WO2016125613A1 - 撮像レンズおよび撮像装置 - Google Patents
撮像レンズおよび撮像装置 Download PDFInfo
- Publication number
- WO2016125613A1 WO2016125613A1 PCT/JP2016/051986 JP2016051986W WO2016125613A1 WO 2016125613 A1 WO2016125613 A1 WO 2016125613A1 JP 2016051986 W JP2016051986 W JP 2016051986W WO 2016125613 A1 WO2016125613 A1 WO 2016125613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging
- negative
- positive
- focal length
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/028—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
Definitions
- the present disclosure relates to an imaging lens and an imaging apparatus suitable for, for example, a vehicle-mounted camera, a surveillance camera, and a mobile device camera.
- imaging apparatuses such as in-vehicle cameras, surveillance cameras, and mobile device cameras have been widely used. These imaging apparatuses are required to achieve good peripheral resolution performance with a small size and low cost while ensuring a wide angle of view. Examples of wide-angle imaging lenses that satisfy such requirements include those described in Patent Documents 1 to 3 below.
- Patent Document 1 proposes a wide-angle imaging lens composed of five lenses in five groups.
- the imaging lens described in Patent Document 1 achieves an angle of view exceeding 180 ° in all angles
- the rear group has two positive and negative structures from the aperture, and chromatic aberration cannot be corrected, and the surroundings It is difficult to obtain good resolution performance.
- Patent Document 2 proposes a wide-angle imaging lens composed of 6 lenses in 5 groups.
- the wide-angle imaging lens described in Patent Document 2 achieves a shooting angle of view of 150 ° or more, it is composed of a glass lens and includes a cemented lens, but is advantageous in terms of chromatic aberration and sensitivity. It is difficult to reduce the cost because there is a need for processing.
- automatic recognition techniques such as a parking assist function based on white line recognition have been accelerated by applying automatic recognition technology to imaging devices. Such a camera is required that the optical characteristics of the camera do not change even if a temperature change occurs in a severe environment where a car runs.
- Plastic lenses can be reduced in cost and weight compared to glass lenses, but the refractive index changes greatly when the temperature changes, and the surface shape changes due to expansion and contraction caused by the large linear expansion coefficient. As a result, the optical characteristics are deteriorated. For this reason, the imaging lens for the above-mentioned use has been mainly used up to now that is composed of a glass lens.
- Patent Document 3 proposes a configuration that suppresses a change in optical characteristics due to a temperature change by using a fourth lens group having six lenses and a third lens group as a cemented lens between glass lenses.
- glass lenses are used for three of the six lenses, and the third lens group becomes a cemented lens of two glasses, and therefore it is necessary to use a cement or to process the cementing, Low cost is difficult.
- it since it includes a cemented lens of two plastic lenses, there is a risk that the shape of the cemented surface changes with a change in temperature, and the junction is easily peeled off.
- the plastic lens is disposed near the image sensor serving as a heat source, the structure is more susceptible to temperature changes.
- an imaging lens and an imaging apparatus that can achieve a reduction in size and cost while having a wide angle of view and high image quality. It is also desirable to provide an imaging lens and an imaging apparatus that can suppress fluctuations in optical characteristics due to temperature changes at low cost.
- An imaging lens includes, in order from the object side to the image side, a negative front group, a diaphragm, and a positive rear group, and the front group has a convex surface on the object side.
- An imaging apparatus includes an imaging lens and an imaging element that outputs an imaging signal corresponding to an optical image formed by the imaging lens, and the imaging lens is directed from the object side to the image side.
- the negative lens group is composed of a negative front lens group, a stop, and a positive rear lens group.
- the front lens group has a negative first lens having a meniscus shape with a convex surface facing the object side, and a convex surface facing the object side.
- the negative second lens having a meniscus shape and a positive third lens having a biconvex shape
- the rear group includes a positive fourth lens and a negative fifth lens having a concave surface facing the image side, It consists of a positive sixth lens.
- each lens is optimized mainly by the lens shape and power distribution with a configuration of six lenses as a whole.
- Another imaging lens includes, in order from the object side to the image side, a negative front group, a diaphragm, and a positive rear group.
- Another imaging device includes an imaging lens and an imaging element that outputs an imaging signal corresponding to an optical image formed by the imaging lens.
- a negative front group, a stop, and a positive rear group and the front group includes a negative first lens, a negative second lens, and a positive third lens
- the rear group includes a positive fourth lens, a negative fifth lens, and a positive sixth lens, and the first lens and the sixth lens are made of glass, and satisfy the following conditional expression: . 20 ⁇
- each lens is optimized mainly by the material and power distribution of the lens with a configuration of six lenses as a whole.
- the configuration of the six lenses as a whole is optimized, and the configuration of each lens is mainly optimized by the lens shape and power distribution. It is possible to achieve downsizing and cost reduction while maintaining a high quality corner.
- the configuration of each lens is optimized mainly by the material and power distribution of the lens with a configuration of six lenses as a whole. It is possible to suppress fluctuations in optical characteristics due to temperature changes at low cost. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- FIG. 3 is an aberration diagram showing various aberrations in Numerical Example 1 in which specific numerical values are applied to the imaging lens illustrated in FIG. 1. It is a lens sectional view showing the 2nd example of composition of an imaging lens.
- FIG. 4 is an aberration diagram showing various aberrations in Numerical Example 2 in which specific numerical values are applied to the imaging lens illustrated in FIG. 3. It is a lens sectional view showing the 3rd example of composition of an imaging lens.
- FIG. 6 is an aberration diagram showing various aberrations in Numerical Example 3 in which specific numerical values are applied to the imaging lens illustrated in FIG. 5. It is lens sectional drawing which shows the 4th structural example of an imaging lens.
- FIG. 10 is an aberration diagram illustrating various aberrations in Numerical Example 4 in which specific numerical values are applied to the imaging lens illustrated in FIG. 7. It is a lens sectional view showing the 5th example of composition of an imaging lens.
- FIG. 10 is an aberration diagram illustrating various aberrations in Numerical Example 5 in which specific numerical values are applied to the imaging lens illustrated in FIG. 9. It is explanatory drawing which shows an example of the installation example of a vehicle-mounted camera. It is a block diagram which shows the network structural example of a vehicle-mounted camera.
- FIG. 1 illustrates a cross-sectional configuration of an imaging lens 1 according to a first configuration example of an embodiment of the present disclosure.
- FIG. 3 shows a cross-sectional configuration of the imaging lens 2 according to the second configuration example.
- FIG. 5 shows a cross-sectional configuration of the imaging lens 3 according to the third configuration example.
- FIG. 7 shows a cross-sectional configuration of the imaging lens 4 according to the fourth configuration example.
- FIG. 9 shows a cross-sectional configuration of the imaging lens 5 according to the fifth configuration example.
- reference numeral IMG indicates an image plane
- Z1 indicates an optical axis.
