抗原に固定して蛍光染色する免疫染色反応工程を含む、免疫染色法とでれば、十分に特異的な輝点が得られる。
 (9) ここで、染色対象が病理診断の対象となる抗原であれば、従来より高い精度で、病理診断対象の疾病((悪性)腫瘍等)を検出することができる点で好ましい。
 (10) 前記抗原が2種以上であり、上記抗体結合蛍光体集積ナノ粒子が、抗体および蛍光波長が異なる2種以上の蛍光体集積ナノ粒子であり、2種以上の抗原を染め分ける多重免疫染色に用いられる免疫染色法であれば、抗原を染め分けする多重染色であっても染色効率が高く維持される。
 [製造例1](TAMRA内包シリカナノ粒子の合成)
 下記工程(1-1)~(1-4)の方法により、蛍光色素であるTAMRA(登録商標)(5-カルボキシテトラメチルローダミン)(以下単に「TAMRA」と示す)を内包したTAMRA内包シリカナノ粒子(蛍光体集積ナノ粒子)を作成した。
 工程(1-1):TAMRAのN-ヒドロキシスクシンイミドエステル誘導体(TAMRA-NHSエステル)2mgと、テトラエトキシシラン400μL(1.796mmol)とを混合した。
 工程(1-2):上記反応液とは別に、エタノール40mLと14%アンモニア水10mLとを混合して混合液を調製した。
 工程(1-3):工程(1-2)で調製した混合液を室温下で撹拌しているところに、工程(1-1)で調製した混合液を添加した。添加開始から室温で12時間撹拌を行った。
 工程(1-4):反応混合物を10000gで60分間遠心分離を行い、上澄みを除去した。エタノールを加え、沈降物を分散させた後、再度上記遠心分離を行った。同様の手順でエタノールと純粋による洗浄を一回ずつ行った。
 得られたTAMRA内包シリカナノ粒子を走査型顕微鏡(SEM;日立社製S-800型)により観察を行ったところ、TAMRA内包シリカナノ粒子の平均粒子径は100nm、平均粒子径の変動係数は15%であった。
 [実施例1]
 以下に示すように、製造例1で製造したTAMRA内包シリカナノ粒子(蛍光体集積ナノ粒子)に対してマレイミド基を導入し、抗HER2抗体にSH基を導入した後、該TAMRA内包シリカナノ粒子と抗HER2抗体とを結合させることで抗体結合TAMRA内包シリカナノ粒子(1次抗体結合蛍光体集積ナノ粒子)を製造した。そして、この免疫染色試薬キットを用いてHER2抗原が発現している病理組織切片(IHC法スコア=3の病理組織切片)を載せた検体スライド(組織アレイスライド)について免疫染色、輝点についての評価等を行った。
 《TAMRA内包シリカナノ粒子のマレイミド基修飾》
 以下の工程(2-1)~(2-7)により、マレイミド基修飾したTAMRA内包シリカナノ粒子を調製した。
 工程(2-1):製造例1で得られたTAMRA内包シリカナノ粒子1mgを純水5mLに分散させた。次に、3-アミノプロピルトリエトキシシラン(信越化学工業社製、LS-3150またはKBE-903;下記式(1)参照)水分散液100μLを上記粒子の分散液に添加した後、室温で12時間撹拌して反応させ、TAMRA内包シリカナノ粒子の表面にアミノ基を導入した。
 工程(2-2):反応液を10000gで60分遠心分離を行い、上澄みを除去した。
 工程(2-3):エタノールを加えて沈降物を分散させた後、上記遠心分離を再度行った。
同様の手順でエタノールと純水による洗浄を1回ずつ行った。得られたアミノ基修飾したTAMRA内包シリカナノ粒子のFT-IR測定を行ったところ、アミノ基に由来するスペクトル吸収が観測でき、アミノ基修飾ができたことを確認できた。
 工程(2-4):工程(2-3)で得られたアミノ基修飾したTAMRA内包シリカナノ粒子を、エチレンジアミン四酢酸(EDTA)を2mM含有したリン酸緩衝液生理的食塩水(PBS)を用いて3nMに調整した。
Figure JPOXMLDOC01-appb-C000002
 工程(2-5):工程(2-4)の調整後の溶液に対して終濃度10mMとなるようにSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleimidopropionamid)-dodecaethyleneglycol]ester)を混合し、室温で1時間反応させた。
 工程(2-6):反応液を10000gで60分遠心分離を行い、上澄みを除去した。
 工程(2-7):EDTAを2mM含有したPBSを加えて沈降物を分散させた後、上記遠心分離を再度行った。同様の手順による洗浄を3回行った。最後に500μLのPBSに沈降物を再度分散させて、マレイミド基で修飾されたTAMRA内包シリカナノ粒子の分散液500μLを得た。
 [還元工程](抗HER2抗体の還元処理(SH基導入処理))
 工程(3-1):抗HER2抗体(ベンタナ社製「抗HER2ウサギモノクロナール抗体(4B5)」分子量148,000g/mol)100μgをPBS100μLに溶解させた。この抗体溶液に1Mの2-メルカプトエタノールを0.002mL(0.2×10-5モル)添加して、pH8.5、室温で30分間反応させて抗体の還元を行った。
 工程(3-2):工程(3-1)後の反応液をゲル濾過カラムに供して、過剰の2-メルカプトエタノールを除去し、SH基を有する抗HER2抗体の溶液を得た。
 工程(3-3):SH基の定量
 還元した抗体1μL(1μg分)を分取してSH基定量キットレドックスアッセイ チオール定量キット(商品コード:TH01D、メーカー:メタロジェニクス)によりSH基の量(モル数)を計測した。さらに同量の抗体1μLを別に分取してBCA法を行うことで分取した抗HER2抗体の質量を定量した。この質量と抗HER2抗体の分子量とから分取した抗体のモル数を算出した。さらにSH基のモル数/抗体のモル数により「SH基の数/抗体」を算出した。このSH基の数/抗体は1.5であった。
 [結合工程](SH基を有する抗HER2抗体とマレイミド基修飾したTAMRA内包シリカナノ粒子との結合)
 工程(4-1):工程(2-7)を経て得られたマレイミド基修飾したTAMRA内包シリカナノ粒子0.01μgと、工程(3-2)を経て得られたSH基を有する抗HER2抗体10μgとをPBS1mL中で混合し、室温で1時間、両分子を結合する反応を行った。
 工程(4-2):10mMの2-メルカプトエタノール4μLを工程(4-1)後の反応液に添加して結合反応を停止させた。
 工程(4-3):工程(4-2)からの溶液を10000gで60分間遠心分離処理を行い、上澄みを除去した。その後、EDTAを2mM含有したPBSを加えて沈降物を分散させた後、上記遠心分離を再度行った。同様の手順による洗浄を3回行った。最後に500μLのPBSにより分散させて、抗HER2抗体が結合したTAMRA内包シリカナノ粒子(抗体結合蛍光体集積ナノ粒子)を得た。
