WO2016125776A1 - 鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法 - Google Patents

鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法 Download PDF

Info

Publication number
WO2016125776A1
WO2016125776A1 PCT/JP2016/053012 JP2016053012W WO2016125776A1 WO 2016125776 A1 WO2016125776 A1 WO 2016125776A1 JP 2016053012 W JP2016053012 W JP 2016053012W WO 2016125776 A1 WO2016125776 A1 WO 2016125776A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel beam
shear reinforcement
reinforced concrete
shear
concrete column
Prior art date
Application number
PCT/JP2016/053012
Other languages
English (en)
French (fr)
Inventor
大吾 石井
山野辺 宏治
Original Assignee
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015019331A external-priority patent/JP6432779B2/ja
Priority claimed from JP2015019332A external-priority patent/JP2016142063A/ja
Priority claimed from JP2015237704A external-priority patent/JP2017101513A/ja
Application filed by 清水建設株式会社 filed Critical 清水建設株式会社
Priority to SG11201706154YA priority Critical patent/SG11201706154YA/en
Publication of WO2016125776A1 publication Critical patent/WO2016125776A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Definitions

  • the main frame is composed of RC columns (reinforced concrete columns) and steel beams
  • RC columns reinforced concrete columns
  • steel beams it is generally necessary to penetrate the shear reinforcement bars through the steel beams at the joints between the RC columns and the steel beams. It takes a lot of time and labor to penetrate the beam.
  • the column beam joints are designed as either rigid joints or pin joints (for example, Patent Document 1, Patents).
  • Patent Document 1 Patents
  • Patent Literature 4 Patent Literature 5
  • Patent Literature 6 Patent Literature 6
  • the bending moment generated in the steel beam changes depending on the fixed state of the column beam joint. That is, when the junction of the two ends of the steel beam is rigid connections, as shown in FIG. 27, the bending moment generated in the steel beams becomes maximum at the steel beam end moment M A and span of the beam end each central moments M C, obtained by the following formula (1), equation (2).
  • M max is the maximum moment (beam end)
  • w is a uniformly distributed load (N / mm)
  • l is a span (mm).
  • Patent Document 5 and Patent Document 6 as an example in which the column beam joint is made semi-rigid, neither is intended for a composite structure building composed of PCaRC columns and steel beams, The structure of the beam-column joint is complicated. And these patent documents 5 and patent documents 6 do not disclose or suggest any design method.
  • the present invention employs the following aspects in order to solve the above problems.
  • a recess is formed in the reinforced concrete column, and an end of the steel beam is inserted into the recess and filled with concrete.
  • a reinforced concrete column and the steel beam are connected to each other, and the fixing length of the steel beam is adjusted by adjusting the embedding length of the end of the steel beam in the concrete filled in the recess, and the fixing
  • the degree By adjusting the degree, the end of the steel beam is semi-rigidly joined to the reinforced concrete column, and the bending moment acting on the joint between the reinforced concrete column and the steel beam and the steel beam is adjusted.
  • the degree of fixation may be set so that the bending moment at the column face position is balanced with the maximum moment within the span of the steel beam.
  • a method for joining a reinforced concrete column and a steel beam according to one aspect of the present invention is such that the end of the steel beam is inserted into a recess formed in the reinforced concrete column, a semicircular hook or an acute angle hook is provided at one end, and the like.
  • the right angle hook of the shear reinforcement bar having a right angle hook on the end side is inserted into a through-hole formed in the web of the steel beam, and the shear reinforcement bar is rotated around the bent portion of the right angle hook, thereby the right angle hook.
  • a semi-circular hook or an acute angle hook on one end of the shear reinforcing bar is arranged in the recess or protrudes into the recess. It is fixed to the main reinforcement of a reinforced concrete column, and concrete is placed in the recess.
  • a method for joining a reinforced concrete column and a steel beam according to the present invention is the method for joining a reinforced concrete column and a steel beam, wherein the joint between the reinforced concrete column and the steel beam is made of the reinforced concrete column.
  • the shear reinforcement is composed of a first shear reinforcement and a second shear reinforcement, the first shear reinforcement is inserted from one end, and the second shear reinforcement is inserted from the other end.
  • the first shear reinforcement bar is inserted through a hole formed in the steel beam, and the second shear reinforcement bar is adjacent to the axis of the reinforced concrete column.
  • a hole forming step that is disposed between the first shear reinforcing bars and that forms the hole in the steel beam, and a first shear reinforcing bar installation step that allows the first shear reinforcing bar to be inserted into the hole.
  • the first shear reinforcement bar and the second shear reinforcement bar Since a special member such as a clip for joining the members is not required, the cost can be reduced as compared with the case where a special member is used.
  • the hole formed in the steel beam has the first Since the diameter may be a little larger than the outer diameter of the shear reinforcement, it is easy to form and the cross-sectional defect of the steel beam can be suppressed.
  • the first shear reinforcement and the second shear reinforcement have their distal ends abutted against each other inside the tubular body. It may be arranged as follows.
  • the tube body may be crimped to the portion where the first shear reinforcement bar and the second shear reinforcement bar overlap, so the first shear reinforcement bar and the second shear reinforcement bar are butted against each other. Compared with the case where it arrange
  • FIG. 11 is a side view (longitudinal section) showing a joint structure of a reinforced concrete column and a steel beam according to the second embodiment.
  • FIG. 12 is a cross-sectional view showing a joint structure between a reinforced concrete column and a steel beam according to the second embodiment.
  • FIG. 13 is a longitudinal sectional view on the front side showing a joint structure between a reinforced concrete column and a steel beam according to the second embodiment.
  • FIG. 14 is a side cross-sectional view showing a reinforced concrete column member below a joint structure between a reinforced concrete column and a steel beam according to a second embodiment.
  • FIG. 15 is a transverse cross-sectional view showing a reinforced concrete column member below a joint structure between a reinforced concrete column and a steel beam according to a second embodiment.
  • FIG. 16 is a longitudinal sectional view on the front side showing a reinforced concrete column member below a joint structure of a reinforced concrete column and a steel beam according to a second embodiment.
  • FIG. 17 is a longitudinal sectional view on the front side showing a reinforced concrete column member above a joint structure between a reinforced concrete column and a steel beam according to a second embodiment.
  • FIG. 18 is a perspective view illustrating an example of a joint portion between a reinforced concrete column and a steel beam according to the third embodiment.
  • FIG. 19 is a view taken along the line X1-X1 in FIG. 20 is a cross-sectional view taken along line X2-X2 of FIG.
  • FIG. 21 is a diagram illustrating the steel beam and the first shear reinforcement.
  • the column beam joint is semi-rigid as shown in FIG. 28, and the fixing degree of the column beam joint can be adjusted. It is possible to reduce the maximum bending moment.
  • the RC beam-steel beam joint structure reduces the maximum bending moment of the steel beam and rationally designs the beam-column joint (steel beam, RC column). It is about the technique that can be done.
  • the RC column / steel beam joint structure 100 of the present embodiment is mainly composed of a PCa RC column 40, a steel beam 41, a PCa RC column 42, and a joint concrete 43 in the upper section.
  • the steel beam 41 is a constituent element, and an end portion is embedded in the RC column 40 of the PCa in the lower section, and a joint concrete 43 is filled and fixed in the embedded portion.
  • the lower RC column 40 includes a plurality of main bars 44 and a plurality of main bars 44 extending vertically as shown in FIGS. 1 to 6.
  • a plurality of shear reinforcement bars 45 integrally attached so as to surround the main bars 44 are embedded in the concrete 46.
  • the RC column 40 in the lower section is formed by protruding the main bar 44 from the upper surface.
  • the steel beam 41 of the present embodiment does not require any processing that requires special structural performance, and can be embedded in the RC column 40 having a lower length. It only has to be done. For this reason, raw materials from a mill manufacturer can be brought into the site as they are and assembled, and the cost can be reduced by making fabless.
  • a level adjustment bolt 50 for height adjustment is installed on the RC pillar 40 in the lower section, and the steel beam 41 is out of the plane of the lower flange when receiving its own weight through the level adjustment bolt 50.
  • Triangular ribs 51 are provided for preventing deformation.
  • high nuts 52 are welded to four locations of the upper flange, and positioning is performed by adjusting the screwing amount of the bolts 53 (inserting / removing the bolts 53). These triangular ribs 51 and high nuts 52 can be installed by field welding and do not require special management such as UT inspection (ultrasonic inspection).
  • the shear reinforcement bars 45 are provided mainly for the purpose of preventing buckling of the main bars 44.
  • the U-shaped shear reinforcement bars 45 are arranged in the joint.
  • the RC pillar 42 in the upper section is formed by embedding a plurality of main reinforcing bars 44 extending in the vertical direction and a plurality of shear reinforcing bars 45 integrally attached so as to surround the plurality of main reinforcing bars 44 in the concrete 46.
  • a plurality of main reinforcing bars 44 extending in the vertical direction and a plurality of shear reinforcing bars 45 integrally attached so as to surround the plurality of main reinforcing bars 44 in the concrete 46.
  • the RC pillar 42 in the upper section is attached to the lower end of the main bar 44, and the sleeve 54 is embedded in the concrete 46 so as to open at the lower end surface.
  • the upper RC column 42 is installed on the lower RC column 40.
  • the main bars 44 projecting from the upper surface of the lower RC column 40 are inserted into the sleeve 54 of the upper RC column 42 to fill the sleeve 54 with grout, and the upper RC column 40 is inserted into the lower RC column 40. 42 are joined together. Further, joint grout is injected between the RC column 42 of the upper section and the RC column 40 of the lower section.
  • the steel beam 41 is arranged by inserting the end portion into the recess 47 of the RC column 40 of the lower section. Then, a formwork is installed, and concrete 43 is placed in the recess 47. At this time, the joint concrete 43 has no problem in the mixing of ordinary concrete, and the steel beam 41 is installed on the RC column 40 in the lower section, and is simultaneously placed when the floor slab is placed. Further, the gap between the four inner surfaces of the recess 47 and the steel beam 41 is secured about 100 mm.
  • symbol 55 shows the top end (upper surface of a floor slab) of a floor slab.
  • the joint A of the RC column and the steel beam of the present embodiment can be configured, and the RC column 1 and the steel beam 2 can be joined as a semi-rigid connection.
  • the fixing degree of the joint structure 100 between the RC column and the steel beam as a semi-rigid connection is adjusted by the embedding length of the steel beam 41.
  • the fixing degree ⁇ of the semi-rigid junction A is determined, and the embedding length d is determined.
  • the RC column-steel beam joining method according to the second embodiment relates to a method of joining the RC column and the steel beam by fixing the steel beam while penetrating the shear reinforcement bars in the field.
  • the other end on the right angle hook 3 side is inserted into the through hole 4 b of the steel beam 4, and the bent portion at the base end of the right angle hook 3 is formed.
  • the shear reinforcing bar 1 is rotated by 90 degrees around the through hole 4b so as to follow the bending radius d of the bent portion, with the rotation center. Thereby, the shear reinforcement 1 can be penetrated to the through-hole 4b of the steel beam 4, and the shear reinforcement 1 can be installed so that the right angle hook 3 follows the web 4a of the steel beam 4. If the semicircular hook 2 on one end side of the shear reinforcing bar 1 penetrating the steel beam 4 is fixed to the column main bar or the like, the installation work of the shear reinforcing bar 1 is completed.
  • the RC pillar 5 of PCa of this joint structure 200 is configured by integrally joining an upper RC pillar member 5a and a lower RC pillar member 5b.
  • the lower RC column member 5 b includes a plurality of main reinforcing bars 6 extending in the vertical direction and a plurality of shear reinforcing bars integrally attached so as to surround the plurality of main reinforcing bars 6. 7 is embedded in concrete 8.
  • the lower RC column member 5b is integrally attached to the lower end with a joining plate (end plate) 10 for connecting (bolt joining) the RC columns 5 of PCa adjacent vertically.
  • the lower RC column member 5b is formed by protruding the main reinforcement 6 from the upper surface.
  • the upper RC column member 5a is attached to the lower end of the main reinforcement 6, and the sleeve 13 is embedded in the concrete 8 so as to open at the lower end surface.
  • a carbon steel pipe for pressure piping of STPG370 is used for the pipe body 30 for example.
  • a distal end portion 28 of the first shear reinforcing bar 23 is inserted into the tubular body 30 from one side in the axial direction, and a distal end portion 29 of the second shear reinforcing bar 24 is inserted from the other side in the axial direction.
  • the distal end portion 28 of the first shear reinforcing bar 23 and the distal end portion 29 of the second shear reinforcing bar 24 inserted into the tubular body 30 are in a state of abutting on the same axis.
  • the tube body 30 is pressure-bonded to the distal end portion 28 of the first shear reinforcing bar 23 and the distal end portion 29 of the second shear reinforcing bar 24, whereby the node 31 of the first shear reinforcing bar 23 and the node of the second shear reinforcing bar 24. 32 is recessed into the tube 30.
  • the tubular body 30 is crimped to the distal end portion 28 of the first shear reinforcing bar 23 and the distal end portion 29 of the second shear reinforcing bar 24 using a crimping tool having a hexagonal compression die. Crimping (pressing) with a crimping tool is performed on the tube body 30 at a plurality of positions spaced in the length direction of the tube body 30. In this way, the first shear reinforcement bar 23 and the second shear reinforcement bar 24 are joined.
  • the distal end portion 28 of the first shear reinforcing bar 23 and the distal end portion 29 of the second shear reinforcing bar 24 are arranged so as to face the inside of the tubular body 30. You may arrange

