WO2016125264A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016125264A1
WO2016125264A1 PCT/JP2015/053072 JP2015053072W WO2016125264A1 WO 2016125264 A1 WO2016125264 A1 WO 2016125264A1 JP 2015053072 W JP2015053072 W JP 2015053072W WO 2016125264 A1 WO2016125264 A1 WO 2016125264A1
Authority
WO
WIPO (PCT)
Prior art keywords
dummy
bonding
electrode
pad
contact
Prior art date
Application number
PCT/JP2015/053072
Other languages
English (en)
French (fr)
Inventor
直裕 高澤
芳隆 只木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016572989A priority Critical patent/JP6470320B2/ja
Priority to PCT/JP2015/053072 priority patent/WO2016125264A1/ja
Publication of WO2016125264A1 publication Critical patent/WO2016125264A1/ja
Priority to US15/643,711 priority patent/US9978723B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/60067Aligning the bump connectors with the mounting substrate
    • H01L2021/6009Aligning the bump connectors with the mounting substrate involving guiding structures, e.g. structures that are left at least partly in the bonded product, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0605Shape
    • H01L2224/06051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0651Function
    • H01L2224/06515Bonding areas having different functions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • H01L2224/13014Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1601Structure
    • H01L2224/16012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/16013Structure relative to the bonding area, e.g. bond pad the bump connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16104Disposition relative to the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16113Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16148Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1751Function
    • H01L2224/17515Bump connectors having different functions
    • H01L2224/17517Bump connectors having different functions including bump connectors providing primarily mechanical support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/81139Guiding structures on the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices

Definitions

  • the present invention relates to a semiconductor device.
  • a semiconductor device having a plurality of substrates and electrically connecting the plurality of substrates is disclosed.
  • a plurality of substrates are connected by electrodes arranged between the plurality of substrates.
  • the substrate is deformed in a region where the density of the electrodes is low due to a load applied when the plurality of substrates are bonded. That is, the substrate bends.
  • FIG. 9 shows a configuration of a semiconductor device 1000a having a structure similar to the structure disclosed in Patent Document 1.
  • FIG. 9 shows a cross section of the semiconductor device 1000a.
  • the semiconductor device 1000 a includes a first substrate 60, a second substrate 70, a bonding electrode 80, and a dummy electrode 90.
  • the first substrate 60 and the second substrate 70 are stacked via the bonding electrode 80 and the dummy electrode 90.
  • the bonding electrode 80 and the dummy electrode 90 are disposed between the first substrate 60 and the second substrate 70.
  • the bonding electrode 80 is electrically connected to the first substrate 60 and the second substrate 70.
  • the dummy electrode 90 is electrically insulated from the first substrate 60 and the second substrate 70.
  • the thickness (height) of the bonding electrode 80 and the thickness (height) of the dummy electrode 90 are the same.
  • the bonding electrode 80 includes a bonding metal 800, a first bump 801, and a second bump 802.
  • the first bump 801 is in contact with the second substrate 70.
  • the second bump 802 is in contact with the first substrate 60.
  • the bonding metal 800 is in contact with the first bump 801 and the second bump 802.
  • the bonding electrode 80 and the dummy electrode 90 receive a load. Since the dummy electrode 90 is disposed in the region where the density of the bonding electrode 80 is low, the first substrate 60 and the second substrate 70 are supported by the bonding electrode 80 and the dummy electrode 90. Therefore, deformation of the first substrate 60 and the second substrate 70 is suppressed. However, since the load is distributed to the bonding electrode 80 and the dummy electrode 90, a sufficient load may not be applied to the bonding electrode 80.
  • the bonding electrode 80 In order for the bonding electrode 80 to be sufficiently connected to the first substrate 60 and the second substrate 70, it is necessary to increase the load. However, there is a limit to improving the performance of the joining device to generate a load.
  • FIG. 10 shows a configuration of a semiconductor device 1000b having a structure similar to the structure disclosed in Patent Document 1.
  • FIG. 10 shows a cross section of the semiconductor device 1000b.
  • the semiconductor device 1000 b includes a first substrate 60, a second substrate 70, a bonding electrode 80, and a dummy electrode 91.
  • the first substrate 60 and the second substrate 70 are stacked via the bonding electrode 80 and the dummy electrode 91.
  • the bonding electrode 80 and the dummy electrode 91 are disposed between the first substrate 60 and the second substrate 70.
  • the bonding electrode 80 is the same as the bonding electrode 80 shown in FIG.
  • the dummy electrode 91 is electrically insulated from the first substrate 60 and the second substrate 70.
  • the thickness (height) of the bonding electrode 80 and the thickness (height) of the dummy electrode 91 are the same.
  • the shape of the dummy electrode 91 is different from the shape of the dummy electrode 90.
  • the width of the upper portion 91 a of the dummy electrode 91 is smaller than the width of the lower portion 91 b of the dummy electrode 91. That is, the upper portion 91 a of the dummy electrode 91 is thinner than the lower portion 91 b of the dummy electrode 91.
  • the area S21 of the surface where the upper portion 91a of the dummy electrode 91 contacts the first substrate 60 is smaller than the area S20 of the surface where the dummy electrode 90 contacts the first substrate 60.
  • the bonding electrode 80 and the dummy electrode 91 receive a load. Since the dummy electrode 91 is disposed in the region where the density of the bonding electrode 80 is low, the first substrate 60 and the second substrate 70 are supported by the bonding electrode 80 and the dummy electrode 91. Therefore, deformation of the first substrate 60 and the second substrate 70 is suppressed. In addition, since the upper portion 91 a of the dummy electrode 91 is thin, more load is likely to be applied to the bonding electrode 80. For this reason, the increase in the load required for joining is suppressed.
  • the bonding electrode 80 and the dummy electrode 91 are formed by different processes. That is, in the semiconductor device 1000b shown in FIG. 10, a dedicated process for forming the dummy electrode 91 is necessary. For this reason, the manufacturing process is complicated. As a result, the manufacturing cost increases.
  • An object of the present invention is to provide a semiconductor device capable of simplifying the manufacturing process.
  • the semiconductor device includes the first substrate, the second substrate, the bonding electrode, and the dummy electrode.
  • the first substrate has a first surface and a first wiring, and includes a first semiconductor material.
  • the second substrate has a second surface and a second wiring, and includes a second semiconductor material. The first surface and the second surface are opposed to each other.
  • the bonding electrode is disposed between the first surface and the second surface, and is electrically connected to the first wiring and the second wiring.
  • the dummy electrode is disposed between the first surface and the second surface, and is electrically insulated from at least one of the first wiring and the second wiring.
  • the bonding electrode includes a bonding bump and a first bonding pad.
  • the first bonding pad has a third surface and a fourth surface.
  • the third surface is in contact with one of the first surface and the second surface, and the fourth surface is in contact with the bonding bump.
  • the dummy electrode has a dummy bump and a first dummy pad.
  • the first dummy pad has a fifth surface and a sixth surface.
  • the fifth surface is in contact with one of the first surface and the second surface.
  • the thickness of the dummy bump is the same as the thickness of the bonding bump.
  • One of the first condition and the second condition is satisfied.
  • the sixth surface is in contact with the dummy bump.
  • the area of the fifth surface is smaller than the area of the third surface.
  • the thickness of the first dummy pad is the same as the thickness of the first bonding pad.
  • the second condition the thickness of the first dummy pad is smaller than the thickness of the first bonding pad.
  • the bonding electrode may further include a second bonding pad.
  • the second bonding pad may have a seventh surface and an eighth surface.
  • the seventh surface is in contact with a surface of the first surface and the second surface that is not in contact with the third surface, and the eighth surface is in contact with the bonding bump.
  • the dummy electrode may further include a second dummy pad.
  • the second dummy pad may have a ninth surface and a tenth surface.
  • the ninth surface is in contact with a surface of the first surface and the second surface that is not in contact with the fifth surface, and the tenth surface is in contact with the dummy bump.
  • the thickness of the second dummy pad may be the same as the thickness of the second bonding pad. The first condition may be satisfied.
  • the first bonding pad may include a first barrier layer and a first bonding layer.
  • the first barrier layer may have the third surface.
  • the third surface may contact one of the first surface and the second surface.
  • the first bonding layer may be stacked on the first barrier layer and have the fourth surface.
  • the fourth surface may be in contact with the bonding bump.
  • the thickness of the first dummy pad may be the same as the thickness of the first barrier layer. The second condition may be satisfied.
  • the bonding electrode may further include a second bonding pad.
  • the second bonding pad may include a second barrier layer and a second bonding layer.
  • the second barrier layer may have a seventh surface.
  • the seventh surface may contact a surface of the first surface and the second surface that is not in contact with the third surface.
  • the second bonding layer may be laminated on the second barrier layer and have an eighth surface.
  • the eighth surface may be in contact with the bonding bump.
  • the dummy electrode may further include a second dummy pad.
  • the second dummy pad may include a dummy barrier layer and a dummy bonding layer.
  • the dummy barrier layer may have a ninth surface.
  • the ninth surface may contact a surface of the first surface and the second surface that is not in contact with the fifth surface.
  • the dummy bonding layer may be laminated on the dummy barrier layer and have a tenth surface. The tenth surface may be in contact with the dummy bump.
  • the dummy barrier layer may have the same thickness as the second barrier layer.
  • the dummy bonding layer may have the same thickness as the second bonding layer.
  • the manufacturing process can be simplified.
  • 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
  • 1 is a plan view of a semiconductor device according to a first embodiment of the present invention. It is sectional drawing of the semiconductor device of the 2nd Embodiment of this invention. It is sectional drawing of the joining electrode which the semiconductor device of the 2nd Embodiment of this invention has. It is sectional drawing of the dummy electrode which the semiconductor device of the 2nd Embodiment of this invention has. It is sectional drawing of the semiconductor device of the 3rd Embodiment of this invention. It is sectional drawing of the semiconductor device of the 4th Embodiment of this invention. It is sectional drawing of the semiconductor device of the 5th Embodiment of this invention. It is sectional drawing which shows the structure of the semiconductor device of a prior art. It is sectional drawing which shows the structure of the semiconductor device of a prior art.
  • FIG. 1 shows a configuration of a semiconductor device 1a according to the first embodiment of the present invention.
  • FIG. 1 shows a cross section of the semiconductor device 1a.
  • the semiconductor device 1 a includes a first substrate 10, a second substrate 20, a bonding electrode 30, and a dummy electrode 40.
  • the first substrate 10 and the second substrate 20 are stacked via the bonding electrode 30 and the dummy electrode 40.
  • the dimensions of the parts constituting the semiconductor device 1a do not follow the dimensions shown in FIG.
  • the dimension of the part which comprises the semiconductor device 1a may be arbitrary.
  • the thickness of the portion constituting the semiconductor device 1a is shown as the length of the portion in the vertical direction.
  • the area of the portion constituting the semiconductor device 1a is based on the length of the portion in the lateral direction.
  • the first substrate 10 includes a first semiconductor layer 100 and a first wiring layer 110.
  • the first semiconductor layer 100 and the first wiring layer 110 are formed in a direction (for example, substantially on the main surface) across the main surface of the first substrate 10 (the widest surface among a plurality of surfaces constituting the surface of the substrate). (Vertical direction). Further, the first semiconductor layer 100 and the first wiring layer 110 are in contact with each other.
  • the first semiconductor layer 100 is made of a first semiconductor material. That is, the first substrate 10 includes the first semiconductor material.
  • the first semiconductor material is silicon (Si).
  • the first semiconductor layer 100 has a surface 100a and a surface 100b. The surface 100a and the surface 100b face in opposite directions. The surface 100 a is in contact with the first wiring layer 110.
  • the surface 100 b constitutes one of the main surfaces of the first substrate 10.
  • the first wiring layer 110 includes a first wiring 111, a first via 112, and a first interlayer insulating film 113.
  • first wiring 111 there are a plurality of first wirings 111, but a symbol of one first wiring 111 is shown as a representative.
  • first vias 112 there are a plurality of first vias 112, but a symbol of one first via 112 is shown as a representative.
  • the first wiring layer 110 has a surface 110a and a surface 110b.
  • the surface 110 a faces the second substrate 20.
  • the surface 110 a is in contact with the bonding electrode 30 and the dummy electrode 40.
  • the surface 110 b is in contact with the first semiconductor layer 100.
  • the surface 110 a constitutes one of the main surfaces of the first substrate 10.
  • the first wiring 111 and the first via 112 are made of a conductive material.
  • the conductive material forming the first wiring 111 and the first via 112 is a metal such as aluminum (Al) and copper (Cu).
  • the first wiring 111 is a thin film on which a wiring pattern is formed.
  • the first wiring 111 transmits a signal. Only one layer of the first wiring 111 may be formed, or a plurality of layers of the first wiring 111 may be formed. In the example shown in FIG. 1, three layers of first wirings 111 are formed.
  • the first via 112 connects the first wirings 111 of different layers.
  • portions other than the first wiring 111 and the first via 112 are constituted by the first interlayer insulating film 113.
  • the first interlayer insulating film 113 is made of silicon dioxide (SiO 2) or the like.
  • At least one of the first semiconductor layer 100 and the first wiring layer 110 may have a circuit element such as a transistor.
  • the second substrate 20 includes a second semiconductor layer 200 and a second wiring layer 210.
  • the second semiconductor layer 200 and the second wiring layer 210 overlap in a direction crossing the main surface of the second substrate 20 (for example, a direction substantially perpendicular to the main surface). Further, the second semiconductor layer 200 and the second wiring layer 210 are in contact with each other.
  • the second semiconductor layer 200 is made of a second semiconductor material. That is, the second substrate 20 includes the second semiconductor material.
  • the second semiconductor material is silicon (Si).
  • the second semiconductor layer 200 has a surface 200a and a surface 200b. The surfaces 200a and 200b face in opposite directions. The surface 200 a is in contact with the second wiring layer 210. The surface 200b constitutes one of the main surfaces of the second substrate 20.
  • the second wiring layer 210 includes a second wiring 211, a second via 212, and a second interlayer insulating film 213.
  • FIG. 1 there are a plurality of second wirings 211, but a symbol of one second wiring 211 is shown as a representative.
  • FIG. 1 there are a plurality of second vias 212, but a symbol of one second via 212 is shown as a representative.
  • the second wiring layer 210 has a surface 210a and a surface 210b.
  • the surface 210 a faces the first substrate 10.
  • the surface 210 a is in contact with the bonding electrode 30 and the dummy electrode 40.
  • the surface 210 b is in contact with the second semiconductor layer 200.
  • the surface 210 a constitutes one of the main surfaces of the second substrate 20.
  • the second wiring 211 and the second via 212 are made of a conductive material.
  • the conductive material constituting the second wiring 211 and the second via 212 is a metal such as aluminum (Al) and copper (Cu).
  • the second wiring 211 is a thin film on which a wiring pattern is formed.
  • the second wiring 211 transmits a signal. Only one layer of the second wiring 211 may be formed, or a plurality of layers of the second wiring 211 may be formed. In the example shown in FIG. 1, a three-layer second wiring 211 is formed.
  • the second via 212 connects the second wiring 211 of a different layer.
  • portions other than the second wiring 211 and the second via 212 are configured by the second interlayer insulating film 213.
  • the second interlayer insulating film 213 is made of silicon dioxide (SiO 2) or the like.
  • At least one of the second semiconductor layer 200 and the second wiring layer 210 may have a circuit element such as a transistor.
  • the first substrate 10 has the surface 110a (first surface) and the first wiring 111, and includes the first semiconductor material.
  • the second substrate 20 has a surface 210a (second surface) and a second wiring 211, and includes a second semiconductor material.
  • the surface 110a and the surface 210a face each other.
  • the bonding electrode 30 is disposed between the surface 110a (first surface) and the surface 210a (second surface).
  • the bonding electrode 30 is electrically connected to the first wiring 111 and the second wiring 211.
  • the dummy electrode 40 is disposed between the surface 110a and the surface 210a.
  • the dummy electrode 40 is electrically insulated from at least one of the first wiring 111 and the second wiring 211.
  • the bonding electrode 30 has a bonding bump 300 and a first bonding pad 301.
  • the bonding bump 300 and the first bonding pad 301 are made of a conductive material.
  • the conductive material constituting the bonding bump 300 and the first bonding pad 301 is a metal such as gold (Au), aluminum (Al), and copper (Cu).
  • the first bonding pad 301 has a surface 301a (third surface) and a surface 301b (fourth surface).
  • the surfaces 301a and 301b face in opposite directions.
  • Surface 301a is in contact with one of surface 110a (first surface) and surface 210a (second surface). In FIG. 1, surface 301a is in contact with surface 210a.
  • the surface 301 b is in contact with the bonding bump 300.
  • the dummy electrode 40 has a dummy bump 400 and a first dummy pad 401.
  • the dummy bump 400 and the first dummy pad 401 are made of a conductive material.
  • the conductive material constituting the dummy bump 400 and the first dummy pad 401 is a metal such as gold (Au), aluminum (Al), and copper (Cu).
  • the first dummy pad 401 has a surface 401a (fifth surface) and a surface 401b (sixth surface).
  • the surface 401a and the surface 401b face in opposite directions.
  • the surface 401a is in contact with one of the surface 110a (first surface) and the surface 210a (second surface). In FIG. 1, surface 401a is in contact with surface 210a.
  • the thickness of the dummy bump 400 is the same as the thickness of the bonding bump 300.
  • the first condition is satisfied. Under the first condition, the surface 401 b (sixth surface) is in contact with the dummy bump 400. Under the first condition, the area of the surface 401a (fifth surface) is smaller than the area of the surface 301a (third surface). Under the first condition, the thickness of the first dummy pad 401 is the same as the thickness of the first bonding pad 301.
  • the area of the surface 401a is smaller than the area of the surface 301a