 《粒子表面(1mm2)当たりの抗体のモル数、個数の計測》
 抗HER2抗体結合TAMRA内包シリカナノ粒子の分散液0.01mLについて、BCA法により定量した。この定量した抗HER2抗体の全量(2.33mg含有)を、抗HER2抗体の分子量148000ダルトンで除することにより、分散液中に集団として存在する色素粒子の表面にある抗HER2抗体のモル数1.57×10-8(mol)を算出した。そして、抗HER2抗体のモル数とアボガドロ定数とから、1.57×10-8(mol)×6.02×1023(個/mol)を計算し、粒子表面にある抗HER2抗体の個数を9.46×1015と算出した。さらに、粒子カウンター(Liquid Particle Counter  リオン社製等)等で調べたところ測定対象とした粒子の数は3153000000000であった。よって粒子表面の抗HER2抗体の量は1粒子あたり3000個(5回測定平均:3045、3028、2987、3022、2960)となる。同様にして合成された5種類の粒子の平均値も3000であった。
 《粒子表面(1mm2)当たりの抗体数の計測》
 また、製造例1で調べたTAMRA内包シリカナノ粒子の平均粒子径100nmから半径(r)=50nmとし、球表面積の公式:4πr2から1粒子の表面積3.14×10-14(mm2/粒子)を算出し、上記1粒子当たりの抗HER2抗体の数(3000個/粒子)を1粒子当たりの表面積:3.14×1014(mm2/粒子)で除して、粒子表面1mm2当たりの抗HER2抗体の数=9.555×1016(個/mm2)を算出した。
 [抗体/SA]
 また、該抗体数のモル数(または個数)を後述する比較例1の蛍光体集積ナノ粒子1粒子の単位面積(1mm2)あたりに存在するSAのモル数(または個数)に対する相対値(以下「抗体/SA相対値」という)として表したところ、2.0であった(表1参照)。
 (凝集確認試験)
 製造した抗HER2抗体結合TAMRA内包シリカナノ粒子をPBS100μLに1μg分散させた分散液を、室温で1週間放置した後、目視確認により凝集の有無を調べた結果、凝集や沈降は確認されなかった(表2参照)。表2では、凝集・沈降が目視確認された場合は「×」、凝集・沈降が目視確認されなかった場合は「○」と示している。
 ≪免疫染色≫(免疫組織化学(IHC)法)
 上記抗HER2抗体結合TAMRA内包シリカナノ粒子の分散液(標識試薬)を含む免疫染色試薬のキットを用いて、以下に説明するように免疫染色を行った。
 免疫染色では、パソロジー研究所製のHER2 ポジコンスライド(PS-09001、HER2 3+、2+、1+、0のもの)を用いた。
 免疫染色に先立ってDAB染色により上述した各組織切片のHER2染色濃度を観察して、HER2高発現(HER2 3+)、HER2中発現(HER2 2+)、HER2低発現(HER2 +)、HER2陰性(HER2 -)であることを確認し、このうち141119-1のロットの組織アレイスライドについて免疫染色を行った。なお、上記「HER2 3+」、「HER2 2+」、「HER2 +」および「HER2 -」は、それぞれ上記表1のIHC法判定基準のスコア「3+」「1+」および「0」に該当する。
 [脱パラフィン処理工程]
 工程(1A):組織アレイスライドをキシレンに30分浸漬させて組織切片中のパラフィンを除去してキシレンで置換した。途中3回キシレンを交換した。
 工程(1B):工程(1A)を経た組織アレイスライドをエタノールに30分浸漬させて組織切片中のキシレンをエタノールで置換した。途中3回エタノールを交換した。
 工程(1C):工程(1B)を経た組織アレイスライドを蒸留水に30分浸漬させて、組織切片中のエタノールを蒸留水で置換した。途中3回蒸留水を交換した。
 [賦活化処理工程]
 工程(2A):工程(1C)を経た組織アレイスライドを10mMクエン酸緩衝液(pH6.0)に30分浸漬させて、組織切片中の水をクエン酸緩衝液で置換した。
 工程(2B):工程(2A)を経た組織アレイスライドをオートクレーブ処理(121℃で10分間)した。
 工程(2C):工程(2B)を経た組織アレイスライドの組織切片をPBSに30分浸漬させた。
 工程(2D):工程(2C)を経た組織アレイスライドの組織切片全体に対して、BSAを1重量%含有するPBSを滴下して室温で1時間放置した。
 [免疫染色反応工程]
 工程(3A):BSAを1重量%含有するPBSでもって、上記抗HER2抗体結合TAMRA内包シリカナノ粒子を0.05nMに希釈した。次に、該希釈により得られた抗HER2抗体結合TAMRA内包シリカナノ粒子の分散液を、工程(2D)を経た組織アレイスライドの組織切片全体に滴下して室温で3時間放置した。
 [洗浄工程]
 工程(4A):工程(3A)を経た組織アレイスライドの組織切片をそれぞれ30分PBSに浸漬させた。
 [形態観察用処理工程]
 工程(5A):工程(4A)を経た組織アレイスライドの組織切片を4%中性パラホルムアルデヒド溶液で10分間固定処理した後、ヘマトキシリン・エオジン染色(HE染色)を行った。HE染色は、免疫染色した組織切片をマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った。その後、該切片を45℃の流水で3分間洗浄した。次に、1%エオジン液で5分間染色してエオジン染色を行った。その後、純エタノールに5分間漬ける操作4回行い、洗浄・脱水を行った。続いてキシレンに5分間漬ける操作を4回行い、透徹を行った。
 工程(5B):工程(5A)を経た組織アレイスライドの組織切片全体に対して「Aquatex(登録商標)」(製品番号108562、Merck Millipore社製)を滴下した後、カバーガラスを載せて室温で30分以上放置することで前記組織切片を封入した。
 [観察工程]
 上記一連の工程を経た組織切片に対して所定の励起光を照射して蛍光を発するようにした。その状態の組織切片を蛍光顕微鏡(BX-53,オリンパス社製)により観察および撮像を行った。また、輝点計測は、ImageJ FindMaxima法により計測した。
 上記励起光は、光学フィルターに通すことで545~565nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターに通すことで570~590nmに設定した。