Abstract

この鉄筋コンクリート柱と鉄骨梁の接合部構造(100)は、鉄筋コンクリート柱(40)に凹所(47)を形成し、凹所(47)に鉄骨梁(41)の端部を挿入配置するとともにコンクリート(43)を充填し、鉄筋コンクリート柱(40,42)と鉄骨梁(41)を接合して構成されている。また、鉄筋コンクリート柱と鉄骨梁の接合部構造(100)は、凹所(47)に充填したコンクリート(43)への鉄骨梁(41)の端部の埋め込み長さを調節して鉄骨梁(41)の固定度を調節し、固定度を調節することによって、鉄骨梁(41)の端部を鉄筋コンクリート柱(40)に半剛接合するとともに鉄筋コンクリート柱(40)と鉄骨梁(41)の接合部及び鉄骨梁(41)に作用する曲げモーメントを調節する構成となっている。

Description

鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法
 本発明は、鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法に関する。
本願は、2015年2月3日に日本国に出願された特願2015-019331、2015年2月3日に日本国に出願された特願2015-019332、2015年12月4日に日本国に出願された特願2015-237704に基づき優先権を主張し、その内容をここに援用する。
 RC柱(鉄筋コンクリート柱)と鉄骨梁で主架構を構成する合成構造では、一般にRC柱と鉄骨梁の接合部でせん断補強筋を鉄骨梁に貫通させる必要があるが、現場でせん断補強筋を鉄骨梁に貫通させる作業には多大な時間と労力を要する。
 このため、せん断補強筋を含む接合部全体、あるいはせん断補強筋相当のふさぎ板などの部材を工場で予め組み立て加工し、現場に搬入し、吊り下げ搬送して設置することが多い。また、せん断補強筋の配筋にクリップ工法を採用することが多い(例えば、特許文献1、特許文献2、特許文献3参照)。
 一方、RC柱と鉄骨梁で構成する合成構造建築物を設計する際には、柱梁接合部を剛接合、ピン接合のいずれかとみなして設計するようにしている(例えば、特許文献1、特許文献4、特許文献5、特許文献6参照)。
 そして、図26から図28に示すように、鉄骨梁に等分布荷重が作用する場合を考えると、鉄骨梁に発生する曲げモーメントは柱梁接合部の固定状態により変化する。
すなわち、鉄骨梁の両端の接合部が剛接合である場合には、図27に示すように、鉄骨梁に発生する曲げモーメントが鉄骨梁端部において最大となり、梁端部のモーメントMとスパン中央のモーメントMはそれぞれ、下記の式(1)、式(2)で求められる。Mmaxは最大モーメント(梁端)、wは等分布荷重(N/mm)、lはスパン(mm)である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 一方、鉄骨梁の両端の接合部がピン接合の場合には、図26に示すように、鉄骨梁に発生する曲げモーメントがスパン中央部分で最大となり、梁端部のモーメントMとスパン中央のモーメントMはそれぞれ、下記の式(3)、式(4)で求められる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
日本国実開平05-57107号公報 日本国特開2000-319984号公報 日本国特開2001-193157号公報 日本国特開平08-4111号公報 日本国特開2001-152550号公報 日本国特開2012-193613号公報
 しかしながら、まず、工場で予め接合部を組み立て加工したり、クリップ工法を採用する場合にはそれぞれ、加工手間や特殊部材(クリップ)が必要で、その分コスト高になる。
 また、工場で予め組み立て加工せず、クリップ工法を採用しない場合には、135度あるいは90度フックを用いてせん断補強筋を定着させることになるが、この場合においても、現場で鉄骨梁貫通後に所定のフック形状に曲げ加工するという非常に困難な作業が必要になる。さらに、鉄骨梁の貫通孔を長孔加工することでフック加工したせん断補強筋を貫通させやすくすることができるが、鉄骨梁の断面欠損部が増えてしまう。
 次に、柱梁接合部を半剛接として評価し、鉄骨梁の固定度を調節することができれば、梁端部の曲げモーメントとスパン中央の曲げモーメントを釣り合わせることができる。これにより、下記の式(5)のように、剛接合及びピン接合の場合と比較し、最大モーメントを低減することができる。
Figure JPOXMLDOC01-appb-M000005
 しかしながら、柱梁接合部を半剛接にした例として上記の特許文献5や特許文献6があるが、いずれもPCaRC柱と鉄骨梁で構成される合成構造建築物を対象としたものではなく、柱梁接合部の構成が複雑である。そして、これら特許文献5や特許文献6には設計法について何ら開示も示唆もされていない。
 本発明は、上記課題を解決するために、以下の態様を採用した。
(1)本発明の一態様に係る鉄筋コンクリート柱と鉄骨梁の接合部構造は、鉄筋コンクリート柱に凹所を形成し、該凹所に鉄骨梁の端部を挿入配置するとともにコンクリートを充填して前記鉄筋コンクリート柱と前記鉄骨梁を接合するように構成され、前記凹所に充填した前記コンクリートへの前記鉄骨梁の端部の埋め込み長さを調節して前記鉄骨梁の固定度を調節し、前記固定度を調節することによって、前記鉄骨梁の端部を前記鉄筋コンクリート柱に半剛接合するとともに前記鉄筋コンクリート柱と前記鉄骨梁の接合部及び前記鉄骨梁に作用する曲げモーメントが調節されている。
(2)上記(1)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造において、前記固定度と、前記埋め込み長さと前記鉄骨梁の梁成の比である埋め込み長さ比の関係を求め、該固定度と埋め込み長さ比の関係から、柱フェイス位置の曲げモーメントと鉄骨梁のスパン内での最大モーメントが釣り合うように前記固定度が設定されていてもよい。
 上記(1)又は(2)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造によれば、従来では困難であった接合部の固定度の設計が鉄骨梁の埋め込み長さを調節することにより容易に行えるようになる。
 また、上記(1)又は(2)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造によれば、接合部の固定度を設計することで、鉄骨梁の発生モーメントを最適化できる。これにより、断面サイズを縮小し、コストダウンを図ることが可能になる。
(3)本発明の一態様に係る鉄筋コンクリート柱と鉄骨梁の接合方法は、鉄筋コンクリート柱に形成された凹所に鉄骨梁の端部を挿入配置し、一端側に半円形フック又は鋭角フック、他端側に直角フックを備えたせん断補強筋の前記直角フックを前記鉄骨梁のウェブに形成された貫通孔に挿入するとともに前記直角フックの屈曲部中心に前記せん断補強筋を回転させ、前記直角フックが前記鉄骨梁のウェブに沿うように前記せん断補強筋を設置し、前記せん断補強筋の一端側の半円形フック又は鋭角フックを前記凹所に配設した補助筋あるいは前記凹所に突出した前記鉄筋コンクリート柱の主筋に定着させ、前記凹所にコンクリートを打設する。
(4)本発明の一態様に係る鉄筋コンクリート柱と鉄骨梁の接合部構造は、鉄筋コンクリート柱に形成された凹所に鉄骨梁の端部が挿入配置され、一端側に半円形フック又は鋭角フック、他端側に直角フックを備えたせん断補強筋が、前記直角フックを前記鉄骨梁のウェブに形成された貫通孔に挿入するとともに前記直角フックが前記鉄骨梁のウェブに沿うように設置され、前記前記せん断補強筋の一端側の半円形フック又は鋭角フックが前記凹所に配設された補助筋あるいは前記凹所に突出した前記鉄筋コンクリート柱の主筋に定着され、前記凹所に前記鉄骨梁の端部と前記せん断補強筋と前記補助筋あるいは前記鉄筋コンクリート柱の主筋を埋設するように前記凹所にコンクリートが打設されている。
上記(3)に記載の鉄筋コンクリート柱と鉄骨梁の接合方法、又は(4)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造においては、従来のようにクリップ等の特殊部材を不要にして、現場で容易に鉄骨梁に貫通させつつせん断補強筋を設置することが可能になる。また、このとき、鉄骨梁の従来サイズの貫通孔に容易に貫通させてせん断補強筋を設置できるため、鉄骨梁の断面欠損が増大することもない。
(5)本発明の一態様に係る鉄筋コンクリート柱と鉄骨梁の接合部構造は、鉄筋コンクリート柱に形成された凹所に鉄骨梁の端部が挿入配置され、前記鉄骨梁に接続して前記凹所内に配設された第1せん断補強筋と前記凹所に突出した前記鉄筋コンクリート柱の第2せん断補強筋とが継手部材を用いて接続され、前記凹所にコンクリートが打設されて前記鉄骨梁の端部と前記第1せん断補強筋と前記第2せん断補強筋と前記継手部材とが打設した前記コンクリートに埋設されて構成されており、且つ、前記継手部材が、前記凹所内に配された前記第1せん断補強筋と前記第2せん断補強筋の外周を囲繞するように設けられ、前記第1せん断補強筋と前記第2せん断補強筋とにそれぞれ圧着される管体である。