  • the area of the first dummy pad 401 projected onto the surface 210a is smaller than the area of the first bonding pad 301 projected onto the surface 210a.
  • the cross-sectional area of the first dummy pad 401 in a plane parallel to the surface 210a is smaller than the cross-sectional area of the first bonding pad 301 in a plane parallel to the surface 210a.
  • the bonding electrode 30 further has a second bonding pad 302.
  • the second bonding pad 302 is made of a conductive material.
  • the conductive material constituting the second bonding pad 302 is a metal such as gold (Au), aluminum (Al), and copper (Cu).
  • the second bonding pad 302 has a surface 302a (seventh surface) and a surface 302b (eighth surface).
  • the surface 302a is in contact with a surface of the surface 110a (first surface) and the surface 210a (second surface) that is not in contact with the surface 301a (third surface). In FIG. 1, the surface 302a is in contact with the surface 110a.
  • the surface 302b is in contact with the bonding bump 300.
  • the dummy electrode 40 further has a second dummy pad 402.
  • the second dummy pad 402 is made of a conductive material.
  • the conductive material constituting the second dummy pad 402 is a metal such as gold (Au), aluminum (Al), and copper (Cu).
  • the second dummy pad 402 has a surface 402a (a ninth surface) and a surface 402b (a tenth surface).
  • the surface 402a is in contact with a surface of the surface 110a (first surface) and the surface 210a (second surface) that is not in contact with the surface 401a (fifth surface). In FIG. 1, surface 402a is in contact with surface 110a.
  • the surface 402b is in contact with the dummy bump 400.
  • the thickness of the second dummy pad 402 is the same as the thickness of the second bonding pad 302.
  • the metal constituting the dummy bump 400 is difficult to diffuse into the second wiring layer 210 during bonding.
  • the metal constituting the dummy bump 400 is unlikely to diffuse into the first wiring layer 110 during bonding. Therefore, a change in electrical characteristics of the semiconductor device 1a due to diffusion of the metal constituting the dummy bump 400 into the first wiring layer 110 or the second wiring layer 210 during bonding is suppressed.
  • the bonding bump 300 has a surface 300a and a surface 300b.
  • the surface 300a and the surface 300b face in opposite directions.
  • the surface 301b is in contact with the surface 300a.
  • the surface 302b is in contact with the surface 300b.
  • the area of the surface 300a and the area of the surface 300b are the same.
  • the area of the surface 301a and the area of the surface 301b are larger than the area of the surface 300a.
  • the area of the surface 302a and the area of the surface 302b are larger than the area of the surface 300b.
  • the dummy bump 400 has a surface 400a and a surface 400b.
  • the surface 400a and the surface 400b face in opposite directions.
  • the surface 401b is in contact with the surface 400a.
  • Surface 402b is in contact with surface 400b.
  • the area of the surface 400a and the area of the surface 400b are the same.
  • the area of the surface 401a and the surface 401b is smaller than the area of the surface 400a.
  • the area of the surface 402a and the surface 402b is larger than the area of the surface 400b.
  • the thickness of the bonding bump 300 is the distance between the surface 300a and the surface 300b.
  • the thickness of the first bonding pad 301 is the distance between the surface 301a and the surface 301b.
  • the thickness of the second bonding pad 302 is the distance between the surface 302a and the surface 302b.
  • the thickness of the dummy bump 400 is the distance between the surface 400a and the surface 400b.
  • the thickness of the first dummy pad 401 is the distance between the surface 401a and the surface 401b.
  • the thickness of the second dummy pad 402 is the distance between the surface 402a and the surface 402b.
  • the thickness of each of the first bonding pad 301, the second bonding pad 302, the first dummy pad 401, and the second dummy pad 402 is less than 1 ⁇ m.
  • the total thickness of the bonding bump 300 and the first bonding pad 301 is the same as the total thickness of the dummy bump 400 and the first dummy pad 401.
  • the sum of the thickness of the bonding bump 300, the thickness of the first bonding pad 301, and the thickness of the second bonding pad 302 is the thickness of the dummy bump 400, the thickness of the first dummy pad 401, and the second dummy pad. It is the same as the sum of the thickness of the pad 402.
  • the surface 302 a is in contact with the first via 112. For this reason, the bonding electrode 30 is electrically connected to the first wiring 111.
  • the surface 301a is in contact with the second via 212. For this reason, the bonding electrode 30 is electrically connected to the second wiring 211.
  • the surface 402 a is not in contact with the first via 112. For this reason, the dummy electrode 40 is electrically insulated from the first wiring 111.
  • the surface 401 a is not in contact with the second via 212. For this reason, the dummy electrode 40 is electrically insulated from the second wiring 211.
  • the dummy electrode 40 may be electrically connected to only one of the first wiring 111 and the second wiring 211.
  • the area of the surface 401a may be larger than the area of the surface 400a, and the area of the surface 402a may be smaller than the area of the surface 302a.
  • An insulator such as a resin may be disposed between the first substrate 10 and the second substrate 20 so as to surround the bonding electrode 30 and the dummy electrode 40.
  • the bonding electrode 30 and the dummy electrode 40 receive a load. For this reason, the first substrate 10 and the second substrate 20 are supported by the bonding electrode 30 and the dummy electrode 40. Therefore, deformation of the first substrate 10 and the second substrate 20 is suppressed. Further, since the area of the surface 401a is smaller than the area of the surface 301a, a larger load is likely to be applied to the bonding electrode 30. For this reason, the increase in the load required for joining is suppressed.
  • the bonding electrode 30 and the dummy electrode 40 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1a can be simplified.
  • the second bonding pad 302 and the second dummy pad 402 are simultaneously formed on the surface 110a by sputtering or vapor deposition.
  • the bonding bump 300 and the dummy bump 400 are formed simultaneously.
  • the first bonding pad 301 and the first dummy pad 401 are simultaneously formed on the surface 210a by sputtering or vapor deposition.
  • the bonding bump 300 and the first bonding pad 301 are connected, and the dummy bump 400 and the first dummy pad 401 are connected.
  • FIG. 2 shows an arrangement of the bonding electrode 30 and the dummy electrode 40.
  • FIG. 2 shows a state where the semiconductor device 1a is viewed in a direction perpendicular to the surface 110a.
  • the second substrate 20 is omitted.
  • the semiconductor device 1 a includes a plurality of junction electrodes 30 and a plurality of dummy electrodes 40.
  • reference numerals of one bonding electrode 30 and one dummy electrode 40 are shown as representatives.
  • the plurality of bonding electrodes 30 and the plurality of dummy electrodes 40 are arranged in a matrix.
  • the plurality of dummy electrodes 40 are arranged so as to surround the plurality of bonding electrodes 30.
  • the arrangement of the plurality of bonding electrodes 30 and the plurality of dummy electrodes 40 is not limited to the arrangement shown in FIG.
  • FIG. 2 the surface 301 a of the first bonding pad 301 and the surface 401 a of the first dummy pad 401 are shown. As shown in FIG. 2, the area of the surface 401a is smaller than the area of the surface 301a.
  • the shape of the bonding bump 300 is a circle.
  • the shape of the first bonding pad 301 is a rectangle.
  • the shape of the second bonding pad 302 is a rectangle.
  • the shape of the dummy bump 400 is a circle.
  • the shapes of the first dummy pad 401 and the second dummy pad 402 are rectangular.
  • the shape of the bonding bump 300 or the like may be other than the above shape.
  • the semiconductor device 1a including the first substrate 10, the second substrate 20, the bonding electrode 30, and the dummy electrode 40 is configured.
  • the first substrate 10 and the second substrate 20 are supported by the bonding electrode 30 and the dummy electrode 40 during bonding. Therefore, deformation of the first substrate 10 and the second substrate 20 is suppressed. Moreover, since the area of the surface 401a is smaller than the area of the surface 301a, an increase in the load required for bonding is suppressed.
  • the bonding electrode 30 and the dummy electrode 40 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1a can be simplified.
  • FIG. 3 shows a configuration of a semiconductor device 1b according to the second embodiment of the present invention.
  • FIG. 3 shows a cross section of the semiconductor device 1b.
  • the semiconductor device 1 b includes a first substrate 10, a second substrate 20, a bonding electrode 31, and a dummy electrode 41.
  • the first substrate 10 and the second substrate 20 are stacked via the bonding electrode 31 and the dummy electrode 41.
  • the dimensions of the parts constituting the semiconductor device 1b do not follow the dimensions shown in FIG.
  • the dimension of the part which comprises the semiconductor device 1b may be arbitrary.
  • the thickness of the portion constituting the semiconductor device 1b is shown as the length of the portion in the vertical direction.
  • the dummy electrode 40 shown in FIG. The bonding electrode 31 is disposed between the surface 110a (first surface) and the surface 210a (second surface).
  • the bonding electrode 31 is electrically connected to the first wiring 111 and the second wiring 211.
  • the dummy electrode 41 is disposed between the surface 110a and the surface 210a.
  • the dummy electrode 41 is electrically insulated from at least one of the first wiring 111 and the second wiring 211.
  • the bonding electrode 31 includes a bonding bump 310 and a first bonding pad 311.
  • the bonding bump 310 and the first bonding pad 311 are made of a conductive material.
  • the conductive material constituting the bonding bump 310 is a metal such as gold (Au), aluminum (Al), and copper (Cu).
  • the conductive material constituting the first bonding pad 311 will be described later.
  • the first bonding pad 311 has a surface 311a (third surface) and a surface 311b (fourth surface).
  • the surface 311a and the surface 311b face in opposite directions.
  • the surface 311a is in contact with one of the surface 110a (first surface) and the surface 210a (second surface). In FIG. 3, surface 311a is in contact with surface 210a.
  • the surface 311b is in contact with the bonding bump 310.
  • the dummy electrode 41 has a dummy bump 410 and a first dummy pad 411.
  • the dummy bump 410 and the first dummy pad 411 are made of a conductive material.
  • the conductive material constituting the dummy bump 410 is a metal such as gold (Au), aluminum (Al), and copper (Cu).
  • the conductive material constituting the first dummy pad 411 will be described later.
  • the first dummy pad 411 has a surface 411a (fifth surface) and a surface 411b (sixth surface).
  • the surface 411a and the surface 411b face in opposite directions.
  • the surface 411a is in contact with one of the surface 110a (first surface) and the surface 210a (second surface). In FIG. 3, surface 411a is in contact with surface 210a.
  • the thickness of the dummy bump 410 is the same as the thickness of the bonding bump 310. In the second embodiment, the second condition is satisfied. Under the second condition, the thickness of the first dummy pad 411 is smaller than the thickness of the first bonding pad 311.
  • the bonding electrode 31 further has a second bonding pad 312.
  • the second bonding pad 312 is made of a conductive material.
  • the conductive material constituting the second bonding pad 312 will be described later.
  • the second bonding pad 312 has a surface 312a (seventh surface) and a surface 312b (eighth surface).
  • the surface 312a is in contact with a surface of the surface 110a (first surface) and the surface 210a (second surface) that is not in contact with the surface 311a (third surface). In FIG. 3, the surface 312a is in contact with the surface 110a.
  • the surface 312b is in contact with the bonding bump 310.
  • the dummy electrode 41 further has a second dummy pad 412.
  • the second dummy pad 412 is made of a conductive material.
  • the conductive material constituting the second dummy pad 412 will be described later.
  • the second dummy pad 412 has a surface 412a (a ninth surface) and a surface 412b (a tenth surface).
  • the surface 412a is in contact with the surface of the surface 110a and the surface 210a that is not in contact with the surface 411a. In FIG. 3, surface 412a is in contact with surface 110a.
  • the surface 412b is in contact with the dummy bump 410.
  • the thickness of the second dummy pad 412 is the same as the thickness of the second bonding pad 312.
  • the metal constituting the dummy bump 410 is difficult to diffuse into the second wiring layer 210 at the time of bonding.
  • the metal constituting the dummy bump 410 is difficult to diffuse into the first wiring layer 110 at the time of bonding. Therefore, a change in electrical characteristics of the semiconductor device 1b due to diffusion of the metal constituting the dummy bump 410 into the first wiring layer 110 or the second wiring layer 210 during bonding is suppressed.
  • the bonding bump 310 has a surface 310a and a surface 310b.
  • the surfaces 310a and 310b face in opposite directions.
  • the surface 311b is in contact with the surface 310a.
  • the surface 312b is in contact with the surface 310b.
  • the dummy bump 410 has a surface 410a and a surface 410b.
  • the surface 410a and the surface 410b face in opposite directions.
  • the surface 411b and the surface 410a face each other.
  • the surface 411b is not in contact with the surface 410a. That is, the first dummy pad 411 is not in contact with the dummy bump 410.
  • the distance between the surface 411b and the surface 410a is less than 1 ⁇ m.
  • Surface 412b is in contact with surface 410b.
  • the thickness of the bonding bump 310 is the distance between the surface 310a and the surface 310b.
  • the thickness of the first bonding pad 311 is the distance between the surface 311a and the surface 311b.
  • the thickness of the second bonding pad 312 is the distance between the surface 312a and the surface 312b.
  • the thickness of the dummy bump 410 is the distance between the surface 410a and the surface 410b.
  • the thickness of the first dummy pad 411 is the distance between the surface 411a and the surface 411b.
  • the thickness of the second dummy pad 412 is the distance between the surface 412a and the surface 412b.
  • the thickness of each of the first bonding pad 311, the second bonding pad 312, the first dummy pad 411, and the second dummy pad 412 is less than 1 ⁇ m.
  • the sum of the thickness of the bonding bump 310 and the thickness of the first bonding pad 311 is larger than the sum of the thickness of the dummy bump 410 and the thickness of the first dummy pad 411.
  • the sum of the thickness of the bonding bump 310, the thickness of the first bonding pad 311 and the thickness of the second bonding pad 312 is the thickness of the dummy bump 410, the thickness of the first dummy pad 411, and the second dummy pad. It is larger than the sum of the thickness of the pad 412.
  • the surface 312 a is in contact with the first via 112. For this reason, the bonding electrode 31 is electrically connected to the first wiring 111.
  • the surface 311 a is in contact with the second via 212. For this reason, the bonding electrode 31 is electrically connected to the second wiring 211.
  • the surface 412a is not in contact with the first via 112. For this reason, the dummy electrode 41 is electrically insulated from the first wiring 111.
  • the surface 411b is not in contact with the surface 410a. For this reason, the dummy electrode 41 is electrically insulated from the second wiring 211.
  • the dummy electrode 41 may be electrically connected to only one of the first wiring 111 and the second wiring 211.
  • the thickness of the first dummy pad 411 may be the same as the thickness of the first bonding pad 311, and the thickness of the second dummy pad 412 may be smaller than the thickness of the second bonding pad 312. In this case, the surface 411b is in contact with the dummy bump 410, and the surface 410b is not in contact with the dummy bump 410.
  • An insulator such as a resin may be disposed between the first substrate 10 and the second substrate 20 so as to surround the bonding electrode 31 and the dummy electrode 41. At least a part between the surface 411b and the surface 410a, that is, between the first dummy pad 411 and the dummy bump 410 may be filled with an insulator such as resin. A space may be provided between the surface 411b and the surface 410a, that is, at least a part between the first dummy pad 411 and the dummy bump 410.
  • FIG. 3 other than the above, the configuration shown in FIG. 3 is the same as the configuration shown in FIG.
  • the joining electrode 31 and the dummy electrode 41 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1b can be simplified.
  • the second bonding pad 312 and the second dummy pad 412 are simultaneously formed on the surface 110a by sputtering or vapor deposition. Thereafter, the bonding bump 310 and the dummy bump 410 are formed simultaneously.
  • the first bonding pad 311 and the first dummy pad 411 are simultaneously formed on the surface 210a by sputtering or vapor deposition. Thereafter, in the bonding step, the bonding bump 310 and the first bonding pad 311 are connected, and the dummy bump 410 and the first dummy pad 411 are connected.
  • FIG. 4 shows the configuration of the bonding electrode 31.
  • FIG. 4 shows a cross section of the bonding electrode 31.
  • the bonding electrode 31 includes a bonding bump 310, a first bonding pad 311, and a second bonding pad 312.
  • the dimensions of the parts constituting the bonding electrode 31 do not follow the dimensions shown in FIG.
  • the dimension of the part which comprises the joining electrode 31 may be arbitrary.
  • the thickness of the portion constituting the bonding electrode 31 is shown as the length of the portion in the vertical direction.
  • the first bonding pad 311 includes a first barrier layer 3110 and a first bonding layer 3111.
  • the first barrier layer 3110 and the first bonding layer 3111 are made of a conductive material.
  • the conductive material constituting the first barrier layer 3110 is a metal such as titanium (Ti) and tantalum (Ta).
  • the conductive material included in the first bonding layer 3111 is a metal such as gold (Au), aluminum (Al), or copper (Cu).
  • the first barrier layer 3110 and the first bonding layer 3111 are stacked.