- the imaging lens according to the present embodiment includes, in order from the object side to the image side, a negative front group Gf, an aperture stop S, and a positive rear group Gr.
- the front group Gf includes a negative first lens L1, a negative second lens L2, and a positive third lens L3.
- the rear group Gr includes a positive fourth lens L4, a negative fifth lens L5, and a positive sixth lens L6. That is, the imaging lens according to the present embodiment is substantially composed of six lenses.
- the imaging lens according to the present embodiment further satisfies a predetermined conditional expression described later.
- the imaging lens according to the present embodiment it is possible to obtain good optical characteristics with a small number of lenses while being reduced in size and cost by being composed of six single lenses as a whole.
- by optimizing the configuration of each lens mainly by the lens shape and power distribution it is possible to achieve downsizing and cost reduction while having a wide angle of view and high image quality.
- by optimizing the configuration of each lens mainly by the lens material and power distribution fluctuations in optical characteristics due to temperature changes can be suppressed at low cost.
- the first lens L1 has a meniscus shape with a convex surface facing the object side in order to achieve a reduction in size and cost while maintaining a wide field angle and high image quality.
- the second lens L2 preferably has a meniscus shape with a convex surface facing the object side.
- the third lens L3 preferably has a biconvex shape.
- the fifth lens L5 preferably has a concave surface facing the image side.
- the sixth lens L6 preferably has a concave surface facing the image side.
- the conditional expression (1) is an expression showing conditions for providing a configuration suitable for achieving both a wide angle of view and a reduction in size of the first lens L1. If the lower limit of conditional expression (1) is not reached, the refractive power of the first lens L1 becomes weak and it becomes difficult to widen the angle of view, and the diameter of the first lens L1 becomes large. On the other hand, if the upper limit of conditional expression (1) is exceeded, the refractive power of the first lens L1 becomes too strong, and it becomes difficult to correct off-axis aberrations. Therefore, when the imaging lens satisfies the conditional expression (1), the refractive power arrangement of the first lens L1 is appropriately defined, and both wide angle of view and miniaturization can be achieved.
- the conditional expression (2) is an expression that defines the radius of curvature of the image side surface of the first lens L1. If the lower limit of conditional expression (2) is not reached, the refractive power of the image-side surface of the first lens L1 becomes too strong, causing off-axis aberrations, making it difficult to process the image-side surface, and increasing manufacturing costs. Will be invited. Therefore, when the imaging lens satisfies the conditional expression (2), the refractive power of the image side surface of the first lens L1 is optimized, and the manufacturing cost can be suppressed.
- the conditional expression (3) is an expression that defines the radius of curvature of the second lens L2. If the lower limit of conditional expression (3) is not reached, the second lens L2 becomes a biconcave lens having a concave surface directed toward the object side, and the refractive power becomes strong. Therefore, the optical performance is deteriorated due to the lens eccentricity generated due to manufacturing variations. End up. Conversely, if the upper limit of conditional expression (3) is exceeded, the radius of curvature between the object side surface and the image side surface of the second lens L2 becomes too close, and the refractive power of the second lens L2 becomes weak, resulting in a wide image. It becomes difficult to realize the corner. Therefore, when the imaging lens satisfies the conditional expression (3), the refractive power of the second lens L2 is optimized, and a wide angle of view and a reduction in eccentric sensitivity can be realized.
- conditional expressions (1), (2), and (3) it is more preferable to limit the upper and lower limits of conditional expressions (1), (2), and (3) as follows. ⁇ 10 ⁇ f1 / f ⁇ 6 (1a) R2 / f> 3.5 (2a) 1.1 ⁇ (R3 + R4) / (R3-R4) ⁇ 1.5 (3a)
- the Abbe number of the first lens L1, the second lens L2, the fourth lens L4, and the sixth lens L6 with respect to the d-line is 40 or more, the third lens L3,
- the Abbe number of the five lenses L5 is preferably 28 or less.
- the first lens L1 and the sixth lens L6 are made of glass in order to suppress fluctuations in optical characteristics due to temperature changes at low cost.
- the second to fifth lenses are preferably made of plastic.
- the sixth lens L6 closest to the image sensor 101 is made of glass whose characteristic change due to temperature is smaller than that of plastic, so that the temperature rise due to heat generation of the image sensor 101 becomes an optical characteristic. The influence that it has can be suppressed. Moreover, environmental resistance can be improved by making the 1st lens L1 exposed to external air into glass. Further, by using both the negative first lens L1 and the positive sixth lens L6 as glass lenses, changes in the optical characteristics due to the temperature characteristics can be canceled out, and changes in the optical characteristics as a whole can be reduced.
- conditional expression (4) to (6) In order to suppress fluctuations in optical characteristics due to temperature changes, it is preferable that at least one of the following conditional expressions (4) to (6) is satisfied. In particular, it is preferable to satisfy the conditional expressions (4) and (5) in order to suppress the focal position variation accompanying the temperature change. In order to suppress the change in the angle of view due to the temperature change, it is preferable to satisfy the conditional expression (6).
- the conditional expression (4) is an expression that defines the ratio between the refractive power of each lens and the refractive power of the entire lens system. If the lower limit of conditional expression (4) is not reached, the refractive power of each lens will increase and the decentration sensitivity will increase. In particular, in a plastic lens in which the value of the linear expansion coefficient and the temperature change of the refractive index are larger than those of glass, the refractive power change accompanying the temperature change becomes large. For this reason, the focal position variation and the optical characteristics such as the resolution performance are deteriorated.
- conditional expression (5) is an expression that defines the combined refractive power of the second lens L2 to the fifth lens L5 made of a plastic lens. If the lower limit of conditional expression (5) is not reached, the combined refractive power becomes strong, the refractive power change accompanying the temperature change becomes large, and the optical characteristics such as the focal position fluctuation are deteriorated.
- the conditional expression (6) is an expression showing a condition for reducing the angle of view variation when the angle of the light ray incident on the image sensor 101 is reduced and the focal position is shifted due to a temperature change. If the upper limit or lower limit of conditional expression (6) is exceeded, the angle of light incident on the image sensor 101 becomes tight (the angle of light with respect to the image pickup surface becomes small), and the angle of view changes when the temperature changes.
- conditional expression (5) is more preferably limited as follows. 50 ⁇ fp (5b)
- the imaging lens according to the present embodiment can be applied to an imaging device such as an in-vehicle camera, a surveillance camera, and a mobile device camera.
- an imaging apparatus As shown in FIG. 1, a CCD (Charge Coupled Devices) that outputs an imaging signal (image signal) corresponding to an optical image formed by the imaging lens near the image plane IMG of the imaging lens.
- an imaging device 101 such as a CMOS (Complementary Metal Oxide Semiconductor).
- a filter FL such as an infrared cut filter or a low-pass filter may be disposed between the sixth lens L6 and the image plane IMG.
- an optical member such as a seal glass for protecting the image sensor may be disposed.