上記(5)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造においては、鉄骨コンクリート柱の第2せん断補強筋の端部と、鉄骨梁に接続して凹所に配される第1せん断補強筋の端部とを管体の内部に挿入し、これらせん断補強筋を囲繞する管体によって圧着されている。すなわち、第1せん断補強筋と第2せん断補強筋とが、継手部材としての管体の圧着によって接合されている。これにより、鉄筋コンクリート柱と鉄骨梁との接合部のせん断補強筋を容易に設置することができる。
(6)本発明の一態様に係る鉄筋コンクリート柱と鉄骨梁の接合部構造は、鉄筋コンクリート柱と鉄骨梁の接合部構造において、前記鉄筋コンクリート柱と前記鉄骨梁の接合部は、前記鉄筋コンクリート柱のせん断補強筋が、第1せん断補強筋と、第2せん断補強筋とで構成されるとともに、一方の端部から前記第1せん断補強筋が挿入され他方の端部から前記第2せん断補強筋が挿入される管体を有していて、前記第1せん断補強筋は、前記鉄骨梁に形成された孔部に挿通され、前記第2せん断補強筋は、前記鉄筋コンクリート柱の軸線回りに隣り合う前記第1せん断補強筋の間に配置されていて、前記管体は、前記第1せん断補強筋および前記第2せん断補強筋にこれらの外周を囲繞するようにして圧着されている。
(7)本発明の一態様に係る本発明に係る鉄筋コンクリート柱と鉄骨梁の接合方法は、鉄筋コンクリート柱と鉄骨梁の接合方法において、前記鉄筋コンクリート柱と前記鉄骨梁の接合部は、前記鉄筋コンクリート柱のせん断補強筋が第1せん断補強筋と、第2せん断補強筋とで構成されるとともに、一方の端部から前記第1せん断補強筋が挿入され他方の端部から前記第2せん断補強筋が挿入される管体を有していて、前記第1せん断補強筋は、前記鉄骨梁に形成された孔部に挿通されていて、前記第2せん断補強筋は、前記鉄筋コンクリート柱の軸線回りに隣り合う前記第1せん断補強筋の間に配置されていて、前記鉄骨梁に前記孔部を形成する孔部形成工程と、前記孔部に前記第1せん断補強筋を挿通させる第1せん断補強筋設置工程と、前記第1せん断補強筋を前記一方の端部から前記管体に挿入するとともに、前記第2せん断補強筋を前記他方の端部から前記管体に挿入するせん断補強筋管体挿入工程と、前記管体を前記第1せん断補強筋および前記第2せん断補強筋にこれらの外周を囲繞するようにして圧着する圧着工程とを有する。
 上記(6)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造、又は(7)に記載の鉄筋コンクリート柱と鉄骨梁の接合方法においては、鉄骨梁の孔部に挿通された第1せん断補強筋と、鉄骨梁と鉄筋コンクリート柱の軸線回りに隣り合う第1せん断補強筋の間に配置される第2せん断補強筋とが管体の内部に挿入され、管体が第1せん断補強筋および第2せん断補強筋を囲繞するようにして圧着されている。すなわち、第1せん断補強筋と第2せん断補強筋とが、管体の第1せん断補強筋及び第2せん断補強筋への圧着によって接合されている。
 これにより、上記(6)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造、又は(7)に記載の鉄筋コンクリート柱と鉄骨梁の接合方法によれば、管体を内部に挿入された第1せん断補強筋および第2せん断補強筋に圧着して第1せん断補強筋と第2せん断補強筋とが接合されるため、鉄筋コンクリート柱と鉄骨梁との接合部のせん断補強筋を容易に設置することができる。
 また、上記(6)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造、又は(7)に記載の鉄筋コンクリート柱と鉄骨梁の接合方法によれば、第1せん断補強筋と第2せん断補強筋とを接合するクリップなどの特殊部材を必要としないため、特殊部材を使用する場合と比べて、コストを削減することができる。
 さらに、上記(6)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造、又は(7)に記載の鉄筋コンクリート柱と鉄骨梁の接合方法によれば、鉄骨梁に形成される孔部は、第1せん断補強筋の外径よりもやや大きい径とすればよいため、形成が容易であるとともに鉄骨梁の断面欠損部を抑えることができる。
(8)上記(6)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造において、前記第1せん断補強筋と前記第2せん断補強筋とは、前記管体の内部に互いの先端部が突き合わさるように配置されていてもよい。
 この場合には、第1せん断補強筋と第2せん断補強筋とを重ねて配置する場合と比べて、鋼管の径を小さくすることができる。
(9)上記(6)に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造において、前記第1せん断補強筋と前記第2せん断補強筋とは、前記管体の内部に重なって配置されていてもよい。
 この場合には、第1せん断補強筋と第2せん断補強筋とが重なった部分に管体を圧着すればよいため、第1せん断補強筋と第2せん断補強筋とを互いの先端部を突き合わせるように配置する場合と比べて、管体の長さ(継手長さ)を小さくすることができる。
 本発明の態様に係る鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法によれば、鉄骨の加工が容易であるとともに、鉄筋コンクリート柱と鉄骨梁の接合を容易に施工することができる。
また、本発明の態様に係る鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法によれば、柱梁接合部を半剛接にし、最大モーメントを低減して合理的(最適)に構成することが可能になる。
図1は、第1の実施形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造を示す縦断面図である。 図2は、図1のX1-X1線矢視図である。 図3は、図1のX2-X2線矢視図である。 図4は、第1の実施形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の下節のRC柱を示す縦断面図である。 図5は、図4のX1-X1線矢視図である。 図6は、図4のX2-X2線矢視図である。 図7は、第1の実施形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の固定度と埋め込み長さ比の関係を示す図である。 図8は、第1の実施形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の固定度と鉄骨梁の最大モーメントの関係を示す図である。 図9は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合方法で用いるせん断補強筋を示す図である。 図10は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合方法において、せん断補強筋を鉄骨梁に貫通させて設置する状況を示す図である。 図11は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造を示す側面(縦断面)図である。 図12は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造を示す横断面図である。 図13は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造を示す正面側の縦断面図である。 図14は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の下方の鉄筋コンクリート柱部材を示す側面側の縦断面図である。 図15は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の下方の鉄筋コンクリート柱部材を示す横断面図である。 図16は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の下方の鉄筋コンクリート柱部材を示す正面側の縦断面図である。 図17は、第2の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の上方の鉄筋コンクリート柱部材を示す正面側の縦断面図である。 図18は、第3の実施の形態に係る鉄筋コンクリート柱と鉄骨梁の接合部の一例を示す斜視図である。 図19は、図18のX1-X1線矢視図である。 図20は、図18のX2-X2線断面図である。 図21は、鉄骨梁および第1せん断補強筋を説明する図である。 図22は、鉄骨が配置される前の鉄筋コンクリート柱を説明する図である。 図23は、第1せん断補強筋と第2せん断補強筋の接合部分を説明する正面図である。 図24は、図23のX1-X1線矢視図である。 図25は、管体が第1せん断補強筋および第2せん断補強筋に圧着される前の状態を説明する図である。 図26は、柱と梁を両端ピン接合で接合した場合の曲げモーメントを示す図である。 図27は、柱と梁を両端剛接合で接合した場合の曲げモーメントを示す図である。 図28は、柱と梁を両端半剛接合で接合した場合の曲げモーメントを示す図である。