 顕微鏡観察、画像取得時の励起波長条件は、550nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。次に、蛍光顕微鏡等を用いて撮像した顕微鏡画像を用いて、輝度が所定の閾値を超えた部分を輝点として計測し、1細胞当たりの蛍光体集積ナノ粒子の数や蛍光シグナルの強度を算出した。
 上記観察の結果、HER2に特異的な輝点数は3800であった(表2参照)。
 [実施例2]
 実施例1で使用した1Mの2-メルカプトエタノールの代わりに「3-メルカプト-1,2-プロパンジオール」(製品番号139-16452、メーカー和光純薬)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は3.5であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5600であった(表2参照)。
 [実施例3]
 実施例1で使用した1Mの2-メルカプトエタノールの代わりに「グルタチオン(γ-L-グルタミル-L-システイニルグリシン)」(製品番号G0074、メーカー東京化成)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は4.2であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5400であった(表2参照)。
 [実施例4]
 実施例1で使用した1Mの2-メルカプトエタノールの代わりに「トリス(2-カルボキシエチル)ホスフィン塩酸塩」(製品番号322-91081 HTMLCONTROL Forms.HTML:Hidden.1  HTMLCONTROL Forms.HTML:Hidden.1 、メーカー和光純薬)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は3.8であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5500であった(表2参照)。
 [実施例5]
 実施例1で使用した1Mのメルカプトエタノールの代わりに「システイン」(製品番号013-05133 HTMLCONTROL Forms.HTML:Hidden.1  HTMLCONTROL Forms.HTML:Hidden.1 、メーカー和光純薬)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は3.5であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は4800であった(表2参照)。
 [実施例6]
 実施例1で使用した1Mのメルカプトエタノールの代わりに「2-メルカプトエチルアミン」(製品番号20408 HTMLCONTROL Forms.HTML:Hidden.1  HTMLCONTROL Forms.HTML:Hidden.1 、メーカーThermo SCIENTIFIC)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は4.8であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は6000であった(表2参照)
 [比較例1](ビオチン-アビジン法による免疫染色)
 実施例1において、抗HER2抗体結合TAMRA内包シリカナノ粒子を製造する代わりに、以下のように、ストレプトアビジン(SA)を結合したSA結合TAMRA内包シリカナノ粒子およびビオチンを結合した抗HER2抗体(1次抗体)を製造し、得られたビオチン結合抗HER2抗体を組織切片上の抗原(HER2)に結合させた後、ストレプトアビジン-ビオチン結合を介してその抗HER2抗体にTAMRA内包シリカナノ粒子を結合させた。それ以外は実施例1と同様に凝集確認試験および免疫染色等を行った。その結果、粒子の凝集や沈降が発生し、輝点数は6200であった(表2参照)。なお、「抗体/SA」の値は本比較例1を基準としているので1.0となっている。
 (SA結合TAMRA内包シリカナノ粒子の製造)
 工程(1'-1):製造例1で製造したTAMRA内包シリカナノ粒子0.1mgをエタノール1.5mL中に分散し、3-アミノプロピルトリエトキシシラン(信越化学工業社製、LS-3150またはKBE-903)2μLを加えて8時間反応させて粒子表面のアミノ化処理を行った。
 工程(1'-2):アミノ化処理したTAMRA内包シリカナノ粒子を、エチレンジアミン四酢酸(EDTA)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようにSM(PEG)12(サーモサイエンティフィック社製、スクシンイミジル-[(N-マレイミドプロピオンアミド)-ドデカエチレングリコール]エステル)を混合し、1時間反応させた。
 工程(1'-3):この混合液を10000Gで20分間遠心分離処理を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させた後、上記遠心分離処理を再度行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いたTAMRA内包シリカナノ粒子を得た。
 (SAのチオール基導入処理)
 工程(1'-4):一方、ストレプトアビジン(和光純薬社製)0.0384mgをPBSに分散した分散液38.4μLと、64 mg/mLとした2-イミノチオラン塩酸塩(「2-Iminothiolane・HCl」、サーモサイエンティフィック社製、Traut's Reagent)4.5μLと混合して、混合液を室温で1時間撹拌してストレプトアビジンのチオール基付加処理を行った。この後、この反応液をゲルろ過カラムに供してマレイミド基が付いたTAMRA内包シリカナノ粒子に結合可能なストレプトアビジン溶液を得た。なお、終濃度は40mM程度である。
 (SH基を付加したSAとマレイミド基修飾したTAMRA内包シリカナノ粒子の結合)
 工程(1'-5):EDTAを2mM含有したPBSを用いて上記マレイミド基で修飾したTAMRA内包シリカナノ粒子を0.67nMで含有する分散液を調製し、該分散液40μLと、SH基を導入した上記ストレプトアビジン全量(0.04mg相当)740μLとを混合し、室温で1時間反応させた。
 工程(1'-6):上記反応液に10mMメルカプトエタノール4μLを添加し、上記反応を停止した。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン(SA)結合TAMRA内包シリカナノ粒子を得た。