- FIG. 11 and 12 show a configuration example of an in-vehicle camera as an application example to an imaging apparatus.
- FIG. 11 shows an example of an installation example of a vehicle-mounted camera
- FIG. 12 shows an example of a network configuration example of the vehicle-mounted camera.
- a vehicle-mounted camera 401 is installed on the front (front) of the vehicle 301, vehicle-mounted cameras 402 and 403 are installed on the left and right sides, and a vehicle-mounted camera 404 is installed on the rear (rear).
- the in-vehicle cameras 401 to 404 are connected to the in-vehicle network 410 as shown in FIG.
- the in-vehicle network 410 is also connected to an ECU 302 (Electrical Control Unit), a display 414, and a speaker 415.
- ECU 302 Electronic Control Unit
- Each component block can be interconnected via an in-vehicle network 410.
- the image capture angle of the in-vehicle camera 401 provided at the front of the vehicle 301 is, for example, a range indicated by a in FIG.
- the image capturing angle of the vehicle-mounted camera 402 is, for example, a range indicated by b in FIG.
- the image capture angle of the in-vehicle camera 403 is, for example, a range indicated by c in FIG.
- the image capturing angle of the in-vehicle camera 404 is, for example, a range indicated by d in FIG.
- Each of the in-vehicle cameras 401 to 404 outputs the captured image to the ECU 302. As a result, 360 degree (omnidirectional) images of the front, left, and rear of the vehicle 301 can be captured by the ECU 302.
- the ECU 302 includes a signal processing unit 413 as shown in FIG.
- the in-vehicle camera 401 includes a camera module 411 and a signal processing unit 412 as shown in FIG.
- the signal processing units 412 and 413 are configured by an LSI (Large Scale Integration), for example, an image processing LSI.
- the camera module 411 includes an imaging lens 100 and an imaging element 100. As the imaging lens 100, the imaging lenses 1 to 5 according to the present embodiment shown in FIG. Other on-vehicle cameras 402, 403, and 404 may have substantially the same configuration.
- the signal processing unit 412 of the in-vehicle camera 401 converts the signal from the image sensor 101 into an image signal that can be transmitted to the in-vehicle network 410 and transmits the signal to the signal processing unit 413 of the ECU 302.
- the other on-vehicle cameras 402, 403, and 404 perform substantially the same processing.
- the signal processing unit 413 of the ECU 302 receives images from the plurality of in-vehicle cameras 401 to 404, combines them, generates a high angle of view image (panoramic image), and sends it to the display 414.
- the display 414 displays the sent image.
- Each of the signal processing units 412 of the in-vehicle cameras 401 to 404 also receives a signal from the camera module 411, and uses the received image signal to detect an object (an automobile, a person, a bicycle, an obstacle, etc. in the front). ) May be detected.
- the signal processing unit 412 may also have a function of performing signal processing such as measuring the distance to the object or generating a warning signal based on the distance to the object.
- the signal processing result and the image signal in this case are transmitted to the signal processing unit 413, the display 41, and the speaker 415 of the ECU 302 via the in-vehicle network 410.
- the signal processing unit 413 of the ECU 302 generates a signal for controlling the brake of the vehicle as necessary based on the signal processing result in each signal processing unit 412 of the in-vehicle cameras 401 to 404, or for speed control.
- the signal may be generated.
- the display 41 displays a warning image and gives a warning to the driver.
- the speaker 415 presents a warning sound and gives a warning to the driver.
- “Surface number” indicates the number of the i-th surface counted from the object side to the image side.
- “Ri” indicates the value (mm) of the paraxial radius of curvature of the i-th surface.
- “Di” indicates a value (mm) of an axial upper surface interval (lens center thickness or air interval) between the i-th surface and the (i + 1) -th surface.
- “Ni” indicates the value of the refractive index of d-line (wavelength 587.6 nm) of a lens or the like starting from the i-th surface.
- ⁇ i indicates the value of the Abbe number in the d-line of the lens or the like starting from the i-th surface.
- the portion where the value of “Ri” is “ ⁇ ” indicates a flat surface or a diaphragm surface (aperture stop S).
- the surface indicated as “STO” in “surface number” indicates the aperture stop S.
- F indicates the focal length of the entire lens system, “Fno” indicates the F number (open F value), and “ ⁇ ” indicates the half angle of view.
- Some lenses used in the numerical examples have an aspherical lens surface.
- surface number the surface indicated as “ASP” indicates an aspherical surface.
- the aspherical shape is defined by the following equation.
- E ⁇ n represents an exponential expression with a base of 10, that is, “10 to the negative n”, for example, “0.12345E-05”. Represents “0.12345 ⁇ (10 to the fifth power)”.
- the distance in the optical axis direction from the apex of the lens surface is “x”
- the height in the direction perpendicular to the optical axis is “y”
- the paraxial curvature (1 / R) at the lens apex is “ c ”and the conic constant (conic constant) as“ ⁇ ”.
- “A4”, “A6”, “A8”, “A10”, “A12”, “A14”, “A16” are 4th, 6th, 8th, 10th, 12th, 14th, 16th, respectively. Indicates the aspheric coefficient.
- Each of the imaging lenses 1 to 5 includes a negative front group Gf, an aperture stop S, and a positive rear group Gr in order from the object side to the image side.
- the front group Gf includes a negative first lens L1, a negative second lens L2, and a positive third lens L3.
- the rear group Gr includes a positive fourth lens L4, a negative fifth lens L5, and a positive sixth lens L6. That is, each of the imaging lenses 1 to 5 is substantially composed of six lenses.
- the first lens L1 has a meniscus shape with a convex surface facing the object side.
- the second lens L2 has a meniscus shape with a convex surface facing the object side.
- the third lens L3 has a biconvex shape.
- the fifth lens L5 has a concave surface facing the image side.
- the sixth lens L6 has a concave surface facing the image side.
- the aperture stop S is disposed between the third lens L3 and the fourth lens L4.
- a filter FL is disposed between the sixth lens L6 and the image plane IMG.
- Table 1 shows lens data of Numerical Example 1 in which specific numerical values are applied to the imaging lens 1 shown in FIG.
- both surfaces of each of the second lens L2 to the sixth lens L6 are aspherical.
- Table 2 shows the values of the aspheric coefficients A4, A6, A8, A10, A12, A14, and A16 along with the value of the cone coefficient ⁇ .
- Table 3 shows values of the focal length f, the F number Fno, the half angle of view ⁇ , and the total lens length of the entire system.
- the first lens L1 is a glass lens.
- Each of the second lens L2 to the sixth lens L6 is a plastic lens.
- FIG. 2 shows spherical aberration and astigmatism (field curvature) in a state of focusing on a finite distance (400 mm) as various aberrations.
- Each of these aberration diagrams shows aberrations with the d-line (587.56 nm) as a reference wavelength.