以下、図1から図8を参照し、本願の発明の第1の実施の形態に係る鉄筋コンクリート柱(以下、RC柱とする)と鉄骨梁の接合部構造について説明する。
ここで、本実施形態のRC柱と鉄骨梁の接合部構造は、図28に示すように柱梁接合部を半剛接とし、且つこの柱梁接合部の固定度を調節でき、鉄骨梁の最大曲げモーメントを低減することを架の可能にするものである。また、第1の実施の形態は、このようなRC柱と鉄骨梁の接合部構造によって、鉄骨梁の最大曲げモーメントを低減して柱梁接合部(鉄骨梁、RC柱)を合理的に設計できる手法に関するものである。
 まず、本実施形態のRC柱と鉄骨梁の接合部構造100は、下節のPCaのRC柱40と、鉄骨梁41と、上節のPCaのRC柱42と、接合部コンクリート43が主な構成要素とされ、鉄骨梁41は下節のPCaのRC柱40内に端部を埋め込み、接合部コンクリート43をこの埋込部に充填して固定されている。
 具体的に、本実施形態のRC柱と鉄骨梁の接合部構造100において、下節のRC柱40は、図1から図6に示すように、上下方向に延設した複数の主筋44及び複数の主筋44を囲繞するように一体に取り付けられた複数のせん断補強筋45をコンクリート46に埋設して形成されている。さらに、下節のRC柱40は上面から主筋44を突出させて形成されている。
 また、本実施形態の下節のRC柱40は、幅方向中央に上面と一側面に開口する矩形状の凹所(切欠き部)47が設けられている。さらに、凹所47は鉄骨梁41の端部を挿入して接合するためのものであり、内面に縞鋼板48が配設され、この縞鋼板48が表面に凹凸を形成し接合部(柱梁接合部)内のせん断応力伝達のシアコッター49として機能する。
 一方、図1から図3に示すように、本実施形態の鉄骨梁41は、特殊な構造性能を期待するような加工は不要であり、必要長さが下節のRC柱40に埋め込み可能とされていればよい。このため、ミルメーカーからの生材をそのまま現場に搬入し組み立てが可能であり、ファブレス化を図ることによりコストを削減できる。
 また、仮設材として、下節のRC柱40に高さ調整用のレベル調整用ボルト50を設置し、鉄骨梁41にはこのレベル調整用ボルト50を通じて自重を受けた際の下フランジの面外変形を防止するための三角リブ51を備えている。さらに、上フランジの4箇所に高ナット52を溶接し、ボルト53の螺入量の調節(ボルト53の出し入れ)によって位置決めを行う。そして、これら三角リブ51、高ナット52は現場溶接で設置可能であり、UT検査(超音波探傷検査)などの特別な管理を必要としない。
 また、接合部内の鉄骨梁41を貫通するせん断補強筋は配設していない。せん断補強筋45は主として主筋44の座屈防止を目的に設けるようにし、本実施形態では接合部内にコ字状のせん断補強筋45を配置する。
 次に、上節のRC柱42は、上下方向に延設した複数の主筋44及び複数の主筋44を囲繞するように一体に取り付けられた複数のせん断補強筋45をコンクリート46に埋設して形成されている。
 また、上節のRC柱42は、主筋44の下端に取り付け、下端面に開口するようにしてスリーブ54がコンクリート46に埋設されている。
 そして、下節のRC柱40上に上節のRC柱42を設置する。このとき、下節のRC柱40の上面から突出する主筋44を上節のRC柱42のスリーブ54に差し込んでスリーブ54内にグラウトを充填し、下節のRC柱40に上節のRC柱42を一体に接合する。また、上節のRC柱42と下節のRC柱40の間には目地グラウトを注入する。
 次に、下節のRC柱40を設置した段階で、下節のRC柱40の凹所47に端部を挿入して鉄骨梁41を配設する。そして、型枠を設置し、凹所47にコンクリート43を打設する。このとき、接合部コンクリート43は、普通コンクリートの調合で問題はなく、下節のRC柱40へ鉄骨梁41を設置し、床スラブ打設時に同時に打設する。また、凹所47の4つの内面と鉄骨梁41の間隙は100mm程度確保する。なお、図1において、符号55は床スラブの天端(床スラブの上面)を示す。
 このようにして本実施形態のRC柱と鉄骨梁の接合部Aを構成し、RC柱1と鉄骨梁2を半剛接として接合することができる。
 次に、本実施形態のRC柱と鉄骨梁の接合部構造100の設計方法について説明する。
 本実施形態では、半剛接としてのRC柱と鉄骨梁の接合部構造100の固定度は、鉄骨梁41の埋め込み長さで調節する。
 ここで、柱梁接合部の柱フェイス位置のモーメントを固定支持の場合の端部モーメントで無次元化すると、下記の式(6)となる。なお、rig(=M固定)は固定時のモーメント(剛接合時のモーメント)を表し、α=1.0は完全固定、α=0.0はピン支持を表す。
Figure JPOXMLDOC01-appb-M000006
 また、図7は、FEM解析から求めた固定度αと埋め込み長さ比d/H(d:埋め込み長さ、H:梁成)の関係を示している。この図から、埋め込み長さ比d/Hの増加に伴い固定度αが増加することが確認された。
 そして、図7の結果から柱梁接合部の固定度αが下記の式(7)で与えられ、この式(7)によって、鉄骨梁2の埋め込み長さ比d/Hを調節したときの固定度αを求めることが可能になる。なお、N/Nは軸力比である。
Figure JPOXMLDOC01-appb-M000007
 次に、図8は、固定度αと梁41の最大モーメント(max(M,M))の関係を示している。この図に示す通り、固定度α=0.69のときにM=Mとなり、最大モーメントが最小値となる。すなわち、本実施形態のRC柱と鉄骨梁の接合部構造100によれば、柱梁を剛接合した場合と比較し、梁の設計用モーメントを0.69倍にすることができることが確認された。
 次に、鉄骨梁断面最適設計のフローを示す。
 まず、鉄骨梁41のスパンl、荷重w、軸力比、使用材料などの設計条件を設定する。
 次に、下記の式(8)、式(9)、式(10)から、端部固定として端部モーメントを算定し、仮断面を決定する。そして、中央モーメント及び最大変形を算定する。Eは鉄骨梁のヤング率、Iは鉄骨梁の断面二次モーメントである。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 次に、半剛接の接合部Aの固定度αを決定し、埋め込み長さdを決定する。このとき、固定度α=0.69が最適値で、N/N=0.2の場合、埋め込み長さ比d/H=(α-0.55)/(0.52×0.20+0.90)÷0.30=0.46であり、概ね梁成Hの半分程度の埋め込み長さdを確保すればよいことになる。
 次に、固定度αのときの端部モーメント、中央モーメント、最大変形を下記の式(11)、式(12)、式(13)で算定し、断面を決定する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 そして、埋め込み部の接合部耐力を確認し、OK(良好)の判定で設計完了とする。NG(不良)の判定の場合には、半剛接部の固定度αを変え、埋め込み長さdを変更して再計算を行う。
 したがって、本実施形態のRC柱と鉄骨梁の接合部構造100においては、従来では困難であった接合部の固定度αの設計が鉄骨梁41の埋め込み長さdを調節することにより容易に行えるようになる。
 また、接合部Aの固定度αを設計することで、鉄骨梁41の発生モーメントを最適化できる。これにより、断面サイズを縮小し、コストダウンを図ることが可能になる。
以上、本発明に係る鉄筋コンクリート柱と鉄骨梁の接合部構造の第1の実施の形態について説明したが、本発明は上記の第1の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 次に、図9から図17を参照し、本願の発明の第2の実施の形態に係るRC柱(鉄筋コンクリート柱)と鉄骨梁の接合部構造、及びRC柱と鉄骨梁の接合方法について説明する。ここで、第2の実施の形態に係るRC柱と鉄骨梁の接合方法は、現場で鉄骨梁にせん断補強筋を貫通させつつ定着させてRC柱と鉄骨梁を接合する方法に関するものである。
 第2の実施の形態に係るRC柱と鉄骨梁の接合方法、及びRC柱と鉄骨梁の接合部構造200では、図9に示すように、使用するせん断補強筋1が一端側に半円形フック(180°フック)(又は鋭角フック)2、他端側に直角フック(90°フック)3を備えて形成されている。
 また、図9及び図10に示すように、直角フック3の折り曲げ半径(屈曲部の内径)dは、貫通させる鉄骨梁4のウェブ4aの板厚tw以上としている。さらに、このせん断補強筋1を貫通させる鉄骨梁4の貫通孔4bの直径Rはせん断補強筋1の最外径D以上とする。
 そして、このせん断補強筋1を設置する際には、図10に示すように、直角フック3側の他端を鉄骨梁4の貫通孔4bに挿通し、直角フック3の基端の屈曲部を回転中心にし、屈曲部の折り曲げ半径dに沿うように貫通孔4b回りに90度、せん断補強筋1を回転させる。これにより、せん断補強筋1を鉄骨梁4の貫通孔4bに貫通させ、直角フック3を鉄骨梁4のウェブ4aに沿うようにせん断補強筋1を設置することができる。このように鉄骨梁4に貫通配置したせん断補強筋1の一端側の半円形フック2を柱主筋等に定着させれば、せん断補強筋1の設置作業が完了する。
 ここで、図11から図13に示すPCaのRC柱5と鉄骨梁4の埋め込み式の接合部構造200を一例として、第1の実施の形態に係るRC柱5と鉄骨梁4の接合方法をより具体的に説明する。
 はじめに、この接合部構造200のPCaのRC柱5は上方のRC柱部材5aと下方のRC柱部材5bを一体に接合して構成される。また、下方のRC柱部材5bは、図11から図16に示すように、上下方向に延設した複数の主筋6及び複数の主筋6を囲繞するように一体に取り付けられた複数のせん断補強筋7をコンクリート8に埋設して形成されている。また、下方のRC柱部材5bは、下端に上下に隣り合うPCaのRC柱5同士を接続(ボルト接合)するための接合プレート(エンドプレート)10が一体に取り付けられている。さらに、下方のRC柱部材5bは上面から主筋6を突出させて形成されている。
 下方のRC柱部材5bにおいては、幅方向中央に上面と側面に開口する矩形状の凹所(切欠き部)11が設けられている。また、凹所11は鉄骨梁4の端部を挿入して接合するためのものであり、シアコッター(縞鋼板)12をコンクリート8に一体化して形成されている。
 上方のRC柱部材5aは、図11から図13、図17に示すように、上下方向に延設した複数の主筋6及び複数の主筋6を囲繞するように一体に取り付けられた複数のせん断補強筋7をコンクリート8に埋設して形成されるとともに、上端に上下に隣り合うPCaのRC柱5同士を接続(ボルト接合)するための接合プレート(エンドプレート)10が一体に取り付けられている。
 また、上方のRC柱部材5aは、主筋6の下端に取り付け、下端面に開口するようにしてスリーブ13がコンクリート8に埋設されている。
 そして、図11から図13に示すように、上記のように構成した上方のRC柱部材5aと下方のRC柱部材5bは、下方のPCaのRC柱5の上端の接合プレート10上に下方のRC柱部材5bを載せ、互いの接合プレート10同士をボルト接合する。次に、下方のRC柱部材5b上に上方のRC柱部材5aを設置する。このとき、下方のRC柱部材5bの上面から突出する主筋6を上方のRC柱部材5aのスリーブ13に差し込んで接続し、下方のRC柱部材5bに上方のRC柱部材5aを一体に接合する。これにより、上端と下端にそれぞれPCaのRC柱5が形成される。
 一方、第2の実施の形態に係るRC柱5と鉄骨梁4の接合方法においては、下方のRC柱部材5bを設置した段階で、下方のRC柱部材5bの凹所11に端部を挿入して鉄骨梁4を配設する。
図9、図10、図11から図13に示すように、この鉄骨梁4に形成された貫通孔4bに直角フック3を挿通し、直角フック3の折り曲げ半径dに沿うように貫通孔4b回りに90度回転させてせん断補強筋1を設置する。このように鉄骨梁4に貫通配置したせん断補強筋1の半円形フック2を、凹所11に後差しした補助筋14に定着させる。
なお、凹所11に下方のRC柱部材5bの主筋6を突出させ、この主筋6にせん断補強筋1の半円形フック(又は鋭角フック)2を定着させてもよい。
 上記のように鉄骨梁4、せん断補強筋1等を設置した段階で、上方のRC柱部材5aを設置する。そして、型枠を設置するとともに凹所11にコンクリート8を打設し、鉄骨梁4の端部及びせん断補強筋1、補助筋14(や主筋6)をコンクリート8で埋設させ、RC柱5と鉄骨梁4を一体に接合する。
 したがって、第2の実施の形態に係るRC柱と鉄骨梁の接合部構造200、及びRC柱と鉄骨梁の接合方法によれば、従来のようにクリップ等の特殊部材を不要にして、現場で容易に鉄骨梁4に貫通させつつせん断補強筋1を設置することが可能になる。また、このとき、鉄骨梁4の従来サイズの貫通孔4bに容易に貫通させてせん断補強筋1を設置できるため、鉄骨梁4の断面欠損が増大することもない。
以上、本願の発明に係るRC柱と鉄骨梁の接合部構造、及びRC柱と鉄骨梁の接合方法の第2の実施の形態について説明したが、本願の発明は上記の第2の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、第2の実施の形態では、せん断補強筋1が一端側に半円形フック又は鋭角フック2、他端側に直角フック3を備えて形成されているものとした。
これに対し、円形フック又は鋭角フック2や直角フック3を備えていない直棒状のせん断補強筋(第1せん断補強筋)1を用いるとともに、圧着継手(継手部材)を用いてRC柱5から凹所11に突出するRC柱5のせん断補強筋(第2せん断補強筋)に第1せん断補強筋1を接続するようにしてもよい。
 また、圧着継手の継手部材としては、詳細を後述する(第3の実施の形態で示す)管体30を用いればよい。この場合には、RC柱5に一体に埋設されて端部が凹所11に突出する第2せん断補強筋(23:図22、図23参照)と第1せん断補強筋1とを管体30の内部に挿入し、これら第1せん断補強筋1と第2せん断補強筋(24)とを管体30によって圧着することができる。このように、第1せん断補強筋1と第2せん断補強筋(24)とを継手部材としての管体30の圧着によって接合することで、RC柱5と鉄骨梁4との接合部のせん断補強筋を容易に設置することができ、結果としてRC柱5と鉄骨梁4を好適に接合することができる。
 次に、図18から図25を参照し、本願の発明の第3の実施の形態に係るRC柱(鉄筋コンクリート柱)と鉄骨梁の接合部構造、及びRC柱と鉄骨梁の接合方法について説明する。
 図18から図20に示すように、第3の実施の形態によるRC柱と鉄骨梁の接合部構造300は、断面形状が略正方形状のRC柱20に四方から鉄骨梁21が接合された接合部22の構造である。なお、図18では、RC柱20と鉄骨梁21の接合部22の第1せん断補強筋23および第2せん断補強筋24を省略している。
 図19から図21に示すように、鉄骨梁21は、例えばH形鋼で、RC柱20と鉄骨梁21の接合部22では、一の水平方向に延びる鉄骨梁21と、一の水平方向に直交する他の水平方向に延びる鉄骨梁21とが直交するように接合されている。鉄骨梁21は、RC柱20に埋設された部分のウェブ25には、RC柱20の第1せん断補強筋23が挿通される孔部26が形成されている。
 RC柱20と鉄骨梁21の接合部22には、複数の柱主筋27と、鉄骨梁21に挿通される複数の第1せん断補強筋23と、鉄骨梁21には挿通されずRC柱20の軸線回りに隣り合う第1せん断補強筋23の間にそれぞれ配置されて第1せん断補強筋23と接合される複数の第2せん断補強筋24と、が埋設されている。第3の実施の形態において、図19から図21に示す複数の第1せん断補強筋23は、それぞれ直線状に形成されている。また、図19から図21に示す複数の第2せん断補強筋24は、それぞれ略L字型状となるように屈曲した形状に形成されている。
 第3の実施の形態では、図19に示すように、同一高さに4本の第1せん断補強筋23と、4本の第2せん断補強筋24とが1本ずつRC柱20の軸線回りに交互に並び、平面視で略正方形を描くように配置されている。これらの平面視で略正方形を描くように配置された4本の第1せん断補強筋23および4本の第2せん断補強筋24は、高さ方向に複数配列されている。
 複数の第1せん断補強筋23、および複数の第2せん断補強筋24には、それぞれD10(SD345)などの異形鉄筋が使用されている。
 図23及び図24に示すように、第1せん断補強筋23と第2せん断補強筋24との接合部分では、第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29が管体30の中に挿入の先端部分29に圧着されている。
 管体30には、例えばSTPG370の圧力配管用炭素鋼管などが用いられている。管体30の内部には、軸方向の一方側から第1せん断補強筋23の先端部分28が挿入され、軸方向の他方側から第2せん断補強筋24の先端部分29が挿入されている。管体30の内部に挿入された第1せん断補強筋23の先端部分28と第2せん断補強筋24の先端部分29とは、それぞれの同軸で突き合わされた状態となっている。
 図25に示すように、管体30は、製造時には円筒状に形成されており、図23及び図24に示すように、第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着される際に変形している。
 第3の実施の形態では、管体30の第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29への圧着は、管体30を軸線に直交する方向から挟むように押圧可能な六角圧縮ダイスを有する圧着工具を用いて行われる。
 このような圧着工具で押圧されることにより、管体30は、第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29にこれらの外周を囲繞するようにして圧着されている。
 管体30が第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着されることにより、第1せん断補強筋23の節31および第2せん断補強筋24の節32が管体30にめり込んでいる。
このように管体30が第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着されることで、第1せん断補強筋23と第2せん断補強筋24とが接合されている。
 なお、六角圧縮ダイスを有する圧着工具を用いて管体30を第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着することにより、周方向全体において略均一な圧縮力で管体30が押圧されるため、管体30が折れ曲がるように変形することを抑制することができる。また、このような圧着工具に所定の荷重がかかると除荷されるストッパー機能が設けられていると、管体6を押圧する圧縮荷重を一定に管理することが容易となるとともに、RC柱20と鉄骨梁21の接合部22の品質管理が容易となる。
 第3の実施の形態では、管体30に対して、管体30の長さ方向に間隔をあけた複数個所において圧着工具による圧着(押圧)を行っている。
 次に、第3の実施の形態によるRC柱と鉄骨梁の接合方法について説明する。
 まず、鉄骨梁21のウェブ25に第1せん断補強筋23が挿通される孔部26を形成する孔部形成工程を行う。また、孔部形成工程と前後して、鉄骨梁21を直交した状態に接合する鉄骨梁接合工程も行う。
 第3の実施の形態によるRC柱と鉄骨梁の接合方法では、孔部形成工程を工場などで行い、孔部26が形成された鉄骨梁21を現場に搬入する。なお、孔部形成工程に加えて鉄骨梁接合工程も工場などで行い、孔部26が形成されるとともに直交した状態に接合された鉄骨梁21を現場に搬入してもよい。
 ウェブ25に孔部26が形成されるとともに直交した状態に接合された鉄骨梁21を接合部22に設置する鉄骨梁設置工程を行う。
 ウェブ25の孔部26に第1せん断補強筋23を挿通させる第1せん断補強筋設置工程を行う。なお、鉄骨梁設置工程と第1せん断補強筋設置工程とは、第1せん断補強筋設置工程を先に行い、第1せん断補強筋4を鉄骨に仮止めした状態としてから鉄骨梁設置工程を行ってもよい。
 第1せん断補強筋23の先端部分28を管体30に挿入するとともに、管体30に第2せん断補強筋24の先端部分29を管体30に挿入するせん断補強筋挿入工程を行う。
 管体30を第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29にこれらの外周を囲繞するようにして圧着する圧着工程を行う。
 圧着工程では、六角圧縮ダイスを有する圧着工具を用いて管体30を第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着する。管体30に対して、管体30の長さ方向に間隔をあけた複数個所において圧着工具による圧着(押圧)を行う。
 このようにして、第1せん断補強筋23と第2せん断補強筋24とが接合される。
 次に、接合部22の型枠を設置し、型枠の内部にコンクリート材料を打設して硬化させる。このようにしてRC柱20と鉄骨梁21とが接合される。
 以下、第3の実施の形態に係るRC柱と鉄骨梁の接合方法本実施形態のRC柱と鉄骨梁との接合部構造300、及びRC柱と鉄骨梁との接合方法の作用・効果について図面を用いて説明する。
 第3の実施の形態によるRC柱と鉄骨梁との接合部構造300、及びRC柱と鉄骨梁との接合方法では、第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29を管体30に挿入し、この管体30を内部に挿入された第1せん断補強筋23および第2せん断補強筋24に圧着すれば第1せん断補強筋23と第2せん断補強筋24とが接合されるため、RC柱20と鉄骨梁21との接合部22のせん断補強筋を容易に設置することができ、RC柱20と鉄骨梁21の接合部22を容易に施工することができる。
 また、第1せん断補強筋23と第2せん断補強筋24とを接合するクリップなどの特殊部材を必要としないため、特殊部材を使用する場合と比べて、コストを削減することができる。
 また、鉄骨梁21のウェブ25に形成される孔部26は、第1せん断補強筋23の外径よりもやや大きい径とすればよいため、容易に形成することができるとともに、鉄骨梁21の断面欠損部を抑えることができる。
 また、第1せん断補強筋23と第2せん断補強筋24とは、管体30の内部に互いの先端部が突き合わさるように配置されていることにより、第1せん断補強筋23と第2せん断補強筋24とを重ねて配置する場合と比べて、管体30の径を小さくすることができる。
 以上、本願の発明によるRC柱と鉄骨梁の接合部構造、及びRC柱と鉄骨梁の接合方法の第3の実施の形態について説明したが、本願の発明は上記の第3の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、第3の実施の形態では、鉄骨梁21は、直交するように接合された形態であるが、一方向のみに延びる形態であってもよいし、直交以外に交差するように接合されていてもよい。
 第3の実施の形態では、六角圧縮ダイスを有する圧着工具を用いて管体30を第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着しているが、他の圧着工具を用いて管体30を第1せん断補強筋23の先端部分28および第2せん断補強筋24の先端部分29に圧着してもよい。
 第3の実施の形態では、第1せん断補強筋23の先端部分28及び第2せん断補強筋24の先端部分29が管体30の内部に突き合わさるように配置されているが、管体30の内部に重なるように配置されていてもよい。また、管体30の内部で重なり、第1せん断補強筋23の先端部近傍および第2せん断補強筋24の先端部近傍が、管体30のそれぞれが挿入された側と反対側から突出していてもよい。
 本発明の鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法によれば、鉄骨の加工が容易であるとともに、鉄筋コンクリート柱と鉄骨梁の接合を容易に施工することができる。また、本発明の鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法によれば、柱梁接合部を半剛接にし、最大モーメントを低減して合理的(最適)に構成することが可能になる。
1   せん断補強筋
2   半円形フック(又は鋭角フック)
3   直角フック
4   鉄骨梁
4a  ウェブ
4b  貫通孔
5   RC柱(鉄筋コンクリート柱)
5a  上方のRC柱部材
5b  下方のRC柱部材
6   主筋
7   せん断補強筋
8   コンクリート
10  エンドプレート
11  凹所(切欠き部)
12  シアコッター(縞鋼板)
13  スリーブ
14  補助筋
20  RC柱(鉄筋コンクリート柱)
21  鉄骨梁
22  接合部
23  第1せん断補強筋
24  第2せん断補強筋
25  ウェブ
26  孔部
30  管体
40  下節のRC柱
41  鉄骨梁
42  上節のRC柱
43  接合部コンクリート
44  主筋
45  せん断補強筋
46  コンクリート
47  凹所(切欠き部)
48  縞鋼板
49  シアコッター
50  レベル調整用ボルト
51  三角リブ
52  高ナット
53  ボルト
54  スリーブ
100 RC柱と鉄骨梁の接合部構造
200 RC柱と鉄骨梁の接合部構造
300 RC柱と鉄骨梁の接合部構造

Claims (9)

  1.  鉄筋コンクリート柱に凹所を形成し、該凹所に鉄骨梁の端部を挿入配置するとともにコンクリートを充填して前記鉄筋コンクリート柱と前記鉄骨梁を接合するように構成され、
    前記凹所に充填した前記コンクリートへの前記鉄骨梁の端部の埋め込み長さを調節して前記鉄骨梁の固定度を調節し、
    前記固定度を調節することによって、前記鉄骨梁の端部を前記鉄筋コンクリート柱に半剛接合するとともに前記鉄筋コンクリート柱と前記鉄骨梁の接合部及び前記鉄骨梁に作用する曲げモーメントが調節されていることを特徴とする、鉄筋コンクリート柱と鉄骨梁の接合部構造。
  2.  前記固定度と、前記埋め込み長さと前記鉄骨梁の梁成の比である埋め込み長さ比の関係を求め、
    該固定度と埋め込み長さ比の関係から、柱フェイス位置の曲げモーメントと鉄骨梁のスパン内での最大モーメントが釣り合うように前記固定度が設定されている、請求項1に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造。
  3.  鉄筋コンクリート柱に形成された凹所に鉄骨梁の端部を挿入配置し、
    一端側に半円形フック又は鋭角フック、他端側に直角フックを備えたせん断補強筋の前記直角フックを前記鉄骨梁のウェブに形成された貫通孔に挿入するとともに前記直角フックの屈曲部中心に前記せん断補強筋を回転させ、前記直角フックが前記鉄骨梁のウェブに沿うように前記せん断補強筋を設置し、
     前記せん断補強筋の一端側の半円形フック又は鋭角フックを前記凹所に配設した補助筋あるいは前記凹所に突出した前記鉄筋コンクリート柱の主筋に定着させ、
     前記凹所にコンクリートを打設することを特徴とする、鉄筋コンクリート柱と鉄骨梁の接合方法。
  4.  鉄筋コンクリート柱に形成された凹所に鉄骨梁の端部が挿入配置され、
    一端側に半円形フック又は鋭角フック、他端側に直角フックを備えたせん断補強筋が、前記直角フックを前記鉄骨梁のウェブに形成された貫通孔に挿入するとともに前記直角フックが前記鉄骨梁のウェブに沿うように設置され、
     前記前記せん断補強筋の一端側の半円形フック又は鋭角フックが前記凹所に配設された補助筋あるいは前記凹所に突出した前記鉄筋コンクリート柱の主筋に定着され、
     前記凹所に前記鉄骨梁の端部と前記せん断補強筋と前記補助筋あるいは前記鉄筋コンクリート柱の主筋を埋設するように前記凹所にコンクリートが打設されていることを特徴とする、鉄筋コンクリート柱と鉄骨梁の接合部構造。
  5.  鉄筋コンクリート柱に形成された凹所に鉄骨梁の端部が挿入配置され、
    前記鉄骨梁に接続して前記凹所内に配設された第1せん断補強筋と前記凹所に突出した前記鉄筋コンクリート柱の第2せん断補強筋とが継手部材を用いて接続され、
     前記凹所にコンクリートが打設されて前記鉄骨梁の端部と前記第1せん断補強筋と前記第2せん断補強筋と前記継手部材とが打設した前記コンクリートに埋設されて構成されており、
    且つ、前記継手部材が、前記凹所内に配された前記第1せん断補強筋と前記第2せん断補強筋の外周を囲繞するように設けられ、前記第1せん断補強筋と前記第2せん断補強筋とにそれぞれ圧着される管体であることを特徴とする、鉄筋コンクリート柱と鉄骨梁の接合部構造。
  6.  鉄筋コンクリート柱と鉄骨梁の接合部構造であって、
     前記鉄筋コンクリート柱と前記鉄骨梁の接合部は、前記鉄筋コンクリート柱のせん断補強筋が第1せん断補強筋と、第2せん断補強筋とで構成されるとともに、一方の端部から前記第1せん断補強筋が挿入され他方の端部から前記第2せん断補強筋が挿入される管体を有していて、
     前記第1せん断補強筋は、前記鉄骨梁に形成された孔部に挿通され、
     前記第2せん断補強筋は、前記鉄筋コンクリート柱の軸線回りに隣り合う前記第1せん断補強筋の間に配置されていて、
     前記管体は、前記第1せん断補強筋および前記第2せん断補強筋にこれらの外周を囲繞するようにして圧着されていることを特徴とする、鉄筋コンクリート柱と鉄骨梁の接合部構造。
  7.  前記第1せん断補強筋と前記第2せん断補強筋とは、前記管体の内部に互いの先端部が突き合わさるように配置されている、請求項6に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造。
  8.  前記第1せん断補強筋と前記第2せん断補強筋とは、前記管体の内部に重なって配置されている、請求項6に記載の鉄筋コンクリート柱と鉄骨梁の接合部構造。
  9.  鉄筋コンクリート柱と鉄骨梁の接合する方法であって、
     前記鉄筋コンクリート柱と前記鉄骨梁の接合部は、前記鉄筋コンクリート柱のせん断補強筋が第1せん断補強筋と、第2せん断補強筋とで構成されるとともに、一方の端部から前記第1せん断補強筋が挿入され他方の端部から前記第2せん断補強筋が挿入される管体を有していて、
     前記第1せん断補強筋は、前記鉄骨梁に形成された孔部に挿通されていて、
     前記第2せん断補強筋は、前記鉄筋コンクリート柱の軸線回りに隣り合う前記第1せん断補強筋の間に配置されていて、
     前記鉄骨梁に前記孔部を形成する孔部形成工程と、
     前記孔部に前記第1せん断補強筋を挿通させる第1せん断補強筋設置工程と、
     前記第1せん断補強筋を前記一方の端部から前記管体に挿入するとともに、前記第2せん断補強筋を前記他方の端部から前記管体に挿入するせん断補強筋管体挿入工程と、
     前記管体を前記第1せん断補強筋および前記第2せん断補強筋にこれらの外周を囲繞するようにして圧着する圧着工程と、を有することを特徴とする鉄筋コンクリート柱と鉄骨梁の接合方法。 
PCT/JP2016/053012 2015-02-03 2016-02-02 鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法 WO2016125776A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201706154YA SG11201706154YA (en) 2015-02-03 2016-02-02 Connection structure for reinforced concrete columns and steel beams, and connecting method for reinforced concrete columns and steel beams