  • the first barrier layer 3110 has a surface 311a (third surface). The surface 311a is in contact with one of the surface 110a (first surface) and the surface 210a (second surface). In FIG.
  • surface 311a is in contact with surface 210a.
  • the first bonding layer 3111 is stacked on the first barrier layer 3110.
  • the first bonding layer 3111 has a surface 311b (fourth surface).
  • the surface 311b is in contact with the bonding bump 310.
  • the thickness of the first dummy pad 411 is the same as the thickness of the first barrier layer 3110.
  • the first barrier layer 3110 further has a surface 3110a.
  • the surface 311a and the surface 3110a face in opposite directions.
  • the first bonding layer 3111 further has a surface 3111a.
  • the surface 311b and the surface 3111a face in opposite directions.
  • the surface 3111a is in contact with the surface 3110a.
  • the second bonding pad 312 has a second barrier layer 3120 and a second bonding layer 3121.
  • the second barrier layer 3120 and the second bonding layer 3121 are made of a conductive material.
  • the conductive material forming the second barrier layer 3120 is a metal such as titanium (Ti) and tantalum (Ta).
  • the conductive material included in the second bonding layer 3121 is a metal such as gold (Au), aluminum (Al), or copper (Cu).
  • the second barrier layer 3120 and the second bonding layer 3121 are stacked.
  • the second barrier layer 3120 has a surface 312a (seventh surface).
  • the surface 312a is in contact with a surface of the surface 110a (first surface) and the surface 210a (second surface) that is not in contact with the surface 311a (third surface). In FIG. 3, surface 312a is in contact with surface 110a.
  • the second bonding layer 3121 is stacked on the second barrier layer 3120.
  • the second bonding layer 3121 has a surface 312b (eighth surface).
  • the surface 312b is in contact with the bonding bump 310.
  • the second barrier layer 3120 further has a surface 3120a.
  • the surface 312a and the surface 3120a face in opposite directions.
  • the second bonding layer 3121 further has a surface 3121a.
  • the surface 312b and the surface 3121a face in opposite directions.
  • the surface 3121a is in contact with the surface 3120a.
  • FIG. 5 shows the configuration of the dummy electrode 41.
  • FIG. 5 shows a cross section of the dummy electrode 41.
  • the dummy electrode 41 includes a dummy bump 410, a first dummy pad 411, and a second dummy pad 412.
  • the dimensions of the parts constituting the dummy electrode 41 do not follow the dimensions shown in FIG.
  • the size of the portion constituting the dummy electrode 41 may be arbitrary.
  • the thickness of the portion constituting the dummy electrode 41 is shown as the length of the portion in the vertical direction.
  • the conductive material constituting the first dummy pad 411 is a metal such as titanium (Ti) and tantalum (Ta).
  • the second dummy pad 412 has a dummy barrier layer 4120 and a dummy bonding layer 4121.
  • the conductive material constituting the dummy barrier layer 4120 is a metal such as titanium (Ti) and tantalum (Ta).
  • the conductive material forming the dummy bonding layer 4121 is a metal such as gold (Au), aluminum (Al), or copper (Cu).
  • the dummy barrier layer 4120 and the dummy bonding layer 4121 are stacked.
  • the dummy barrier layer 4120 has a surface 412a (a ninth surface).
  • the surface 412a is in contact with a surface of the surface 110a (first surface) and the surface 210a (second surface) that is not in contact with the surface 411a (fifth surface). In FIG. 3, surface 412a is in contact with surface 110a.
  • the dummy bonding layer 4121 is stacked on the dummy barrier layer 4120.
  • the dummy bonding layer 4121 has a surface 412b (tenth surface).
  • the surface 412b is in contact with the dummy bump 410.
  • the dummy barrier layer 4120 further has a surface 4120a.
  • the surface 412a and the surface 4120a face in opposite directions.
  • the dummy bonding layer 4121 further has a surface 4121a.
  • the surface 412b and the surface 4121a face in opposite directions.
  • the surface 4121a is in contact with the surface 4120a.
  • the thickness of the dummy barrier layer 4120 is the same as the thickness of the second barrier layer 3120.
  • the thickness of the dummy bonding layer 4121 is the same as the thickness of the second bonding layer 3121.
  • the first barrier layer 3110 and the first dummy pad 411 are simultaneously formed on the surface 210a. Thereafter, a first bonding layer 3111 is formed on the first barrier layer 3110.
  • the thickness of the first barrier layer 3110 is the distance between the surface 311a and the surface 3110a.
  • the thickness of the first bonding layer 3111 is a distance between the surface 3111a and the surface 311b.
  • the thickness of the dummy barrier layer 4120 is the distance between the surface 412a and the surface 4120a.
  • the thickness of the dummy bonding layer 4121 is a distance between the surface 412b and the surface 4121a.
  • the total of the thickness of the bonding bump 310, the thickness of the first barrier layer 3110, and the thickness of the first bonding layer 3111 is larger than the total of the thickness of the dummy bump 410 and the thickness of the first dummy pad 411.
  • the sum of the thickness of the bonding bump 310, the thickness of the first barrier layer 3110, the thickness of the first bonding layer 3111, the thickness of the second barrier layer 3120, and the thickness of the second bonding layer 3121 is:
  • the thickness of the dummy bump 410, the thickness of the first dummy pad 411, the thickness of the dummy barrier layer 4120, and the thickness of the dummy bonding layer 4121 are larger.
  • the semiconductor device 1b including the first substrate 10, the second substrate 20, the bonding electrode 31, and the dummy electrode 41 is configured.
  • the bonding electrode 31 receives the load. For this reason, the increase in the load required for joining is suppressed.
  • the bonding bump 310 is deformed at the time of bonding and the first dummy pad 411 and the dummy bump 410 come into contact with each other, the first substrate 10 and the second substrate 20 are supported by the bonding electrode 31 and the dummy electrode 41. Therefore, deformation of the first substrate 10 and the second substrate 20 is suppressed.
  • the bonding electrode 31 and the dummy electrode 41 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1b can be simplified.
  • FIG. 6 shows a configuration of a semiconductor device 1c according to the third embodiment of the present invention.
  • FIG. 6 shows a cross section of the semiconductor device 1c.
  • the semiconductor device 1 c includes a first substrate 10, a second substrate 20, a bonding electrode 32, and a dummy electrode 42.
  • the first substrate 10 and the second substrate 20 are stacked via the bonding electrode 32 and the dummy electrode 42.
  • the dimensions of the parts constituting the semiconductor device 1c do not follow the dimensions shown in FIG.
  • the dimension of the part which comprises the semiconductor device 1c may be arbitrary.
  • the thickness of the portion constituting the semiconductor device 1c is shown as the length in the vertical direction of the portion.
  • the bonding electrode 30 shown in FIG. Further, in the semiconductor device 1c, the dummy electrode 40 shown in FIG.
  • the bonding electrode 32 is disposed between the surface 110a (first surface) and the surface 210a (second surface).
  • the bonding electrode 32 is electrically connected to the first wiring 111 and the second wiring 211.
  • the dummy electrode 42 is disposed between the surface 110a and the surface 210a.
  • the dummy electrode 42 is electrically insulated from at least one of the first wiring 111 and the second wiring 211.
  • the bonding electrode 32 has a bonding bump 300 and a first bonding pad 301.
  • the bonding bump 300 is the same as the bonding bump 300 shown in FIG.
  • the first bonding pad 301 is the same as the first bonding pad 301 shown in FIG.
  • the surface 300b is in contact with the surface 110a. That is, the bonding bump 300 is in contact with the first substrate 10.
  • the first bonding pad 301 may be disposed between the bonding bump 300 and the first substrate 10. That is, the surface 301b may be in contact with the surface 110a, and the surface 301a may be in contact with the bonding bump 300. Surface 300a may contact surface 210a. That is, the bonding bump 300 may be in contact with the second substrate 20.
  • the dummy electrode 42 has a dummy bump 400 and a first dummy pad 401.
  • the dummy bump 400 is the same as the dummy bump 400 shown in FIG.
  • the first dummy pad 401 is the same as the first dummy pad 401 shown in FIG.
  • the surface 400b is in contact with the surface 110a. That is, the dummy bump 400 is in contact with the first substrate 10.
  • the first dummy pad 401 may be disposed between the dummy bump 400 and the first substrate 10. That is, the surface 401b may be in contact with the surface 110a, and the surface 401a may be in contact with the dummy bump 400. Surface 400a may contact surface 210a. That is, the dummy bump 400 may be in contact with the second substrate 20.
  • An insulator such as resin may be disposed between the first substrate 10 and the second substrate 20 so as to surround the bonding electrode 32 and the dummy electrode 42.
  • the semiconductor device 1c including the first substrate 10, the second substrate 20, the bonding electrode 32, and the dummy electrode 42 is configured.
  • the first substrate 10 and the second substrate 20 are supported by the bonding electrode 32 and the dummy electrode 42 during bonding. Therefore, deformation of the first substrate 10 and the second substrate 20 is suppressed. Moreover, since the area of the surface 401a is smaller than the area of the surface 301a, an increase in the load required for bonding is suppressed.
  • the joining electrode 32 and the dummy electrode 42 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1c can be simplified.
  • FIG. 7 shows a configuration of a semiconductor device 1d according to the fourth embodiment of the present invention.
  • FIG. 7 shows a cross section of the semiconductor device 1d.
  • the semiconductor device 1 d includes a first substrate 10, a second substrate 20, a bonding electrode 33, and a dummy electrode 43.
  • the first substrate 10 and the second substrate 20 are stacked via the bonding electrode 33 and the dummy electrode 43.
  • the dimensions of the parts constituting the semiconductor device 1d do not follow the dimensions shown in FIG.
  • the dimensions of the portion constituting the semiconductor device 1d may be arbitrary.
  • the thickness of the portion constituting the semiconductor device 1d is shown as the length of the portion in the vertical direction.
  • the dummy electrode 41 shown in FIG. The bonding electrode 33 is disposed between the surface 110a (first surface) and the surface 210a (second surface).
  • the bonding electrode 33 is electrically connected to the first wiring 111 and the second wiring 211.
  • the dummy electrode 43 is disposed between the surface 110a and the surface 210a.
  • the dummy electrode 43 is electrically insulated from at least one of the first wiring 111 and the second wiring 211.
  • the bonding electrode 33 has a bonding bump 310 and a first bonding pad 311.
  • the bonding bump 310 is the same as the bonding bump 310 shown in FIGS.
  • the first bonding pad 311 is the same as the first bonding pad 311 shown in FIGS. 3 and 4.
  • the surface 310b is in contact with the surface 110a. That is, the bonding bump 310 is in contact with the first substrate 10.
  • the dummy electrode 43 has a dummy bump 410 and a first dummy pad 411.
  • the dummy bump 410 is the same as the dummy bump 410 shown in FIGS.
  • the first dummy pad 411 is the same as the first dummy pad 411 shown in FIGS.
  • the surface 410b is in contact with the surface 110a. That is, the dummy bump 410 is in contact with the first substrate 10.
  • the first bonding pad 311 may be disposed between the bonding bump 310 and the first substrate 10. That is, the surface 311b may be in contact with the surface 110a, and the surface 311a may be in contact with the bonding bump 310. Surface 310a may be in contact with surface 210a. That is, the bonding bump 310 may be in contact with the second substrate 20.
  • An insulator such as a resin may be disposed between the first substrate 10 and the second substrate 20 so as to surround the bonding electrode 33 and the dummy electrode 43. At least a part between the surface 411b and the surface 410a, that is, between the first dummy pad 411 and the dummy bump 410 may be filled with an insulator such as resin. A space may be provided between the surface 411b and the surface 410a, that is, at least a part between the first dummy pad 411 and the dummy bump 410.
  • the semiconductor device 1d having the first substrate 10, the second substrate 20, the bonding electrode 33, and the dummy electrode 43 is configured.
  • the bonding electrode 33 receives the load. For this reason, the increase in the load required for joining is suppressed.
  • the bonding bump 310 is deformed at the time of bonding and the first dummy pad 411 and the dummy bump 410 come into contact with each other, the first substrate 10 and the second substrate 20 are supported by the bonding electrode 33 and the dummy electrode 43. Therefore, deformation of the first substrate 10 and the second substrate 20 is suppressed.
  • the bonding electrode 33 and the dummy electrode 43 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1d can be simplified.
  • FIG. 8 shows a configuration of a semiconductor device 1e according to the fifth embodiment of the present invention.
  • FIG. 8 shows a cross section of the semiconductor device 1e.
  • the semiconductor device 1 e includes a first substrate 10, a second substrate 20, a bonding electrode 33, and a dummy electrode 44.
  • the first substrate 10 and the second substrate 20 are stacked via the bonding electrode 33 and the dummy electrode 44.
  • the dimensions of the parts constituting the semiconductor device 1e do not follow the dimensions shown in FIG.
  • the dimension of the part which comprises the semiconductor device 1e may be arbitrary.
  • the thickness of the portion constituting the semiconductor device 1e is shown as the length of the portion in the vertical direction.
  • the junction electrode 33 is the same as the junction electrode 33 shown in FIG.
  • the dummy electrode 44 is disposed between the surface 110a (first surface) and the surface 210a (second surface).
  • the dummy electrode 44 is electrically insulated from at least one of the first wiring 111 and the second wiring 211.
  • the first bonding pad 311 may be disposed between the bonding bump 310 and the first substrate 10. That is, the surface 311b may be in contact with the surface 110a, and the surface 311a may be in contact with the bonding bump 310. Surface 310a may be in contact with surface 210a. That is, the bonding bump 310 may be in contact with the second substrate 20.
  • the dummy electrode 44 has a dummy bump 410 and a first dummy pad 441.
  • the dummy bump 410 is the same as the dummy bump 410 shown in FIGS.
  • the first dummy pad 441 has the same configuration as the dummy barrier layer 4120 shown in FIG.
  • the first dummy pad 441 has a surface 441a (fifth surface) and a surface 441b (sixth surface).
  • the surfaces 441a and 441b face in opposite directions.
  • the surface 441a is in contact with one of the surface 110a (first surface) and the surface 210a (second surface). In FIG. 8, the surface 441a is in contact with the surface 110a.
  • the surface 441b is in contact with the dummy bump 410.
  • the metal constituting the dummy bump 410 is difficult to diffuse into the first wiring layer 110 during bonding. Therefore, a change in electrical characteristics of the semiconductor device 1e due to diffusion of the metal constituting the dummy bump 410 into the first wiring layer 110 during bonding is suppressed.
  • Surface 410a and surface 210a face each other.
  • Surface 410a is not in contact with surface 210a. That is, the dummy bump 410 is not in contact with the first substrate 10 and the second substrate 20.
  • the distance between the surface 410a and the surface 210a is less than 1 ⁇ m.
  • the thickness of the first dummy pad 441 is the distance between the surface 441a and the surface 441b.
  • the thickness of the first dummy pad 441 is less than 1 ⁇ m.
  • the total of the thickness of the bonding bump 310 and the thickness of the first bonding pad 311 is larger than the total of the thickness of the dummy bump 410 and the thickness of the first dummy pad 441.
  • the surface 441 a is not in contact with the first via 112. For this reason, the dummy electrode 44 is electrically insulated from the first wiring 111.
  • Surface 410a is not in contact with surface 210a. For this reason, the dummy electrode 44 is electrically insulated from the second wiring 211.
  • the dummy electrode 44 may be electrically connected to only one of the first wiring 111 and the second wiring 211.
  • An insulator such as resin may be disposed between the first substrate 10 and the second substrate 20 so as to surround the bonding electrode 33 and the dummy electrode 44. At least a part between the surface 210a and the surface 410a, that is, between the second substrate 20 and the dummy bump 410 may be filled with an insulator such as a resin. A space may be provided between the surface 210a and the surface 410a, that is, at least a part between the second substrate 20 and the dummy bump 410.
  • the bonding electrode 33 and the dummy electrode 44 can be formed by the same process.
  • the first dummy pad 441 is formed on the surface 110a by sputtering or vapor deposition. Thereafter, the bonding bump 310 and the dummy bump 410 are formed simultaneously.
  • the first bonding pad 311 is formed on the surface 210a by sputtering or vapor deposition. Thereafter, in the bonding step, the bonding bump 310 and the first bonding pad 311 are connected.
  • the semiconductor device 1e including the first substrate 10, the second substrate 20, the bonding electrode 33, and the dummy electrode 44 is configured.
  • the bonding electrode 33 receives the load. For this reason, the increase in the load required for joining is suppressed.
  • the bonding bump 310 is deformed at the time of bonding and the second substrate 20 and the dummy bump 410 come into contact with each other, the first substrate 10 and the second substrate 20 are supported by the bonding electrode 33 and the dummy electrode 44. Therefore, deformation of the first substrate 10 and the second substrate 20 is suppressed.
  • the bonding electrode 33 and the dummy electrode 44 can be formed by the same process. For this reason, the manufacturing process of the semiconductor device 1e can be simplified.
  • the manufacturing process can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 半導体装置は、第1の基板と、第2の基板と、接合電極と、ダミー電極とを有する。前記第1の基板は、第1の面と第1の配線とを有し、第1の半導体材料を含む。前記第2の基板は、第2の面と第2の配線とを有し、第2の半導体材料を含み、前記第1の面と前記第2の面とは対向する。前記接合電極は、前記第1の面と前記第2の面との間に配置され、前記第1の配線と前記第2の配線とに電気的に接続されている。前記ダミー電極は、前記第1の面と前記第2の面との間に配置され、前記第1の配線と前記第2の配線との少なくとも一方から電気的に絶縁されている。前記接合電極は、接合バンプと第1の接合パッドとを有する。前記ダミー電極は、ダミーバンプと第1のダミーパッドとを有する。

Description

半導体装置
 本発明は、半導体装置に関する。
 複数の基板を有し、複数の基板が電気的に接続された半導体装置が開示されている。この半導体装置では、複数の基板の間に配置された電極により複数の基板が接続される。複数の基板が接合されるときに加わる荷重によって、電極の密度が低い領域で基板が変形する。つまり、基板がたわむ。
 接合時の基板の変形を抑制するための構造が特許文献1に開示されている。図9は、特許文献1に開示された構造と同様の構造を有する半導体装置1000aの構成を示している。
 図9では半導体装置1000aの断面が示されている。図9に示すように、半導体装置1000aは、第1の基板60と、第2の基板70と、接合電極80と、ダミー電極90とを有する。第1の基板60と第2の基板70とは、接合電極80とダミー電極90とを介して積層されている。
 接合電極80とダミー電極90とは、第1の基板60と第2の基板70との間に配置されている。接合電極80は、第1の基板60と第2の基板70とに電気的に接続されている。ダミー電極90は、第1の基板60と第2の基板70とから電気的に絶縁されている。接合電極80の厚さ(高さ)とダミー電極90の厚さ(高さ)とは、同一である。
 接合電極80は、接合金属800と、第1のバンプ801と、第2のバンプ802とを有する。第1のバンプ801は、第2の基板70と接触している。第2のバンプ802は、第1の基板60と接触している。接合金属800は、第1のバンプ801と第2のバンプ802とに接触している。
 図9に示す半導体装置1000aでは、第1の基板60と第2の基板70とが接合されるとき、接合電極80とダミー電極90とが荷重を受ける。接合電極80の密度が低い領域では、ダミー電極90が配置されているため、接合電極80とダミー電極90とによって第1の基板60と第2の基板70とが支えられる。したがって、第1の基板60と第2の基板70との変形が抑制される。しかし、荷重が接合電極80とダミー電極90とに分散するため、接合電極80に十分な荷重が加わらない場合がある。
 接合電極80が第1の基板60と第2の基板70とに十分に接続されるためには、荷重の増加が必要である。しかし、接合装置が荷重を発生する性能の向上には限界がある。
 接合時に荷重の増加を抑制し、かつ、基板の変形を抑制するための構造が特許文献1に開示されている。図10は、特許文献1に開示された構造と同様の構造を有する半導体装置1000bの構成を示している。
 図10では半導体装置1000bの断面が示されている。図10に示すように、半導体装置1000bは、第1の基板60と、第2の基板70と、接合電極80と、ダミー電極91とを有する。第1の基板60と第2の基板70とは、接合電極80とダミー電極91とを介して積層されている。
 接合電極80とダミー電極91とは、第1の基板60と第2の基板70との間に配置されている。接合電極80は、図9に示す接合電極80と同一である。ダミー電極91は、第1の基板60と第2の基板70とから電気的に絶縁されている。接合電極80の厚さ(高さ)とダミー電極91の厚さ(高さ)とは、同一である。
 ダミー電極91の形状は、ダミー電極90の形状と異なる。ダミー電極91の上部91aの幅は、ダミー電極91の下部91bの幅よりも小さい。つまり、ダミー電極91の上部91aは、ダミー電極91の下部91bよりも細い。ダミー電極91の上部91aが第1の基板60と接触する面の面積S21は、ダミー電極90が第1の基板60と接触する面の面積S20よりも小さい。
 図10に示す半導体装置1000bでは、第1の基板60と第2の基板70とが接合されるとき、接合電極80とダミー電極91とが荷重を受ける。接合電極80の密度が低い領域では、ダミー電極91が配置されているため、接合電極80とダミー電極91とによって第1の基板60と第2の基板70とが支えられる。したがって、第1の基板60と第2の基板70との変形が抑制される。また、ダミー電極91の上部91aが細いため、より多くの荷重が接合電極80に加わりやすい。このため、接合に必要な荷重の増加が抑制される。
日本国特開2014-72487号公報
 しかし、図10に示す半導体装置1000bでは、接合電極80とダミー電極91とは、異なる工程により形成される。つまり、図10に示す半導体装置1000bでは、ダミー電極91を形成するための専用の工程が必要である。このため、製造工程が複雑である。この結果、製造コストが増加する。
 本発明は、製造工程を簡素化することができる半導体装置を提供することを目的とする。
 本発明の第1の態様によれば、半導体装置は、第1の基板と、第2の基板と、接合電極と、ダミー電極とを有する。前記第1の基板は、第1の面と第1の配線とを有し、第1の半導体材料を含む。前記第2の基板は、第2の面と第2の配線とを有し、第2の半導体材料を含む。前記第1の面と前記第2の面とは対向する。前記接合電極は、前記第1の面と前記第2の面との間に配置され、前記第1の配線と前記第2の配線とに電気的に接続されている。前記ダミー電極は、前記第1の面と前記第2の面との間に配置され、前記第1の配線と前記第2の配線との少なくとも一方から電気的に絶縁されている。前記接合電極は、接合バンプと、第1の接合パッドとを有する。前記第1の接合パッドは、第3の面と第4の面とを有する。前記第3の面は前記第1の面と前記第2の面との1つと接触し、かつ、前記第4の面は前記接合バンプと接触する。前記ダミー電極は、ダミーバンプと、第1のダミーパッドとを有する。前記第1のダミーパッドは、第5の面と第6の面とを有する。前記第5の面は前記第1の面と前記第2の面との1つと接触する。前記ダミーバンプの厚さは前記接合バンプの厚さと同一である。第1の条件と第2の条件との1つが満たされる。前記第1の条件では、前記第6の面は前記ダミーバンプと接触する。前記第1の条件では、前記第5の面の面積は前記第3の面の面積よりも小さい。前記第1の条件では、前記第1のダミーパッドの厚さは前記第1の接合パッドの厚さと同一である。前記第2の条件では、前記第1のダミーパッドの厚さは前記第1の接合パッドの厚さよりも小さい。
 本発明の第2の態様によれば、第1の態様において、前記接合電極はさらに、第2の接合パッドを有してもよい。前記第2の接合パッドは、第7の面と第8の面とを有してもよい。前記第7の面は、前記第1の面と前記第2の面とのうち前記第3の面が接触していない面と接触し、かつ、前記第8の面は前記接合バンプと接触してもよい。前記ダミー電極はさらに、第2のダミーパッドを有してもよい。前記第2のダミーパッドは、第9の面と第10の面とを有してもよい。前記第9の面は、前記第1の面と前記第2の面とのうち前記第5の面が接触していない面と接触し、かつ、前記第10の面は前記ダミーバンプと接触してもよい。前記第2のダミーパッドの厚さは前記第2の接合パッドの厚さと同一であってもよい。前記第1の条件が満たされてもよい。
 本発明の第3の態様によれば、第1の態様において、前記第1の接合パッドは、第1のバリア層と、第1の接合層とを有してもよい。前記第1のバリア層は、前記第3の面を有してもよい。前記第3の面は前記第1の面と前記第2の面との1つと接触してもよい。前記第1の接合層は、前記第1のバリア層に積層され、前記第4の面を有してもよい。前記第4の面は前記接合バンプと接触してもよい。前記第1のダミーパッドの厚さは、前記第1のバリア層の厚さと同一であってもよい。前記第2の条件が満たされてもよい。
 本発明の第4の態様によれば、第3の態様において、前記接合電極はさらに、第2の接合パッドを有してもよい。前記第2の接合パッドは、第2のバリア層と、第2の接合層とを有してもよい。前記第2のバリア層は、第7の面を有してもよい。前記第7の面は、前記第1の面と前記第2の面とのうち前記第3の面が接触していない面と接触してもよい。前記第2の接合層は、前記第2のバリア層に積層され、第8の面を有してもよい。前記第8の面は前記接合バンプと接触してもよい。前記ダミー電極はさらに、第2のダミーパッドを有してもよい。前記第2のダミーパッドは、ダミーバリア層と、ダミー接合層とを有してもよい。前記ダミーバリア層は、第9の面を有してもよい。前記第9の面は、前記第1の面と前記第2の面とのうち前記第5の面が接触していない面と接触してもよい。前記ダミー接合層は、前記ダミーバリア層に積層され、第10の面を有してもよい。前記第10の面は前記ダミーバンプと接触してもよい。前記ダミーバリア層の厚さは前記第2のバリア層の厚さと同一であってもよい。前記ダミー接合層の厚さは前記第2の接合層の厚さと同一であってもよい。
 上記の各態様によれば、製造工程を簡素化することができる。
本発明の第1の実施形態の半導体装置の断面図である。 本発明の第1の実施形態の半導体装置の平面図である。 本発明の第2の実施形態の半導体装置の断面図である。 本発明の第2の実施形態の半導体装置が有する接合電極の断面図である。 本発明の第2の実施形態の半導体装置が有するダミー電極の断面図である。 本発明の第3の実施形態の半導体装置の断面図である。 本発明の第4の実施形態の半導体装置の断面図である。 本発明の第5の実施形態の半導体装置の断面図である。 従来技術の半導体装置の構成を示す断面図である。 従来技術の半導体装置の構成を示す断面図である。
 図面を参照し、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態の半導体装置1aの構成を示している。図1では半導体装置1aの断面が示されている。図1に示すように、半導体装置1aは、第1の基板10と、第2の基板20と、接合電極30と、ダミー電極40とを有する。第1の基板10と第2の基板20とは、接合電極30とダミー電極40とを介して積層されている。
 半導体装置1aを構成する部分の寸法は、図1に示される寸法に従うわけではない。半導体装置1aを構成する部分の寸法は任意であってよい。図1では、半導体装置1aを構成する部分の厚さは、その部分の縦方向の長さとして示される。図1では、半導体装置1aを構成する部分の面積は、その部分の横方向の長さに基づく。
 第1の基板10は、第1の半導体層100と、第1の配線層110とを有する。第1の半導体層100と第1の配線層110とは、第1の基板10の主面(基板の表面を構成する複数の面のうち最も広い面)を横切る方向(例えば、主面にほぼ垂直な方向)に重なっている。また、第1の半導体層100と第1の配線層110とは互いに接触している。
 第1の半導体層100は、第1の半導体材料で構成されている。つまり、第1の基板10は、第1の半導体材料を含む。例えば、第1の半導体材料は、シリコン(Si)である。第1の半導体層100は、面100aと面100bとを有する。面100aと面100bとは、反対方向を向いている。面100aは、第1の配線層110と接触している。面100bは、第1の基板10の主面の1つを構成する。
 第1の配線層110は、第1の配線111と、第1のビア112と、第1の層間絶縁膜113とを有する。図1では複数の第1の配線111が存在するが、代表として1つの第1の配線111の符号が示されている。図1では複数の第1のビア112が存在するが、代表として1つの第1のビア112の符号が示されている。
 第1の配線層110は、面110aと面110bとを有する。面110aは第2の基板20と対向する。面110aは、接合電極30およびダミー電極40と接触している。面110bは第1の半導体層100と接触している。面110aは第1の基板10の主面の1つを構成する。
 第1の配線111と第1のビア112とは、導電材料で構成されている。例えば、第1の配線111と第1のビア112とを構成する導電材料は、アルミニウム(Al)および銅(Cu)等の金属である。第1の配線111は、配線パターンが形成された薄膜である。第1の配線111は、信号を伝送する。1層のみの第1の配線111が形成されていてもよいし、複数層の第1の配線111が形成されていてもよい。図1に示す例では、3層の第1の配線111が形成されている。
 第1のビア112は、異なる層の第1の配線111を接続する。第1の配線層110において、第1の配線111および第1のビア112以外の部分は、第1の層間絶縁膜113で構成されている。第1の層間絶縁膜113は、二酸化珪素(SiO2)等で構成されている。
 第1の半導体層100と第1の配線層110との少なくとも一方は、トランジスタ等の回路要素を有してもよい。
 第2の基板20は、第2の半導体層200と、第2の配線層210とを有する。第2の半導体層200と第2の配線層210とは、第2の基板20の主面を横切る方向(例えば、主面にほぼ垂直な方向)に重なっている。また、第2の半導体層200と第2の配線層210とは互いに接触している。
 第2の半導体層200は、第2の半導体材料で構成されている。つまり、第2の基板20は、第2の半導体材料を含む。例えば、第2の半導体材料は、シリコン(Si)である。第2の半導体層200は、面200aと面200bとを有する。面200aと面200bとは、反対方向を向いている。面200aは、第2の配線層210と接触している。面200bは、第2の基板20の主面の1つを構成する。
 第2の配線層210は、第2の配線211と、第2のビア212と、第2の層間絶縁膜213とを有する。図1では複数の第2の配線211が存在するが、代表として1つの第2の配線211の符号が示されている。図1では複数の第2のビア212が存在するが、代表として1つの第2のビア212の符号が示されている。
 第2の配線層210は、面210aと面210bとを有する。面210aは第1の基板10と対向する。面210aは、接合電極30およびダミー電極40と接触している。面210bは第2の半導体層200と接触している。面210aは第2の基板20の主面の1つを構成する。
 第2の配線211と第2のビア212とは、導電材料で構成されている。例えば、第2の配線211と第2のビア212とを構成する導電材料は、アルミニウム(Al)および銅(Cu)等の金属である。第2の配線211は、配線パターンが形成された薄膜である。第2の配線211は、信号を伝送する。1層のみの第2の配線211が形成されていてもよいし、複数層の第2の配線211が形成されていてもよい。図1に示す例では、3層の第2の配線211が形成されている。
 第2のビア212は、異なる層の第2の配線211を接続する。第2の配線層210において、第2の配線211および第2のビア212以外の部分は、第2の層間絶縁膜213で構成されている。第2の層間絶縁膜213は、二酸化珪素(SiO2)等で構成されている。
 第2の半導体層200と第2の配線層210との少なくとも一方は、トランジスタ等の回路要素を有してもよい。
 上記のように、第1の基板10は、面110a(第1の面)と第1の配線111とを有し、第1の半導体材料を含む。第2の基板20は、面210a(第2の面)と第2の配線211とを有し、第2の半導体材料を含む。面110aと面210aとは対向する。
 接合電極30は、面110a(第1の面)と面210a(第2の面)との間に配置されている。接合電極30は、第1の配線111と第2の配線211とに電気的に接続されている。ダミー電極40は、面110aと面210aとの間に配置されている。ダミー電極40は、第1の配線111と第2の配線211との少なくとも一方から電気的に絶縁されている。
 接合電極30は、接合バンプ300と第1の接合パッド301とを有する。接合バンプ300と第1の接合パッド301とは、導電材料で構成されている。例えば、接合バンプ300と第1の接合パッド301とを構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第1の接合パッド301は、面301a(第3の面)と面301b(第4の面)とを有する。面301aと面301bとは、反対方向を向いている。面301aは面110a(第1の面)と面210a(第2の面)との1つと接触している。図1では、面301aは面210aと接触している。面301bは接合バンプ300と接触している。
 ダミー電極40は、ダミーバンプ400と、第1のダミーパッド401とを有する。ダミーバンプ400と第1のダミーパッド401とは、導電材料で構成されている。例えば、ダミーバンプ400と第1のダミーパッド401とを構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第1のダミーパッド401は、面401a(第5の面)と面401b(第6の面)とを有する。面401aと面401bとは、反対方向を向いている。面401aは面110a(第1の面)と面210a(第2の面)との1つと接触している。図1では、面401aは面210aと接触している。
 ダミーバンプ400の厚さは接合バンプ300の厚さと同一である。第1の実施形態では、第1の条件が満たされる。第1の条件では、面401b(第6の面)はダミーバンプ400と接触している。第1の条件では、面401a(第5の面)の面積は面301a(第3の面)の面積よりも小さい。第1の条件では、第1のダミーパッド401の厚さは第1の接合パッド301の厚さと同一である。
 面401aの面積が面301aの面積よりも小さいため、面210aに投影された第1のダミーパッド401の面積は、面210aに投影された第1の接合パッド301の面積よりも小さい。また、面210aに平行な平面内の第1のダミーパッド401の断面積は、面210aに平行な平面内の第1の接合パッド301の断面積よりも小さい。
 接合電極30はさらに、第2の接合パッド302を有する。第2の接合パッド302は、導電材料で構成されている。例えば、第2の接合パッド302を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第2の接合パッド302は、面302a(第7の面)と面302b(第8の面)とを有する。面302aは、面110a(第1の面)と面210a(第2の面)とのうち面301a(第3の面)が接触していない面と接触している。図1では、面302aは、面110aと接触している。面302bは接合バンプ300と接触している。
 ダミー電極40はさらに、第2のダミーパッド402を有する。第2のダミーパッド402は、導電材料で構成されている。例えば、第2のダミーパッド402を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第2のダミーパッド402は、面402a(第9の面)と面402b(第10の面)とを有する。面402aは、面110a(第1の面)と面210a(第2の面)とのうち面401a(第5の面)が接触していない面と接触している。図1では、面402aは面110aと接触している。面402bはダミーバンプ400と接触している。第2のダミーパッド402の厚さは第2の接合パッド302の厚さと同一である。
 第1のダミーパッド401が配置されているため、ダミーバンプ400を構成する金属が接合時に第2の配線層210に拡散しにくい。同様に、第2のダミーパッド402が配置されているため、ダミーバンプ400を構成する金属が接合時に第1の配線層110に拡散しにくい。したがって、ダミーバンプ400を構成する金属が接合時に第1の配線層110または第2の配線層210に拡散することによる半導体装置1aの電気特性の変化が抑制される。
 接合バンプ300は、面300aと面300bとを有する。面300aと面300bとは、反対方向を向いている。面301bは面300aと接触している。面302bは面300bと接触している。面300aの面積と面300bの面積とは、同一である。面301aの面積と面301bの面積とは、面300aの面積よりも大きい。面302aの面積と面302bの面積とは、面300bの面積よりも大きい。
 ダミーバンプ400は、面400aと面400bとを有する。面400aと面400bとは、反対方向を向いている。面401bは面400aと接触している。面402bは面400bと接触している。面400aの面積と面400bの面積とは、同一である。面401aと面401bとの面積は、面400aの面積よりも小さい。面402aと面402bとの面積は、面400bの面積よりも大きい。
 接合バンプ300の厚さは、面300aと面300bとの距離である。第1の接合パッド301の厚さは、面301aと面301bとの距離である。第2の接合パッド302の厚さは、面302aと面302bとの距離である。ダミーバンプ400の厚さは、面400aと面400bとの距離である。第1のダミーパッド401の厚さは、面401aと面401bとの距離である。第2のダミーパッド402の厚さは、面402aと面402bとの距離である。例えば、第1の接合パッド301と、第2の接合パッド302と、第1のダミーパッド401と、第2のダミーパッド402とのそれぞれの厚さは1μm未満である。
 接合バンプ300の厚さと第1の接合パッド301の厚さとの合計は、ダミーバンプ400の厚さと第1のダミーパッド401の厚さとの合計と同一である。接合バンプ300の厚さと、第1の接合パッド301の厚さと、第2の接合パッド302の厚さとの合計は、ダミーバンプ400の厚さと、第1のダミーパッド401の厚さと、第2のダミーパッド402の厚さとの合計と同一である。
 面302aは第1のビア112と接触している。このため、接合電極30は、第1の配線111と電気的に接続されている。面301aは第2のビア212と接触している。このため、接合電極30は、第2の配線211と電気的に接続されている。
 面402aは第1のビア112と接触していない。このため、ダミー電極40は、第1の配線111から電気的に絶縁されている。面401aは第2のビア212と接触していない。このため、ダミー電極40は、第2の配線211から電気的に絶縁されている。ダミー電極40は、第1の配線111と第2の配線211との1つのみに電気的に接続されてもよい。
 面401aの面積が面400aの面積よりも大きく、かつ、面402aの面積が面302aの面積よりも小さくてもよい。
 第1の基板10と第2の基板20との間に、接合電極30とダミー電極40とを囲むように樹脂等の絶縁体が配置されてもよい。
 図1に示す半導体装置1aでは、第1の基板10と第2の基板20とが接合されるとき、接合電極30とダミー電極40とが荷重を受ける。このため、接合電極30とダミー電極40とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。また、面401aの面積が面301aの面積よりも小さいため、より多くの荷重が接合電極30に加わりやすい。このため、接合に必要な荷重の増加が抑制される。
 接合電極30とダミー電極40とは、同一の工程により形成することが可能である。このため、半導体装置1aの製造工程を簡素化することができる。半導体装置1aの製造工程では、スパッタまたは蒸着等により第2の接合パッド302と第2のダミーパッド402とが面110aに同時に形成される。その後、接合バンプ300とダミーバンプ400とが同時に形成される。一方、スパッタまたは蒸着等により第1の接合パッド301と第1のダミーパッド401とが面210aに同時に形成される。その後、接合工程において、接合バンプ300と第1の接合パッド301とが接続され、かつ、ダミーバンプ400と第1のダミーパッド401とが接続される。
 図2は、接合電極30とダミー電極40との配列を示している。図2では、面110aに垂直な方向に半導体装置1aを見た状態が示されている。図2では、第2の基板20は省略されている。図2に示すように、半導体装置1aは、複数の接合電極30と複数のダミー電極40とを有する。図2では代表として1つの接合電極30と1つのダミー電極40との符号が示されている。複数の接合電極30と複数のダミー電極40とは行列状に配置されている。複数のダミー電極40は、複数の接合電極30を囲むように配置されている。複数の接合電極30と複数のダミー電極40との配列は、図2に示す配列に限らない。
 図2では、第1の接合パッド301の面301aと第1のダミーパッド401の面401aとが示されている。図2に示すように、面401aの面積は面301aの面積よりも小さい。
 接合バンプ300の形状は円である。第1の接合パッド301の形状は矩形である。図2に示されていないが、第2の接合パッド302の形状は矩形である。ダミーバンプ400の形状は円である。第1のダミーパッド401と第2のダミーパッド402との形状は矩形である。接合バンプ300等の形状は、上記の形状以外であってもよい。
 第1の実施形態によれば、第1の基板10と、第2の基板20と、接合電極30と、ダミー電極40とを有する半導体装置1aが構成される。
 第1の実施形態では、接合時に接合電極30とダミー電極40とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。また、面401aの面積が面301aの面積よりも小さいため、接合に必要な荷重の増加が抑制される。接合電極30とダミー電極40とは、同一の工程により形成することが可能である。このため、半導体装置1aの製造工程を簡素化することができる。
 (第2の実施形態)
 図3は、本発明の第2の実施形態の半導体装置1bの構成を示している。図3では半導体装置1bの断面が示されている。図3に示すように、半導体装置1bは、第1の基板10と、第2の基板20と、接合電極31と、ダミー電極41とを有する。第1の基板10と第2の基板20とは、接合電極31とダミー電極41とを介して積層されている。
 半導体装置1bを構成する部分の寸法は、図3に示される寸法に従うわけではない。半導体装置1bを構成する部分の寸法は任意であってよい。図3では、半導体装置1bを構成する部分の厚さは、その部分の縦方向の長さとして示される。
 図3に示す構成について、図1に示す構成と異なる点を説明する。
 半導体装置1bにおいて、図1に示す接合電極30が接合電極31に変更されている。また、半導体装置1bにおいて、図1に示すダミー電極40がダミー電極41に変更されている。接合電極31は、面110a(第1の面)と面210a(第2の面)との間に配置されている。接合電極31は、第1の配線111と第2の配線211とに電気的に接続されている。ダミー電極41は、面110aと面210aとの間に配置されている。ダミー電極41は、第1の配線111と第2の配線211との少なくとも一方から電気的に絶縁されている。
 接合電極31は、接合バンプ310と第1の接合パッド311とを有する。接合バンプ310と第1の接合パッド311とは、導電材料で構成されている。例えば、接合バンプ310を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第1の接合パッド311を構成する導電材料については後述する。第1の接合パッド311は、面311a(第3の面)と面311b(第4の面)とを有する。面311aと面311bとは、反対方向を向いている。面311aは面110a(第1の面)と面210a(第2の面)との1つと接触している。図3では、面311aは面210aと接触している。面311bは接合バンプ310と接触している。
 ダミー電極41は、ダミーバンプ410と、第1のダミーパッド411とを有する。ダミーバンプ410と第1のダミーパッド411とは、導電材料で構成されている。例えば、ダミーバンプ410を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第1のダミーパッド411を構成する導電材料については後述する。第1のダミーパッド411は、面411a(第5の面)と面411b(第6の面)とを有する。面411aと面411bとは、反対方向を向いている。面411aは面110a(第1の面)と面210a(第2の面)との1つと接触している。図3では、面411aは面210aと接触している。
 ダミーバンプ410の厚さは接合バンプ310の厚さと同一である。第2の実施形態では、第2の条件が満たされる。第2の条件では、第1のダミーパッド411の厚さは第1の接合パッド311の厚さよりも小さい。
 接合電極31はさらに、第2の接合パッド312を有する。第2の接合パッド312は、導電材料で構成されている。第2の接合パッド312を構成する導電材料については後述する。第2の接合パッド312は、面312a(第7の面)と面312b(第8の面)とを有する。面312aは、面110a(第1の面)と面210a(第2の面)とのうち面311a(第3の面)が接触していない面と接触している。図3では、面312aは、面110aと接触している。面312bは接合バンプ310と接触している。
 ダミー電極41はさらに、第2のダミーパッド412を有する。第2のダミーパッド412は、導電材料で構成されている。第2のダミーパッド412を構成する導電材料については後述する。第2のダミーパッド412は、面412a(第9の面)と面412b(第10の面)とを有する。面412aは、面110aと面210aとのうち面411aが接触していない面と接触している。図3では、面412aは面110aと接触している。面412bはダミーバンプ410と接触している。第2のダミーパッド412の厚さは第2の接合パッド312の厚さと同一である。
 第1のダミーパッド411が配置されているため、ダミーバンプ410を構成する金属が接合時に第2の配線層210に拡散しにくい。同様に、第2のダミーパッド412が配置されているため、ダミーバンプ410を構成する金属が接合時に第1の配線層110に拡散しにくい。したがって、ダミーバンプ410を構成する金属が接合時に第1の配線層110または第2の配線層210に拡散することによる半導体装置1bの電気特性の変化が抑制される。
 接合バンプ310は、面310aと面310bとを有する。面310aと面310bとは、反対方向を向いている。面311bは面310aと接触している。面312bは面310bと接触している。
 ダミーバンプ410は、面410aと面410bとを有する。面410aと面410bとは、反対方向を向いている。面411bと面410aとは、対向する。面411bは面410aと接触していない。つまり、第1のダミーパッド411はダミーバンプ410と接触していない。例えば、面411bと面410aとの距離は1μm未満である。面412bは面410bと接触している。
 接合バンプ310の厚さは、面310aと面310bとの距離である。第1の接合パッド311の厚さは、面311aと面311bとの距離である。第2の接合パッド312の厚さは、面312aと面312bとの距離である。ダミーバンプ410の厚さは、面410aと面410bとの距離である。第1のダミーパッド411の厚さは、面411aと面411bとの距離である。第2のダミーパッド412の厚さは、面412aと面412bとの距離である。例えば、第1の接合パッド311と、第2の接合パッド312と、第1のダミーパッド411と、第2のダミーパッド412とのそれぞれの厚さは1μm未満である。
 接合バンプ310の厚さと第1の接合パッド311の厚さとの合計は、ダミーバンプ410の厚さと第1のダミーパッド411の厚さとの合計よりも大きい。接合バンプ310の厚さと、第1の接合パッド311の厚さと、第2の接合パッド312の厚さとの合計は、ダミーバンプ410の厚さと、第1のダミーパッド411の厚さと、第2のダミーパッド412の厚さとの合計よりも大きい。
 面312aは第1のビア112と接触している。このため、接合電極31は、第1の配線111と電気的に接続されている。面311aは第2のビア212と接触している。このため、接合電極31は、第2の配線211と電気的に接続されている。
 面412aは第1のビア112と接触していない。このため、ダミー電極41は、第1の配線111から電気的に絶縁されている。面411bは面410aと接触していない。このため、ダミー電極41は、第2の配線211から電気的に絶縁されている。ダミー電極41は、第1の配線111と第2の配線211との1つのみに電気的に接続されてもよい。
 第1のダミーパッド411の厚さが第1の接合パッド311の厚さと同一であり、かつ、第2のダミーパッド412の厚さが第2の接合パッド312の厚さよりも小さくてもよい。この場合、面411bはダミーバンプ410と接触し、かつ、面410bはダミーバンプ410に接触しない。
 第1の基板10と第2の基板20との間に、接合電極31とダミー電極41とを囲むように樹脂等の絶縁体が配置されてもよい。面411bと面410aとの間、すなわち第1のダミーパッド411とダミーバンプ410との間の少なくとも一部は樹脂等の絶縁体で満たされてもよい。面411bと面410aとの間、すなわち第1のダミーパッド411とダミーバンプ410との間の少なくとも一部は空間であってもよい。
 上記以外の点については、図3に示す構成は図1に示す構成と同様である。
 図3に示す半導体装置1bでは、第1の基板10と第2の基板20との接合のために荷重の印加が開始されたとき、接合電極31のみが荷重を受ける。このため、接合に必要な荷重の増加が抑制される。大きな荷重が加えられた場合、接合バンプ310が変形する。これにより、接合バンプ310の厚さが小さくなる。このため、面411bと面410aとが接触しうる。つまり、第1のダミーパッド411とダミーバンプ410とが接触しうる。第1のダミーパッド411とダミーバンプ410とが接触した場合、接合電極31とダミー電極41とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。
 接合電極31とダミー電極41とは、同一の工程により形成することが可能である。このため、半導体装置1bの製造工程を簡素化することができる。半導体装置1bの製造工程では、スパッタまたは蒸着等により第2の接合パッド312と第2のダミーパッド412とが面110aに同時に形成される。その後、接合バンプ310とダミーバンプ410とが同時に形成される。一方、スパッタまたは蒸着等により第1の接合パッド311と第1のダミーパッド411とが面210aに同時に形成される。その後、接合工程において、接合バンプ310と第1の接合パッド311とが接続され、かつ、ダミーバンプ410と第1のダミーパッド411とが接続される。
 図4は、接合電極31の構成を示している。図4では接合電極31の断面が示されている。図4に示すように、接合電極31は、接合バンプ310と、第1の接合パッド311と、第2の接合パッド312とを有する。
 接合電極31を構成する部分の寸法は、図4に示される寸法に従うわけではない。接合電極31を構成する部分の寸法は任意であってよい。図4では、接合電極31を構成する部分の厚さは、その部分の縦方向の長さとして示される。
 第1の接合パッド311は、第1のバリア層3110と第1の接合層3111とを有する。第1のバリア層3110と第1の接合層3111とは、導電材料で構成されている。例えば、第1のバリア層3110を構成する導電材料は、チタン(Ti)およびタンタル(Ta)等の金属である。例えば、第1の接合層3111を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第1のバリア層3110と第1の接合層3111とは、積層されている。第1のバリア層3110は、面311a(第3の面)を有する。面311aは面110a(第1の面)と面210a(第2の面)との1つと接触している。図3では、面311aは面210aと接触している。第1の接合層3111は、第1のバリア層3110に積層されている。第1の接合層3111は、面311b(第4の面)を有する。面311bは接合バンプ310と接触している。第1のダミーパッド411の厚さは、第1のバリア層3110の厚さと同一である。
 第1のバリア層3110はさらに、面3110aを有する。面311aと面3110aとは、反対方向を向いている。第1の接合層3111はさらに、面3111aを有する。面311bと面3111aとは、反対方向を向いている。面3111aは面3110aと接触している。
 第2の接合パッド312は、第2のバリア層3120と第2の接合層3121とを有する。第2のバリア層3120と第2の接合層3121とは、導電材料で構成されている。例えば、第2のバリア層3120を構成する導電材料は、チタン(Ti)およびタンタル(Ta)等の金属である。例えば、第2の接合層3121を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。第2のバリア層3120と第2の接合層3121とは、積層されている。第2のバリア層3120は、面312a(第7の面)を有する。面312aは、面110a(第1の面)と面210a(第2の面)とのうち面311a(第3の面)が接触していない面と接触している。図3では、面312aは面110aと接触している。第2の接合層3121は、第2のバリア層3120に積層されている。第2の接合層3121は、面312b(第8の面)を有する。面312bは接合バンプ310と接触している。
 第2のバリア層3120はさらに、面3120aを有する。面312aと面3120aとは、反対方向を向いている。第2の接合層3121はさらに、面3121aを有する。面312bと面3121aとは、反対方向を向いている。面3121aは面3120aと接触している。
 図5は、ダミー電極41の構成を示している。図5ではダミー電極41の断面が示されている。図5に示すように、ダミー電極41は、ダミーバンプ410と、第1のダミーパッド411と、第2のダミーパッド412とを有する。
 ダミー電極41を構成する部分の寸法は、図5に示される寸法に従うわけではない。ダミー電極41を構成する部分の寸法は任意であってよい。図5では、ダミー電極41を構成する部分の厚さは、その部分の縦方向の長さとして示される。
 例えば、第1のダミーパッド411を構成する導電材料は、チタン(Ti)およびタンタル(Ta)等の金属である。
 第2のダミーパッド412は、ダミーバリア層4120とダミー接合層4121とを有する。例えば、ダミーバリア層4120を構成する導電材料は、チタン(Ti)およびタンタル(Ta)等の金属である。例えば、ダミー接合層4121を構成する導電材料は、金(Au)、アルミニウム(Al)、および銅(Cu)等の金属である。ダミーバリア層4120とダミー接合層4121とは、積層されている。ダミーバリア層4120は、面412a(第9の面)を有する。面412aは、面110a(第1の面)と面210a(第2の面)とのうち面411a(第5の面)が接触していない面と接触している。図3では、面412aは面110aと接触している。ダミー接合層4121は、ダミーバリア層4120に積層されている。ダミー接合層4121は、面412b(第10の面)を有する。面412bはダミーバンプ410と接触している。
 ダミーバリア層4120はさらに、面4120aを有する。面412aと面4120aとは、反対方向を向いている。ダミー接合層4121はさらに、面4121aを有する。面412bと面4121aとは、反対方向を向いている。面4121aは面4120aと接触している。
 ダミーバリア層4120の厚さは第2のバリア層3120の厚さと同一である。ダミー接合層4121の厚さは第2の接合層3121の厚さと同一である。
 第1の接合パッド311と第1のダミーパッド411との製造工程では、第1のバリア層3110と第1のダミーパッド411とが面210aに同時に形成される。その後、第1の接合層3111が第1のバリア層3110に形成される。
 第1のバリア層3110の厚さは、面311aと面3110aとの距離である。第1の接合層3111の厚さは、面3111aと面311bとの距離である。ダミーバリア層4120の厚さは、面412aと面4120aとの距離である。ダミー接合層4121の厚さは、面412bと面4121aとの距離である。
 接合バンプ310の厚さと、第1のバリア層3110の厚さと、第1の接合層3111の厚さとの合計は、ダミーバンプ410の厚さと第1のダミーパッド411の厚さとの合計よりも大きい。接合バンプ310の厚さと、第1のバリア層3110の厚さと、第1の接合層3111の厚さと、第2のバリア層3120の厚さと、第2の接合層3121の厚さとの合計は、ダミーバンプ410の厚さと、第1のダミーパッド411の厚さと、ダミーバリア層4120の厚さと、ダミー接合層4121の厚さとの合計よりも大きい。
 本発明の各態様の半導体装置では、第1の実施形態における第1の条件と第2の実施形態における第2の条件との1つが満たされればよい。
 第2の実施形態によれば、第1の基板10と、第2の基板20と、接合電極31と、ダミー電極41とを有する半導体装置1bが構成される。
 第2の実施形態では、第1の基板10と第2の基板20との接合のために荷重の印加が開始されたとき、接合電極31のみが荷重を受ける。このため、接合に必要な荷重の増加が抑制される。接合時に接合バンプ310が変形し、第1のダミーパッド411とダミーバンプ410とが接触した場合、接合電極31とダミー電極41とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。接合電極31とダミー電極41とは、同一の工程により形成することが可能である。このため、半導体装置1bの製造工程を簡素化することができる。
 (第3の実施形態)
 図6は、本発明の第3の実施形態の半導体装置1cの構成を示している。図6では半導体装置1cの断面が示されている。図6に示すように、半導体装置1cは、第1の基板10と、第2の基板20と、接合電極32と、ダミー電極42とを有する。第1の基板10と第2の基板20とは、接合電極32とダミー電極42とを介して積層されている。
 半導体装置1cを構成する部分の寸法は、図6に示される寸法に従うわけではない。半導体装置1cを構成する部分の寸法は任意であってよい。図6では、半導体装置1cを構成する部分の厚さは、その部分の縦方向の長さとして示される。
 図6に示す構成について、図1に示す構成と異なる点を説明する。
 半導体装置1cにおいて、図1に示す接合電極30が接合電極32に変更されている。また、半導体装置1cにおいて、図1に示すダミー電極40がダミー電極42に変更されている。接合電極32は、面110a(第1の面)と面210a(第2の面)との間に配置されている。接合電極32は、第1の配線111と第2の配線211とに電気的に接続されている。ダミー電極42は、面110aと面210aとの間に配置されている。ダミー電極42は、第1の配線111と第2の配線211との少なくとも一方から電気的に絶縁されている。
 接合電極32は、接合バンプ300と第1の接合パッド301とを有する。接合バンプ300は、図1に示す接合バンプ300と同一である。第1の接合パッド301は、図1に示す第1の接合パッド301と同一である。面300bは、面110aと接触している。つまり、接合バンプ300は、第1の基板10と接触している。
 第1の接合パッド301は、接合バンプ300と第1の基板10との間に配置されてもよい。つまり、面301bが面110aと接触し、かつ、面301aが接合バンプ300と接触してもよい。面300aは、面210aと接触してもよい。つまり、接合バンプ300は、第2の基板20と接触してもよい。
 ダミー電極42は、ダミーバンプ400と、第1のダミーパッド401とを有する。ダミーバンプ400は、図1に示すダミーバンプ400と同一である。第1のダミーパッド401は、図1に示す第1のダミーパッド401と同一である。面400bは、面110aと接触している。つまり、ダミーバンプ400は、第1の基板10と接触している。
 第1のダミーパッド401は、ダミーバンプ400と第1の基板10との間に配置されてもよい。つまり、面401bが面110aと接触し、かつ、面401aがダミーバンプ400と接触してもよい。面400aは、面210aと接触してもよい。つまり、ダミーバンプ400は、第2の基板20と接触してもよい。
 第1の基板10と第2の基板20との間に、接合電極32とダミー電極42とを囲むように樹脂等の絶縁体が配置されてもよい。
 上記以外の点については、図6に示す構成は図1に示す構成と同様である。
 第3の実施形態によれば、第1の基板10と、第2の基板20と、接合電極32と、ダミー電極42とを有する半導体装置1cが構成される。
 第3の実施形態では、接合時に接合電極32とダミー電極42とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。また、面401aの面積が面301aの面積よりも小さいため、接合に必要な荷重の増加が抑制される。接合電極32とダミー電極42とは、同一の工程により形成することが可能である。このため、半導体装置1cの製造工程を簡素化することができる。
 (第4の実施形態)
 図7は、本発明の第4の実施形態の半導体装置1dの構成を示している。図7では半導体装置1dの断面が示されている。図7に示すように、半導体装置1dは、第1の基板10と、第2の基板20と、接合電極33と、ダミー電極43とを有する。第1の基板10と第2の基板20とは、接合電極33とダミー電極43とを介して積層されている。
 半導体装置1dを構成する部分の寸法は、図7に示される寸法に従うわけではない。半導体装置1dを構成する部分の寸法は任意であってよい。図7では、半導体装置1dを構成する部分の厚さは、その部分の縦方向の長さとして示される。
 図7に示す構成について、図3に示す構成と異なる点を説明する。
 半導体装置1dにおいて、図3に示す接合電極31が接合電極33に変更されている。また、半導体装置1dにおいて、図3に示すダミー電極41がダミー電極43に変更されている。接合電極33は、面110a(第1の面)と面210a(第2の面)との間に配置されている。接合電極33は、第1の配線111と第2の配線211とに電気的に接続されている。ダミー電極43は、面110aと面210aとの間に配置されている。ダミー電極43は、第1の配線111と第2の配線211との少なくとも一方から電気的に絶縁されている。
 接合電極33は、接合バンプ310と第1の接合パッド311とを有する。接合バンプ310は、図3と図4とに示す接合バンプ310と同一である。第1の接合パッド311は、図3と図4とに示す第1の接合パッド311と同一である。面310bは、面110aと接触している。つまり、接合バンプ310は、第1の基板10と接触している。
 ダミー電極43は、ダミーバンプ410と、第1のダミーパッド411とを有する。ダミーバンプ410は、図3と図5とに示すダミーバンプ410と同一である。第1のダミーパッド411は、図3と図5とに示す第1のダミーパッド411と同一である。面410bは、面110aと接触している。つまり、ダミーバンプ410は、第1の基板10と接触している。
 第1の接合パッド311は、接合バンプ310と第1の基板10との間に配置されてもよい。つまり、面311bが面110aと接触し、かつ、面311aが接合バンプ310と接触してもよい。面310aは、面210aと接触してもよい。つまり、接合バンプ310は、第2の基板20と接触してもよい。
 第1の基板10と第2の基板20との間に、接合電極33とダミー電極43とを囲むように樹脂等の絶縁体が配置されてもよい。面411bと面410aとの間、すなわち第1のダミーパッド411とダミーバンプ410との間の少なくとも一部は樹脂等の絶縁体で満たされてもよい。面411bと面410aとの間、すなわち第1のダミーパッド411とダミーバンプ410との間の少なくとも一部は空間であってもよい。
 上記以外の点については、図7に示す構成は図3に示す構成と同様である。
 第4の実施形態によれば、第1の基板10と、第2の基板20と、接合電極33と、ダミー電極43とを有する半導体装置1dが構成される。
 第4の実施形態では、第1の基板10と第2の基板20との接合のために荷重の印加が開始されたとき、接合電極33のみが荷重を受ける。このため、接合に必要な荷重の増加が抑制される。接合時に接合バンプ310が変形し、第1のダミーパッド411とダミーバンプ410とが接触した場合、接合電極33とダミー電極43とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。接合電極33とダミー電極43とは、同一の工程により形成することが可能である。このため、半導体装置1dの製造工程を簡素化することができる。
 (第5の実施形態)
 図8は、本発明の第5の実施形態の半導体装置1eの構成を示している。図8では半導体装置1eの断面が示されている。図8に示すように、半導体装置1eは、第1の基板10と、第2の基板20と、接合電極33と、ダミー電極44とを有する。第1の基板10と第2の基板20とは、接合電極33とダミー電極44とを介して積層されている。
 半導体装置1eを構成する部分の寸法は、図8に示される寸法に従うわけではない。半導体装置1eを構成する部分の寸法は任意であってよい。図8では、半導体装置1eを構成する部分の厚さは、その部分の縦方向の長さとして示される。
 図8に示す構成について、図3に示す構成と異なる点を説明する。
 接合電極33は、図7に示す接合電極33と同一である。ダミー電極44は、面110a(第1の面)と面210a(第2の面)との間に配置されている。ダミー電極44は、第1の配線111と第2の配線211との少なくとも一方から電気的に絶縁されている。
 第1の接合パッド311は、接合バンプ310と第1の基板10との間に配置されてもよい。つまり、面311bが面110aと接触し、かつ、面311aが接合バンプ310と接触してもよい。面310aは、面210aと接触してもよい。つまり、接合バンプ310は、第2の基板20と接触してもよい。
 ダミー電極44は、ダミーバンプ410と、第1のダミーパッド441とを有する。ダミーバンプ410は、図3と図5とに示すダミーバンプ410と同一である。例えば、第1のダミーパッド441は、図5に示すダミーバリア層4120と同一に構成されている。第1のダミーパッド441は、面441a(第5の面)と面441b(第6の面)とを有する。面441aと面441bとは、反対方向を向いている。面441aは面110a(第1の面)と面210a(第2の面)との1つと接触している。図8では、面441aは面110aと接触している。面441bは、ダミーバンプ410と接触している。
 第1のダミーパッド441が配置されているため、ダミーバンプ410を構成する金属が接合時に第1の配線層110に拡散しにくい。したがって、ダミーバンプ410を構成する金属が接合時に第1の配線層110に拡散することによる半導体装置1eの電気特性の変化が抑制される。
 面410aと面210aとは、対向する。面410aは面210aと接触していない。つまり、ダミーバンプ410は第1の基板10および第2の基板20と接触していない。例えば、面410aと面210aとの距離は1μm未満である。
 第1のダミーパッド441の厚さは、面441aと面441bとの距離である。例えば、第1のダミーパッド441の厚さは1μm未満である。
 接合バンプ310の厚さと第1の接合パッド311の厚さとの合計は、ダミーバンプ410の厚さと第1のダミーパッド441の厚さとの合計よりも大きい。
 面441aは第1のビア112と接触していない。このため、ダミー電極44は、第1の配線111から電気的に絶縁されている。面410aは面210aと接触していない。このため、ダミー電極44は、第2の配線211から電気的に絶縁されている。ダミー電極44は、第1の配線111と第2の配線211との1つのみに電気的に接続されてもよい。
 第1の基板10と第2の基板20との間に、接合電極33とダミー電極44とを囲むように樹脂等の絶縁体が配置されてもよい。面210aと面410aとの間、すなわち第2の基板20とダミーバンプ410との間の少なくとも一部は樹脂等の絶縁体で満たされてもよい。面210aと面410aとの間、すなわち第2の基板20とダミーバンプ410との間の少なくとも一部は空間であってもよい。
 上記以外の点については、図8に示す構成は図3に示す構成と同様である。
 接合電極33とダミー電極44とは、同一の工程により形成することが可能である。半導体装置1eの製造工程では、スパッタまたは蒸着等により第1のダミーパッド441が面110aに形成される。その後、接合バンプ310とダミーバンプ410とが同時に形成される。一方、スパッタまたは蒸着等により第1の接合パッド311が面210aに形成される。その後、接合工程において、接合バンプ310と第1の接合パッド311とが接続される。
 第5の実施形態によれば、第1の基板10と、第2の基板20と、接合電極33と、ダミー電極44とを有する半導体装置1eが構成される。
 第5の実施形態では、第1の基板10と第2の基板20との接合のために荷重の印加が開始されたとき、接合電極33のみが荷重を受ける。このため、接合に必要な荷重の増加が抑制される。接合時に接合バンプ310が変形し、第2の基板20とダミーバンプ410とが接触した場合、接合電極33とダミー電極44とによって第1の基板10と第2の基板20とが支えられる。したがって、第1の基板10と第2の基板20との変形が抑制される。接合電極33とダミー電極44とは、同一の工程により形成することが可能である。このため、半導体装置1eの製造工程を簡素化することができる。
 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明の各実施形態によれば、製造工程を簡素化することができる。
 1a,1b,1c,1d,1e,1000a,1000b 半導体装置
 10,60 第1の基板
 20,70 第2の基板
 30,31,32,33,80 接合電極
 40,41,42,43,44,90,91 ダミー電極
 100 第1の半導体層
 110 第1の配線層
 111 第1の配線
 112 第1のビア
 113 第1の層間絶縁膜
 200 第2の半導体層
 210 第2の配線層
 211 第2の配線
 212 第2のビア
 213 第2の層間絶縁膜
 300,310 接合バンプ
 301,311 第1の接合パッド
 302,312 第2の接合パッド
 400,410 ダミーバンプ
 401,411,441 第1のダミーパッド
 402,412 第2のダミーパッド
 800 接合金属
 801 第1のバンプ
 802 第2のバンプ
 3110 第1のバリア層
 3111 第1の接合層
 3120 第2のバリア層
 3121 第2の接合層
 4120 ダミーバリア層
 4121 ダミー接合層

Claims (4)

  1.  第1の面と第1の配線とを有し、第1の半導体材料を含む第1の基板と、
     第2の面と第2の配線とを有し、第2の半導体材料を含み、前記第1の面と前記第2の面とは対向する第2の基板と、
     前記第1の面と前記第2の面との間に配置され、前記第1の配線と前記第2の配線とに電気的に接続された接合電極と、
     前記第1の面と前記第2の面との間に配置され、前記第1の配線と前記第2の配線との少なくとも一方から電気的に絶縁されたダミー電極と、
     を有し、
     前記接合電極は、
     接合バンプと、
     第3の面と第4の面とを有し、前記第3の面は前記第1の面と前記第2の面との1つと接触し、かつ、前記第4の面は前記接合バンプと接触する第1の接合パッドと、
     を有し、
     前記ダミー電極は、
     ダミーバンプと、
     第5の面と第6の面とを有し、前記第5の面は前記第1の面と前記第2の面との1つと接触する第1のダミーパッドと、
     を有し、
     前記ダミーバンプの厚さは前記接合バンプの厚さと同一であり、
     第1の条件と第2の条件との1つが満たされ、
     前記第1の条件では、前記第6の面は前記ダミーバンプと接触し、前記第1の条件では、前記第5の面の面積は前記第3の面の面積よりも小さく、前記第1の条件では、前記第1のダミーパッドの厚さは前記第1の接合パッドの厚さと同一であり、
     前記第2の条件では、前記第1のダミーパッドの厚さは前記第1の接合パッドの厚さよりも小さい
     半導体装置。
  2.  前記接合電極はさらに、第2の接合パッドを有し、
     前記第2の接合パッドは、第7の面と第8の面とを有し、前記第7の面は、前記第1の面と前記第2の面とのうち前記第3の面が接触していない面と接触し、かつ、前記第8の面は前記接合バンプと接触し、
     前記ダミー電極はさらに、第2のダミーパッドを有し、
     前記第2のダミーパッドは、第9の面と第10の面とを有し、前記第9の面は、前記第1の面と前記第2の面とのうち前記第5の面が接触していない面と接触し、かつ、前記第10の面は前記ダミーバンプと接触し、
     前記第2のダミーパッドの厚さは前記第2の接合パッドの厚さと同一であり、
     前記第1の条件が満たされる
     請求項1に記載の半導体装置。
  3.  前記第1の接合パッドは、
     前記第3の面を有し、前記第3の面は前記第1の面と前記第2の面との1つと接触する第1のバリア層と、
     前記第1のバリア層に積層され、前記第4の面を有し、前記第4の面は前記接合バンプと接触する第1の接合層と、
     を有し、
     前記第1のダミーパッドの厚さは、前記第1のバリア層の厚さと同一であり、
     前記第2の条件が満たされる
     請求項1に記載の半導体装置。
  4.  前記接合電極はさらに、第2の接合パッドを有し、
     前記第2の接合パッドは、
     第7の面を有し、前記第7の面は、前記第1の面と前記第2の面とのうち前記第3の面が接触していない面と接触する第2のバリア層と、
     前記第2のバリア層に積層され、第8の面を有し、前記第8の面は前記接合バンプと接触する第2の接合層と、
     を有し、
     前記ダミー電極はさらに、第2のダミーパッドを有し、
     前記第2のダミーパッドは、
     第9の面を有し、前記第9の面は、前記第1の面と前記第2の面とのうち前記第5の面が接触していない面と接触するダミーバリア層と、
     前記ダミーバリア層に積層され、第10の面を有し、前記第10の面は前記ダミーバンプと接触するダミー接合層と、
     を有し、
     前記ダミーバリア層の厚さは前記第2のバリア層の厚さと同一であり、
     前記ダミー接合層の厚さは前記第2の接合層の厚さと同一である
     請求項3に記載の半導体装置。
PCT/JP2015/053072 2015-02-04 2015-02-04 半導体装置 WO2016125264A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016572989A JP6470320B2 (ja) 2015-02-04 2015-02-04 半導体装置
PCT/JP2015/053072 WO2016125264A1 (ja) 2015-02-04 2015-02-04 半導体装置
US15/643,711 US9978723B2 (en) 2015-02-04 2017-07-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053072 WO2016125264A1 (ja) 2015-02-04 2015-02-04 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/643,711 Continuation US9978723B2 (en) 2015-02-04 2017-07-07 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2016125264A1 true WO2016125264A1 (ja) 2016-08-11

Family

ID=56563628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053072 WO2016125264A1 (ja) 2015-02-04 2015-02-04 半導体装置

Country Status (3)

Country Link
US (1) US9978723B2 (ja)
JP (1) JP6470320B2 (ja)
WO (1) WO2016125264A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069128B1 (fr) * 2017-07-13 2020-06-26 Safran Electronics & Defense Fixation d'un cms sur une couche isolante avec un joint de brasure dans une cavite realisee dans une couche isolante

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310837A (ja) * 2004-04-16 2005-11-04 Elpida Memory Inc 半導体装置及びその製造方法
JP2006060262A (ja) * 2005-11-14 2006-03-02 Rohm Co Ltd 半導体装置
JP2013211380A (ja) * 2012-03-30 2013-10-10 Olympus Corp ウェハ積層体および半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194652A (ja) * 1986-02-21 1987-08-27 Hitachi Ltd 半導体装置
US6724084B1 (en) * 1999-02-08 2004-04-20 Rohm Co., Ltd. Semiconductor chip and production thereof, and semiconductor device having semiconductor chip bonded to solid device
JP2003100803A (ja) * 2001-09-27 2003-04-04 Mitsubishi Electric Corp 半導体装置及びその製造方法
US6919642B2 (en) * 2002-07-05 2005-07-19 Industrial Technology Research Institute Method for bonding IC chips to substrates incorporating dummy bumps and non-conductive adhesive and structures formed
WO2006070863A1 (ja) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. 半導体チップの実装構造体およびその製造方法
US7215026B2 (en) * 2005-04-14 2007-05-08 Samsung Electonics Co., Ltd Semiconductor module and method of forming a semiconductor module
KR100924552B1 (ko) * 2007-11-30 2009-11-02 주식회사 하이닉스반도체 반도체 패키지용 기판 및 이를 갖는 반도체 패키지
KR20120018894A (ko) * 2010-08-24 2012-03-06 삼성전자주식회사 패키지 기판 및 이를 갖는 플립 칩 패키지
JP2012256737A (ja) * 2011-06-09 2012-12-27 Sony Corp 半導体装置及び半導体装置の製造方法
US8912649B2 (en) * 2011-08-17 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy flip chip bumps for reducing stress
JP2013110151A (ja) * 2011-11-17 2013-06-06 Elpida Memory Inc 半導体チップ及び半導体装置
KR20130110959A (ko) * 2012-03-30 2013-10-10 삼성전자주식회사 반도체 패키지
JP2013247273A (ja) * 2012-05-28 2013-12-09 Ps4 Luxco S A R L 半導体装置の製造方法およびその方法により製造された半導体装置
US8970035B2 (en) * 2012-08-31 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for semiconductor package
JP2014072487A (ja) 2012-10-01 2014-04-21 Panasonic Corp 半導体装置およびその製造方法
US9343419B2 (en) * 2012-12-14 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for semiconductor package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310837A (ja) * 2004-04-16 2005-11-04 Elpida Memory Inc 半導体装置及びその製造方法
JP2006060262A (ja) * 2005-11-14 2006-03-02 Rohm Co Ltd 半導体装置
JP2013211380A (ja) * 2012-03-30 2013-10-10 Olympus Corp ウェハ積層体および半導体装置

Also Published As

Publication number Publication date
US9978723B2 (en) 2018-05-22
JPWO2016125264A1 (ja) 2017-11-09
JP6470320B2 (ja) 2019-02-13
US20170309599A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2015040784A1 (ja) 半導体装置及びその製造方法
TWI594369B (zh) 與互補式金屬氧化物半導體相容的晶圓接合層及製程
JP5663607B2 (ja) 半導体装置
JP2002198374A (ja) 半導体装置およびその製造方法
JP2023054250A (ja) 半導体装置
JP2007115922A (ja) 半導体装置
JP2018129475A (ja) 半導体装置及びその製造方法
JP2014072487A (ja) 半導体装置およびその製造方法
JP2011222738A (ja) 半導体装置の製造方法
CN100456466C (zh) 半导体装置
JP6470320B2 (ja) 半導体装置
US8847391B2 (en) Non-circular under bump metallization (UBM) structure, orientation of non-circular UBM structure and trace orientation to inhibit peeling and/or cracking
JP2009176833A (ja) 半導体装置とその製造方法
JPH10199925A (ja) 半導体装置及びその製造方法
TWI579994B (zh) 封裝結構
JP4046568B2 (ja) 半導体装置、積層型半導体装置およびそれらの製造方法
TWI409933B (zh) 晶片堆疊封裝結構及其製法
JP5922331B2 (ja) 半導体装置の配線構造及びその製造方法
JP2006210802A (ja) 半導体装置
JP2006318989A (ja) 半導体装置
JP2002246411A (ja) 半導体装置及びその製造方法
US9922947B2 (en) Bonding pad structure over active circuitry
JP2005327755A (ja) 半導体装置及びその製造方法
WO2017217306A1 (ja) 半導体部品および半導体部品の製造方法
JP6074984B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881081

Country of ref document: EP

Kind code of ref document: A1