- the solid line shows the aberration with respect to the d line
- the alternate long and short dash line shows the aberration with respect to the g line (435.84 nm)
- the broken line shows the aberration with respect to the C line (656.27 nm).
- the solid line indicates the aberration value on the sagittal image surface
- the broken line indicates the aberration value on the meridional image surface. The same applies to aberration diagrams in other numerical examples.
- the imaging lens 1 has excellent aberrations and excellent imaging performance.
- Table 4 shows lens data of Numerical Example 2 in which specific numerical values are applied to the imaging lens 2 shown in FIG. In the imaging lens 2, both surfaces of each of the second lens L2 to the sixth lens L6 are aspherical.
- Table 5 shows the values of the aspheric coefficients A4, A6, A8, A10, A12, A14, and A16 along with the value of the cone coefficient ⁇ .
- Table 6 shows values of the focal length f, the F number Fno, the half angle of view ⁇ , and the total lens length of the entire system.
- the first lens L1 is a glass lens. Further, each of the second lens L2 to the sixth lens L6 is a plastic lens.
- FIG. 2 Various aberrations in the above numerical example 2 are shown in FIG. As can be seen from each aberration diagram, it is apparent that the imaging lens 2 has excellent aberrations and excellent imaging performance.
- Table 7 shows lens data of Numerical Example 3 in which specific numerical values are applied to the imaging lens 3 shown in FIG.
- both surfaces of the second lens L2 and the fourth lens L4 to the sixth lens L6 are aspherical.
- the object side surface (fifth surface) of the third lens L3 has an aspherical shape.
- Table 8 shows the values of the aspheric coefficients A4, A6, A8, A10, A12, A14, and A16 along with the value of the cone coefficient ⁇ .
- Table 9 shows values of the focal length f, the F number Fno, the half angle of view ⁇ , and the total lens length of the entire system.
- the first lens L1 and the fourth lens L4 are glass lenses.
- the second lens L2 and the third lens L3, and the fifth lens L5 and the sixth lens L6 are plastic lenses.
- FIG. 3 Various aberrations in the above numerical example 3 are shown in FIG. As can be seen from the respective aberration diagrams, it is clear that the imaging lens 3 has excellent aberrations and excellent imaging performance.
- Table 10 shows lens data of numerical example 4 in which specific numerical values are applied to the imaging lens 4 shown in FIG.
- both surfaces of each of the second lens L2 to the sixth lens L6 are aspherical.
- Table 11 shows the values of the aspheric coefficients A4, A6, A8, A10, A12, A14, and A16 along with the value of the cone coefficient ⁇ .
- Table 12 shows values of the focal length f, the F number Fno, the half angle of view ⁇ , and the total lens length of the entire system.
- the first lens L1 and the sixth lens L6 are glass lenses. Further, each of the second lens L2 to the fifth lens L5 is a plastic lens.
- the various aberrations in the above numerical example 4 are shown in FIG. As can be seen from the respective aberration diagrams, it is clear that the imaging lens 4 has excellent aberrations and excellent imaging performance.
- Table 13 shows lens data of Numerical Example 5 in which specific numerical values are applied to the imaging lens 5 illustrated in FIG.
- both surfaces of each of the second lens L2 to the sixth lens L6 are aspherical.
- Table 14 shows the values of the aspheric coefficients A4, A6, A8, A10, A12, A14, and A16 of these aspheric surfaces together with the value of the cone coefficient ⁇ .
- Table 15 shows values of the focal length f, the F number Fno, the half angle of view ⁇ , and the total lens length of the entire system.
- the first lens L1 and the sixth lens L6 are glass lenses. Further, each of the second lens L2 to the fifth lens L5 is a plastic lens.
- the various aberrations in the above numerical example 5 are shown in FIG. As can be seen from the respective aberration diagrams, it is clear that the imaging lens 5 has various aberrations corrected and has excellent imaging performance.
- [Other numerical data of each example] [Table 16] shows a summary of values relating to the above-described conditional expressions for each numerical example.
- conditional expressions (1) to (4) are satisfied by the imaging lenses of all the examples.
- Conditional expressions (5) and (6) satisfy at least the imaging lenses of Examples 4 and 5.
- conditional expression (4) the value of fi / f (min) is shown.
- the configuration including substantially six lenses has been described.
- the configuration may further include a lens having substantially no refractive power.
- this technique can take the following composition.
- [1] In order from the object side to the image side, it is composed of a negative front group, an aperture, and a positive rear group.
- the front group is A negative first lens having a meniscus shape with a convex surface facing the object side;
- the rear group is A positive fourth lens, A negative fifth lens with a concave surface facing the image side;
- An imaging lens comprising a positive sixth lens.
- f1 The focal length of the first lens
- f The focal length of the entire lens system.
- R2 The imaging lens according to [1] or [2], further satisfying the following condition.
- R2 The radius of curvature of the image side surface of the first lens.
- R4 The imaging lens according to any one of [1] to [3], further satisfying the following condition. 1.0 ⁇ (R3 + R4) / (R3-R4) ⁇ 1.6 (3)
- R3 radius of curvature of the object side surface of the second lens
- R4 radius of curvature of the image side surface of the second lens.
- f56 The combined focal length of the fifth lens and the sixth lens.
- the imaging lens according to any one of [1] to [8], further including a lens that has substantially no refractive power.
- the front group includes a negative first lens, a negative second lens, and a positive third lens;
- the rear group includes a positive fourth lens, a negative fifth lens, and a positive sixth lens.
- the first lens and the sixth lens are made of glass, An imaging lens that satisfies the following conditional expression.
- fp The combined focal length of the second to fifth lenses.
- the imaging lens is In order from the object side to the image side, it is composed of a negative front group, an aperture, and a positive rear group.
- the front group is A negative first lens having a meniscus shape with a convex surface facing the object side;
- a negative second lens having a meniscus shape with a convex surface facing the object side;
- a positive third lens having a biconvex shape,
- the rear group is A positive fourth lens, A negative fifth lens with a concave surface facing the image side;
- An imaging device comprising a positive sixth lens.
- the imaging lens is In order from the object side to the image side, it is composed of a negative front group, an aperture, and a positive rear group.
- the front group includes a negative first lens, a negative second lens, and a positive third lens;
- the rear group includes a positive fourth lens, a negative fifth lens, and a positive sixth lens.
