WO2016123866A1 - 大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法 - Google Patents

大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法 Download PDF

Info

Publication number
WO2016123866A1
WO2016123866A1 PCT/CN2015/077071 CN2015077071W WO2016123866A1 WO 2016123866 A1 WO2016123866 A1 WO 2016123866A1 CN 2015077071 W CN2015077071 W CN 2015077071W WO 2016123866 A1 WO2016123866 A1 WO 2016123866A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
temperature
zone
crucible
melt
Prior art date
Application number
PCT/CN2015/077071
Other languages
English (en)
French (fr)
Inventor
丁雨憧
付昌禄
何晔
Original Assignee
中国电子科技集团公司第二十六研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第二十六研究所 filed Critical 中国电子科技集团公司第二十六研究所
Publication of WO2016123866A1 publication Critical patent/WO2016123866A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Definitions

  • the method for preparing directional solidification belongs to the technical field of crystal growth.
  • the basic properties are shown in Table 1. In the table, the Lu/Y of the Ce 3+ :LYSO crystal is not less than 8:2, and the ratio of Lu/Gd of the Ce 3+ :LGSO crystal is not less than 6:4.
  • the luminescent center wavelength Due to the large density, short decay time, and high light yield (compared to BGO), the luminescent center wavelength has good matching with the photomultiplier tube and is not easy to deliquesce. It has been widely used in the nucleus. Medical, safety monitoring, oil well surveying, high energy physics, and nuclear physics. In particular, the comprehensive performance of Ce 3+ :LSO and Ce 3+ :LYSO crystals is very prominent. In recent years, positron emission tomography (PET), high-resolution gamma cameras, and large-scale hadron collisions have been built in the European Nuclear Center. The main scintillating crystal material used in the machine.
  • PET positron emission tomography
  • high-resolution gamma cameras high-resolution gamma cameras
  • large-scale hadron collisions have been built in the European Nuclear Center. The main scintillating crystal material used in the machine.
  • the melting point of Ce 3+ :Re 2 SiO 5 crystal is greater than 1900 ° C, especially the melting point of Ce 3+ :LSO crystal is as high as 2150 ° C, which is close to the maximum critical temperature ( ⁇ 2300 ° C) used by ruthenium ruthenium, which limits the limit. It is difficult to grow a large-sized Ce 3+ :Re 2 SiO 5 scintillation crystal having a diameter of 150 mm or more by the pulling method. Third, the cost is high.
  • the pulling technology uses precious metal sheet metal as the bismuth material. The sheet metal loss is severe under high temperature and weak oxidizing atmosphere, resulting in an increase in cost.
  • an object of the present invention is to provide a method for preparing a horizontally sized plate-like Ce 3+ :Re 2 SiO 5 scintillation crystal horizontally oriented solidification, wherein Re is Lu, Y, Gd or a combination of the two.
  • the method can obtain a large-sized plate crystal, and the Ce 3+ ion concentration distribution is uniform.
  • the method is prepared by using a single crystal furnace, and different temperature zones are formed in the single crystal furnace by heating to make pre-crystallized materials
  • the temperature zone in the molten state forming the melt is a high temperature zone, and the temperature in the high temperature zone is 5-10 ° C above the melting point of the crystal, so that the molten state of the molten material is in a low temperature zone in a single crystal state, in a molten state and a single crystal state.
  • the transition zone naturally forms a warming zone; then the raft containing the raw material is horizontally moved, and the raft is sequentially passed from the high temperature zone, the warm ladder zone and the low temperature zone; the specific steps are as follows:
  • the crystal of (Ce 3+ : Re 2 SiO 5 ) with b direction [010] is selected as the seed crystal and placed at the front end of the central axis of the crucible; when the seed crystal encounters the melt, the seed crystal neither grows. When it is not melted, it is the best seeding temperature; after determining the seeding temperature, the seed crystal is brought into contact with the melt for 3-5 mm, the crystal is kept for 5-10 minutes, and then the crucible is moved in the direction of the temperature zone, and the crystal is introduced.
  • the rate is 0.3-1.5mm/h;
  • the shouldering stage the end of the seeding, the shoulder part begins to crystallize, that is, enters the shoulder stage; the shoulder angle is 70-120°, and the shoulder speed is 0.1-1.5 mm/h;
  • Equal-width growth after the shoulder portion is completely crystallized, it enters the equal-width growth stage; the growth rate is 0.5-3.0 mm/h until the crystallization process ends;
  • the melt portion is continuously crystallized, and the pre-crystallized material is continuously melted to form a new melt to supplement the consumption of the crystal, so that the length of the melt is always maintained within a set range until the pre-crystallized material is completely melted to form a melt.
  • the heating power is adjusted according to the change of the solid-liquid interface during the crystallization process to ensure stable solidification of the solid-liquid interface;
  • Annealing and cooling After the crystallization process of all raw materials is finished, the annealing temperature is lowered to the in-situ annealing temperature at a temperature decreasing rate of 10-30 ° C / h; the in-situ annealing temperature is 1500-1700 ° C, and the annealing time is 10-15 hours; The crystal was cooled to room temperature at a rate of 20-50 ° C / h, and the growth process was completed, that is, a Ce 3 + ion doped rare earth orthosilicate scintillation crystal was prepared.
  • a reflective heat shield made of a tungsten-molybdenum material is disposed in the single crystal furnace, and a heating coil is disposed inside the heat shield, and the different temperature zones are formed in the single crystal furnace through the reflective heat shield and the heating coil.
  • the Ce 3+ ion concentration of the pre-formed material placed in the boat-shaped crucible is divided into two concentration zones, the length of the front concentration zone is equal to the length of the melt zone, and the remaining zone is the rear concentration.
  • the Ce 3+ ion concentration of the pre-concentration zone in the front concentration zone is 0.2-2.0 at.%, and the Ce 3+ ion concentration of the pre-concentration zone in the rear concentration zone is the front concentration zone Ce 3+ ion concentration and effective segregation.
  • the size of the crucible is 200 mm x 120 mm x 40 mm or more.
  • the length of the melt that is not grown in the crucible ie, the length of the melt zone
  • the length of the melt zone is maintained at 20-60 mm.
  • the present invention has the following beneficial effects:
  • a high-quality plate-like Ce 3+ :Re 2 SiO 5 series scintillation crystal having a defect density of 200 mm ⁇ 120 mm ⁇ 40 mm and a high transmittance is formed.
  • the crystal overcomes the disadvantage that the Ce 3+ :Re 2 SiO 5 crystal has a poor uniformity of Ce 3+ ion concentration distribution due to the segregation effect.