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015019331A JP6432779B2 (ja) 2015-02-03 2015-02-03 鉄筋コンクリート柱と鉄骨梁の接合部構造
JP2015019332A JP2016142063A (ja) 2015-02-03 2015-02-03 鉄筋コンクリート柱と鉄骨梁の接合方法
JP2015-019331 2015-02-03
JP2015-019332 2015-02-03
JP2015-237704 2015-12-04
JP2015237704A JP2017101513A (ja) 2015-12-04 2015-12-04 鉄筋コンクリート柱と鉄骨梁の接合構造、および鉄筋コンクリート柱と鉄骨梁の接合方法

Publications (1)

Publication Number Publication Date
WO2016125776A1 true WO2016125776A1 (ja) 2016-08-11

Family

ID=56564118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053012 WO2016125776A1 (ja) 2015-02-03 2016-02-02 鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法

Country Status (3)

Country Link
MY (1) MY177899A (ja)
SG (1) SG11201706154YA (ja)
WO (1) WO2016125776A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393619B2 (ja) 2019-06-03 2023-12-07 日本製鉄株式会社 柱梁接合部構造及び柱梁接合部の設計方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196216U (ja) * 1975-01-31 1976-08-02
JPS60226947A (ja) * 1984-04-24 1985-11-12 三井建設株式会社 異形鉄筋の接合方法
JPH05311747A (ja) * 1992-05-08 1993-11-22 Mitsui Constr Co Ltd 柱・梁構造
JPH10331311A (ja) * 1997-06-03 1998-12-15 Kajima Corp デッキ受梁の端部固定方法
JP2005155140A (ja) * 2003-11-25 2005-06-16 Techno:Kk 分割フープ筋の製造方法、分割フープ筋及び分割フープ筋の連結方法
JP2009102878A (ja) * 2007-10-23 2009-05-14 Takenaka Komuten Co Ltd 柱梁接合構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196216U (ja) * 1975-01-31 1976-08-02
JPS60226947A (ja) * 1984-04-24 1985-11-12 三井建設株式会社 異形鉄筋の接合方法
JPH05311747A (ja) * 1992-05-08 1993-11-22 Mitsui Constr Co Ltd 柱・梁構造
JPH10331311A (ja) * 1997-06-03 1998-12-15 Kajima Corp デッキ受梁の端部固定方法
JP2005155140A (ja) * 2003-11-25 2005-06-16 Techno:Kk 分割フープ筋の製造方法、分割フープ筋及び分割フープ筋の連結方法
JP2009102878A (ja) * 2007-10-23 2009-05-14 Takenaka Komuten Co Ltd 柱梁接合構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393619B2 (ja) 2019-06-03 2023-12-07 日本製鉄株式会社 柱梁接合部構造及び柱梁接合部の設計方法

Also Published As

Publication number Publication date
MY177899A (en) 2020-09-24
SG11201706154YA (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5213249B2 (ja) 既成コンクリート杭の杭頭部構造及び杭頭部形成方法
JP5035984B2 (ja) プレキャスト床版と梁との接合構造
JP5236152B2 (ja) プレキャストコンクリート造柱梁の接合方法
JP5041796B2 (ja) プレキャスト鉄筋コンクリート梁部材同士の接合方法及び接合構造
JP4423644B2 (ja) 中空プレキャスト柱
WO2016125776A1 (ja) 鉄筋コンクリート柱と鉄骨梁の接合部構造、及び鉄筋コンクリート柱と鉄骨梁の接合方法
JP2010084503A (ja) コンクリート柱と鉄骨梁の接合構造および接合方法
JP2006188864A (ja) 柱と梁の接合構造
JP5051766B2 (ja) プレキャスト床版と梁との接合構造
KR101887979B1 (ko) 필로티 구조물 내진 보강장치
JP4560559B2 (ja) 鉄筋籠の補強構造
JP6432779B2 (ja) 鉄筋コンクリート柱と鉄骨梁の接合部構造
JP4447632B2 (ja) 梁、および梁と柱の接合構造ならびにその接合方法
JP6477552B2 (ja) 内部にコンクリートが充填された鋼管柱を用いた接合構造及びその製造方法
US20230079662A1 (en) Connecting metal
JP7265417B2 (ja) 柱梁接合方法
JP6353647B2 (ja) 免震装置接合構造
WO2021014616A1 (ja) 鉄筋継手および鉄筋組立体、並びにプレキャスト鉄筋コンクリート体
KR20090006472U (ko) 조립식 강관파일의 두부 보강장치
JP2010255227A (ja) 柱梁接合構造、及び、鉄筋コンクリート部材
JP6978901B2 (ja) プレキャストコンクリート梁部材の接合構造および接合方法
JP2016142063A (ja) 鉄筋コンクリート柱と鉄骨梁の接合方法
JP4866894B2 (ja) 定着部付き鉄筋、定着部付き鉄筋用素材、及び、アンカーボルト
JP2007308967A (ja) 鉄骨柱の接合構造および鉄骨柱の接合方法
JP6535515B2 (ja) 杭頭接合構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201706154Y

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746607

Country of ref document: EP

Kind code of ref document: A1