- the first lens and the sixth lens are made of glass,
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
Abstract
Description
20<|fp| ……(5)
ただし、
fp:第2ないし第5レンズの合成焦点距離
とする。
20<|fp| ……(5)
ただし、
fp:第2ないし第5レンズの合成焦点距離
とする。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
1.レンズの基本構成
2.作用・効果
3.撮像装置への適用例
4.レンズの数値実施例
5.その他の実施の形態
図1は、本開示の一実施の形態の第1の構成例に係る撮像レンズ1の断面構成を示している。図3は、第2の構成例に係る撮像レンズ2の断面構成を示している。図5は、第3の構成例に係る撮像レンズ3の断面構成を示している。図7は、第4の構成例に係る撮像レンズ4の断面構成を示している。図9は、第5の構成例に係る撮像レンズ5の断面構成を示している。これらの各構成例に具体的な数値を適用した数値実施例は後述する。図1等において、符号IMGは像面、Z1は光軸を示す。
以下、本実施の形態に係る撮像レンズの構成を、適宜図1等に示した構成例に対応付けて説明するが、本開示による技術は、図示した構成例に限定されるものではない。
次に、本実施の形態に係る撮像レンズの作用および効果を説明する。併せて、本実施の形態に係る撮像レンズにおける好ましい構成を説明する。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
-12<f1/f<-5 ……(1)
R2/f>3.3 ……(2)
1.0<(R3+R4)/(R3-R4)<1.6 ……(3)
ただし、
f1:第1レンズL1の焦点距離
f:レンズ全系の焦点距離
R2:第1レンズL1の像側の面の曲率半径
R3:第2レンズL2の物体側の面の曲率半径
R4:第2レンズL2の像側の面の曲率半径
とする。
-10<f1/f<-6 ……(1a)
R2/f>3.5 ……(2a)
1.1<(R3+R4)/(R3-R4)<1.5 ……(3a)
20<|fp| ……(5)
4<f56/f<9 ……(6)
ただし、
fi:第iレンズ(i=1~6)の焦点距離(第1ないし第6の各レンズの焦点距離)
fp:第2ないし第5レンズL2~L5の合成焦点距離
f56:第5レンズL5と第6レンズL6との合成焦点距離
とする。
|fi/f|>1.4 ……(4a)
50<|fp| ……(5a)
5<f56/f<8 ……(6a)
50<fp ……(5b)
本実施の形態に係る撮像レンズは、例えば、車載用カメラ、監視カメラ、および携帯機器用カメラなどの撮像装置に適用可能である。撮像装置に適用する場合、図1に示したように、撮像レンズの像面IMG付近に、撮像レンズによって形成された光学像に応じた撮像信号(画像信号)を出力するCCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子101が配置される。この場合、図1等に示したように、第6レンズL6と像面IMGとの間には、例えば、赤外線カットフィルタやローパスフィルタ等のフィルタFLが配置されていてもよい。その他、撮像素子保護用のシールガラス等の光学部材が配置されていてもよい。
次に、本実施の形態に係る撮像レンズの具体的な数値実施例について説明する。ここでは、図1、図3、図5、図7、および図9に示した各構成例の撮像レンズ1、2、3、4、および5に、具体的な数値を適用した数値実施例を説明する。
以下の各数値実施例が適用される撮像レンズ1~5はいずれも、上記したレンズの基本構成を満足した構成となっている。撮像レンズ1~5はいずれも、物体側から像側に向かって順に、負の前群Gfと、開口絞りSと、正の後群Grとで構成されている。前群Gfは、負の第1レンズL1と、負の第2レンズL2と、正の第3レンズL3とからなる。後群Grは、正の第4レンズL4と、負の第5レンズL5と、正の第6レンズL6とからなる。すなわち、撮像レンズ1~5はいずれも、実質的に6枚のレンズで構成されている。
図1に示した撮像レンズ1に具体的な数値を適用した数値実施例1のレンズデータを、[表1]に示す。撮像レンズ1において、第2レンズL2~第6レンズL6の各レンズの両面は非球面形状となっている。それらの非球面における非球面係数A4,A6,A8,A10,A12,A14,A16の値を円錐係数κの値と共に[表2]に示す。また、全系の焦点距離f、FナンバーFno、半画角ωおよびレンズ全長の値を[表3]に示す。
図3に示した撮像レンズ2に具体的な数値を適用した数値実施例2のレンズデータを、[表4]に示す。撮像レンズ2において、第2レンズL2~第6レンズL6の各レンズの両面は非球面形状となっている。それらの非球面における非球面係数A4,A6,A8,A10,A12,A14,A16の値を円錐係数κの値と共に[表5]に示す。また、全系の焦点距離f、FナンバーFno、半画角ωおよびレンズ全長の値を[表6]に示す。
図5に示した撮像レンズ3に具体的な数値を適用した数値実施例3のレンズデータを、[表7]に示す。撮像レンズ3において、第2レンズL2、および第4レンズL4~第6レンズL6の各レンズの両面は非球面形状となっている。また、第3レンズL3の物体側の面(第5面)が非球面形状となっている。それらの非球面における非球面係数A4,A6,A8,A10,A12,A14,A16の値を円錐係数κの値と共に[表8]に示す。また、全系の焦点距離f、FナンバーFno、半画角ωおよびレンズ全長の値を[表9]に示す。
図7に示した撮像レンズ4に具体的な数値を適用した数値実施例4のレンズデータを、[表10]に示す。撮像レンズ4において、第2レンズL2~第6レンズL6の各レンズの両面は非球面形状となっている。それらの非球面における非球面係数A4,A6,A8,A10,A12,A14,A16の値を円錐係数κの値と共に[表11]に示す。また、全系の焦点距離f、FナンバーFno、半画角ωおよびレンズ全長の値を[表12]に示す。
図9に示した撮像レンズ5に具体的な数値を適用した数値実施例5のレンズデータを、[表13]に示す。撮像レンズ5において、第2レンズL2~第6レンズL6の各レンズの両面は非球面形状となっている。それらの非球面における非球面係数A4,A6,A8,A10,A12,A14,A16の値を円錐係数κの値と共に[表14]に示す。また、全系の焦点距離f、FナンバーFno、半画角ωおよびレンズ全長の値を[表15]に示す。
[表16]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表16]から明らかなように、条件式(1)~(4)は、すべての実施例の撮像レンズが満足している。条件式(5),(6)は、少なくとも実施例4,5の撮像レンズが満足している。
なお、条件式(4)に関しては、fi/f(min)の値を示す。fi/f(min)は、第iレンズ(i=1~6)の焦点距離fiとレンズ全系の焦点距離fとの比(fi/f)のうち、最も小さい値を示す。
本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
[1]
物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、
物体側に凸面を向けたメニスカス形状を有する負の第1レンズと、
物体側に凸面を向けたメニスカス形状を有する負の第2レンズと、
両凸形状を有する正の第3レンズとからなり、
前記後群は、
正の第4レンズと、
像側に凹面を向けた負の第5レンズと、
正の第6レンズとからなる
撮像レンズ。
[2]
さらに以下の条件を満足する
上記[1]に記載の撮像レンズ。
-12<f1/f<-5 ……(1)
ただし、
f1:前記第1レンズの焦点距離
f:レンズ全系の焦点距離
とする。
[3]
さらに以下の条件を満足する
上記[1]または[2]に記載の撮像レンズ。
R2/f>3.3 ……(2)
ただし、
R2:前記第1レンズの像側の面の曲率半径
とする。
[4]
さらに以下の条件を満足する
上記[1]ないし[3]のいずれか1つに記載の撮像レンズ。
1.0<(R3+R4)/(R3-R4)<1.6 ……(3)
ただし、
R3:前記第2レンズの物体側の面の曲率半径
R4:前記第2レンズの像側の面の曲率半径
とする。
[5]
さらに以下の条件を満足する
上記[1]ないし[4]のいずれか1つに記載の撮像レンズ。
|fi/f|>1.3 ……(4)
ただし、
fi:第iレンズ(i=1~6)の焦点距離(前記第1ないし第6の各レンズの焦点距離)
とする。
[6]
前記第1レンズと前記第6レンズとがガラスからなり、
以下の条件式を満足する
上記[5]に記載の撮像レンズ。
