WO2016127716A1 - 一种高强韧合金材料及其半固态烧结制备方法和应用 - Google Patents

一种高强韧合金材料及其半固态烧结制备方法和应用 Download PDF

Info

Publication number
WO2016127716A1
WO2016127716A1 PCT/CN2015/099634 CN2015099634W WO2016127716A1 WO 2016127716 A1 WO2016127716 A1 WO 2016127716A1 CN 2015099634 W CN2015099634 W CN 2015099634W WO 2016127716 A1 WO2016127716 A1 WO 2016127716A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sintering
strength
alloy
semi
Prior art date
Application number
PCT/CN2015/099634
Other languages
English (en)
French (fr)
Inventor
杨超
姚亚光
康利梅
刘乐华
屈盛官
陈维平
李元元
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/322,183 priority Critical patent/US10344356B2/en
Publication of WO2016127716A1 publication Critical patent/WO2016127716A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F2003/175Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • B22F2003/185Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers by hot rolling, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention belongs to the technical field of alloy material preparation, and particularly relates to a high strength and toughness alloy material and a semi-solid sintering preparation method and application thereof.
  • Semi-solid metal processing refers to a processing method that utilizes a semi-solid temperature interval in a process in which a metal transitions from a solid to a liquid, or from a liquid to a solid.
  • the Massachusetts Institute of Technology proposed the concept of semi-solid processing technology, which uses a non-dendritic semi-solid slurry to break the traditional dendritic solidification mode, with low deformation resistance and high material utilization.
  • the unique advantages of easy automation and the formation of new processing technologies have attracted the attention of researchers from all over the world, and the products and applications of semi-solid processing have also developed rapidly.
  • this method also has two defects: First, because the five component components are easy to form intermetallic compounds, thereby canceling the dendrite enhancement effect and deteriorating the ductility of the material, thereby forming a nanocrystalline matrix/amorphous matrix + ductile ⁇ -
  • the composition range of Ti dendrites is relatively narrow; the second is the limited cooling rate during the copper mold casting process, which results in the preparation of these high-strength and tough double-scale titanium alloys, which are generally several millimeters (4 mm or less). The above two factors have become the bottleneck restricting the practical application of these high-strength and tough double-scale titanium alloys.
  • the powder metallurgy technology has the characteristics of uniform material composition, high material utilization rate, near net shape formation, and easy preparation of ultrafine/nanocrystalline high strength and toughness alloy, which is often used for preparation. Large-sized, complex-shaped alloy parts.
  • the combination of semi-solid processing technology and powder metallurgy technology such as powder forging, powder extrusion, powder rolling, etc.
  • the low melting matrix alloy particles are usually mixed with high melting point reinforcing phase particles and heated to a semi-solid range of the base alloy.
  • the composite material is prepared by stirring and further processing.
  • a primary object of the present invention is to provide a semi-solid sintering preparation method of a high strength tough alloy material.
  • the method can prepare high-strength and high-melting-point alloys and parts thereof with large size, complicated shape, microstructure, nanocrystalline, ultrafine crystal, fine crystal or double-scale structure, and overcome the traditional semi-solid processing technology, difficult to prepare semi-solid slurry It is difficult to obtain nanocrystalline, ultrafine, fine or double-scale structures, and it is difficult to obtain large-sized bulk materials by rapid solidification.
  • Another object of the present invention is to provide a high strength and toughness alloy material prepared by the above method.
  • Still another object of the present invention is to provide the above-mentioned high-strength and tough alloy materials in aerospace, military, instrumentation Apps in the domain.
  • a semi-solid sintering preparation method for a high-strength and toughness alloy material which is a combination preparation method of powder metallurgy technology and semi-solid processing technology, specifically comprising the following steps and process conditions:
  • Step 1 Mixing powder
  • the elemental powder is placed in a proportioned manner in a mixer to be uniformly mixed.
  • Step two high energy ball milling to prepare alloy powder
  • Step 3 Semi-solid sintered alloy powder
  • the alloy powder loaded into the sintering mold is fixed by powder metallurgy technology, and the sintering temperature Ts is selected, and the sintering is performed by a two-step method: heating under the sintering pressure condition to below the melting temperature of the melting point of the lowest temperature of the alloy powder, the alloy is The powder is subjected to sintering densification treatment; after depressurization, the temperature is raised to the sintering temperature Ts and the semi-solid processing is performed by heat preservation, and the process conditions are as follows:
  • sintering pressure is 20 ⁇ 500 MPa
  • the sintering pressure in step 3 is preferably 30 to 50 MPa; when the sintering mold used is a tungsten carbide mold, the sintering pressure in step 3 is preferably 50 ⁇ 500 MPa.
  • the melting temperature of the melting point of the lowest temperature melting peak of the alloy powder in the preparation method of the present invention and the maximum melting temperature of the melting peak of the alloy powder are obtained by thermal physical property analysis of the alloy powder after the ball milling in the second step. Two or more melting peaks are obtained in the thermal property analysis, as well as the initial melting temperature, the peak melting temperature, and the ending melting temperature of each melting peak.
  • the powder metallurgy technology described in the third step refers to any powder metallurgy technology conventionally used in the art, It is any one of methods such as powder extrusion, powder hot pressing, powder rolling, powder forging, and spark plasma sintering.
  • the elemental powder in the first step may be a simple powder which is conventionally used for the preparation of the alloy in the field, and may be a powder prepared by various methods such as an atomization method, an electrolysis method, a hydrogenation dehydrogenation method, etc., and the particle size is not specifically limited. It may be a fine powder or a relatively coarse powder.
  • the alloy composition of the design refers to the alloy component obtained by the target.
  • the conditions of the high-energy ball milling in the second step are not specifically limited, and it is only necessary to achieve the effect of ball-milling to form an alloy powder of a nanocrystalline or amorphous structure.
  • the ball milling is carried out under an inert gas atmosphere, preferably under argon gas protection.
  • the heat preservation time described in the third step may be adjusted according to actual conditions, and is preferably 2 to 10 minutes.
  • the high-strength and toughness alloy material prepared in the third step can also be subjected to subsequent heat treatment, for example, the prepared high-strength and toughness alloy material is placed in a vacuum furnace, and subjected to annealing treatment to eliminate residual stress and microstructure defects.
  • the high-strength and toughness alloy materials prepared by the above method may be different alloy systems according to design, including Ti-based, Ni-based, Z-based, Cu-based, Co-based, Nb-based, Fe-based, Mn-based, Mo-based Alloy systems such as Ta-based, especially high-melting alloy systems such as Ti-based and Ni-based.
  • the high-strength and toughness alloy material prepared by the invention has a new structure, and the structure comprises nanocrystalline, ultrafine crystal, fine crystal or double-scale structure, so has excellent performance and can be widely applied to aerospace, military, instrumentation. In the field.
  • the preparation method of the present invention can perform semi-solid processing on various alloy systems, especially high-melting alloy systems such as Ti-based and Ni-based, thereby obtaining nanocrystalline, ultrafine crystal, fine crystal or double-scale structures, and the like.
  • the preparation method of the invention is a combination preparation method of powder metallurgy technology and semi-solid processing technology, the core of which is that by measuring the melting peak of the alloy powder, the temperature range of the two-step sintering is selected, thereby sintering and densifying the alloy powder.
  • the semi-solid processing is performed, and the sintering temperature is between the initial melting temperature of the melting peak of the lowest temperature and the initial melting temperature of the melting peak of the highest temperature, and the sintering pressure is between 30 and 500 MPa.
  • the invention overcomes the problems of traditional semi-solid processing technology, difficult to obtain double-scale structure, and is suitable for preparing high-strength and tough alloy materials and parts thereof which are large in size, complex in shape and suitable for engineering applications, and has wide versatility and practicality. Sexuality has a good prospect of popularization and application in the fields of aerospace, military, instrumentation and so on. Advantageous effects of the invention
  • the preparation method of the present invention can perform semi-solid processing on a plurality of alloy systems, particularly a high-melting alloy system which is rarely studied such as a Ti-based or Ni-based, thereby obtaining nanocrystalline, ultrafine crystal, New microstructures and excellent alloy materials such as fine-grained or double-scale structures have important theoretical and engineering significance for expanding semi-solid processing.
  • the powder metallurgy technique used in the preparation method of the present invention may include any one of powder extrusion, powder hot pressing, powder rolling, powder forging, and discharge plasma sintering, and thus can be used for preparing a large size.
  • High-strength alloys and their parts with complex shapes and suitable for engineering applications have wide versatility and practicability.
  • the high-strength and toughness alloy material prepared by the invention has a microstructure including nanocrystals and ultrafine crystals.
  • the invention solves the problem of difficult pulping, and can directly perform ball milling and powder sintering according to the designed alloy composition, thereby greatly saving the processing cost of the raw material.
  • the present invention can produce a high-strength alloy and a part thereof which are large in size, complicated in shape, and suitable for engineering applications.
  • Example 1 is a differential scanning calorimetry curve of the high energy ball milling alloy powder prepared in Example 1.
  • Example 2 is a scanning electron micrograph of a high-strength and tough double-scale titanium alloy prepared in Example 1.
  • Example 3 is a transmission electron micrograph of a high-strength and tough double-scale titanium alloy prepared in Example 1.
  • FIG. 4 is a stress-strain curve of a high-strength and tough double-scale titanium alloy prepared in Example 1.
  • Example 1 Preparation of a High Strength and Toughness Double-Scale Structure Titanium Alloy
  • Step 1 Mixing powder
  • the Ti 62 Nb 12 . 2 Fe 13 . 6 Co 13 . 6 A1 5 . 8 alloy system is selected, and the powder is compounded according to the mass ratio of the selected alloy system.
  • the atomization method is adopted with a particle size of 7.5 ⁇ .
  • the elemental powder of the present invention is not limited thereto, and the elemental powder may be a powder prepared by other methods such as electrolysis, and the particle size is not particularly limited, and may be a fine powder or a relatively coarse powder.
  • the above elemental powder was uniformly mixed in a mixer.