 《粒子表面(1mm2)当たりのストレプトアビジン数の計測》
 SA結合TAMRA内包シリカナノ粒子の分散液0.01mLについて、BCA法によりストレプトアビジンの量(g)を定量した。定量により得られたSA量(g)を、SAの分子量52000ダルトン(=g/mol)で除することにより、分散液中に集団として存在する粒子の表面にあるストレプトアビジンのモル数7.69×10-10(mol)を算出した。そして、SAのモル数とアボガドロ定数とから、7.69×10-10(mol)×6.02×1023(個/mol)を計算し、色素粒子の表面にあるSAの個数を4.63×1014と算出した。さらに、粒子カウンター(Liquid Particle Counter  リオン社製等)等で調べたところ測定対象とした色素粒子の数は315300000000であった。よって粒子表面のSAの量は1粒子あたり1500個(5回測定平均:1521、1514、1490、1502、1495)となる。同様にして別途5回製造したいずれのSA結合TAMRA内包シリカナノ粒子についての平均値(SA(個)/粒子)も1500であった。
 また、製造例1で調べたTAMRA内包シリカナノ粒子の平均粒子径100nmから半径(r)=50nmとし、球表面積の公式:4πr2から粒子表面積3.14×10-14(mm2/粒子)を算出し、上記1粒子当たりのSA数(1500個/粒子)を1粒子当たりの表面積:3.14×1014(mm2/粒子)で除して、1mm2当たりのSA数=4.77×1016(個/mm2)を算出した。
 《ビオチン化抗HER2抗体の製造》
 トラスツズマブとして医薬品の形態でロッシュ社が製造している粉末状のハーセプチン(登録商標)を使用し、これに対して、「Biotin Labeling kit-SH」(同仁化学)を用いてビオチン化を行うことにより、ビオチン化したトラスツズマブ(抗HER2抗体)を得た。
 《免疫染色》
 実施例1の[免疫染色反応工程]に代えて、下記工程Aを行った。
 [工程A]
 実施例1の賦活化処理工程後、組織アレイスライドをPBSで洗浄した後、10%ヤギ血清(ニチレイ社製)を添加し、室温下1時間放置した。この組織アレイスライドをPBSで洗浄した後、上記ビオチン化した抗HER2抗体の溶液(濃度0.05nM)を組織アレイスライドの組織切片全体に滴下して室温下30分間放置した。その後、組織アレイスライドをPBSで洗浄後、SA結合TAMRA内包シリカナノ粒子の分散液(粒子濃度0.05nM)を上記組織切片全体に滴下し、室温下2時間反応させた。
 [比較例2]
 実施例1で使用した1Mの2-メルカプトエタノールの代わりに「Traut's  Reagent」(製品番号I6256-100MG、メーカーSigma-Aldrich)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は0.8であり、粒子の凝集や沈降が見られた。また、HER2に特異的な輝点数は500であった(表2参照)。
 [比較例3]
 実施例1で使用した1Mの2-メルカプトエタノールの代わりに「Biotin Labeling Kit - SH」(製品番号LK10、メーカー同人堂化学社)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は1.2であり、粒子の凝集や沈降が見られた。また、HER2に特異的な輝点数は1600であった(表2参照)。
 [比較例4]
 実施例1で使用した1Mの2-メルカプトエタノールの代わりに、1Mの「(+/-)-ジチオスレイトール」(製品番号041-08971、メーカー和光純薬)を用いたこと以外は、実施例1と同様に抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は1.8であり、粒子の凝集や沈降が見られた。また、HER2に特異的な輝点数は2500であった(表2参照)。
Figure JPOXMLDOC01-appb-T000003
 蛍光色素内包樹脂粒子を用いたHER2染色結果(1次抗体結合型)
 (結果・考察)
 本発明の製造方法に従って製造した抗HER2抗体結合TAMRA内包ナノ粒子を用いた1次抗体結合型の免疫染色を行った場合、計測されたHER2に特異的な輝点数は3800~6000であり(実施例1~6)、従来の製造方法に従って製造した抗HER2抗体結合TAMRA内包ナノ粒子を用いた場合(比較例2~4)の輝点数500~2500よりも著しく多く、SA結合TAMRA内包ナノ粒子を用いた場合(比較例1)の輝点数6200に近い輝点数が計測された(表2参照)。ここで、比較例1では、ストレプトアビジン(SA)結合TAMRA内包ナノ粒子を免疫染色に使用しており、そのSAが内因性ビオチンに結合する可能性があるため、上記輝点数6200の中には非特異的な輝点が含まれていると考えられる。したがって、それを考慮すると、実施例1~6の抗HER2抗体結合TAMRA内包ナノ粒子は、十分に特異的な輝点数が得られており、免疫染色用として十分な染色能力を有するものであるといえる。
 「発明が解決しようとする課題」として前述したように、多重免疫染色を行うためには、ビオチン-アビジン結合を利用して抗原に間接的に蛍光体ナノ粒子を結合させる(つまりSA結合蛍光体ナノ粒子を使用する)免疫染色だけでなく、抗原-抗体結合を利用して抗原に直接的または間接的に蛍光体ナノ粒子を結合させる(つまり1次抗体結合蛍光体ナノ粒子または2次抗体結合蛍光体ナノ粒子を使用する)免疫染色が必要である。上記の結果から、本発明(実施例1~6)の抗HER2抗体結合TAMRA内包ナノ粒子を使用すれば、SA結合蛍光体ナノ粒子に匹敵する十分な数の、かつ抗原に特異的な輝点数が得られており、従来の抗HER2抗体結合TAMRA内包ナノ粒子(比較例2~4)を使用したのでは困難であった多重染色が可能となることが理解される。
 なお、本発明に基づく1次抗体結合型の免疫染色法である上記実施例1~6の結果は、本発明に基づく2次抗体結合型の免疫染色法である後記実施例7~12の結果(表3参照)に近いものであるが、従来技術に基づく2次抗体結合型の免疫染色法である後記比較例5~7の結果よりも優れている。一般的に、2次抗体結合型の免疫染色法は、1次抗体結合型の免疫染色法よりも染色性に優れる傾向にあるが、本発明に従えば、1次抗体結合型であっても、従来の2次抗体結合型より染色性に優れた免疫染色を行うことが可能であることが分かる。
 [実施例7]
 実施例1において、抗HER2抗体(ベンタナ社製「抗HER2ウサギモノクロナール抗体(4B5)」)に代えて、該抗体に結合可能な2次抗体として抗ウサギIgG抗体(ニチレイ社製ビオチン標識抗ウサギIgG抗体)を使用して、抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子(2次抗体結合蛍光体集積ナノ粒子)を製造した。さらに、実施例1の免疫染色反応工程に代えて、以下の免疫染色反応工程を行った。それ以外は実施例1と同様に免疫染色、凝集確認試験等を行った。その結果、「抗体/SA」の相対値は2.1であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は4000であった(表3参照)。
 [免疫染色反応工程]
 工程(3'A):実施例1の[賦活化処理工程]後の組織アレイスライドをPBSで洗浄した後、10%ヤギ血清(ニチレイ社製)を添加し、室温下1時間放置した。この組織アレイスライドをPBSで洗浄した。
 工程(3'B):その後、抗HER2抗体の溶液(濃度0.05nM)を組織アレイスライドの組織切片全体に滴下して室温下30分間放置した。この組織アレイスライドをPBSで洗浄した。
 工程(3'C):1mMでBSAを含むPBSに対して抗体結合蛍光体集積ナノ粒子を0.2nMで分散させて標識試薬を調製した。次に、該標識試薬100μLを組織切片上に載せて室温下で30分間放置した。
 [実施例8]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「3-メルカプト-1,2-プロパンジオール」(製品番号139-16452、メーカー和光純薬)を用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は3.8であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5800であった(表3参照)。
 [実施例9]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「グルタチオン(γ-L-グルタミル-L-システイニルグリシン)」(製品番号G0074、メーカー東京化成)を用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は4.6であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5900であった(表3参照)。
 [実施例10]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「トリス(2-カルボキシエチル)ホスフィン塩酸塩」(製品番号322-91081 HTMLCONTROL Forms.HTML:Hidden.1  HTMLCONTROL Forms.HTML:Hidden.1 、メーカー和光純薬)を用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は4.0であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5600であった(表3参照)。
 [実施例11]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「システイン」(製品番号013-05133 HTMLCONTROL Forms.HTML:Hidden.1  HTMLCONTROL Forms.HTML:Hidden.1 、メーカー和光純薬)を用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は3.4であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は5000であった(表3参照)。
 [実施例12]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「「2-メルカプトエチルアミン」(製品番号20408 HTMLCONTROL Forms.HTML:Hidden.1  HTMLCONTROL Forms.HTML:Hidden.1 、メーカーThermo SCIENTIFIC)を用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は4.9であり、粒子の凝集や沈降は見られなかった。また、HER2に特異的な輝点数は6200であった(表3参照)。
 [比較例5]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「Traut's  Reagent」(製品番号I6256-100MG、メーカーSigma-Aldrich)を用いたこと以外は、実施例7と同様に2次抗体が結合した抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は1.0であり、粒子の凝集や沈降が見られた。また、HER2に特異的な輝点数は600であった(表3参照)。
 [比較例6]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに「Biotin Labeling Kit - SH」(製品番号LK10、メーカー同人堂化学社)用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った。その結果、「抗体/SA」の相対値は1.5であり、粒子の凝集や沈降が見られた。また、HER2に特異的な輝点数は1400であった(表3参照)。
 [比較例7]
 実施例7で使用した1Mの2-メルカプトエタノールの代わりに1Mの「(+/-)-ジチオスレイトール」(製品番号041-08971、メーカー和光純薬)を用いたこと以外は、実施例7と同様に抗ウサギIgG抗体結合TAMRA内包シリカナノ粒子の製造、凝集確認試験および免疫染色等を行った(表3参照)。その結果、「抗体/SA」の相対値は1.7であり、粒子の凝集や沈降が見られた。また、HER2に特異的な輝点数は2300であった(表3参照)。
Figure JPOXMLDOC01-appb-T000004
 蛍光色素内包樹脂粒子を用いたHER2染色結果(2次抗体結合型)
 (結果・考察)
 1次抗体(抗HER2ウサギ抗体)と、本発明の製造方法に従って製造した2次抗体(抗ウサギIgG抗体)結合TAMRA内包ナノ粒子とを用いる2次抗体結合型の免疫染色を行った結果、計測されたHER2に特異的な輝点数は4000~6000であり(実施例7~12)、従来の製造方法に従って製造した抗HER2抗体結合TAMRA内包ナノ粒子を用いた場合(比較例5~7)の輝点数600~2300よりも著しく多く、SA結合TAMRA内包ナノ粒子を用いた場合(比較例1)の輝点数6200に近い輝点数が計測された(表3参照)。また、このような2次抗体結合型の実施例7~12の結果は、前記1次抗体結合型の実施例1~6の結果(輝点数3800~6100、表2参照)よりもやや高かった。この結果から、2次抗体を結合したTAMRA内包ナノ粒子を用いる2次抗体結合型の免疫染色であっても問題なく免疫染色が可能であることが分かり、多重免疫染色に適用できることも推認することができる。
 以上、本発明の実施の形態および実施例を説明してきたが、本発明はこれらの実施の形態、実施例に限定されず、特許請求の範囲に記載された本発明の要旨を逸脱しない限り、設計変更は許容される。

Claims (10)

  1.  抗体と蛍光体集積ナノ粒子とが、当該抗体のジスルフィド結合(-S-S-)を還元することによって生成したSH基と、当該蛍光体集積ナノ粒子の表面にある結合基との反応によって結合している抗体結合蛍光体集積ナノ粒子であって、
     2-イミノチオランを使用してジスルフィド結合をSH基に還元したストレプトアビジンが、前記蛍光体集積ナノ粒子の表面の単位面積内にある所定数の結合基に対して結合しうる数をnモルと表した場合、
     前記抗体が前記所定数の結合基に対して結合している数が2nモル以上である、抗体結合蛍光体集積ナノ粒子。
  2.  前記結合基がマレイミド基、アルデヒド基またはブロモアセトアミド基からなる群から選択された1種または2種以上である、請求項1に記載の抗体結合蛍光体集積ナノ粒子。
  3.  前記抗体が、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)、トリス(2-カルボキシエチル)ホスフィン塩酸塩、システイン、2-メルカプトエチルアミンからなる群から選択された1種または2種以上の還元剤によって処理されたものである、請求項1または2に記載の抗体結合蛍光体集積ナノ粒子。
  4.  前記抗体が免疫染色で用いられる2次抗体である、請求項1~3のいずれか一項に記載の抗体結合蛍光体集積ナノ粒子。
  5.  請求項1~4のいずれか一項の抗体結合蛍光体集積ナノ粒子の製造方法であって、
     SH基の数/抗体数が1以上~5以下となるように前記抗体のジスルフィド結合部分を還元剤により還元する工程、
     該還元後の抗体を、結合基を有する蛍光体集積ナノ粒子に結合させる工程を含む、抗体結合蛍光体集積ナノ粒子の製造方法。
  6.  前記還元に用いられる還元剤が、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルタチオン(γ-L-グルタミル-L-システイニルグリシン)、トリス(2-カルボキシエチル)ホスフィン塩酸塩、システイン、2-メルカプトエチルアミンからなる群から選択された1種または2種以上である、請求項5に記載の抗体結合蛍光体集積ナノ粒子の製造方法。
  7.  組織切片上の抗原に結合する1次抗体を含む抗体試薬と、
     請求項4の抗体結合蛍光体集積ナノ粒子を含んだ標識試薬と、を備えた免疫染色試薬キット。
  8.  請求項1~4のいずれか一項に記載の抗体結合蛍光体集積ナノ粒子、または請求項7に記載の免疫染色試薬キットを用い、前記抗体結合蛍光体集積ナノ粒子を抗原に固定して蛍光染色する免疫染色反応工程を含む、免疫染色法。
  9.  染色対象が病理診断の対象となる疾病に関連する抗原である、請求項8に記載の免疫染色法。
  10.  前記抗原が2種以上であり、
     請求項1~5のいずれか一項に記載の抗体結合蛍光体集積ナノ粒子は、抗体および蛍光波長が異なる2種以上の蛍光体集積ナノ粒子であり、2種以上の抗原を染め分ける多重免疫染色に用いられる、請求項8に記載の免疫染色法。
PCT/JP2016/052989 2015-02-12 2016-02-02 抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット WO2016129444A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574744A JP6740906B2 (ja) 2015-02-12 2016-02-02 抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-025426 2015-02-12
JP2015025426 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016129444A1 true WO2016129444A1 (ja) 2016-08-18

Family

ID=56614692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052989 WO2016129444A1 (ja) 2015-02-12 2016-02-02 抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット

Country Status (2)

Country Link
JP (1) JP6740906B2 (ja)
WO (1) WO2016129444A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079314A1 (ja) * 2016-10-24 2018-05-03 東レ株式会社 半導体センサおよびその製造方法、ならびに複合センサ
JP2018119959A (ja) * 2017-01-25 2018-08-02 三洋化成工業株式会社 抗原又は抗体固定化粒子及び免疫測定試薬の製造方法並びに免疫測定方法
WO2018151071A1 (ja) * 2017-02-14 2018-08-23 コニカミノルタ株式会社 蛍光標識法
WO2018154994A1 (ja) 2017-02-27 2018-08-30 コニカミノルタ株式会社 粒子表面状態の評価方法および評価システム
JP2018155608A (ja) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 蛍光体集積粒子複合体を用いた多段階蛍光染色方法および蛍光体集積粒子複合体
WO2018185943A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 蛍光プレミックス粒子、それを含有する蛍光染色液、およびそれらを用いた蛍光染色法
WO2018185942A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 タンパク質修飾蛍光体集積粒子の精製物を製造する方法、蛍光染色液の製造方法、タンパク質修飾蛍光体集積粒子の精製物、蛍光染色液およびタンパク質修飾蛍光体集積粒子精製用フィルター
WO2020148985A1 (ja) 2019-01-18 2020-07-23 コニカミノルタ株式会社 標的物質検出用蛍光体集積ナノ粒子
EP3745129A4 (en) * 2018-03-23 2021-03-24 Konica Minolta, Inc. MARKED ANTIBODY DISPERSION LIQUID AND KIT FOR SPFS
US11434376B2 (en) 2017-02-14 2022-09-06 Konica Minolta, Inc. Aminocoumarin compound, and aminocoumarin compound-containing resin particles

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205863A (ja) * 1985-03-09 1986-09-12 Meidensha Electric Mfg Co Ltd 酵素標識抗体の調製法およびその抗体
JPS6149624B2 (ja) * 1981-09-30 1986-10-30 Toshihiko Namihisa
JPH07270415A (ja) * 1994-03-31 1995-10-20 Toray Ind Inc 酵素免疫測定法
JPH07270416A (ja) * 1994-04-01 1995-10-20 Sekisui Chem Co Ltd 酵素免疫測定法
JP2000053590A (ja) * 1989-08-09 2000-02-22 Rhomed Inc テクネチウムまたはレニウムでの抗体または他のタンパク質の直接放射能標識
JP3731891B2 (ja) * 1992-10-21 2006-01-05 ミルテンイ,ステファン 分泌生成物による細胞の直接選択
JP2008541015A (ja) * 2005-04-28 2008-11-20 ベンタナ・メデイカル・システムズ・インコーポレーテツド ナノ粒子コンジュゲート
WO2012029342A1 (ja) * 2010-08-30 2012-03-08 コニカミノルタエムジー株式会社 組織染色方法、組織評価方法および生体物質検出方法
WO2012133047A1 (ja) * 2011-03-25 2012-10-04 コニカミノルタエムジー株式会社 免疫組織染色法、およびこれを用いた抗体医薬の有効性を判定する方法
JP5313509B2 (ja) * 2003-04-03 2013-10-09 エンゾー ライフ サイエンセズ インコーポレイテッド マルチシグナル標識化試薬及びそれらの標識化方法並びに定量化方法
JP2014174018A (ja) * 2013-03-08 2014-09-22 Konica Minolta Inc 蛍光色素標識用樹脂粒子及びその製造方法並びに該粒子を含む組織免疫染色用キット

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149624B2 (ja) * 1981-09-30 1986-10-30 Toshihiko Namihisa
JPS61205863A (ja) * 1985-03-09 1986-09-12 Meidensha Electric Mfg Co Ltd 酵素標識抗体の調製法およびその抗体
JP2000053590A (ja) * 1989-08-09 2000-02-22 Rhomed Inc テクネチウムまたはレニウムでの抗体または他のタンパク質の直接放射能標識
JP3731891B2 (ja) * 1992-10-21 2006-01-05 ミルテンイ,ステファン 分泌生成物による細胞の直接選択
JPH07270415A (ja) * 1994-03-31 1995-10-20 Toray Ind Inc 酵素免疫測定法
JPH07270416A (ja) * 1994-04-01 1995-10-20 Sekisui Chem Co Ltd 酵素免疫測定法
JP5313509B2 (ja) * 2003-04-03 2013-10-09 エンゾー ライフ サイエンセズ インコーポレイテッド マルチシグナル標識化試薬及びそれらの標識化方法並びに定量化方法
JP2008541015A (ja) * 2005-04-28 2008-11-20 ベンタナ・メデイカル・システムズ・インコーポレーテツド ナノ粒子コンジュゲート
WO2012029342A1 (ja) * 2010-08-30 2012-03-08 コニカミノルタエムジー株式会社 組織染色方法、組織評価方法および生体物質検出方法
WO2012133047A1 (ja) * 2011-03-25 2012-10-04 コニカミノルタエムジー株式会社 免疫組織染色法、およびこれを用いた抗体医薬の有効性を判定する方法
JP2014174018A (ja) * 2013-03-08 2014-09-22 Konica Minolta Inc 蛍光色素標識用樹脂粒子及びその製造方法並びに該粒子を含む組織免疫染色用キット

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124317B2 (ja) 2016-10-24 2022-08-24 東レ株式会社 半導体センサおよび複合センサ
JPWO2018079314A1 (ja) * 2016-10-24 2019-09-12 東レ株式会社 半導体センサおよびその製造方法、ならびに複合センサ
WO2018079314A1 (ja) * 2016-10-24 2018-05-03 東レ株式会社 半導体センサおよびその製造方法、ならびに複合センサ
JP2018119959A (ja) * 2017-01-25 2018-08-02 三洋化成工業株式会社 抗原又は抗体固定化粒子及び免疫測定試薬の製造方法並びに免疫測定方法
JP7095603B2 (ja) 2017-02-14 2022-07-05 コニカミノルタ株式会社 蛍光標識法
WO2018151071A1 (ja) * 2017-02-14 2018-08-23 コニカミノルタ株式会社 蛍光標識法
US11434376B2 (en) 2017-02-14 2022-09-06 Konica Minolta, Inc. Aminocoumarin compound, and aminocoumarin compound-containing resin particles
JPWO2018151071A1 (ja) * 2017-02-14 2019-12-12 コニカミノルタ株式会社 蛍光標識法
WO2018154994A1 (ja) 2017-02-27 2018-08-30 コニカミノルタ株式会社 粒子表面状態の評価方法および評価システム
JPWO2018154994A1 (ja) * 2017-02-27 2019-12-26 コニカミノルタ株式会社 粒子表面状態の評価方法および評価システム
JP2018155608A (ja) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 蛍光体集積粒子複合体を用いた多段階蛍光染色方法および蛍光体集積粒子複合体
US20200003764A1 (en) * 2017-04-07 2020-01-02 Konica Minolta, Inc. Method for manufacturing purified product of protein-modified phosphor-integrated particle, method for manufacturing fluorescent staining liquid, purified product of protein-modified phosphor-integrated particle, and filter for purifying fluorescent staining liquid and protein-modified phosphor-integrated particle
JPWO2018185943A1 (ja) * 2017-04-07 2020-02-13 コニカミノルタ株式会社 蛍光プレミックス粒子、それを含有する蛍光染色液、およびそれらを用いた蛍光染色法
EP3608669A4 (en) * 2017-04-07 2020-06-03 Konica Minolta, Inc. FLUORESCENT PRE-MIXED PARTICLES, FLUORESCENT STYLING THEREFOR, AND FLUORESCENT STYLING METHOD WHICH ARE USED THEREOF
JPWO2018185942A1 (ja) * 2017-04-07 2020-02-13 コニカミノルタ株式会社 タンパク質修飾蛍光体集積粒子の精製物を製造する方法、蛍光染色液の製造方法、タンパク質修飾蛍光体集積粒子の精製物、蛍光染色液およびタンパク質修飾蛍光体集積粒子精製用フィルター
WO2018185942A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 タンパク質修飾蛍光体集積粒子の精製物を製造する方法、蛍光染色液の製造方法、タンパク質修飾蛍光体集積粒子の精製物、蛍光染色液およびタンパク質修飾蛍光体集積粒子精製用フィルター
WO2018185943A1 (ja) 2017-04-07 2018-10-11 コニカミノルタ株式会社 蛍光プレミックス粒子、それを含有する蛍光染色液、およびそれらを用いた蛍光染色法
EP3745129A4 (en) * 2018-03-23 2021-03-24 Konica Minolta, Inc. MARKED ANTIBODY DISPERSION LIQUID AND KIT FOR SPFS
WO2020148985A1 (ja) 2019-01-18 2020-07-23 コニカミノルタ株式会社 標的物質検出用蛍光体集積ナノ粒子
JPWO2020148985A1 (ja) * 2019-01-18 2021-11-25 コニカミノルタ株式会社 標的物質検出用蛍光体集積ナノ粒子

Also Published As

Publication number Publication date
JPWO2016129444A1 (ja) 2017-11-24
JP6740906B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6740906B2 (ja) 抗体結合蛍光体集積ナノ粒子、抗体結合蛍光体集積ナノ粒子の製造方法および免疫染色キット
JP6194882B2 (ja) 生体物質の検出方法
JP6743703B2 (ja) 免疫染色法、およびこれに用いられる免疫染色試薬キット
JP6129330B2 (ja) 蛍光体集積ナノ粒子標識剤、およびこれを用いた蛍光免疫染色法
US20190212335A1 (en) AIE Nanoparticle Conjugates And Methods Therefor
JP6614161B2 (ja) 蛍光観察に使用する蛍光体集積ナノ粒子
JP6504159B2 (ja) 蛍光体集積ナノ粒子、これを用いた染色試薬、キットおよび蛍光免疫染色法
WO2015045961A1 (ja) 蛍光ナノ粒子標識体、多重免疫染色剤キットおよび多重免疫染色法
JP2012194013A (ja) 免疫組織化学染色方法及び反応試薬
JP6725045B2 (ja) 蛍光ナノ粒子用希釈液、これを用いた蛍光免疫染色用キット、蛍光免疫染色用溶液、および蛍光免疫染色法、遺伝子染色法
JP6711352B2 (ja) インサイチュハイブリダイゼイション用のプローブ試薬
EP3608669A1 (en) Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used
US20240288431A1 (en) Functionalized nanoparticles
WO2020148985A1 (ja) 標的物質検出用蛍光体集積ナノ粒子
JP7001083B2 (ja) 蛍光観察に使用する蛍光体集積ナノ粒子
Misiak et al. Novel UV-activated biofunctionalization of up-converting nanocrystals for detection of proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749088

Country of ref document: EP

Kind code of ref document: A1