20<|fp| ……(5)
ただし、
fp:前記第2ないし第5レンズの合成焦点距離
とする。
[7]
前記第2ないし第5の各レンズがプラスチックからなる
上記[5]または[6]に記載の撮像レンズ。
[8]
さらに以下の条件を満足する
上記[5]ないし[7]のいずれか1つに記載の撮像レンズ。
4<f56/f<9 ……(6)
ただし、
f56:前記第5レンズと前記第6レンズとの合成焦点距離
とする。
[9]
実質的に屈折力を有さないレンズをさらに備えた
上記[1]ないし[8]のいずれか1つに記載の撮像レンズ。
[10]
物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、負の第1レンズと、負の第2レンズと、正の第3レンズとからなり、
前記後群は、正の第4レンズと、負の第5レンズと、正の第6レンズとからなり、
前記第1レンズと前記第6レンズとがガラスからなり、
以下の条件式を満足する
撮像レンズ。
20<|fp| ……(5)
ただし、
fp:前記第2ないし第5レンズの合成焦点距離
とする。
[11]
前記第2ないし第5の各レンズがプラスチックからなる
上記[10]に記載の撮像レンズ。
[12]
さらに以下の条件を満足する
上記[10]または[11]に記載の撮像レンズ。
|fi/f|>1.3 ……(4)
ただし、
fi:第iレンズ(i=1~6)の焦点距離(前記第1ないし第6の各レンズの焦点距離)
とする。
[13]
さらに以下の条件を満足する
上記[10]ないし[12]のいずれか1つに記載の撮像レンズ。
-12<f1/f<-5 ……(1)
ただし、
f1:前記第1レンズの焦点距離
f:レンズ全系の焦点距離
とする。
[14]
さらに以下の条件を満足する
上記[10]ないし[13]のいずれか1つに記載の撮像レンズ。
R2/f>3.3 ……(2)
ただし、
R2:前記第1レンズの像側の面の曲率半径
とする。
[15]
さらに以下の条件を満足する
上記[10]ないし[14]のいずれか1つに記載の撮像レンズ。
4<f56/f<9 ……(6)
ただし、
f56:前記第5レンズと前記第6レンズとの合成焦点距離
とする。
[16]
実質的に屈折力を有さないレンズをさらに備えた
上記[10]ないし[15]のいずれか1つに記載の撮像レンズ。
[17]
撮像レンズと、前記撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
前記撮像レンズは、
物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、
物体側に凸面を向けたメニスカス形状を有する負の第1レンズと、
物体側に凸面を向けたメニスカス形状を有する負の第2レンズと、
両凸形状を有する正の第3レンズとからなり、
前記後群は、
正の第4レンズと、
像側に凹面を向けた負の第5レンズと、
正の第6レンズとからなる
撮像装置。
[18]
前記撮像レンズは、実質的に屈折力を有さないレンズをさらに備える
上記[17]に記載の撮像装置。
[19]
撮像レンズと、前記撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
前記撮像レンズは、
物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、負の第1レンズと、負の第2レンズと、正の第3レンズとからなり、
前記後群は、正の第4レンズと、負の第5レンズと、正の第6レンズとからなり、
前記第1レンズと前記第6レンズとがガラスからなり、
以下の条件式を満足する
撮像装置。
20<|fp| ……(5)
ただし、
fp:前記第2ないし第5レンズの合成焦点距離
とする。
[20]
前記撮像レンズは、実質的に屈折力を有さないレンズをさらに備える
上記[19]に記載の撮像装置。
Claims (16)
- 物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、
物体側に凸面を向けたメニスカス形状を有する負の第1レンズと、
物体側に凸面を向けたメニスカス形状を有する負の第2レンズと、
両凸形状を有する正の第3レンズとからなり、
前記後群は、
正の第4レンズと、
像側に凹面を向けた負の第5レンズと、
正の第6レンズとからなる
撮像レンズ。 - さらに以下の条件を満足する
請求項1に記載の撮像レンズ。
-12<f1/f<-5 ……(1)
ただし、
f1:前記第1レンズの焦点距離
f:レンズ全系の焦点距離
とする。 - さらに以下の条件を満足する
請求項1に記載の撮像レンズ。
R2/f>3.3 ……(2)
ただし、
R2:前記第1レンズの像側の面の曲率半径
とする。 - さらに以下の条件を満足する
請求項1に記載の撮像レンズ。
1.0<(R3+R4)/(R3-R4)<1.6 ……(3)
ただし、
R3:前記第2レンズの物体側の面の曲率半径
R4:前記第2レンズの像側の面の曲率半径
とする。 - さらに以下の条件を満足する
請求項1に記載の撮像レンズ。
|fi/f|>1.3 ……(4)
ただし、
fi:第iレンズ(i=1~6)の焦点距離(前記第1ないし第6の各レンズの焦点距離)
とする。 - 前記第1レンズと前記第6レンズとがガラスからなり、
以下の条件式を満足する
請求項5に記載の撮像レンズ。
20<|fp| ……(5)
ただし、
fp:前記第2ないし第5レンズの合成焦点距離
とする。 - 前記第2ないし第5の各レンズがプラスチックからなる
請求項6に記載の撮像レンズ。 - さらに以下の条件を満足する
請求項6に記載の撮像レンズ。
4<f56/f<9 ……(6)
ただし、
f56:前記第5レンズと前記第6レンズとの合成焦点距離
とする。 - 物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、負の第1レンズと、負の第2レンズと、正の第3レンズとからなり、
前記後群は、正の第4レンズと、負の第5レンズと、正の第6レンズとからなり、
前記第1レンズと前記第6レンズとがガラスからなり、
以下の条件式を満足する
撮像レンズ。
20<|fp| ……(5)
ただし、
fp:前記第2ないし第5レンズの合成焦点距離
とする。 - 前記第2ないし第5の各レンズがプラスチックからなる
請求項9に記載の撮像レンズ。 - さらに以下の条件を満足する
請求項9に記載の撮像レンズ。
|fi/f|>1.3 ……(4)
ただし、
fi:第iレンズ(i=1~6)の焦点距離(前記第1ないし第6の各レンズの焦点距離)
とする。 - さらに以下の条件を満足する
請求項9に記載の撮像レンズ。
-12<f1/f<-5 ……(1)
ただし、
f1:前記第1レンズの焦点距離
f:レンズ全系の焦点距離
とする。 - さらに以下の条件を満足する
請求項9に記載の撮像レンズ。
R2/f>3.3 ……(2)
ただし、
R2:前記第1レンズの像側の面の曲率半径
とする。 - さらに以下の条件を満足する
請求項9に記載の撮像レンズ。
4<f56/f<9 ……(6)
ただし、
f56:前記第5レンズと前記第6レンズとの合成焦点距離
とする。 - 撮像レンズと、前記撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
前記撮像レンズは、
物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、
物体側に凸面を向けたメニスカス形状を有する負の第1レンズと、
物体側に凸面を向けたメニスカス形状を有する負の第2レンズと、
両凸形状を有する正の第3レンズとからなり、
前記後群は、
正の第4レンズと、
像側に凹面を向けた負の第5レンズと、
正の第6レンズとからなる
撮像装置。 - 撮像レンズと、前記撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
前記撮像レンズは、
物体側から像側に向かって順に、負の前群と、絞りと、正の後群とで構成され、
前記前群は、負の第1レンズと、負の第2レンズと、正の第3レンズとからなり、
前記後群は、正の第4レンズと、負の第5レンズと、正の第6レンズとからなり、
前記第1レンズと前記第6レンズとがガラスからなり、
以下の条件式を満足する
撮像装置。
20<|fp| ……(5)
ただし、
fp:前記第2ないし第5レンズの合成焦点距離
とする。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016573284A JP6740904B2 (ja) | 2015-02-06 | 2016-01-25 | 撮像レンズおよび撮像装置 |
CN201680007998.5A CN107209348B (zh) | 2015-02-06 | 2016-01-25 | 成像透镜和成像单元 |