  • the present example is preferably a Ti-based alloy system, but the alloy system selected in the present invention is not limited thereto, and may also be selected from a Ni group, a Zr group, a Cu group, a Co group, a Nb group, a Fe group, a Mn group, a Mo group, and a Ta group. And other alloy systems.
  • Step 2 Preparation of alloy powder by high energy ball milling
  • the uniformly mixed powder is placed in an argon-protected planetary ball mill (QM-2SP20) for high-energy ball milling, and the ball milling media such as the can body and the grinding ball material are all stainless steel, and the diameters of the grinding balls are 15, 10, and 6 mm, respectively. They have a weight ratio of 1:3:1.
  • the high-energy ball milling process parameters are as follows: The ball mill tank is filled with high-purity argon (99.999 %, 0.5 MPa) protection, the ball-to-batch ratio is 8:1, and the rotation speed is 2 s. It is taken in the glove box in an argon atmosphere every 10 h. The left and right powders were tested by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) until 70 h after ball milling, and XRD showed 70
  • the powder structure of the ball mill is surrounded by ⁇ -Ti nanocrystals with an amorphous phase of about 90 ⁇ 3 ⁇ 4.
  • the DSC curve of Figure 1 indicates that the 70 h ball milled powder has an endothermic peak temperature of 1125 ° C during heating and Two melting peaks at 1180 °C.
  • Step 3 Semi-solid sintered alloy powder
  • Sintering sinter Under 50 MPa pressure, the temperature is raised to 1050 ° C in 10 minutes, and the temperature is raised to 1100 under pressure relief conditions for 1 minute.
  • a high-strength and tough double-scale structural titanium alloy material having a diameter of ⁇ 20 mm (if the mold size is larger, the alloy material is larger in size) and having a density of 5.6 g/cm 3 is obtained.
  • the SEM image of Figure 2 shows that the microstructure consists of a micron-sized (CoFe) Ti 2 ffi region and a micron-sized hybrid matrix.
  • the TEM image of Figure 3 shows that the micron-sized hybrid matrix is surrounded by nano-sized ⁇ -Ti.
  • the size of TiFe is composed, so the alloy is a double-sized structure including microcrystalline (CoFe) Ti 2 , nanocrystalline ⁇ -Ti and TiFe; the compressive stress-strain curve of Fig. 4 indicates the compressive yield strength of the double-scale titanium alloy material.
  • the strain at break and the strain at break are 1790 MPa and 19%, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种高强韧合金材料及其半固态烧结制备方法和应用。该制备方法包括混粉、高能球磨制备合金粉末和半固态烧结合金粉末三个步骤,关键在于两步法烧结:烧结压力条件下升温至合金粉末最低温度熔化峰的开始熔化温度以下,进行烧结致密化处理;卸压后升温至烧结温度Ts并保温进行半固态加工处理,烧结温度Ts:Ts≥合金粉末最低温度熔化峰的开始熔化温度,Ts≤合金粉末最高温度熔化峰的开始熔化温度。

Description

说明书 发明名称:一种高强韧合金材料及其半固态烧结制备方法和应用 技术领域
[0001] 本发明属于合金材料制备技术领域, 特别涉及一种高强韧合金材料及其半固态 烧结制备方法和应用。
背景技术
[0002] 半固态金属加工是指利用金属从固态向液态、 或从液态向固态转变过程中的半 固态温度区间实现金属成形的加工方法。 20世纪 70年代初期, 美国麻省理工学 院提出了半固态加工技术的概念, 该技术采用非枝晶半固态浆料, 打破了传统 的枝晶凝固模式, 具有变形抗力小、 材料利用率高、 易实现自动化以及形成新 加工工艺等独特的优点, 因而引起了各国研究者的高度重视, 半固态加工的产 品及应用也随之得到迅猛发展。
[0003] 然而, 截至目前, 半固态加工技术的研究主要集中于铝合金、 镁合金等低熔点 合金体系, 且制备的合金微观组织晶粒都比较粗大。 同吋, 用传统的半固态加 工方法 (如流变铸造、 流变锻造和触变锻造等) 不可能获得超细晶或纳米晶等 晶粒细化的微观结构, 更不可能制备出细晶、 超细晶或者纳米晶等三种结构中 任意两种尺寸晶粒共存的双尺度微观结构。 事实上, 研究结果表明, 铁、 钛、 铝及其合金中存在的双尺度微观结构往往会大幅提高块体材料的综合性能。 此 夕卜, 传统的半固态加工方法中浆料或坯料的制备比较复杂, 高熔点合金半固态 浆料的制备比较困难, 这就限制了半固态加工在钛合金、 镍合金等高熔点合金 体系中的研究与应用。
[0004] 近年来, 科研人员已经通过铜模铸造快速凝固法获得了一系列纳米晶基体 /非 晶基体 +微米级延性 β-Ti树枝晶的双尺度结构钛合金材料。 在形变过程中, 纳米 晶基体 /非晶基体提供了超高的强度, 而延性 β-Ti树枝晶贡献于材料的高塑性, 其断裂强度大于 2000 MPa、 断裂应变大于 10 %。 此后, 越来越多关于具有此类 微观结构的高强韧合金体系 (包括 Fe基、 Zr基和 Ti基等) 被报道。 这种制备方法 的核心是精心设计合金成分和精确控制合金熔体的凝固条件 [G. He, J. Eckert, W. Loser, and L. Schultz, Nat. Mater. 2, 33 (2003)], 在凝固过程中选择合适的保温区 间让 β-Ti相优先形核长大形成树枝晶, 随后让剩余的合金熔体快速冷却形成纳米 晶或非晶基体。 但是, 这种方法也存在两个缺陷: 一是由于五组元成分容易形 成金属间化合物从而抵消树枝晶的增强效应、 恶化材料的延性, 从而能形成纳 米晶基体 /非晶基体 +延性 β-Ti树枝晶的成分范围比较狭窄; 二是铜模铸造过程中 冷却速率受限, 因而导致制备的这些高强韧双尺度结构钛合金尺寸一般为几个 毫米 (4毫米以下) 。 以上两个因素成为了限制这些高强韧双尺度结构钛合金实 际应用的瓶颈。
[0005] 作为一种替代成形技术, 粉末冶金技术具有制备的材料成分均匀、 材料利用率 高、 近净成形等特点, 且容易制备超细晶 /纳米晶结构的高强韧合金, 常用于制 备较大尺寸、 复杂形状的合金零部件。 关于半固态加工技术与粉末冶金技术 ( 如粉末锻造、 粉末挤压、 粉末轧制等) 的结合, 通常是将低熔点基体合金颗粒 与高熔点增强相颗粒混合后加热到基体合金半固态区间, 进行搅拌及进一步加 工成形制备复合材料。 但是, 由于复合材料的外加增强相存在的固有缺陷一 与基体合金润湿性差, 且这种半固态粉末冶金方法难以保证第二相在基体中分 布均匀, 所以半固态加工结合粉末冶金技术制备的复合材料性能存在大幅提升 的空间。
[0006] 有鉴于此, 如果能利用半固态加工技术在钛合金等高熔点合金体系中, 获得新 型纳米晶、 超细晶、 细晶甚至双尺度的微观结构, 将为幵发新型高性能高熔点 合金材料及其满足工业应用的工程零件, 提供一种新型的制备方法。
技术问题
[0007] 为了克服上述现有技术的缺点与不足, 本发明的首要目的在于提供一种高强韧 合金材料的半固态烧结制备方法。 该方法可制备成形出较大尺寸、 形状复杂、 微观组织为纳米晶、 超细晶、 细晶或双尺度结构的高强韧高熔点合金及其零件 , 克服传统半固态加工技术难以制备半固态浆料、 难以获得纳米晶、 超细晶、 细晶或双尺度结构, 快速凝固法难以获得较大尺寸的块体材料等问题。
[0008] 本发明另一目的在于提供上述方法制备的高强韧合金材料。
[0009] 本发明再一目的在于提供上述高强韧合金材料在航天航空、 军工、 仪器仪表领 域中的应用。
问题的解决方案
技术解决方案
[0010] 本发明的目的通过下述方案实现:
[0011] 一种高强韧合金材料的半固态烧结制备方法, 该方法是粉末冶金技术和半固态 加工技术相结合的成形制备方法, 具体包括以下步骤和工艺条件:
[0012] 步骤一: 混粉
[0013] 根据设计的合金成分, 把单质粉末按比例置于混粉机中混合均匀。
[0014] 步骤二: 高能球磨制备合金粉末
[0015] 将混合均匀的粉末置于球磨机中进行高能球磨, 直至形成纳米晶或非晶结构的 合金粉末;
[0016] 步骤三: 半固态烧结合金粉末
[0017] 采用粉末冶金技术固结装入烧结模具内的合金粉末, 选择烧结温度 Ts, 采用两 步法烧结: 烧结压力条件下升温至合金粉末最低温度熔化峰的幵始熔化温度以 下, 对合金粉末进行烧结致密化处理; 卸压后升温至烧结温度 Ts并保温进行半 固态加工处理, 工艺条件如下:
[0018] 烧结温度 Ts: Ts≥合金粉末最低温度熔化峰的幵始熔化温度
[0019] ^≤合金粉末最高温度熔化峰的幵始熔化温度;
[0020] 烧结压力为 20〜500 MPa;
[0021] 冷却, 得到高强韧合金材料。
[0022] 优选地, 当使用的烧结模具为石墨模具吋, 步骤三所述烧结压力优选为 30〜50 MPa; 当使用的烧结模具为碳化钨模具吋, 步骤三所述烧结压力优选为 50〜500 MPa。
[0023] 本发明制备方法中的合金粉末最低温度熔化峰的幵始熔化温度及合金粉末最高 温度熔化峰的幵始熔化温度通过对步骤二中球磨后的合金粉末进行热物性分析 得到。 热物性分析中可得到两个或多个熔化峰, 以及每个熔化峰的幵始熔化温 度、 峰值熔化温度和结束熔化温度。
[0024] 步骤三中所述的粉末冶金技术指任意本领域常规使用的粉末冶金技术即可, 可 为粉末挤压、 粉末热压、 粉末轧制、 粉末锻造和放电等离子烧结等方法中的任 意一种。
[0025] 步骤一中的单质粉末为本领域合金制备常规使用的单质粉末即可, 可以是雾化 法、 电解法、 氢化脱氢法等各种方法制备的粉末, 颗粒尺寸没有具体的限定, 可以是细粉也可以是相对较粗的粉末。 所述设计的合金成分指目标得到的合金 成分。
[0026] 步骤二中高能球磨的条件无具体限定, 只需达到球磨形成纳米晶或非晶结构的 合金粉末效果即可。 球磨在惰性气体氛围下进行, 优选在氩气保护下进行。
[0027] 步骤三中所述的保温吋间根据实际调整即可, 优选为 2〜10 min。
[0028] 步骤三制备得到的高强韧合金材料还可以进行后续热处理, 如将制备得到的高 强韧合金材料置于真空炉中, 进行退火等处理, 以消除残余应力及微结构缺陷
[0029] 上述方法制备得到的高强韧合金材料, 可根据设计分别为不同的合金体系, 包 括 Ti基、 Ni基、 Zr基、 Cu基、 Co基、 Nb基、 Fe基、 Mn基、 Mo基、 Ta基等合金 体系, 特别是 Ti基、 Ni基等高熔点合金体系。 且本发明制备得到的高强韧合金材 料具有新的结构, 其结构包括为纳米晶、 超细晶、 细晶或双尺度结构, 因此具 有优异的性能, 可广泛应用于航天航空、 军工、 仪器仪表等领域中。
[0030] 本发明的原理为:
[0031] 本发明的制备方法可针对多种合金体系, 特别是 Ti基、 Ni基等高熔点合金体系 进行半固态加工处理, 从而获得具有纳米晶、 超细晶、 细晶或双尺度结构等新 型微观结构、 性能优异的合金材料。 本发明制备方法是粉末冶金技术和半固态 加工技术相结合的成形制备方法, 其核心在于通过测定合金粉末的熔化峰, 选 取两步法烧结的温度段, 从而把合金粉末烧结致密化后再进行半固态加工处理 , 且烧结温度处于最低温度熔化峰的幵始熔化温度和最高温度熔化峰的幵始熔 化温度之间, 烧结压力介于 30〜500 MPa之间。 本发明克服了传统的半固态加工 技术制浆难、 难以获得双尺度结构等问题, 适合制备较大尺寸、 形状复杂、 适 合工程应用的高强韧合金材料及其零件, 具有广泛的通用性和实用性, 在航天 航空、 军工、 仪器仪表等领域中具有良好的推广应用前景。 发明的有益效果
有益效果
[0032] 本发明相对于现有技术, 具有如下的优点及有益效果:
[0033] (1) 本发明的制备方法可针对多种合金体系, 特别是 Ti基、 Ni基等鲜有研究 的高熔点合金体系进行半固态加工处理, 从而获得具有纳米晶、 超细晶、 细晶 或双尺度结构等新型微观结构、 性能优异的合金材料, 对拓展半固态加工领域 具有重要的理论和工程意义。
[0034] (2) 本发明制备方法采用的粉末冶金技术可包括粉末挤压、 粉末热压、 粉末 轧制、 粉末锻造和放电等离子烧结等方法中的任意一种, 因此可用于制备较大 尺寸、 形状复杂、 适合工程应用的高强韧合金及其零件, 具有较广的通用性和 实用性。
[0035] (3) 本发明制备得到的的高强韧合金材料, 其微观结构包括纳米晶、 超细晶
、 细晶或双尺度结构, 具有更优异的各项性能。
[0036] (4) 相比传统的半固态加工方法, 本发明解决了制浆难的问题, 可以直接按 照所设计的合金成分经球磨制粉和粉末烧结即可, 大大节约了原料的加工成本
[0037] (5) 与只能制备小尺寸高强韧合金的铜模铸造法相比, 本发明能制备较大尺 寸、 形状复杂、 适合工程应用的高强韧合金及其零件。
[0038] (6) 与目前的粉末冶金半固态加工技术制备的复合材料相比, 本发明获得的 各种相属于原位析出, 各相之间不存在润湿性差的问题, 因而制备得到的合金 性能更为优异。
对附图的简要说明
附图说明
[0039] 图 1为实施例 1制备得到的高能球磨合金粉末的差示扫描量热曲线。
[0040] 图 2为实施例 1制备得到的高强韧双尺度结构钛合金的扫描电镜图片。
[0041] 图 3为实施例 1制备得到的高强韧双尺度结构钛合金的透射电镜图片。
[0042] 图 4为实施例 1制备得到的高强韧双尺度结构钛合金的应力应变曲线。 实施该发明的最佳实施例
本发明的最佳实施方式
[0043] 下面结合实施例和附图对本发明作进一步详细的描述, 但本发明的实施方式不 限于此。
[0044] 实施例 1 : 一种高强韧双尺度结构钛合金的制备
[0045] 半固态烧结制备方法, 具体步骤如下:
[0046] 步骤一: 混粉
[0047] 选取 Ti 62Nb 12.2Fe 13.6Co 13.6A1 5.8合金体系, 按照所选合金体系质量比进行粉末配 料, 本实例中选用颗粒尺寸均 7.5 μηι的雾化法制备的单质粉末, 但是本发明的粉 末原料不限于此, 单质粉末也可以是电解法等其他方法制备的粉末, 颗粒尺寸 也没有具体的限定, 可以是细粉也可以是相对较粗的粉末。 在混粉机中将上述 单质粉末混合均匀。 本实例优选的是 Ti基合金体系, 但是本发明选用的合金体系 不限于此, 也可以选择 Ni基、 Zr基、 Cu基、 Co基、 Nb基、 Fe基、 Mn基、 Mo基 、 Ta基等合金体系。
[0048] 步骤二: 高能球磨制备合金粉末
[0049] 将混合均匀的粉末置于氩气保护的行星球磨机 (QM-2SP20) 中进行高能球磨 , 罐体和磨球材料等球磨介质均为不锈钢, 磨球直径分别为 15、 10和 6 mm, 它 们的重量比为 1:3:1。 高能球磨工艺参数如下: 球磨罐内充高纯氩气 (99.999 % , 0.5 MPa) 保护, 球料比为 8:1, 转速为 2 s 每隔 10 h在氩气氛围中的手套 箱内取 3 g左右粉末进行 X射线衍射 (XRD) 和差示扫描量热 (DSC) 分析等测 试, 直到球磨吋间为 70 h后, 经 XRD检测表明 70
h球磨的粉末结构为体积分数约 90 <¾的非晶相包围 β-Ti纳米晶, 如图 1的 DSC曲线 表明 70 h球磨的粉末在加热过程中存在吸热峰值温度分别为 1125°C和 1180°C的两 个熔化峰。
[0050] 步骤三: 半固态烧结合金粉末
[0051] 取 20 g步骤二制备得到的合金粉末, 装入直径为 Φ20 mm的石墨烧结模具中, 通过正负石墨电极先预压合金粉末到 50 MPa, 抽真空到 10 -2 Pa, 然后充高纯氩 气保护; 采用脉冲电流快速烧结, 工艺条件如下: [0052] 烧结设备: Dr. Sintering SPS-825放电等离子烧结系统
[0053] 烧结方式: 脉冲电流
[0054] 脉冲电流的占空比: 12:2
[0055] 烧结温度 Ts: 1100°C
[0056] 烧结压力: 50 MPa
[0057] 烧结吋间: 50 MPa压力下 10分钟升温到 1050°C, 卸压条件下 1分钟升温到 1100
°C并保温 5分钟。
[0058] 经烧结即获得直径为 Φ20 mm (如果模具尺寸越大, 制备的合金材料尺寸也越 大) 、 密度为 5.6 g/cm 3的高强韧双尺度结构钛合金材料。 图 2的扫描电镜图片表 明, 其微观结构包括微米尺寸的 (CoFe)Ti 2ffi区和微米尺寸的混合基体, 图 3的透 射电镜图片表明微米尺寸的混合基体由纳米尺寸的 β-Ti包围纳米尺寸的 TiFe构成 , 因此该合金为包括微米晶 (CoFe)Ti 2、 纳米晶 β-Ti和 TiFe的双尺寸结构; 图 4的 压缩应力应变曲线表明, 该双尺度结构钛合金材料的压缩屈服强度和断裂应变 分别为 1790 MPa和 19 %。
上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实施例 的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替 代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权利要求书
一种高强韧合金材料的半固态烧结制备方法, 其特征在于具体包括以 下步骤和工艺条件:
步骤一: 混粉
根据设计的合金成分, 把单质粉末按比例置于混粉机中混合均匀; 步骤二: 高能球磨制备合金粉末
将混合均匀的粉末置于球磨机中进行高能球磨, 直至形成纳米晶或非 晶结构的合金粉末;
步骤三: 半固态烧结合金粉末
采用粉末冶金技术固结装入烧结模具内的合金粉末, 选择烧结温度 Ts , 采用两步法烧结: 烧结压力条件下升温至合金粉末最低温度熔化峰 的幵始熔化温度以下, 对合金粉末进行烧结致密化处理; 卸压后升温 至烧结温度 Ts并保温进行半固态加工处理, 工艺条件如下: 烧结温度 Ts: Ts≥合金粉末最低温度熔化峰的幵始熔化温度
^≤合金粉末最高温度熔化峰的幵始熔化温度;
烧结压力为 20〜500 MPa;
冷却, 得到高强韧合金材料。
根据权利要求 1所述的高强韧合金材料的半固态烧结制备方法, 其特 征在于: 当使用的烧结模具为石墨模具吋, 步骤三所述烧结压力为 30 〜50 MPa; 当使用的烧结模具为碳化钨模具吋, 步骤三所述烧结压 力为 50〜500 MPa。
根据权利要求 1所述的高强韧合金材料的半固态烧结制备方法, 其特 征在于: 步骤三中所述的粉末冶金技术为粉末挤压、 粉末热压、 粉末 轧制、 粉末锻造和放电等离子烧结中的任意一种。
根据权利要求 1所述的高强韧合金材料的半固态烧结制备方法, 其特 征在于: 步骤一中所述的单质粉末为雾化法、 电解法或氢化脱氢法制 备的粉末。
根据权利要求 1所述的高强韧合金材料的半固态烧结制备方法, 其特 征在于: 所述步骤三制备得到的高强韧合金材料进行后续热处理。
[权利要求 6] 根据权利要求 1所述的高强韧合金材料的半固态烧结制备方法, 其特 征在于: 所述步骤三制备得到的高强韧合金材料进行退火处理。
[权利要求 7] —种高强韧合金材料, 其特征在于根据权利要求 1〜6任一项所述的高 强韧合金材料的半固态烧结制备方法得到。
[权利要求 8] 根据权利要求 7所述的高强韧合金材料, 其特征在于所述高强韧合金 材料为 Ti基、 Ni基、 Zr基、 Cu基、 Co基、 Nb基、 Fe基、 Mn基、 Mo 基或 Ta基的合金体系。
[权利要求 9] 根据权利要求 7所述的高强韧合金材料, 其特征在于所述高强韧合金 材料的结构包括为纳米晶、 超细晶、 细晶或双尺度结构。
[权利要求 10] 根据权利要求 7〜9任一项所述的高强韧合金材料在航天航空、 军工和 仪器仪表领域中的应用。
PCT/CN2015/099634 2015-02-13 2015-12-29 一种高强韧合金材料及其半固态烧结制备方法和应用 WO2016127716A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,183 US10344356B2 (en) 2015-02-13 2015-12-29 Alloy material with high strength and toughness and its fabrication method of semi-solid sintering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510082667.5 2015-02-13
CN201510082667.5A CN104674038B (zh) 2015-02-13 2015-02-13 一种高强韧合金材料及其半固态烧结制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016127716A1 true WO2016127716A1 (zh) 2016-08-18

Family

ID=53309619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099634 WO2016127716A1 (zh) 2015-02-13 2015-12-29 一种高强韧合金材料及其半固态烧结制备方法和应用

Country Status (3)

Country Link
US (1) US10344356B2 (zh)
CN (1) CN104674038B (zh)
WO (1) WO2016127716A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103381A (zh) * 2018-01-25 2018-06-01 华南理工大学 一种高强度FeCoNiCrMn高熵合金及其制备方法
US20180298469A1 (en) * 2015-11-03 2018-10-18 South China University Of Technology High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674038B (zh) 2015-02-13 2017-01-25 华南理工大学 一种高强韧合金材料及其半固态烧结制备方法和应用
CN105238954A (zh) * 2015-10-28 2016-01-13 华南理工大学 一种基于共晶转变的多尺度双态结构钛合金及制备与应用
FR3048630B1 (fr) * 2016-03-14 2020-02-21 Centre National De La Recherche Scientifique Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine
CN106513683A (zh) * 2016-11-04 2017-03-22 天津大学 制备细晶高致密的氧化钇弥散强化钨基合金的方法
CN106583740B (zh) * 2016-11-29 2018-10-16 太原理工大学 一种纳米晶镁合金块的制备方法
CN106906379B (zh) * 2017-01-20 2018-09-14 华南理工大学 基于原位晶须强韧化的双尺度结构钛合金及制备与应用
CN106893923B (zh) * 2017-03-02 2018-05-11 中原工学院 一种刀具用多主元合金及其制备方法
CN109332695B (zh) * 2018-11-14 2021-01-05 哈尔滨工程大学 一种增强抗氧化性钼基合金的选区激光熔化制备方法
CN110465666A (zh) * 2019-09-16 2019-11-19 陕西理工大学 纳米界面与超微晶粒钨合金材料的制备方法
CN111020347B (zh) * 2019-12-30 2021-08-17 广州航海学院 一种高致密复相合金材料及其制备方法
CN111471991A (zh) * 2020-03-06 2020-07-31 广州铁路职业技术学院(广州铁路机械学校) 一种高强韧金属材料的激光半固态加工制备方法及高强韧金属材料及其应用
CN111411248B (zh) * 2020-03-24 2021-07-27 广州铁路职业技术学院(广州铁路机械学校) 一种多尺度结构合金材料、制备方法及其用途
CN111455206B (zh) * 2020-04-29 2021-07-06 武汉理工大学 快速半固态热压制造硬质合金的方法
CN111906314B (zh) * 2020-05-30 2022-03-18 中南大学 一种同步提升粉末冶金材料致密度和延伸率的方法
CN111996434A (zh) * 2020-08-21 2020-11-27 南方科技大学 一种块体钛钼铌合金及其制备方法
CN112251640B (zh) * 2020-09-29 2022-05-10 中国科学院金属研究所 纳米晶组织Ti6Al4V-Ag合金及其增材制造制备方法
CN113369456B (zh) * 2021-06-03 2023-04-07 兰州理工大学 一种高性能铝合金的制备方法
CN113493876B (zh) * 2021-07-07 2022-07-01 重庆大学 一种铁基非晶改性镁合金表面的方法
CN114058991B (zh) * 2021-11-23 2022-05-03 四川大学 一种高强度超细孪晶纯钛及其制备方法
CN116789439A (zh) * 2022-03-24 2023-09-22 朱艳 一种具有纳米晶结构的陶瓷材料的制备方法
CN114807716B (zh) * 2022-04-22 2022-09-30 江苏理工学院 一种轨道交通用轻质高熵合金及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842108A (en) * 1997-03-04 1998-11-24 Korea Institute Of Machinery & Materials Mechano-chemical process for production of high density and ultrafine W/Cu composite material
CN101492781A (zh) * 2008-11-18 2009-07-29 华南理工大学 一种高塑性钛基超细晶复合材料及其制备方法
CN102534301A (zh) * 2012-03-02 2012-07-04 华南理工大学 一种高强度低模量医用超细晶钛基复合材料及其制备方法
KR20130125649A (ko) * 2012-05-09 2013-11-19 차인선 Ni3Al을 결합상으로 한 써멧 및 그 제조 방법
CN104674038A (zh) * 2015-02-13 2015-06-03 华南理工大学 一种高强韧合金材料及其半固态烧结制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2084085A1 (en) * 1990-06-12 1991-12-13 Barry W. Ninham Metal carbides and derived composites
WO1992014568A1 (en) * 1991-02-19 1992-09-03 The Australian National University Production of metal and metalloid nitrides
CN100576044C (zh) 2006-12-28 2009-12-30 中芯国际集成电路制造(上海)有限公司 硅基液晶微显示器及其形成方法
CN101381104A (zh) * 2008-10-24 2009-03-11 北京科技大学 一种制备NbAl3金属间化合物的方法
CN102011077B (zh) * 2010-12-17 2012-09-05 北京航空航天大学 一种控制铸态TiAl基合金组织细化和硼化物形态的方法
CN103122426B (zh) * 2013-03-08 2014-07-30 山东金山汽配有限公司 一种钛基粉末冶金刹车盘材料及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842108A (en) * 1997-03-04 1998-11-24 Korea Institute Of Machinery & Materials Mechano-chemical process for production of high density and ultrafine W/Cu composite material
CN101492781A (zh) * 2008-11-18 2009-07-29 华南理工大学 一种高塑性钛基超细晶复合材料及其制备方法
CN102534301A (zh) * 2012-03-02 2012-07-04 华南理工大学 一种高强度低模量医用超细晶钛基复合材料及其制备方法
KR20130125649A (ko) * 2012-05-09 2013-11-19 차인선 Ni3Al을 결합상으로 한 써멧 및 그 제조 방법
CN104674038A (zh) * 2015-02-13 2015-06-03 华南理工大学 一种高强韧合金材料及其半固态烧结制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180298469A1 (en) * 2015-11-03 2018-10-18 South China University Of Technology High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof
US11072841B2 (en) * 2015-11-03 2021-07-27 South China University Of Technology High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof
CN108103381A (zh) * 2018-01-25 2018-06-01 华南理工大学 一种高强度FeCoNiCrMn高熵合金及其制备方法

Also Published As

Publication number Publication date
CN104674038A (zh) 2015-06-03
CN104674038B (zh) 2017-01-25
US10344356B2 (en) 2019-07-09
US20170137917A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
WO2016127716A1 (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
US11072841B2 (en) High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof
Zhou et al. Al0. 5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders
CN108103381B (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
CN104372230B (zh) 一种高强韧超细晶高熵合金及其制备方法
Fu et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0. 6Ti0. 4 high entropy alloy processed by spark plasma sintering
WO2019085183A1 (zh) 制造钛及钛合金冶金制品的方法
AU2020101822A4 (en) Mn-Cu-based damping alloy powder for use in selective laser melting process and preparation method thereof
CN103122431B (zh) 一种长周期结构相增强的镁锂合金的制备方法
CN107686928A (zh) 一种高性能NiCoCrFeMnTi系高熵合金及其制备方法
CN109338172A (zh) 一种高熵合金增强的2024铝基复合材料及其制备方法
CN104232995B (zh) 一种高强韧超细晶复合结构钛合金及其制备方法与应用
Tong et al. Fabrication of micro-fine spherical high Nb containing TiAl alloy powder based on reaction synthesis and RF plasma spheroidization
CN105238954A (zh) 一种基于共晶转变的多尺度双态结构钛合金及制备与应用
CN111621670B (zh) 一种多晶粒尺度核壳结构钛合金块体材料及其制备方法
Sim et al. Influence of mechanical alloying on the microstructure and mechanical properties of powder metallurgy Ti2AlNb-based alloy
CN106906379B (zh) 基于原位晶须强韧化的双尺度结构钛合金及制备与应用
CN112322933A (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
CN110576185A (zh) 一种纳米晶高熵合金粉末及制备方法
CN108546863A (zh) 一种多主元高温合金及其制备方法
CN112828250A (zh) 制备细小晶粒、偏析程度低的合金铸造装置和方法
CN111118379B (zh) 一种Co粘结的TiZrNbMoTa难熔高熵合金及其制备方法
CN113337746A (zh) 一种碳化物增强高熵合金复合材料的制备方法
CN112877570A (zh) 一种钴铬镍多元铸造合金及其制备方法
Chen et al. Additive manufactured high-strength tungsten composite with high deformability by using a novel CoCrNi medium-entropy binder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322183

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15881864

Country of ref document: EP

Kind code of ref document: A1