  • the free upper surface accounts for 35-40% of the total contact surface, and the crystal dislocation density is relatively small, and the zone melting method is used to reduce the energy consumption.
  • the shape of the crystal can be determined according to the shape of the crucible, so that the generated Ce 3+ :Re 2 SiO 5 series scintillation crystal has a small processing allowance and high utilization.
  • the whole growth process has no influence on gas convection and crystal rotation, and the growth environment is more stable, avoiding the formation of macroscopic defects such as clouds and cores.
  • the Ce 3+ :Re 2 SiO 5 series scintillation crystals are prepared by horizontal directional solidification, which has large size, low defects, high quality, uniform distribution of Ce 3+ ion concentration, high utilization rate, low energy consumption, etc.
  • the advantages are obvious, so the application of this technology is promising.
  • the promotion and application of this technology has significant national defense significance and social benefits.
  • Figure 1 is a schematic diagram of the thermal field of a plate-shaped Ce 3+ : Re 2 SiO 5 scintillation crystal grown by a horizontal directional solidification method.
  • 1-pre-crystallized material polycrystalline state
  • 2-heating coil 3-boat-shaped crucible
  • 4-seed crystal 5-crystal (single crystal state); 6-melt (molten state).
  • the method for preparing horizontally oriented solidification of a large-sized plate-shaped Ce 3+ :Re 2 SiO 5 series scintillation crystal according to the present invention is as follows.
  • the shoulder stage the end of the seeding, enter the shoulder stage; the shoulder angle is 70-120°, the shoulder rate is 0.1- 1.5mm/h;
  • Equal-width growth until the front end of the crucible is completely crystallized, it enters the equal-width growth stage; the growth rate is 0.5-3.0 mm/h, and the heating power is adjusted by observing the solid-liquid interface crystal morphology, maintaining the solid-liquid The interface is stably crystallized until the end of the crystallization process; when entering the equal-width growth stage, the length of the molten zone in the molten state is maintained at 20-60 mm;
  • Annealing and cooling the crystallization process is finished, and the annealing temperature is reduced to the in-situ annealing temperature at a temperature decreasing rate of 10-30 ° C / h; the in-situ annealing temperature is 1500-1700 ° C, the annealing time is 10-15 hours; then 20- The crystal was cooled to room temperature at a rate of 50 ° C / h, and the growth process was completed, that is, a Ce 3 + ion doped rare earth orthosilicate scintillation crystal was prepared.
  • a reflective heat preservation screen made of tungsten-molybdenum material is arranged in the single crystal furnace, and a heating coil is arranged inside the heat preservation screen.
  • the raw material in the crucible can be partially melted.
  • the raw materials in the crucible are in three states of single crystal state, molten state and polycrystalline state (unmelted pre-crystallized raw material), wherein the single crystal state and the polycrystalline state correspond to the low temperature region in the thermal field, and the molten state corresponds to the heat.
  • the high temperature zone (also known as the melting zone) in the field, the transition zone of the single crystal state and the molten state corresponds to the temperature ladder zone in the thermal field.
  • the moving crucible causes the front end of the melting zone to slowly enter the warming zone to crystallize, and an equal amount of pre-crystallized material is melted to compensate, ensuring that the length of the molten zone remains unchanged until all the pre-crystallized materials are completely melted and crystallized, and finally annealed and cooled until At room temperature, the growth process is over.
  • the thermal field of the present invention is shown in Figure 1.
  • the present invention utilizes the segregation property.
  • the Ce 3+ ion concentration of the pre-formed material placed in the boat-shaped crucible is divided into two concentration zones, the front concentration zone.
  • the length of the melting zone is equal to the length of the melting zone, and the remaining zone is the rear concentration zone.
  • the Ce 3+ ion concentration of the pre-concentration zone is 0.2-2.0 at.%
  • the Ce 3+ ion concentration of the pre-concentration zone of the rear concentration zone is concentration region front portion Ce 3+ ion concentration with an effective segregation coefficient of the partial products, and equal to the Ce 3+ ion concentration in the final crystal.
  • the size of the crucible actually used in the present invention is 200 mm ⁇ 120 mm ⁇ 40 mm, or even larger (herein, the total length of the crucible, the length of the equal width region can be calculated by the shoulder angle), so that the size can be grown to be greater than or equal to 200 mm ⁇ 120 mm ⁇ 40 mm plate-shaped Ce 3+ : Re 2 SiO 5 series scintillation crystal.
  • the invention combines the advantages of the directional crystallization method and the vertical zone melting method to grow a large-sized plate-shaped Ce 3+ :Re 2 SiO 5 series scintillation crystal having a width of 120 mm or more.
  • the crystal grown by this method has good quality, high utilization rate, low defect density, and uniform distribution of Ce 3+ ion concentration.
  • the main requirement for the growth of high quality crystals by horizontal directional solidification is to prepare a boat that conforms to the growth crystal, control the movement rate of the crucible and precisely adjust the temperature variation range.
  • the size of the crystal depends on the size of the boat, and the stability of the crystal growth interface depends on the rate of movement of the crucible and the temperature gradient of the temperature field. Distribution of Ce 3+ ions in the crystal concentration and concentration distribution and a length of the melt zone feed Ce 3+ ions related to pre-crystallization.
  • the pre-crystallized high-purity bulk Ce 3+ :LSO raw material is placed in an alcohol-washed boat-shaped molybdenum crucible, wherein the raw material placed in the shoulder region has a Ce 3+ ion concentration of 0.2 at.%, and is placed in the crucible.
  • the Ce 3+ ion concentration of the raw material in the constant width region was 0.04 at.%, and the total weight of the pre-crystallized raw material was 4.8 kg.
  • the melt flow line is observed, and the heating power is appropriately adjusted, so that the solid-liquid conversion phenomenon of ordered convection occurs just on the liquid surface.
  • the material was completely melted and kept for 3 hours.
  • the pure LSO seed crystal in the [010] direction is moved into the high temperature region, and the seed crystal is located at the tip end of the central axis of the crucible.
  • the melt contacted the seed crystal 3 mm, kept the crystal for 5 minutes, and then moved the crucible in the horizontal direction, and the seeding rate was 0.5 mm/h.
  • the shoulder angle was 120°
  • the moving speed of the crucible became 0.3 mm/h.
  • the front end of the boat-shaped rafter moves to the edge of the high-temperature zone, it enters the equal-width growth stage, at which time the turbulent movement rate is increased to 0.8 mm/h, and the length of the fused zone is maintained at 40 mm, and the heating power is adjusted at this stage.
  • the temperature fluctuations in the high temperature zone and the low temperature zone are controlled within a range of ⁇ 2 ° C until the end of crystallization.
  • the temperature was first lowered to 1700 ° C at a rate of 20 ° C / h, and held for 12 hours, and finally lowered to room temperature at a rate of 30 ° C / h.
  • the furnace was opened and the crystal was taken out.
  • the crystal size was 220 mm ⁇ 150 mm ⁇ 20 mm, and there were no macroscopic defects such as bubbles and cracks. Thermocouple temperature measurement is used throughout the growth process, and the read data has a certain error, which is only for reference.
  • the pre-crystallized high-purity bulk Ce 3+ :YSO raw material was placed in an alcohol-washed boat-shaped molybdenum crucible, and the Ce 3+ ion concentration of the raw material placed in the shoulder region was 0.3 at.%, and was placed in the crucible.
  • the Ce 3+ ion concentration of the raw material in the equi-width region was 0.09 at.%, and the total weight of the pre-crystallized raw material was 2.9 kg.
  • the melt flow line is observed, and the heating power is appropriately adjusted, so that the solid-liquid conversion phenomenon of ordered convection occurs just on the liquid surface.
  • the material was completely melted and kept for 3 hours.
  • the YSO seed crystal in the [010] direction is moved into the high temperature region, and the position of the seed crystal is located at the geometric center of the crucible.
  • the melt contacted the seed crystal 3 mm, kept the crystal for 5 minutes, and then moved the crucible in the horizontal direction, and the seeding rate was 0.5 mm/h. After 30 hours of seeding, it entered the shoulder-slapping stage, the shoulder angle was 120°, and the moving speed of the crucible became 0.3 mm/h.
  • the front end of the boat-shaped rafter moves to the edge of the high-temperature zone, it enters the equal-width growth stage, at which time the turbulent movement rate is increased to 0.8 mm/h, and the length of the fused zone is maintained at 40 mm, and the heating power is adjusted at this stage.
  • the temperature fluctuations in the high temperature zone and the low temperature zone are controlled within a range of ⁇ 2 ° C until the end of crystallization.
  • the temperature was first lowered to 1650 ° C at a rate of 20 ° C / h, and held for 12 hours, and finally lowered to room temperature at a rate of 30 ° C / h. The furnace was opened and the crystal was taken out.
  • the crystal size was 220 mm ⁇ 150 mm ⁇ 20 mm, and there were no macroscopic defects such as bubbles and cracks.
  • Thermocouple temperature measurement is used throughout the growth process, and the read data has a certain error, which is only for reference.
  • the pre-crystallized high-purity bulk Ce 3+ :GSO raw material is placed in an alcohol-washed boat-shaped molybdenum crucible, wherein the material placed in the shoulder region has a Ce 3+ ion concentration of 0.5 at.%, and is placed in the crucible.
  • the Ce 3+ ion concentration of the raw material in the equi-width region was 0.3 at.%, and the total weight of the pre-crystallized raw material was 4.3 kg.
  • the melt flow line is observed, and the heating power is appropriately adjusted, so that the solid-liquid conversion phenomenon of ordered convection occurs just on the liquid surface.
  • the material was completely melted and kept for 3 hours.
  • the GSO seed crystal in the [010] direction is moved into the high temperature region, and the position of the seed crystal is located at the geometric center of the crucible.
  • the melt contacted the seed crystal 3 mm, kept the crystal for 5 minutes, and then moved the crucible in the horizontal direction, and the seeding rate was 1.0 mm/h. After 20 hours of seeding, it enters the shoulder-slapping stage, the shoulder angle is 120°, and the moving speed of the crucible becomes 0.5 mm/h.
  • the front end of the boat-shaped squat moves to the edge of the high-temperature zone, it enters the equal-width growth stage, at which time the turbulent movement rate is increased to 1.0 mm/h, and the length of the fused zone is maintained at 40 mm, and the heating power is adjusted at this stage.
  • the temperature fluctuations in the high temperature zone and the low temperature zone are controlled within a range of ⁇ 2 ° C until the end of crystallization.
  • the temperature was first lowered to 1600 ° C at a rate of 10 ° C / h, and held for 15 hours, and finally lowered to room temperature at a rate of 20 ° C / h. The furnace was opened and the crystal was taken out.
  • the crystal size was 220 mm ⁇ 150 mm ⁇ 20 mm, and there were no macroscopic defects such as bubbles and cracks.
  • Thermocouple temperature measurement is used throughout the growth process, and the read data has a certain error, which is only for reference.
  • the pre-crystallized high-purity bulk Ce 3+ :LYSO raw material was placed in an alcohol-washed boat-shaped molybdenum crucible, and the Ce 3+ ion concentration of the raw material placed in the shoulder region was 0.2 at.%, and was placed in the crucible.
  • the Ce 3+ ion concentration of the raw material in the equi-width region was 0.04 at.%, the Lu/Y ratio was 9:1, and the total weight of the pre-crystallized raw material was 4.6 kg.
  • the melt flow line is observed, and the heating power is appropriately adjusted, so that the solid-liquid conversion phenomenon of ordered convection occurs just on the liquid surface.
  • the material was completely melted and kept for 3 hours.
  • the LSO seed crystal in the [010] direction is moved into the high temperature region, and the position of the seed crystal is located at the geometric center of the crucible.
  • the melt contacted the seed crystal 3 mm, kept the crystal for 5 minutes, and then moved the crucible in the horizontal direction, and the seeding rate was 0.5 mm/h. After 30 hours of seeding, it entered the shoulder-slapping stage, the shoulder angle was 120°, and the moving speed of the crucible became 0.3 mm/h.
  • the front end of the boat-shaped rafter moves to the edge of the high-temperature zone, it enters the equal-width growth stage, at which time the turbulent movement rate is increased to 0.8 mm/h, and the length of the fused zone is maintained at 40 mm, and the heating power is adjusted at this stage.
  • the temperature fluctuations in the high temperature zone and the low temperature zone are controlled within a range of ⁇ 2 ° C until the end of crystallization.
  • the temperature was first lowered to 1700 ° C at a rate of 20 ° C / h, and held for 12 hours, and finally lowered to room temperature at a rate of 30 ° C / h. The furnace was opened and the crystal was taken out.
  • the crystal size was 220 mm ⁇ 150 mm ⁇ 20 mm, and there were no macroscopic defects such as bubbles and cracks.
  • Thermocouple temperature measurement is used throughout the growth process, and the read data has a certain error, which is only for reference.

Abstract

本发明公开了一种大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,通过加热使单晶炉内形成不同的温区,使预结晶料处于熔融态形成熔体的温区为高温区,使熔融态原料结晶处于单晶态的温区为低温区,熔融态与单晶态的过渡区域自然形成温梯区;然后水平移动装有原料的坩埚,使坩埚依次从高温区、温梯区和低温区按设定的速度通过,最后退火冷却即可。本发明采用水平定向凝固法制备Ce3+:Re2SiO5系列闪烁晶体,具有尺寸大、缺陷低、品质高、Ce3+离子浓度分布更均匀、利用率高、能耗少等突出优点。

Description

大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法 技术领域
本发明涉及Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体生长方法,具体涉及一种大尺寸板状Ce3+:Re2SiO5(Re=Lu、Y、Gd)系列单晶水平定向凝固制备方法,属于晶体生长技术领域。
背景技术
Ce3+离子掺杂的稀土正硅酸盐晶体Ce3+:Re2SiO5(Re=Lu、Y、Gd,分别简称为Ce3+:LSO、Ce3+:YSO、Ce3+:GSO),以及按不同比例形成的混晶(即:Ce3+:LYSO,Ce3+:LGSO,Ce3+:GYSO),是上世纪八、九十年代陆续发现的一类优质闪烁晶体,其基本性能如表1所示,表中Ce3+:LYSO晶体的Lu/Y不小于8:2,Ce3+:LGSO晶体的Lu/Gd比例不小于6:4。由于该系列闪烁晶体具有大的密度,短的衰减时间,和较高的光产额(与BGO相比),发光中心波长与光电倍增管匹配良好,不易潮解等优点,已被广泛应用于核医疗、安全监测、油井勘测、高能物理、以及核物理等诸多领域。尤其是Ce3+:LSO和Ce3+:LYSO晶体的综合性能非常突出,是近年来制造正电子发射计算机断层扫描(PET)、高分辨伽马相机,以及欧洲核子中心建造大型强子对撞机所采用的主要闪烁晶体材料。
Figure PCTCN2015077071-appb-000001
国际上,生长Ce3+:Re2SiO5闪烁晶体普遍采用提拉法技术(如:U.S.Pat.No.6,413,311;K.Takagi,T.Fukazawa.“Cerium-activated Gd2SiO5single crystal scintillator”,Appl.Phys.Lett.1983,42(1),43-45),晶体的品质和良率均达到工业应用标准,并已实现商品化。提拉法技术 是从熔体中生长高温氧化物晶体的常用方法之一,具有生长过程可观察、生长速度快、无寄生成核等优点,而且可以根据工艺需求灵活调节生长气氛,特别是在生长Ce3+:LSO/LYSO晶体时需在N2或Ar2气氛中加入少量O2(~1.0%)(R.Visser,et al.“Photostimulated luminescence and thermoluminescence of LSO scintillators”.IEEE Transactions on nuclear science,1994,(41)689-693),因为在弱氧化气氛下生长Ce3+:LSO/LYSO晶体可以有效抑制氧空位的生成,从而使光产额增加。目前,法国圣戈班公司、美国CTI公司已经采用提拉法技术生长出了Φ100mm×150mm的大尺寸Ce3+:LSO/LYSO晶体。
采用提拉法生长Ce3+:Re2SiO5闪烁晶体的局限性在于:第一,由于Ce3+离子的分凝系数较低(Ce3+:LSO为0.2,Ce3+:YSO为0.3,Ce3+:GSO为0.6),会在晶体中引起Ce3+离子的浓度分布不均匀,导致晶体的闪烁性能均匀性差。第二,采用提拉法技术很难生长直径120mm以上的大尺寸Ce3+:Re2SiO5闪烁晶体,而制备大尺寸Ce3+:Re2SiO5闪烁晶体的意义在于可以用少量晶块就拼接出尺寸为300mm×300mm以上的大尺寸闪烁屏,这在核爆模拟方面有着非常重要的应用价值。因为,采用提拉法技术生长具有光学品质的Ce3+:Re2SiO5闪烁晶体,必须在热场径向维持较大的温度梯度(坩埚壁与其中间处的熔体温度的差),生长的晶体直径越大,坩埚所承受的温度就越高。而Ce3+:Re2SiO5晶体的熔点大于1900℃,特别是Ce3+:LSO晶体的熔点高达2150℃,已接近铱金坩埚使用的最大临界温度(~2300℃),这就限制了提拉法很难生长出直径150mm以上的大尺寸Ce3+:Re2SiO5闪烁晶体。第三,成本高,提拉法技术采用贵金属铱金作为坩埚材料,在高温和弱氧化气氛下铱金损耗严重,造成成本升高。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种大尺寸板状Ce3+:Re2SiO5闪烁晶体水平定向凝固制备方法,其中Re为Lu、Y、Gd或二者的组合,本方法能够得到大尺寸的板状晶体,且Ce3+离子浓度分布均匀。
为了实现上述目的,本发明采用的技术方案如下:
大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,本方法采用单晶炉制备,通过加热使单晶炉内形成不同的温区,使预结晶料处于熔融态形成熔体的温区为高温区,高温区的温度在晶体熔点之上5-10℃,使熔融态原料结晶处于单晶态的温区为低温区,熔融态与单晶态的过渡区域自然形成温梯区;然后水平移动装有原料的坩埚,使坩埚依次从高温区、温梯区和低温区通过;具体步骤如下,
(1)真空环境下化料:将Ce3+:Re2SiO5块状预结晶料装入钼制舟形坩埚内,其中Re为Lu、Y、Gd或二者的组合,再把坩埚装入单晶炉内,关闭炉膛;打开真空泵,将炉膛内部抽真空至5×10-3Pa以下,再打开加热电源形成高温区、温梯区和低温区;首先坩埚前部进入高温区使坩埚前部的预结晶料完全熔化形成设定长度的熔体,再调节加热功率,使熔体保持稳定的对流形态,保温1-5小时;
(2)引晶:选用b向[010]的(Ce3+:Re2SiO5)晶体作为籽晶,且放置于坩埚中轴线前端;当籽晶遇到熔体时,籽晶既不生长也不熔化时,为最佳引晶温度;确定引晶温度后,使籽晶与熔体接触3-5mm,保持熔晶5-10分钟,然后沿温梯区方向移动坩埚引晶,引晶速率为0.3-1.5mm/h;
(3)放肩阶段:引晶结束,放肩部分开始结晶,即进入放肩阶段;放肩角度为70-120°,放肩速率为0.1-1.5mm/h;
(4)等宽生长:坩埚放肩部分完全结晶后,即进入等宽生长阶段;生长速率为0.5-3.0mm/h,直至结晶过程结束;
在整个结晶过程中,熔体部分不断结晶,同时预结晶料不断熔化形成新的熔体以补充结晶的消耗,使熔体的长度始终保持在设定范围内,直到预结晶料全部熔化形成熔体;在结晶过程中要根据固液界面的变化情况调节加热功率,保证固液界面稳定结晶;
(5)退火冷却:待全部原料结晶过程结束,按10-30℃/h的降温速率降至原位退火温度;原位退火温度为1500-1700℃,退火时间为10-15小时;随后再按20-50℃/h的速率将晶体冷却至室温,生长过程结束,即制备得到Ce3+离子掺杂的稀土正硅酸盐闪烁晶体。
具体地,在单晶炉内设有钨钼材料制作的反射保温屏,在保温屏内部设有加热线圈,通过反射保温屏和加热线圈,使单晶炉内形成所述不同的温区。
进一步地,在上述步骤(1)中,置于舟形坩埚中预结晶料的Ce3+离子浓度分为前后两个浓度区,前部浓度区的长度等于熔区长度,其余区域为后部浓度区,前部浓度区预结晶料的Ce3+离子浓度为0.2-2.0at.%,后部浓度区预结晶料的Ce3+离子浓度为前部浓度区Ce3+离子浓度与有效分凝系数之积,并与最终晶体中的Ce3+离子浓度相等。
坩埚的尺寸为200mm×120mm×40mm或更大。
进入等宽生长阶段时,坩埚中未生长的熔体长度(即:熔区长度)保持为20-60mm。
相比现有技术,本发明具有如下有益效果:
1、生长出尺寸大于或等于200mm×120mm×40mm的缺陷密度低、透过率高的优质板状 Ce3+:Re2SiO5系列闪烁晶体。
2、能实现更高Ce3+离子浓度掺杂(与提拉法相比),而且能够通过调节预结晶料中Ce3+离子的含量和生长工艺参数而获得Ce3+离子浓度分布更均匀的晶体,克服了提拉法生长Ce3+:Re2SiO5晶体因分凝效应引起Ce3+离子浓度分布均匀性差的缺点。
3、采用舟形坩埚,自由的上表面占总接触表面的35~40%,生长出的晶体位错密度相对较小,且采用区熔方式生长,使能耗降低。
4、晶体的形状可以随坩埚的形状而定,使得生成的Ce3+:Re2SiO5系列闪烁晶体加工余量小,利用率高。
5、整个生长过程无气体对流和晶体旋转的影响,生长环境更加稳定,避免了云层、核心等宏观缺陷的形成。
综上所述,采用水平定向凝固法制备Ce3+:Re2SiO5系列闪烁晶体,具有尺寸大、缺陷低、品质高、Ce3+离子浓度分布更均匀、利用率高、能耗少等突出优点,因此该技术应用前景广阔,该技术的推广和应用具有重大的国防意义和社会效益。
附图说明
图1为水平定向凝固法生长板状Ce3+:Re2SiO5闪烁晶体的热场示意图。
图中,1-预结晶料(多晶态);2-加热线圈;3-舟形坩埚;4-籽晶;5-晶体(单晶态);6-熔体(熔融态)。
具体实施方式
本发明大尺寸板状Ce3+:Re2SiO5系列闪烁晶体水平定向凝固制备方法,步骤如下,
(1)真空环境下化料:将Ce3+:Re2SiO5块状预结晶料装入钼制舟形坩埚内,其中Re为Lu、Y、Gd或二者的组合,再把坩埚装入单晶炉内,关闭炉膛;打开真空泵,将炉膛内部抽真空至5×10-3Pa以下,再打开加热电源对原料加热;将炉温升高到晶体熔点之上5-10℃使处于熔区的原料完全熔化,再调节加热功率,使熔体保持稳定的对流形态,保温1-5小时;
(2)引晶:选用b向[010]的Ce3+:Re2SiO5晶体作为籽晶,且放置于坩埚中轴线前端。当熔体遇到籽晶时,籽晶既不生长也不熔化时,为最佳引晶温度;确定引晶温度后,使籽晶与熔体接触3-5mm,保持熔晶5-10分钟,然后沿水平方向移动坩埚引晶,引晶速率为0.3-1.5mm/h;
(3)放肩阶段:引晶结束,进入放肩阶段;放肩角度为70-120°,放肩速率为0.1- 1.5mm/h;
(4)等宽生长:直至坩埚的前端放肩部分完全结晶后,即进入等宽生长阶段;生长速率为0.5-3.0mm/h,通过观察固液界面结晶形态,调节加热功率,保持固液界面稳定结晶,直至结晶过程结束;进入等宽生长阶段时,坩埚中处于熔融态的熔区长度保持为20-60mm;
(5)退火冷却:结晶过程结束,按10-30℃/h的降温速率降至原位退火温度;原位退火温度为1500-1700℃,退火时间为10-15小时;随后再按20-50℃/h的速率将晶体冷却至室温,生长过程结束,即制备得到Ce3+离子掺杂的稀土正硅酸盐闪烁晶体。
实际设计时,在单晶炉内设有钨钼材料制作的反射保温屏,在保温屏内部设有加热线圈,通过调节保温屏的结构和加热线圈的功率可以使坩埚中的原料部分熔化,使坩埚中的原料分别处于单晶态、熔融态和多晶态(未融化的预结晶原料)三种状态,其中单晶态和多晶态对应于热场中的低温区,熔融态对应于热场中的高温区(又称之为熔区),单晶态与熔融态的过渡区域对应于热场中的温梯区。移动坩埚使熔区前端缓慢进入温梯区而结晶,同时有等量的预结晶料随之熔化以补偿,保证熔区的长度不变,直至所有预结晶料全部熔融并结晶,最后退火冷却直至室温,生长过程结束。本发明的热场见图1。
为了使Ce3+离子浓度均匀,本发明利用分凝特性,在上述步骤(1)中,置于舟形坩埚中预结晶料的Ce3+离子浓度分为前后两个浓度区,前部浓度区的长度等于熔区长度,其余区域为后部浓度区,前部浓度区预结晶料的Ce3+离子浓度为0.2-2.0at.%,后部浓度区预结晶料的Ce3+离子浓度为前部浓度区Ce3+离子浓度与有效分凝系数之积,并与最终晶体中的Ce3+离子浓度相等。
本发明实际使用的坩埚尺寸为200mm×120mm×40mm,甚至更大(这里指的坩埚总长,等宽区的长度可以通过放肩角计算出),因此可以生长出尺寸大于或等于200mm×120mm×40mm的板状Ce3+:Re2SiO5系列闪烁晶体。
本发明结合定向结晶法和垂直区熔法的优点,能生长宽度为120mm以上的大尺寸板状Ce3+:Re2SiO5系列闪烁晶体。采用此法生长的晶体品质好、利用率高、缺陷密度低、Ce3+离子浓度分布更均匀。采用水平定向凝固法生长高质量晶体的主要要求是:制备符合生长晶体的料舟,控制坩埚的移动速率和精确调节温度变化范围。晶体的尺寸依赖于料舟的大小,晶体生长界面的稳定性则取决于坩埚移动速率和温场的温度梯度。晶体中Ce3+离子的浓度分布规律与预结晶料中Ce3+离子的浓度分布和熔区的长度有关。
以下结合几个实施例以帮助进一步理解本发明。
实施例1:
将预结晶的高纯块状Ce3+:LSO原料装入酒精洗涤过的舟形钼制坩埚内,其中置于坩埚放肩区的原料的Ce3+离子浓度为0.2at.%,置于坩埚等宽区的原料的Ce3+离子浓度为0.04at.%,预结晶原料的总重量为4.8kg。装炉完毕后,抽真空至5×10-3Pa,再加热升温。当高温区温度上升至~2160℃时,观察到熔体液流线,适当调节加热功率,使液面上刚好出现有序对流的固液转化现象。待原料完全融化,保持3h。将[010]方向的纯LSO籽晶移入高温区,籽晶的位置位于坩埚的中轴线前端尖端处。熔体接触籽晶3mm,保持熔晶5分钟,然后沿水平方向移动坩埚引晶,引晶速率为0.5mm/h。引晶30小时后进入放肩阶段,放肩角度为120°,坩埚的移动速度变为0.3mm/h。当舟形坩埚的前端放肩区移动至高温区边缘时进入等宽生长阶段,这时坩埚的移动速率增大至0.8mm/h,并保持熔区的长度为40mm,在该阶段通过调节加热功率使高温区和低温区的温度波动控制在±2℃范围内,直到结晶结束。在冷却阶段,首先以20℃/h的速率降温到1700℃,并保温12小时,最后以30℃/h的速率降至室温。开炉,取出晶体,晶体尺寸为220mm×150mm×20mm,无气泡、裂纹等宏观缺陷。在整个生长过程中采用热偶测温,读出的数据存在一定误差,仅作为参考。
实施例2:
将预结晶的高纯块状Ce3+:YSO原料装入酒精洗涤过的舟形钼制坩埚内,其中置于坩埚放肩区的原料的Ce3+离子浓度为0.3at.%,置于坩埚等宽区域的原料的Ce3+离子浓度为0.09at.%,预结晶原料的总重量为2.9kg。装炉完毕后,抽真空至5×10-3Pa,再加热升温。当高温区温度上升至~2000℃时,观察到熔体液流线,适当调节加热功率,使液面上刚好出现有序对流的固液转化现象。待原料完全融化,保持3h。将[010]方向的YSO籽晶移入高温区,籽晶的位置位于坩埚的几何中心处。熔体接触籽晶3mm,保持熔晶5分钟,然后沿水平方向移动坩埚引晶,引晶速率为0.5mm/h。引晶30小时后进入放肩阶段,放肩角度为120°,坩埚的移动速度变为0.3mm/h。当舟形坩埚的前端放肩区移动至高温区边缘时进入等宽生长阶段,这时坩埚的移动速率增大至0.8mm/h,并保持熔区的长度为40mm,在该阶段通过调节加热功率使高温区和低温区的温度波动控制在±2℃范围内,直到结晶结束。在冷却阶段,首先以20℃/h的速率降温到1650℃,并保温12小时,最后以30℃/h的速率降至室温。开炉,取出晶体,晶体尺寸为220mm×150mm×20mm,无气泡、裂纹等宏观缺陷。在整个生长过程中采用热偶测温,读出的数据存在一定误差,仅作为参考。
实施例3:
将预结晶的高纯块状Ce3+:GSO原料装入酒精洗涤过的舟形钼制坩埚内,其中置于坩埚放肩区的原料的Ce3+离子浓度为0.5at.%,置于坩埚等宽区域的原料的Ce3+离子浓度为0.3at.%, 预结晶原料的总重量为4.3kg。装炉完毕后,抽真空至5×10-3Pa,再加热升温。当高温区温度上升至~1960℃时,观察到熔体液流线,适当调节加热功率,使液面上刚好出现有序对流的固液转化现象。待原料完全融化,保持3h。将[010]方向的GSO籽晶移入高温区,籽晶的位置位于坩埚的几何中心处。熔体接触籽晶3mm,保持熔晶5分钟,然后沿水平方向移动坩埚引晶,引晶速率为1.0mm/h。引晶20小时后进入放肩阶段,放肩角度为120°,坩埚的移动速度变为0.5mm/h。当舟形坩埚的前端放肩区移动至高温区边缘时进入等宽生长阶段,这时坩埚的移动速率增大至1.0mm/h,并保持熔区的长度为40mm,在该阶段通过调节加热功率使高温区和低温区的温度波动控制在±2℃范围内,直到结晶结束。在冷却阶段,首先以10℃/h的速率降温到1600℃,并保温15小时,最后以20℃/h的速率降至室温。开炉,取出晶体,晶体尺寸为220mm×150mm×20mm,无气泡、裂纹等宏观缺陷。在整个生长过程中采用热偶测温,读出的数据存在一定误差,仅作为参考。
实施例4:
将预结晶的高纯块状Ce3+:LYSO原料装入酒精洗涤过的舟形钼制坩埚内,其中置于坩埚放肩区的原料的Ce3+离子浓度为0.2at.%,置于坩埚等宽区域的原料的Ce3+离子浓度为0.04at.%,Lu/Y比例为9:1,预结晶原料的总重量为4.6kg。装炉完毕后,抽真空至5×10- 3Pa,再加热升温。当高温区温度上升至~2100℃时,观察到熔体液流线,适当调节加热功率,使液面上刚好出现有序对流的固液转化现象。待原料完全融化,保持3h。将[010]方向的LSO籽晶移入高温区,籽晶的位置位于坩埚的几何中心处。熔体接触籽晶3mm,保持熔晶5分钟,然后沿水平方向移动坩埚引晶,引晶速率为0.5mm/h。引晶30小时后进入放肩阶段,放肩角度为120°,坩埚的移动速度变为0.3mm/h。当舟形坩埚的前端放肩区移动至高温区边缘时进入等宽生长阶段,这时坩埚的移动速率增大至0.8mm/h,并保持熔区的长度为40mm,在该阶段通过调节加热功率使高温区和低温区的温度波动控制在±2℃范围内,直到结晶结束。在冷却阶段,首先以20℃/h的速率降温到1700℃,并保温12小时,最后以30℃/h的速率降至室温。开炉,取出晶体,晶体尺寸为220mm×150mm×20mm,无气泡、裂纹等宏观缺陷。在整个生长过程中采用热偶测温,读出的数据存在一定误差,仅作为参考。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

  1. 大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,其特征在于:本方法采用单晶炉制备,通过加热使单晶炉内形成不同的温区,使预结晶料处于熔融态形成熔体的温区为高温区,高温区的温度在晶体熔点之上5-10℃,使熔融态原料结晶处于单晶态的温区为低温区,熔融态与单晶态的过渡区域自然形成温梯区;然后水平移动装有原料的坩埚,使坩埚依次从高温区、温梯区和低温区通过;具体步骤如下,
    (1)真空环境下化料:将Ce3+:Re2SiO5块状预结晶料装入钼制舟形坩埚内,其中Re为Lu、Y、Gd或二者的组合,再把坩埚装入单晶炉内,关闭炉膛;打开真空泵,将炉膛内部抽真空至5×10-3Pa以下,再打开加热电源形成高温区、温梯区和低温区;首先坩埚前部进入高温区使坩埚前部的预结晶料完全熔化形成设定长度的熔体,再调节加热功率,使熔体保持稳定的对流形态,保温1-5小时;
    (2)引晶:选用b向[010]的晶体作为籽晶,且放置于坩埚中轴线前端;当籽晶遇到熔体时,籽晶既不生长也不熔化时,为最佳引晶温度;确定引晶温度后,使籽晶与熔体接触3-5mm,保持熔晶5-10分钟,然后沿温梯区方向移动坩埚引晶,引晶速率为0.3-1.5mm/h;
    (3)放肩阶段:引晶结束,放肩部分开始结晶,即进入放肩阶段;放肩角度为70-120°,放肩速率为0.1-1.5mm/h;
    (4)等宽生长:坩埚放肩部分完全结晶后,即进入等宽生长阶段;生长速率为0.5-3.0mm/h,直至结晶过程结束;
    在整个结晶过程中,熔体部分不断结晶,同时预结晶料不断熔化形成新的熔体以补充结晶的消耗,使熔体的长度始终保持在设定范围内,直到预结晶料全部熔化形成熔体;在结晶过程中要根据固液界面的变化情况调节加热功率,保证固液界面稳定结晶;
    (5)退火冷却:待全部原料结晶过程结束,按10-30℃/h的降温速率降至原位退火温度;原位退火温度为1500-1700℃,退火时间为10-15小时;随后再按20-50℃/h的速率将晶体冷却至室温,生长过程结束,即制备得到Ce3+离子掺杂的稀土正硅酸盐闪烁晶体。
  2. 根据权利要求1所述的大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,其特征在于:在单晶炉内设有钨钼材料制作的反射保温屏,在保温屏内部设有加热线圈,通过反射保温屏和加热线圈,使单晶炉内形成所述不同的温区。
  3. 根据权利要求1所述的大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,其特征在于:在上述步骤(1)中,置于舟形坩埚中预结晶料的Ce3+离子浓度分为前后两个浓度区,前部浓度区的长度等于熔区长度,其余区域为后部浓度区,前部浓度区预结晶料的Ce3+离子浓度为0.2-2.0at.%,后部浓度区预结晶料的Ce3+离子浓度为前部 浓度区Ce3+离子浓度与有效分凝系数之积,并与最终晶体中的Ce3+离子浓度相等。
  4. 根据权利要求1所述的大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,其特征在于:坩埚的尺寸为200mm×120mm×40mm或更大。
  5. 根据权利要求1所述的大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法,其特征在于:进入等宽生长阶段时,坩埚中未生长的熔体长度保持为20-60mm。
PCT/CN2015/077071 2015-02-05 2015-04-21 大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法 WO2016123866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015100603840 2015-02-05
CN201510060384.0A CN104630878B (zh) 2015-02-05 2015-02-05 大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法

Publications (1)

Publication Number Publication Date
WO2016123866A1 true WO2016123866A1 (zh) 2016-08-11

Family

ID=53210111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077071 WO2016123866A1 (zh) 2015-02-05 2015-04-21 大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法

Country Status (2)

Country Link
CN (1) CN104630878B (zh)
WO (1) WO2016123866A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108239784A (zh) * 2018-03-23 2018-07-03 韶关保绿环保科技股份有限公司 区熔炉系统
CN113564714A (zh) * 2021-06-28 2021-10-29 南方科技大学台州研究院 各向异性大尺寸晶体及AgCrSe2的制备方法
CN113930843A (zh) * 2021-10-22 2022-01-14 中国电子科技集团公司第二十六研究所 一种基于水平定向凝固法生长晶体的方法
CN114411251A (zh) * 2022-01-20 2022-04-29 西北工业大学深圳研究院 一种使用移动加热器法生长高质量cllb晶体的方法
CN115584556A (zh) * 2022-09-15 2023-01-10 中南大学 一种采用籽晶引晶制备高纯碲的方法
CN116168788A (zh) * 2023-04-25 2023-05-26 北京大学 基于大数据的熔融液态硅晶分凝系数分析方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105401216A (zh) * 2015-12-15 2016-03-16 河南西格马晶体科技有限公司 一种温场梯度水平移动法制备片状单晶的方法及装置
CN106835270A (zh) * 2017-01-24 2017-06-13 中国科学院长春应用化学研究所 低成本稀土闪烁晶体的生长
CN109913941B (zh) * 2019-02-12 2024-03-26 南京同溧晶体材料研究院有限公司 一种异质高熔点弧形籽晶生长稀土离子掺杂晶体的模具及生长方法
CN111519242B (zh) * 2020-06-24 2021-07-20 中国电子科技集团公司第二十六研究所 基于横向平移结晶法制备大尺寸Ce,Nd:YAG晶体的方法
CN112630818A (zh) * 2020-11-16 2021-04-09 中国科学院上海硅酸盐研究所 一种硅位掺杂改善稀土正硅酸盐闪烁材料及其制备方法和应用
CN116676669B (zh) * 2023-08-03 2023-12-08 北京奇峰蓝达光学科技发展有限公司 一种氟化钙晶体生长原料的提纯处理设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009055405A1 (en) * 2007-10-23 2009-04-30 Saint-Gobain Ceramics & Plastics, Inc. Scintillator crystals and methods of forming
CN102330144A (zh) * 2011-10-08 2012-01-25 陕西合木实业有限公司 一种成品大面积籽晶和矩形大面积籽晶的制备方法及设备
CN103305911A (zh) * 2013-05-24 2013-09-18 哈尔滨工业大学 大尺寸Re:YAP系列激光晶体水平定向凝固制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283852C (zh) * 2003-11-14 2006-11-08 中国科学院上海光学精密机械研究所 硅酸钆闪烁晶体的生长方法
CN1259465C (zh) * 2003-12-19 2006-06-14 中国科学院上海光学精密机械研究所 掺三价铈离子稀土硅酸盐闪烁晶体的制备方法
CN1563517A (zh) * 2004-03-19 2005-01-12 中国科学院上海光学精密机械研究所 掺三价铈离子的正硅酸盐闪烁晶体的制备方法
CN101377020A (zh) * 2008-02-25 2009-03-04 中国科学院上海硅酸盐研究所 三价铈离子掺杂的稀土硅酸盐多晶料及制备方法
CN103243380B (zh) * 2013-04-24 2016-03-23 哈尔滨工业大学 大尺寸Re:YAG系列激光晶体的水平定向区熔结晶制备法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009055405A1 (en) * 2007-10-23 2009-04-30 Saint-Gobain Ceramics & Plastics, Inc. Scintillator crystals and methods of forming
CN102330144A (zh) * 2011-10-08 2012-01-25 陕西合木实业有限公司 一种成品大面积籽晶和矩形大面积籽晶的制备方法及设备
CN103305911A (zh) * 2013-05-24 2013-09-18 哈尔滨工业大学 大尺寸Re:YAP系列激光晶体水平定向凝固制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, JIECAI ET AL.: "Single Crystal Horizontal Bridgman Method", MATERIALS REVIEW, vol. 20, no. 07, 15 July 2006 (2006-07-15), ISSN: 1005-023X *
QIN, LAISHUN ET AL.: "Progress and Prospect in the Development of LSO Scintillation Crystal", JOURNAL OF SYNTHETIC CRYSTALS, vol. 20, no. 4, 30 August 2003 (2003-08-30), ISSN: 1000-985X *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108239784A (zh) * 2018-03-23 2018-07-03 韶关保绿环保科技股份有限公司 区熔炉系统
CN113564714A (zh) * 2021-06-28 2021-10-29 南方科技大学台州研究院 各向异性大尺寸晶体及AgCrSe2的制备方法
CN113930843A (zh) * 2021-10-22 2022-01-14 中国电子科技集团公司第二十六研究所 一种基于水平定向凝固法生长晶体的方法
CN114411251A (zh) * 2022-01-20 2022-04-29 西北工业大学深圳研究院 一种使用移动加热器法生长高质量cllb晶体的方法
CN115584556A (zh) * 2022-09-15 2023-01-10 中南大学 一种采用籽晶引晶制备高纯碲的方法
CN116168788A (zh) * 2023-04-25 2023-05-26 北京大学 基于大数据的熔融液态硅晶分凝系数分析方法及系统
CN116168788B (zh) * 2023-04-25 2023-08-11 北京大学 基于大数据的熔融液态硅晶分凝系数分析方法及系统

Also Published As

Publication number Publication date
CN104630878B (zh) 2017-04-12
CN104630878A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2016123866A1 (zh) 大尺寸板状Ce3+离子掺杂的稀土正硅酸盐系列闪烁晶体水平定向凝固制备方法
CN102758249B (zh) 一种无色刚玉单晶的制备方法
CN103849933B (zh) 一种生长三价铈离子掺杂硅酸钇镥闪烁晶体的方法
CN102383187B (zh) 一种蓝宝石单晶生长方法
CN105543963B (zh) 由低成本稀土原料制备的稀土闪烁晶体及其低成本生长工艺
CN104562183B (zh) 大尺寸稀土掺杂氟化钇钡单晶生长方法
CN104357899A (zh) 大尺寸Yb-YAG激光晶体泡生法制备方法
CN104313693B (zh) 掺杂钇铝石榴石激光晶体的生长装置、晶体生长炉及制备方法
CN104962994A (zh) 导模法生长特定尺寸稀土掺杂含镓石榴石系列晶体的方法
CN104451564B (zh) 一种制备硅质靶材的方法
CN106149051A (zh) 氟化物单晶体的热控布里奇曼法单晶生长装置与方法
CN106283178A (zh) 一种大尺寸提拉法单晶生长设计和控制方法
CN107245759A (zh) 一种铈离子掺杂多组分石榴石结构闪烁晶体的生长方法
CN109280978A (zh) 一种低位错锑化铟<111>方向单晶的制备方法
CN103173850A (zh) 单晶硅制造工艺
CN101481821A (zh) 一种生长钇铝柘榴石晶体的新技术及其设备
CN102703970A (zh) 泡生法生长掺钛蓝宝石晶体
CN104073875A (zh) 一种大尺寸蓝宝石晶体动态温度场制备方法
CN109402724B (zh) 一种非掺杂和Eu2+掺杂碘化锶晶体的定向区熔生长装置和方法
CN104005088B (zh) 过渡族金属离子掺杂的镁铝尖晶石晶体的提拉法生长方法
CN108560053A (zh) 一种镧、镝、铈共掺的硅酸钇镥闪烁材料及其晶体生长方法
CN103305911B (zh) 大尺寸Re:YAP系列激光晶体水平定向凝固制备方法
WO2023138288A1 (zh) 一种使用移动加热器法生长高质量cllb晶体的方法
CN107488874A (zh) 一种用于稀土晶体生长工艺的温度场结构的设计方法及低成本稀土晶体的生长工艺
CN101643936B (zh) 一种钨酸铅闪烁晶体水平生长方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880821

Country of ref document: EP

Kind code of ref document: A1