US15/547,409 US10302918B2 (en) | 2015-02-06 | 2016-01-25 | Imaging lens and imaging unit |
EP16746444.5A EP3255473A4 (en) | 2015-02-06 | 2016-01-25 | Imaging lens and imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-021994 | 2015-02-06 | ||
JP2015021994 | 2015-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016125613A1 true WO2016125613A1 (ja) | 2016-08-11 |
Family
ID=56563964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051986 WO2016125613A1 (ja) | 2015-02-06 | 2016-01-25 | 撮像レンズおよび撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10302918B2 (ja) |
EP (1) | EP3255473A4 (ja) |
JP (1) | JP6740904B2 (ja) |
CN (1) | CN107209348B (ja) |
WO (1) | WO2016125613A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017086051A1 (ja) * | 2015-11-20 | 2017-05-26 | ソニー株式会社 | 撮像レンズ |
CN107450156A (zh) * | 2017-05-23 | 2017-12-08 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
KR20180029938A (ko) * | 2016-09-12 | 2018-03-21 | 삼성전기주식회사 | 촬상 광학계 |
KR20190084931A (ko) * | 2017-11-20 | 2019-07-17 | 삼성전기주식회사 | 촬상 광학계 |
JP2019179155A (ja) * | 2018-03-30 | 2019-10-17 | マクセル株式会社 | 撮像レンズ系及び撮像装置 |
US10877251B2 (en) | 2015-11-20 | 2020-12-29 | Sony Corporation | Imaging lens |
JP2021513105A (ja) * | 2018-10-10 | 2021-05-20 | 浙江舜宇光学有限公司 | 光学レンズ群 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI594010B (zh) | 2016-07-05 | 2017-08-01 | 大立光電股份有限公司 | 光學成像系統鏡組、取像裝置及電子裝置 |
US10514711B2 (en) * | 2016-10-09 | 2019-12-24 | Airspace Systems, Inc. | Flight control using computer vision |
CN107741625A (zh) * | 2017-10-12 | 2018-02-27 | 深圳市特莱斯光学有限公司 | 一种低成本高性能行车记录仪镜头 |
CN109709658B (zh) * | 2017-10-25 | 2021-02-05 | 信泰光学(深圳)有限公司 | 摄像镜头 |
KR102000009B1 (ko) | 2017-11-20 | 2019-07-15 | 삼성전기주식회사 | 촬상 광학계 |
CN110412730B (zh) * | 2018-04-28 | 2022-01-07 | 宁波舜宇车载光学技术有限公司 | 光学镜头 |
CN110531507B (zh) * | 2018-05-24 | 2021-11-12 | 宁波舜宇车载光学技术有限公司 | 光学镜头 |
CN109407279B (zh) * | 2018-12-12 | 2021-09-14 | 江西联创电子有限公司 | 广角镜头及成像设备 |
CN109471245A (zh) * | 2018-12-28 | 2019-03-15 | 福建福光天瞳光学有限公司 | 小型化车载光学系统及成像方法 |
EP3767363B1 (en) * | 2019-07-19 | 2024-03-06 | Hoya Corporation | Wide field of view objective lens |
CN111913292B (zh) * | 2020-07-15 | 2022-06-28 | 深圳唯公生物科技有限公司 | 一种弱光收集透镜系统及流式细胞分析仪 |
CN111929874B (zh) * | 2020-09-22 | 2021-01-01 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09311273A (ja) * | 1996-05-21 | 1997-12-02 | Konica Corp | 可変焦点距離レンズ |
JP2000187157A (ja) * | 1998-12-22 | 2000-07-04 | Minolta Co Ltd | ズームレンズ及び撮像装置 |
JP2009092798A (ja) * | 2007-10-05 | 2009-04-30 | Fujinon Corp | 撮像レンズおよび撮像装置 |
JP2013073155A (ja) * | 2011-09-29 | 2013-04-22 | Fujifilm Corp | 撮像レンズおよび撮像装置 |
JP2013073168A (ja) * | 2011-09-29 | 2013-04-22 | Fujifilm Corp | 撮像レンズおよび撮像装置 |
US20140198395A1 (en) * | 2011-08-17 | 2014-07-17 | Lg Innotek Co., Ltd. | Imaging lens |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3625923B2 (ja) * | 1995-09-28 | 2005-03-02 | フジノン株式会社 | レトロフォーカス型レンズ |
TW442666B (en) | 1998-12-22 | 2001-06-23 | Minolta Co Ltd | Zoom lens system |
TWI261120B (en) | 2002-07-18 | 2006-09-01 | Konica Corp | Image pickup lens, image pickup unit and portable terminal |
JP3938143B2 (ja) * | 2004-02-09 | 2007-06-27 | コニカミノルタオプト株式会社 | 超広角光学系 |
JP4949871B2 (ja) * | 2007-01-22 | 2012-06-13 | 富士フイルム株式会社 | 撮像レンズ、および該撮像レンズを備えた撮像装置 |
JP5042767B2 (ja) * | 2007-10-05 | 2012-10-03 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
CN201314970Y (zh) * | 2008-05-27 | 2009-09-23 | 富士能株式会社 | 摄像透镜及使用此摄像透镜的摄像装置 |
TWM367338U (en) * | 2008-12-10 | 2009-10-21 | Fujinon Corp | Photographing lens and camera apparatus using the same |
JP5253997B2 (ja) * | 2008-12-26 | 2013-07-31 | 富士フイルム株式会社 | 変倍光学系および撮像装置 |
JP5272858B2 (ja) * | 2009-04-03 | 2013-08-28 | 株式会社リコー | 広角レンズおよび撮像装置 |
TWI427352B (zh) * | 2010-09-30 | 2014-02-21 | Young Optics Inc | 定焦鏡頭 |
JP5647569B2 (ja) | 2011-06-22 | 2014-12-24 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
CN203773132U (zh) * | 2011-09-29 | 2014-08-13 | 富士胶片株式会社 | 成像镜头和成像设备 |
JP6050087B2 (ja) | 2012-10-30 | 2016-12-21 | 日本電産サンキョー株式会社 | レンズユニットおよびレンズユニットの製造方法 |
JP6204676B2 (ja) | 2013-03-29 | 2017-09-27 | キヤノン株式会社 | 撮像レンズ及びそれを有する撮像装置 |
-
2016
- 2016-01-25 CN CN201680007998.5A patent/CN107209348B/zh active Active
- 2016-01-25 JP JP2016573284A patent/JP6740904B2/ja active Active
- 2016-01-25 US US15/547,409 patent/US10302918B2/en active Active
- 2016-01-25 EP EP16746444.5A patent/EP3255473A4/en active Pending
- 2016-01-25 WO PCT/JP2016/051986 patent/WO2016125613A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09311273A (ja) * | 1996-05-21 | 1997-12-02 | Konica Corp | 可変焦点距離レンズ |
JP2000187157A (ja) * | 1998-12-22 | 2000-07-04 | Minolta Co Ltd | ズームレンズ及び撮像装置 |
JP2009092798A (ja) * | 2007-10-05 | 2009-04-30 | Fujinon Corp | 撮像レンズおよび撮像装置 |
US20140198395A1 (en) * | 2011-08-17 | 2014-07-17 | Lg Innotek Co., Ltd. | Imaging lens |
JP2013073155A (ja) * | 2011-09-29 | 2013-04-22 | Fujifilm Corp | 撮像レンズおよび撮像装置 |
JP2013073168A (ja) * | 2011-09-29 | 2013-04-22 | Fujifilm Corp | 撮像レンズおよび撮像装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3255473A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10838178B2 (en) | 2015-11-20 | 2020-11-17 | Sony Corporation | Imaging lens |
JPWO2017086051A1 (ja) * | 2015-11-20 | 2018-09-13 | ソニー株式会社 | 撮像レンズ |
WO2017086051A1 (ja) * | 2015-11-20 | 2017-05-26 | ソニー株式会社 | 撮像レンズ |
US10877251B2 (en) | 2015-11-20 | 2020-12-29 | Sony Corporation | Imaging lens |
KR20180029938A (ko) * | 2016-09-12 | 2018-03-21 | 삼성전기주식회사 | 촬상 광학계 |
KR102425756B1 (ko) | 2016-09-12 | 2022-07-29 | 삼성전기주식회사 | 촬상 광학계 |
CN107450156A (zh) * | 2017-05-23 | 2017-12-08 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
KR20190084931A (ko) * | 2017-11-20 | 2019-07-17 | 삼성전기주식회사 | 촬상 광학계 |
KR102415703B1 (ko) * | 2017-11-20 | 2022-07-04 | 삼성전기주식회사 | 촬상 광학계 |
JP2019179155A (ja) * | 2018-03-30 | 2019-10-17 | マクセル株式会社 | 撮像レンズ系及び撮像装置 |
JP2021513105A (ja) * | 2018-10-10 | 2021-05-20 | 浙江舜宇光学有限公司 | 光学レンズ群 |
JP7052052B2 (ja) | 2018-10-10 | 2022-04-11 | 浙江舜宇光学有限公司 | 光学レンズ群 |
US12085693B2 (en) | 2018-10-10 | 2024-09-10 | Zhejiang Sunny Optical Co., Ltd | Optical lens group |
Also Published As
Publication number | Publication date |
---|---|
US20180024331A1 (en) | 2018-01-25 |
EP3255473A1 (en) | 2017-12-13 |
EP3255473A4 (en) | 2018-09-26 |
CN107209348B (zh) | 2021-01-15 |
JPWO2016125613A1 (ja) | 2017-11-16 |
JP6740904B2 (ja) | 2020-08-19 |
US10302918B2 (en) | 2019-05-28 |
CN107209348A (zh) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6740904B2 (ja) | 撮像レンズおよび撮像装置 | |
JP7245977B2 (ja) | 単焦点レンズ系、および、カメラ | |
JP6837194B2 (ja) | 単焦点レンズ系、および、カメラ | |
JP5620607B2 (ja) | 撮像レンズおよびこれを備えた撮像装置 | |
JP4949871B2 (ja) | 撮像レンズ、および該撮像レンズを備えた撮像装置 | |
JP4815319B2 (ja) | 撮像レンズ及びこれを備えたカメラ装置 | |
JP4790399B2 (ja) | 超広角撮像光学系、超広角撮像レンズ装置及び撮像装置 | |
JP5335710B2 (ja) | 撮像レンズおよび撮像装置 | |
JP6449083B2 (ja) | 撮像レンズ系及び撮像装置 | |
JP6741019B2 (ja) | 撮像レンズ及び車載用撮像装置 | |
JP2009092798A (ja) | 撮像レンズおよび撮像装置 | |
JP2008076716A (ja) | 広角撮像レンズ、撮像装置、およびカメラモジュール | |
JP5450023B2 (ja) | 撮像レンズおよびこの撮像レンズを用いた撮像装置 | |
CN1952723A (zh) | 广角摄像透镜 | |
JP2009003343A (ja) | 超広角撮像レンズおよび撮像装置 | |
JP2010014855A (ja) | 撮像レンズおよび撮像装置 | |
JP6711361B2 (ja) | 撮像レンズ | |
JP2011215443A (ja) | 撮像レンズおよび撮像装置 | |
JP2009098322A (ja) | 撮像レンズおよび撮像装置 | |
JP2020112835A (ja) | 撮像レンズ系及び撮像装置 | |
JP2008102500A (ja) | 撮像レンズ及びこれを備えたカメラ装置 | |
WO2014123136A1 (ja) | 撮影光学系,撮像光学装置及びデジタル機器 | |
JP2009265338A (ja) | 広角撮像レンズ | |
JP6711360B2 (ja) | 撮像レンズ | |
WO2014123137A1 (ja) | 撮影光学系,撮像光学装置及びデジタル機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746444 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016573284 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016746444 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15547409 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |