WO2016119291A1 - 数字瞄准器及使用其对目标快速跟踪、自动锁定和精确射击的方法 - Google Patents

数字瞄准器及使用其对目标快速跟踪、自动锁定和精确射击的方法 Download PDF

Info

Publication number
WO2016119291A1
WO2016119291A1 PCT/CN2015/074730 CN2015074730W WO2016119291A1 WO 2016119291 A1 WO2016119291 A1 WO 2016119291A1 CN 2015074730 W CN2015074730 W CN 2015074730W WO 2016119291 A1 WO2016119291 A1 WO 2016119291A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
database
ballistic
distance
sight
Prior art date
Application number
PCT/CN2015/074730
Other languages
English (en)
French (fr)
Inventor
赵中伟
Original Assignee
赵中伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵中伟 filed Critical 赵中伟
Publication of WO2016119291A1 publication Critical patent/WO2016119291A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications

Definitions

  • the invention relates to a novel outdoor hunting shooting aiming device, in particular to a shooting class designed by using high-definition image imaging, real-time processing of digital signals, large-capacity data storage, ballistic track database, cloud server and intelligent interconnection.
  • Digital intelligent aiming device Digital intelligent aiming device.
  • the main purpose of the scope is to allow the firearm user to hit the target quickly, accurately and conveniently.
  • the development of the universal optical sight is very mature, and its advantages are mainly two: (1) convenient and flexible division settings make use Users can flexibly locate targets and ranging when using them. (2) Lower prices contribute to large-scale use in firearms equipment. But the drawbacks of traditional optical sights are also very prominent:
  • Division of manual mechanical adjustment brings errors.
  • the optical sight uses a manual adjustment and division device, and there are two problems: First, long-term use is likely to cause mechanical wear and thus bring errors to the division accuracy. Second, the division can not exactly coincide with the impact point in the actual use process, and can only be approximately coincident. When the potential target is closer to the firearm, the division and the impact point error are not very large, but at a relatively long distance, such as 200 yards or more. At the time, there will be considerable errors, which will not lead to accurate shooting results.
  • the digital sight device is a camera plus a digital signal processor plus a display instead of a multi-stage optical magnifying lens on the optical sight, while storing a calibratable partition on the processor instead of the scoring device on the optical sight, while Replace manual control with automatic control software. Since the digital sight uses the processor to precisely control the division, and the position of the division is stored in the memory by the impact point in advance, the digital sight can completely replace the function of the optical sight in principle, and the firearm is greatly reduced. The influence of the factors is the mainstream trend of future target development. However, due to the defects in design ideas, there are still some problems in the existing digital sights:
  • Ballistic trajectory data unity.
  • Some existing digital sights have made the division and the impact point coincide in the division design, that is, the impact point is stored in the memory in advance, the impact point is obtained through the actual test, and then when the target is aimed, the division jumps to the impact point to let the user Aiming at shooting.
  • these digital sights store only one kind of impact point data when storing the ballistic data.
  • the number of impact points is relatively small, and the complete ballistic trajectory of this type of bullet cannot be accurately drawn.
  • the shooting is more accurate, but at a longer distance, the ball trajectory fading is compared due to the influence of gravity acceleration on the bullet. Great, shooting accuracy will drop a lot.
  • the ballistic trajectory data has a large error and cannot be corrected in real time.
  • Some existing digital sights allow users to download the ballistic data matching their own guns on the Internet, store them on local storage, and then calculate the ballistic data errors by adding a computer.
  • the problem is that these ballistic data are often not rigorously tested.
  • verification, in the course of use, using these ballistic trajectory data as a reference division there will be a large error with the actual impact point.
  • the way of external computer processing can not be processed in real time. Especially for some targets that move faster, the chances of effective hits are often lost in an instant. Therefore, for different types of bullets commonly used in the market, obtaining an accurate and complete ballistic trajectory database is very important for outdoor hunting enthusiasts.
  • the sight uses its own high-speed processor to correct the ballistic parameters in real time in different environments. The impact point error at different distance points will also directly affect the result of accurate shooting.
  • the invention proposes a novel digital intelligent sight device device, and the network topology core structure of the device comprises: a digital sight, an APP of a mobile terminal, a cloud server and a social network.
  • the digital sight mainly consists of: high-definition camera, multi-core processor, display with touch function, laser range finder, wireless module, GPS module, memory, various sensors and so on.
  • the APP of the mobile terminal is mainly an application deployed on the mobile smart phone, and its function is mainly to realize data forwarding and temporary storage in the field.
  • the role of the cloud server is to achieve data backup, program updates, and so on.
  • the core idea of the present invention is to allow outdoor hunting users to use the digital sight to achieve fast tracking, automatic locking and precise shooting of hunting targets.
  • the present invention proposes a novel digital sight that can be used for fast tracking, automatic locking and precise shooting of targets, so that shooting is no longer dependent on the human factor of the shooter.
  • a digital sight including a sight glass, a high-definition camera, a multi-core processor, a large-capacity memory, a high-definition touch screen display, a laser range finder, a sensor, a GPS module, a wireless communication module, and a large-capacity lithium battery;
  • the camera is a zoom lens with low sensitivity and night vision function.
  • the zoom, night vision and sensitivity functions are automatically controlled by software, and the camera captures a high-definition target image in real time.
  • the target image pixel resolution is greater than that displayed on the display.
  • Image pixel resolution, through digital signal processing technology, the target image magnification of the digital sight is equal to the optical of the high-definition camera lens Multiplying the magnification by the digital image magnification, the target image is converted by the analog signal and transmitted to the multi-core processor for processing;
  • the sensors are a photosensitive sensor, a temperature sensor, a humidity sensor, a pressure sensor, a wind speed and a wind direction sensor, a three-axis gyroscope, a gravity acceleration sensor, and an electronic compass;
  • the wireless communication module is a Wi-Fi module with a Bluetooth function.
  • the image is similar to the distant effect due to the refraction, and the effect is used to enlarge the near object to the distant view to achieve the high-definition holographic vision.
  • the digital sight comprises a ballistic trajectory database obtained by a live-shot target test and matched with a firearm and ammunition type.
  • the ballistic trajectory database can be obtained in two ways: one is adopted by the owner of the sight.
  • the live-fire shooting test is obtained, and the other is downloaded from the cloud server.
  • the ballistic trajectory database on the cloud server is all kinds of firearms uploaded by the other digital target owners or the digital sight manufacturers in the world after the live-fire shooting test.
  • the ballistic trajectory data of ammunition includes the types of common firearms for civilian or police use and the matching flight trajectories of different ammunition bullets in different environments and at different distances; the single ballistic trajectory database consists of several impact points at different distances.
  • the vector is constructed.
  • the impact point vector is a set of parameters with distance as the scalar index number.
  • the elements of the parameter set are: the distance of the impact point from the firearm, the pixel coordinates of the impact point on the display screen when the image is captured, The focal length of the lens when the image is captured, the bullet Point shooting firearms when the angle of elevation angle and the number of levels, crosses the point of impact at the time of shooting firearms, the point of impact at the time of the shooting firearms External temperature and atmospheric pressure.
  • the distance between the digital sight and the target is measured by a laser range finder, and the processor uses the target distance as an index number to retrieve the impact point vector from the ballistic trajectory database.
  • the elements of the vector include: the actual after the error correction The point of the point is captured, the focal length of the camera matching the impact point, the angle of view of the firearm that matches the impact point, and the horizontal angle.
  • the digital sight establishes an Internet of Things for outdoor shooting and hunting, the topology of which includes cloud servers, digital sights, mobile terminal applications, and social networking sites.
  • the cloud server is responsible for the backup and update of various data and programs;
  • the mobile terminal application is responsible for the router function of exchanging data between the outdoor digital sight and the cloud server or the social website; through the cooperation of the above four elements, a complete outdoor shooting and hunting is formed.
  • a method for fast tracking, automatic locking, and precise shooting of a target using the digital sight described above comprising the steps of:
  • the laser range finder quickly measures the target distance, and the processor uses the target distance as the index number to retrieve the impact point vector from the ballistic trajectory database;
  • the processor collects relevant sensors in real time, and obtains the current environmental data, especially the wind drift parameter and the target moving speed. Based on the impact point vector in step (2), the real-time correction and compensation algorithm of the ballistic parameter error is used to correct and compensate.
  • the actual impact point of the current shooting environment is at the pixel coordinate position on the display screen;
  • the processor instantly updates the position, color, brightness, and camera focal length.
  • the actual impact point is displayed on the display screen as the center point of the screen.
  • the processor-driven camera focal length will automatically adjust the focus to match the parameters of the actual impact point. Adjust the camera so that the split is aimed at the area where the target is to be fired;
  • the real-time error correction and compensation algorithm of the ballistic parameters is a real-time multi-variable input and a single-variable output numerical filter.
  • the basic principle is: the processor collects the three-axis gyroscope and the gravity acceleration sensor in real time to determine the firearm in three-dimensional space. Rotating attitude and looking up angle; the processor collects the smart compass sensor in real time to determine the moving direction of the firearm in three-dimensional space; the processor collects the acceleration sensor in real time to determine the moving acceleration of the firearm in three-dimensional space, and determines the possible moving track by comparing with the initial speed.
  • the processor collects the laser ranging sensor to measure the relative distance between the target and the firearm in real time.
  • the relative moving speed and the moving angle between the firearm and the target are determined by the three-sided positioning method, thereby determining the moving displacement coordinate of the target in three-dimensional space.
  • the processor of the digital sight collects the wind speed and the wind direction sensor in real time, that is, the wind drifts, and calculates the offset error of the bullet in different space coordinates according to the theoretical formula of the airborne flying distance and the flying angle of the bullet.
  • the digital aiming The processor adjusts the ballistic trajectory database according to the plane distance of the target and the firearm in space, and actually obtains the pixel coordinates of the impact point on the display screen at the plane distance, and corrects the offset error by combining the offset error generated by the wind drift.
  • the bullet coordinates of the bullet at the target distance are accurately captured on the display.
  • the ballistic trajectory database is acquired in two ways: one is obtained by a live-fire test, and the other is downloaded from a cloud server.
  • the method of obtaining a ballistic trajectory database by a live-shot test includes the following steps:
  • the processor records the current camera focal length and stores it in the database
  • the processor collects the data of the three-axis gyro sensor, the gravity acceleration sensor and the electronic compass sensor, and calculates the elevation angle of the firearm into the database;
  • the processor collects the wind speed and the wind direction sensor, and calculates the current wind drift data into the database
  • the processor will automatically lock the target image after the shot, and use the image processing technology to find the bullet through the bullet hole of the target, ie, the impact point and the coordinate zero point. Pixel difference, save it as the coordinate value of the current impact point and store it in the database;
  • the method of downloading the ballistic track database from the cloud server includes the following steps:
  • the accurate real-time correction and compensation algorithm of the ballistic parameter error is used to accurately correct and compensate the measured point coordinates in the current shooting environment, and then the corrected impact point coordinates are used.
  • the division is displayed at the center of the display screen.
  • Existing optical sights or digital sights can only guarantee the approximate coincidence of the division and the actual impact point, especially at larger optical magnifications, the error between the two will be larger.
  • the present invention details how to test the steps and methods of acquiring the ballistic track database.
  • Another is to have a shooter with rich shooting experience and accurate shooting ability to test in the field. Through the field test of different firearms and different bullets in different environments, complete test data can be obtained to establish a complete "ballistic track".
  • the database is placed in the cloud server for users to download.
  • the invention Realize the real-time rendering of the shooting environment data, reflecting the realism of a person in the shooting scene.
  • the invention displays all the important data at the time of actual shooting on the display screen in real time, such as: time, geographical location, firearm angle, sight lens magnification, image magnification, target distance, target moving speed, ambient temperature, The wind speed, etc., these data are observed and adjusted by the user.
  • This kind of missile-like guidance and locking target makes the user very intuitive, user-friendly and easy to control when using the firearms.
  • the biggest advantage is that the shooting will be more accurate.
  • This is also an improvement made by the present invention which is very user-friendly and has a very good effect on the user.
  • the digital sight provided by the invention comprises a high-definition display screen integrated with a high-precision touch screen, and the user's interface operation is provided by the touch screen in addition to the manual focus, power on and target lock buttons. Iconic menus or instructions to complete the operation.
  • the icon operation interface like a smartphone makes the user very convenient in the actual use process, and also very user-friendly.
  • the digital sight proposed by the present invention is not simply a terminal device, but a complete “outdoor shooting and hunting Internet of Things" based on intelligent mobile internet technology.
  • the user uses the APP, cloud of the mobile terminal equipped by the user himself.
  • Servers and even third-party social networking sites can create accounts and upload various types of data on backup digital sights, such as various types of videos or photos at the time of shooting, device configuration of the sights, and ballistic trajectory data obtained by users in the field test.
  • users can also download various types of data from the cloud server, such as the ballistic track database of various bullets, and also update the system program of the entire digital sight.
  • Figure 1 is a schematic side view of the side of the digital sight
  • Figure 2 is a schematic view showing the appearance of another side of the digital sight
  • Figure 3 is a view of the digital sight viewed from a sight glass
  • Figure 5 is a view of the digital sight viewed from the direction of the camera lens
  • Figure 6 is a schematic block diagram showing the connection of various components inside the digital sight
  • Figure 7 is a diagram showing the relationship between the complete image captured by the camera and the image actually displayed on the display screen
  • Figure 8 is a logic flow diagram of a method for creating a "ballistic trajectory database" by a live fire test
  • FIG. 13 are schematic diagrams for implementing FIG. 8;
  • Figure 14 is a flow chart of a method for implementing "fast tracking, automatic locking, and precision strike target"
  • the digital sight 1 includes a metal casing 2, a sight glass 3, a manual focus knob 4, a touch display 5, and an HD camera 6.
  • a laser range finder 7, an external interface cover 8 (the interface includes a power interface 9, a mini-USB interface 10 and an SD card interface 11), a mechanical device 12 fixed to the firearm (through the card slot and the firearm 50) Fixed together), an external wireless antenna device 13, and a lithium battery pack 30.
  • the metal casing 2 includes a multi-core processor 14; a wind speed and direction sensor 15; a three-axis gyro sensor 16; a gravity acceleration sensor 17; a pressure sensor 18; a temperature sensor 19; a GPS module 20; and a wireless communication module 21: dual frequency 2.4G /5G Wireless Wi-Fi Module 22 And a BTE Bluetooth Bluetooth module 23; a lithium battery pack 24; a charge and discharge management circuit 25; a lost large-capacity memory 26; a large-capacity non-lost internal memory 27; an external memory 28; a touch display driving circuit 29 and a lithium battery pack 30.
  • the side of the digital sight 1 has an upwardly-disconnected interface cover 8; there is a power input interface 9 for charging the lithium battery 30; a mini-USB interface 10 for An external computer connection for the user to copy various internal data or input data; an SD card interface 11 disposed in the external large-capacity non-lost memory 28 for storing video, photo data or geographic information, etc., the user can pass the SD
  • the card copies data and in general, the data is transmitted through a Wi-Fi wireless signal.
  • the high-definition camera 6 includes a set of lenses with a night vision zoom function and an image sensor, and the images are collected and transmitted to the multi-core processor 14 through an analog-to-digital conversion circuit, and multi-core processing.
  • the device 14 sends an instruction to control the focusing of the high-definition camera 6, and the user can also manually adjust the focal length of the camera 6 through the manual focus button 4.
  • the clockwise rotation of the manual focus knob 4 indicates that the focal length is adjusted, and the counterclockwise rotation indicates the small focal length.
  • the touch display screen 5 is a display screen with a high-precision touch screen.
  • the multi-core processor 14 directly drives the display screen 5 through the display driving circuit, and outputs an image display signal while receiving a command signal from the touch screen.
  • the laser range finder 7 includes a laser transmitting and receiving module and a signal conversion module. The distance between the target and the light source is tested by transmitting the light source to the target and then reflecting back. The calculated signal is directly connected to the multi-core processor. 14.
  • the wind speed and direction sensor 15 mainly collects wind speed and wind direction data at the time of shooting, and directly transmits it to the multi-core processor 14 through the data line, through the processor. After the relevant procedures are processed, the “wind drift” data is obtained.
  • the three-axis gyroscope 16, the gravity acceleration sensor 17 and the electronic compass 18 constitute a sensor group for measuring the target displacement coordinate of the space, and the multi-core processor 14 calculates these sensors in real time, and then obtains the moving trend and movement of the target through the "trilateral positioning algorithm".
  • the velocity and space possible displacement coordinate values are stored in the internal non-lost memory 27.
  • the GPS module 20 is directly connected to the multi-core processor 14 and transmits the latitude and longitude coordinate information to the 14th. After the multi-core processor 14 performs a certain data calculation process, it is stored in the internal non-lost memory 27.
  • the lost memory 26, the internal non-volatile memory 27, and the external non-volatile memory 28 are directly connected to the multi-core processor 14, and are mainly used for data storage, backup, and program operation.
  • the wireless communication module 21 includes a wireless Wi-Fi module 22 and a Bluetooth module 23.
  • the Wi-Fi module 22 is directly connected to the multi-core processor 14 through the SDIO interface, and exchanges data with the external router through the external antenna 13.
  • the lithium battery charge and discharge management module 25 is directly connected to the lithium battery 30, charges the lithium battery 30, and simultaneously receives the discharge of the lithium battery 30, and the above components supply power to the entire digital sight 1 through the power management module.
  • the external interface device 8 includes a power interface 9 for charging the lithium battery 30, a mini-USB interface 10 for communicating with an external computer, and copying internal large-capacity non-volatile memory 27 data to the computer, an SD card interface 11 Mainly inserted into the external large-capacity non-lost memory 28.
  • the digital sight 1 is equipped with a sight glass 3, and the sight glass 3 is stuck on the front panel 32 through the bayonet 31.
  • the user observes the image on the HD display 5 inside through the sight glass 3, visually
  • the mirror 3 has a certain zooming function, and can display the image on the display screen to the user's eyes after being enlarged. If the user wants to configure or operate the function of the digital sight 1, the eyeglasses eject button 35 is pressed, and the sight glass 3 is ejected from the bayonet 31 to expose the high-definition display 5 therein, as shown in FIG.
  • the user views the target 36 through the display screen 5 after the visual mirror 3 is ejected.
  • the target 36 is displayed on the display screen 5 in real time through the camera 6. It can be seen that a division 37 appears at the center point of the display screen 5, and the user can move the camera 6 so that the division 37 is aligned with the target 36 while adjusting the focal length of the camera 6.
  • the target 36 is made clear on the display screen 5.
  • the digital sight 1 includes a high definition camera 6, a laser range finder 7, and an external wireless antenna 13.
  • the target image 36 captured by the camera 6 is a high-definition video image 38 having a resolution of at least 720 P pixels, the center point of the image is the center point 39 of the optical axis, and the image 40 is displayed on the display screen 5.
  • the image 38 taken by the camera 6 is smaller than the image 38, so that the image 40 displayed on the display screen 5 can be displayed on the display 38 as needed, so that the image center point of the display screen 5 is divided 37 and the center point 39 of the actual image. Many times it is not coincident.
  • FIG. 8 is a logic flow diagram of a method for the digital sight 1 to implement a live shot test to obtain a “ballistic trajectory database”. Its graphical illustration is shown in Figures 9 through 13. The steps to achieve are as follows:
  • FIG. 14 is a logic flow diagram of a method for the digital sight 1 to achieve "fast tracking, automatic locking of the target and precise shooting" of the target, and FIGS. 15 to 18 are detailed implementation diagrams of FIG. The steps to achieve are:
  • the laser ranging sensor 7 quickly measures the target distance 45, and then refreshes on the display screen 5 at a certain frequency, and the user observes the display screen 5. If it is confirmed that the target distance 45 has been measured accurately, press the front panel.
  • the LOCK button 34 on the 32 the processor 14 will immediately lock the target distance 45, and at the same time, retrieve the bounce point vector matching the target distance 45 from the ballistic trajectory database, the vector element including the bounce point pixel coordinates 42 of the distance, the focal length, the firearm Upward viewing angle parameter;
  • test projectile position 42 of the distance that the processor 14 calls from the ballistic track database temporarily appears on the display screen 5 in the form of a dot 46, and immediately starts the "ballistic parameter real-time error correction". And compensating the algorithm program, collecting relevant sensor data, and correcting the actual impact point coordinate position 48 in the current shooting environment after data processing;
  • the processor 14 immediately updates the current position 37, color, brightness, camera 6 focal length, etc., through the image real-time processing technology, with the actual impact point 48 coordinates as the screen center point is presented on the display screen 5.
  • the processor 14 drives the camera 6 focal length to automatically adjust the focus to match the parameters of the actual impact point 48.
  • the user needs to re-adjust the camera 6 according to the position of the partition 47 on the screen, so that the division 47 aims at the target. 36 areas to be hit; and
  • the digital sight 1 is limited to within 3 seconds from tracking the target, aiming to locking the target time, and basically does not require too much manual participation, realizing the "fast tracking, automatic locking of the target". , the purpose of precision strikes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Studio Devices (AREA)

Abstract

一种数字瞄准器设备装置,该装置的网络拓扑核心结构主要由:数字瞄准器(1)动终端应用程序(APP)、云服务器和社交网络四个大的要素组成。本发明用高清摄像头(6)实时拍摄潜在目标(36)同时在显示屏(5)上显示,用激光测距仪(7)获取目标距离(45),以目标距离(45)作为数据库索引从用预先存储的弹道轨迹数据库中获取该距离(45)的测试弹着点(42),依据弹道参数误差实时修正和补偿算法获取该距离(45)的真实弹着点(48),然后分划(37)对准该弹着点(48)就可以精确命中目标(36),真正实现了对射击目标的快速跟踪、自动锁定和精确打击的目的。

Description

数字瞄准器及使用其对目标快速跟踪、自动锁定和精确射击的方法 技术领域
本发明涉及一种新型的户外狩猎用射击瞄准装置,特别是一种利用高清图像成像、数字信号实时处理、大容量数据存储、弹道轨迹数据库、云服务器和智能互联的原理设计而成的射击类数字智能瞄准器械装置。
背景技术
瞄准镜的主要目的是让枪械使用者快速、准确、方便的命中目标,现在通用的光学瞄准镜发展已经极为成熟,它的优点主要有两个:(1)便捷和灵活的分划设置使得使用者在使用的时候可以灵活定位目标和测距。(2)较低的价格有助于在枪械类设备中大规模使用。但是传统光学瞄准镜的缺陷也是非常突出的:
1.分划人工机械调节带来误差。目前光学瞄准镜使用人工调节分划装置,存在两个问题:一是长期使用容易造成机械上的磨损从而给分划精度带来误差。二是分划在实际使用过程中无法和弹着点精确重合,只能近似重合,当潜在目标比较靠近枪械的时候,分划和弹着点误差还不是很大,但是在比较远的距离,比如200码以上的时候,就会带来相当大的误差,这样也就无法带来精确射击的结果。
2.弹道轨迹数据的不可存储性。传统光学瞄准器不能存储弹道轨迹数据,每次使用时需要根据目标距离调节分划的位置,估计弹着点,调节分划和弹着点近似重合。现场调节分划和估计弹着点的方式受限于射击者本身的经验,有丰富射击经验的使用者使用光学瞄准器误差会比较小,而这些经验都需要大量的练习才能达到,同时在瞄准的时候也受射击者本身的心理素质影响,因此使用传统的光学瞄准器和射击者存在极大的关系。
随着电子技术和材料工艺的迅猛发展,一些公司提出并设计了数字瞄准器或电子瞄准器,它的核心思想是利用电子技术来替代传统的光学瞄准镜。数字瞄准器装置是摄像头加数字信号处理器加显示屏来替代光学瞄准器上的多级光学放大镜头,同时在处理器上存储可校准的分划来替代光学瞄准器上的分划装置,同时用自动控制软件替代人工控制。由于数字瞄准器是用处理器来精确控制分划,而分划的位置预先通过弹着点存储在存储器中,因此,从原理上数字瞄准器完全可替代光学瞄准器的功能,同时大大减少枪械受射击者因素的影响,是未来瞄准器发展的主流趋势,只是由于设计思路上的缺陷,现存的数字瞄准器还存在一些问题:
1.弹道轨迹数据单一性。现存的一些数字瞄准器在分划设计上做到了让分划和弹着点重合,即预先将弹着点存储在内存中,弹着点通过实际测试得到,然后瞄准目标的时候,让分划跳到弹着点让使用者瞄准射击。但是这些数字瞄准器在存储弹道数据的时候,只存储一种弹着点数据,而 且弹着点数量比较少,无法准确勾绘出该类型子弹的完整弹道轨迹,在比较近的距离的时候,往往射击比较精确,但是在较远距离,由于子弹受重力加速度影响,弹道轨迹衰落的比较厉害,射击精度会下降很多。
2.弹道轨迹数据存在较大误差并且无法做到实时修正处理。现存的一些数字瞄准器允许使用者去互联网下载和自己枪械匹配的弹道数据,存储到本地存储器上,然后通过外加计算机来计算弹道数据误差,但存在的问题是这些弹道数据往往是没有经过严格测试和验证的,在使用过程中,使用这些弹道轨迹数据作为参考分划,会存在和实际弹着点比较大的误差。同时外挂计算机处理的方式,也无法做到实时处理。尤其针对一些移动速度比较快的目标,有效击中的机会往往瞬间就失去。因此对市场上常用枪械的不同类型子弹,获取精确完整的弹道轨迹数据库对户外狩猎爱好者来说就显得非常重要了,同时瞄准器利用自身的高速处理器,实时修正弹道参数在不同环境下的、不同距离点的弹着点误差也将直接影响精确射击的结果。
3.无法做到对目标的快速跟踪、自动锁定和精确射击。现存的数字瞄准器由于存在设计上的缺陷,无法做到对目标的快速跟踪、自动锁定和精确射击,因此还不是真正意义上的智能数字瞄准器。而智能数字瞄准器之所以在未来具有巨大的市场,主要原因是真正的可以帮助射击者做到对目标的快速跟踪、自动测距、自动瞄准、自动锁定,实现精确射击。使得瞄准器不再依靠人的因素,即使一个毫无射击经验的人在使用智能数字 瞄准器的时候,只要按照规定操作,就可以实现精确射击目的。
本发明提出了一种新型的数字智能瞄准器设备装置,该装置的网络拓扑核心结构包括:数字瞄准器、移动终端的APP、云服务器和社交网络。数字瞄准器主要由:高清摄像头、多核处理器、带触摸功能的显示屏、激光测距仪、无线模块、GPS模块、存储器、各类传感器等组成。移动终端的APP主要是部署在移动智能手机上的应用程序,它的功能主要是实现在野外的数据转发和临时存储作用。云服务器的作用就是实现数据的备份、程序的更新等。本发明的核心思想是让户外狩猎用户利用数字瞄准器实现对狩猎目标的快速跟踪、自动锁定和精确射击。
发明内容
本发明提出了一种新型的数字瞄准器,使用其可实现对目标的快速跟踪、自动锁定及精确射击的目的,让射击不再依靠射击者的人为因素。
本发明的上述目的通过以下的技术方案来实现。一种数字瞄准器,包括目视镜、高清摄像头、多核处理器、大容量存储器、高清带有触摸功能的显示屏、激光测距仪、传感器、GPS模块、无线通信模块、大容量锂电池;
所述摄像头是具备低感光度和夜视功能的变焦镜头,变焦、夜视和感光度功能由软件自动控制完成,摄像头实时拍摄高清的目标图像,目标图像像素分辨率大于在显示屏上显示的图像像素分辨率,通过数字信号处理技术,所述数字瞄准器的目标图像放大倍数等于高清摄像头镜头的光学 放大倍数乘上数字图像放大倍数,目标图像经过模数信号转换后传输至所述多核处理器处理;
所述传感器为光敏传感器、温度传感器、湿度传感器、压力传感器、风速和风向传感器、三轴陀螺仪、重力加速度传感器和电子罗盘;所述无线通信模块为带有蓝牙功能的Wi-Fi模块。
优先地,所述数字瞄准器的偏光小型高清显示器所发射的光线经过所述目视镜后,影像因折射产生类似远方效果,利用此效果将近处物体放大至远处观赏而达到高清全像视觉。
优先地,所述数字瞄准器包含通过实弹射击标靶测试得到、吻合所属枪械和弹药类型的弹道轨迹数据库,所述弹道轨迹数据库有两种方式可以获取:一种是由瞄准器拥有者自行通过实弹射击测试得到,还有一种是从云服务器下载得到,云服务器上的弹道轨迹数据库是全球其他所述数字瞄准器拥有者或所述数字瞄准器厂家经过实弹射击测试后上传的各类枪械或弹药的弹道轨迹数据,包含了民用或警用常用枪械的种类及其匹配的多种弹药的子弹在不同环境下、不同距离处的飞行下落轨迹;单个弹道轨迹数据库由若干个不同距离处的弹着点向量构建而成,弹着点向量是一个以距离作为标量索引号的参数集合,这些参数集合的元素是:该弹着点离枪械的距离、该弹着点在图像抓取时候在显示屏上呈现的像素坐标、该弹着点在图像抓取时候的镜头焦距、该弹着点在枪械射击时候的仰视角和水平角度数、该弹着点在枪械射击时候的风飘、该弹着点在枪械射击时候的 外界温度及大气压力。
优先地,所述数字瞄准器和目标的距离由激光测距仪实测得到,处理器以目标距离作为索引号从弹道轨迹数据库中调出弹着点向量,这个向量的元素包括:通过误差修正后的实际弹着点分划、匹配弹着点的摄像头焦距、匹配弹着点的枪械仰视角和水平角。
优先地,所述数字瞄准器建立了一种户外射击和狩猎的物联网,该网络的拓扑结构包括云服务器、数字瞄准器、移动终端应用程序和社交网站。云服务器负责各类数据和程序的备份和更新;移动终端应用程序负责户外数字瞄准器与云服务器或社交网站交换数据的路由器功能;通过上述四要素的相互配合,构成一个完整的户外射击和狩猎物联网。
一种使用上述数字瞄准器对目标快速跟踪、自动锁定和精确射击的方法,其包括下述步骤:
(1)让显示屏分划对准要射击的目标,程序驱动摄像头焦距自动调焦使目标清晰映射在显示屏上;
(2)激光测距仪快速测出目标距离,处理器以目标距离作为索引号从弹道轨迹数据库中调出弹着点向量;
(3)处理器实时采集相关传感器,获取当前的环境数据,特别是风飘参数和目标移动速度,以步骤(2)中的弹着点向量为基础,用弹道参数误差实时修正和补偿算法修正和补偿当前射击环境下的实际弹着点在显示屏上的像素坐标位置;
(4)处理器即时更新分划位置、颜色、亮度、摄像头焦距,以实际弹着点为屏幕中心点呈现在显示屏上,处理器驱动摄像头焦距会自动调焦,以匹配该实际弹着点的参数,重新调整摄像头,使分划瞄准目标要射击的区域;以及
(5)开枪射击,此时子弹会精确的击中目标,同时处理器驱动摄像头拍下射击后的照片存入存储器中。
优先地,所述弹道参数实时误差修正和补偿的算法是一个实时多变量输入和单变量输出的数值滤波器,基本原理是:处理器实时采集三轴陀螺仪和重力加速度传感器确定枪械在三维空间的旋转姿态和仰视角度;处理器实时采集智能罗盘传感器确定枪械在三维空间的移动方向;处理器实时采集加速度传感器确定枪械在三维空间的移动加速度,通过和初速度的对比,判定可能的移动轨迹;处理器实时采集激光测距传感器测算目标和枪械的相对距离;通过上述数据,通过三边定位法确定枪械和目标之间的相对移动速度和移动角度,从而确定目标在三维空间的移动位移坐标;所述数字瞄准器的处理器实时采集风速和风向传感器的数值即风飘,根据风飘对子弹在空间飞行距离和飞行角度的理论公式,计算出子弹在不同空间坐标所产生的偏移误差;所述数字瞄准器处理器根据目标和枪械在空间的平面距离,调出弹道轨迹数据库实际测试得到在平面距离处的弹着点在显示屏上的像素坐标,结合风飘产生的偏移误差,修正该偏移误差,就得到该目标距离处子弹精确的弹着点在显示屏上的像素坐标。
优先地,所述弹道轨迹数据库的获取通过两种方式实现:一种是通过实弹射击测试得到,另外一种从云服务器下载得到,实弹射击测试获取弹道轨迹数据库的方法包括以下步骤:
(1)用户输入数据库名称、枪械名称和弹药名称;
(2)将标靶放置到预先测量好的固定距离,即第一个测试点,然后输入标靶距离即第一个弹着点距离,作为后续参数的索引号存入数据中;
(3)将分划对准标靶中心点,调节摄像头焦距使得屏幕中心的分划和标靶中心点重合,这个中心点为坐标零点,后面所有测试记录的弹着点的位置都以这个坐标零点在图像上的像素差作为坐标值存储到数据库中;
(4)将枪械固定在一个位置上,在测试的过程中不再移动,直到获取完整的弹道轨迹数据库为止;
(5)处理器记录当前的摄像头焦距,存入数据库中;
(6)处理器采集三轴陀螺仪传感器、重力加速度传感器和电子罗盘传感器数据,计算得到枪械仰角存入数据库中;
(7)处理器采集风速和风向传感器,计算得到当前的风飘数据存入数据库中;
(8)对准标靶中心开枪,处理器会立即自动锁定开枪后的标靶图像,在图像上通过图像处理技术找到子弹穿过标靶的弹孔即弹着点,计算弹着点和坐标零点的像素差,将其保存为当前弹着点的坐标值存入数据库中;
(9)移动标靶距离,到新的测试点,重复上述步骤(2);弹着点 在显示屏上成像的坐标位置保留为上一次射击后在标靶上留下的坐标位置,在显示屏上找到标靶中心点,点击触摸屏上的标靶中心点,显示屏上显示的图像中心点会跳到标靶中心点,调整摄像头焦距,使得两者再次重合,在显示屏上清晰的看到标靶中心点,处理器记录显示屏上图像中心点跳到标靶中心点的距离,将其作为两个测试点标靶中心点的距离差记录下来,同时记录当前摄像头的焦距存入数据库中;
(10)重复步骤(5)到(8),记录第二个弹着点的各个参数,保存到数据库中;以及
(11)重复上述步骤(9)到(10),完整得到所属枪械子弹弹道轨迹数据,全部保存到弹道轨迹数据库中,数据库以所述数字瞄准器到标靶的距离作为索引。
从云服务器下载弹道轨迹数据库方法包括以下步骤:
(1)登录云服务器,查阅服务器列出的数据库里面所有弹道轨迹数据库列表;
(2)根据枪械和弹药类型选择合适的弹道轨迹数据库,下载保存到存储器中,可以根据需要下载多个弹道轨迹数据库到本地存储器中,以不同的数据库命名即可,每一个子弹弹道轨迹数据库表示不同的子弹类型、不同的枪械;以及
(3)在本地弹道轨迹数据库中选择匹配枪械的弹道数据库作为缺省的数据库作为实际射击使用。
本发明与现有技术相比具有以下优点:
1.建立了一种“弹道参数误差实时修正和补偿”算法模型,该算法模型是一个“多变量输入单变量输出的”数值滤波器,这些变量是不同距离下测试得到弹着点在显示屏上的像素坐标、风飘、重力加速传感器数值、枪械的仰视角,单输出变量是不同距离下通过弹道误差修正后的弹着点,通过该算法模型,基本消除了环境对弹道参数的误差影响,使得不同距离下子弹的实际弹着点像素坐标会非常精确的反映出来。
2.真正建立起以实测弹着点坐标为基础,通过“弹道参数误差实时修正和补偿算法”,对实测弹着点坐标在当前射击环境下做了精确的误差修正和补偿,然后将修正后的弹着点坐标作为分划,在显示屏幕中心点上显示。现存的无论是光学瞄准器还是数字瞄准器,都只能保证分划和实际弹着点的近似重合,尤其在较大光学放大倍数下,两者之间的误差会比较大。以实测弹着点坐标作为基础,通过“弹道参数误差实时修正和补偿”算法,对实测弹着点坐标在当前射击环境下做了精确的误差修正和补偿,然后将修正后的弹着点坐标作为分划,在显示屏幕中心点上显示,并且通过实时数据处理技术,将分划和误差修正后弹着点完整的重合,做到了分划就是弹着点,消除了现存各类瞄准器分划设置不准确的问题。而这一步是做到精确射击的关键一步。
3.创新提出了一种面向不同枪械和不同弹药类型的“弹道轨迹数据库”的理念,并且完整提供了获取这个数据库的方法。现存的光学瞄准 器由于没有大容量存储器,因此没有弹道轨迹数据存储的概念,而现存的数字瞄准器即使具备存储能力,但是存储的弹道数据非常单一,没有完整构建同一类枪械不同种子弹的不同弹道轨迹数据或不同枪械匹配的子弹弹道轨迹数据,因此本发明创新的提出了一种弹药“弹道轨迹数据库”的理念。建立和完善这个“弹道轨迹数据库”是通过实弹测试得到,主要分为两种方式:一种是使用者自行去测试得到所属枪械不同子弹的弹道轨迹,以数据形式保存在数字瞄准器的大容量存储器中,同时上传到云服务器分享他测试得到的数据,作为一种参考,本发明详细提出了如何测试获取弹道轨迹数据库的步骤和方法。还有一种是请具备丰富射击经验并且具有精确射击能力的射击手来实地测试,通过对不同枪械、不同子弹在不同环境下的实地测试,得到比较完整的测试数据,从而建立完整的“弹道轨迹数据库”放置在云服务器中,供使用者下载。
4.建立了利用数字瞄准器实现对目标的“快速跟踪、自动锁定、精确射击”的方法。本发明提出的数字瞄准器的所有技术和装置,都是为了实现对目标的“快速跟踪、自动锁定、精确射击”的目的。通过配置激光测距传感器、各类环境实测传感器、软件可控的高光学放大倍数和高感光度镜头、完整的弹道轨迹数据库、弹道参数误差实时修正和补偿技术、分划和弹着点完全重合方法、高精度的触摸屏设置和操作方式配合高清的视频图像实时处理等技术,实现了对目标“快速跟踪、自动锁定、精确射击”的理念。通过这种方法,使得精确射击将不再依靠人的因素,在所有 射击瞄准的环节中,人为因素大大降低,即使对于一个没有任何射击经验的人,按照正确的操作方法,也可以实现精确射击,大大拓展了枪械在不同人群中的使用,避免了目前需要大量射击来获取实战经验的缺陷。
5.将射击环境数据真正做到实时呈现,体现了一种人在射击场景里面的逼真感。本发明将实际射击时候的各项重要数据在显示屏上实时显示,这些数据包括:时间、地理位置、枪械角度、瞄准器镜头放大倍数、图像放大倍数、目标距离、目标移动速度、环境温度、风速等,这些数据给使用者观察、调整。这种类似导弹制导和锁定目标的方式,使得使用者在实际使用枪械的时候,非常直观,也很人性化,容易控制,同时最大的好处是射击会更加精确。这也是本发明提出的一种非常人性化同时对使用者有非常好出的一个改进地方。
6.建立了一切操作以触摸屏为中心的方法。本发明提出的数字瞄准器包含的显示屏是一个高清的显示屏,集成了高精度的触摸屏,使用者的界面操作除了人工调焦、电源开启和目标锁定按键之外,其他都通过触摸屏提供的图标式菜单或指令来完成操作。类似智能手机一样的图标操作界面使得使用者在实际使用过程中会非常方便,同时也非常人性化。
7.提出并建立了一种基于移动互联技术“户外射击和狩猎物联网”的理念。本发明提出的数字瞄准器已经不简单是一个单纯的终端设备,而是一个完整的基于智能移动互联技术上的“户外射击和狩猎物联网”。用户在使用数字瞄准器的过程中,借助用户自身配备的移动终端的APP、云 服务器甚至第三方的社交网站,可实现创建账户、上传备份数字瞄准器上的各类数据,比如:射击时候的各类视频或照片、瞄准器的设备配置、使用者实地测试得到的弹道轨迹数据等,同时使用者也可以从云服务器下载各类数据,比如:各类子弹的弹道轨迹数据库等,同时还可以更新整个数字瞄准器的系统程序。使用者也可以在云服务器或第三方社交网站上交流体会,形成一个社交圈。通过这种智能移动互联的设计理念,使得众多的使用该数字瞄准器的使用者形成了一个完整的“户外射击和狩猎物联网”,每一个使用所述数字瞄准器的使用者,都可以随时和云服务器或其他社交网络建立联系,分享自己的射击成果和心得体会,这样大大拓展了目前瞄准器只是个人使用的单纯终端的局面,使得射击本身不再是单纯的个人行为,而成为一种娱乐社交行为,将会在广大爱好狩猎、野外射击等方面的人士中引起很多的共鸣,从而极大拓展该行业的市场销售,带来丰厚的市场回报。
本发明的这些目的,特点,和优点将会在下面的具体实施方式,附图,和权利要求中详细的揭露。
附图说明
图1是所述数字瞄准器的一侧面外观示意图;
图2是所述数字瞄准器的另一侧面外观示意图;
图3是所述数字瞄准器从目视镜观察图形;
图4是所述数字瞄准器将目视镜弹出后,通过显示屏观察图形;
图5是所述数字瞄准器从摄像头镜头方向看过去的图形;
图6是所述数字瞄准器内部各个部件实现连接的原理框图;
图7是摄像头采集的完整图像和在显示屏上实际显示的图像之间的关系图;
图8是实弹射击测试创建“弹道轨迹数据库”的方法逻辑流程图;
图9到图13是实现图8示意图;
图14是实现“快速跟踪、自动锁定和精确打击目标”方法流程图;
图15到图18是实现图14的示意图。
具体实施方式
为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
如图1、2、3、4、5、6所示,数字瞄准器1包括一个金属外壳2、一个目视镜3、一个手工调焦旋钮4、一个触摸显示屏5、一个高清摄像头6、一个激光测距仪7、一个外部接口盖板8(接口包括一个电源接口9、一个mini-USB接口10和一个SD卡接口11)、一个和枪械固定的机械装置12(通过卡槽和枪械50固定在一起)、一个外置无线天线装置13、一个锂电池组30。金属外壳2里面包含多核处理器14;风速和风向传感器15;三轴陀螺仪传感器16;重力加速度传感器17;压力传感器18;温度传感器19;GPS模块20;无线通信模组21:双频2.4G/5G无线Wi-Fi模块22 和BTE Bluetooth蓝牙模块23;锂电池组24;充放电管理电路25;遗失性大容量内存26;大容量非遗失性内部存储器27;外部存储器28;触摸显示屏驱动电路29和锂电池组30。
如图1所示,数字瞄准器1的侧面有一个向上拨开的接口盖板8;里面有一个电源输入接口9,主要用于对锂电池30充电;一个mini-USB接口10,用于和外部计算机连接,供使用者拷贝内部各类数据或输入数据;一个SD卡接口11,设置于外部大容量非遗失性存储器28,用于存放视频、照片数据或地理信息等,使用者可以通过SD卡拷贝数据,一般情况下传输数据通过Wi-Fi无线信号进行。
如图1、2、5和6所示,高清摄像头6包括一组带有夜视变焦功能的镜头和一个图像传感器,将图像采集后通过模数转换电路传送给多核处理器14,同时多核处理器14发送指令控制高清摄像头6的调焦,同时用户也可以通过手工调焦按钮4对摄像头6焦距手工调节,对手工调焦旋钮4顺时针旋转表示调大焦距,逆时针旋转表示调小焦距。触摸显示屏5是一个带有高精度触摸屏的显示屏,多核处理器14通过显示驱动电路直接驱动显示屏5,输出图像显示信号同时接收来自触摸屏的指令信号。激光测距仪7包括一个激光发射和接收模块及信号转换模块,通过将光源发送到目标然后反射回来计算之间的时间差测试目标和光源之间的距离,计算后的信号直接连接到多核处理器14。风速和风向传感器15主要采集射击时候的风速和风向数据,通过数据线直接传送给多核处理器14,通过处理器 14相关程序处理后得到“风飘”数据。三轴陀螺仪16、重力加速度传感器17和电子罗盘18组成测算空间目标位移坐标的传感器组,多核处理器14实时测算这些传感器,然后将数据通过“三边定位算法”获取目标的移动趋势、移动速度和空间可能的位移坐标值,存入到内部非遗失性存储器27中。GPS模块20直接和多核处理器14连接,将经纬度坐标信息传送给14,多核处理器14经过一定的数据计算处理后,存入到内部非遗失性内存27中。遗失性内存26、内部非遗失性存储器27以及外部非遗失性存储器28直接和多核处理器14连接,主要用于数据存储、备份和程序运行等。无线通信模组21包含了一个无线Wi-Fi模块22、一个蓝牙模块23。Wi-Fi模块22通过SDIO接口直接和多核处理器14连接,通过外置天线13和外部路由器交互数据。锂电池充放电管理模块25直接和锂电池30连接,对锂电池30充电,同时接收锂电池30的放电,上述元件通过电源管理模块对整个数字瞄准器1供电。外部接口装置8包含一个电源接口9主要用于对锂电池30充电、一个mini-USB接口10用于和外部计算机通信,拷贝内部大容量非遗失性存储器27数据到计算机中、一个SD卡接口11,主要插入外部大容量非遗失性存储器28。
如图3所示,数字瞄准器1配备有一个目视镜3,目视镜3通过卡口31卡在前面板32上,在前面板32上除了目视镜3,还有一个电源POWER按钮33、一个锁定LOCK按钮34、一个目视镜弹出按钮35。在一般情况下,用户通过目视镜3观察里面的高清显示屏5上的图像,目视 镜3具有一定的放大功能,可对显示屏上图像进行一定放大后呈现到用户眼睛上。如果用户想对数字瞄准器1功能进行配置或操作,那么按下目视镜弹出按钮35,目视镜3会从卡口31弹出来,露出里面的高清显示屏5,如图3所示。
在图4中,用户将目视镜3弹出后通过显示屏5观察目标36。目标36通过摄像头6在显示屏5上实时显示,可以看出,显示屏5的中心点出现了一个分划37,使用者可以移动摄像头6使得分划37对准目标36,同时调节摄像头6焦距使得目标36在显示屏5上清晰呈现。
如图5所示,数字瞄准器1包含一个高清摄像头6、一个激光测距仪7和外置的无线天线13。
如图7所示,摄像头6拍摄的目标图像36是一个高清的视频图像38,分辨率至少在720P像素以上,成像的中心点就是光轴的中心点39,在显示屏5上显示图像40一般小于摄像头6拍摄的图像38,通过图像处理方式,使得在显示屏5上显示的图像40可以根据需要在38上移动显示,从而显示屏5的图像中心点分划37和实际成像的中心点39很多时候是不重合的。
图8是数字瞄准器1实现实弹射击测试获取“弹道轨迹数据库”的方法逻辑流程框图。它的图形说明如图9到图13所示。实现的步骤如下:
(1)使用者将标靶50放置到离数字瞄准器1一段距离处,同时精确测量该距离记录下来,如图9所示;
(2)在系统主菜单里面,选择进入“Create New Reticle”界面,输入要创建的弹道数据库名称、枪械类型和弹药类型,保存后开始创建数据库。调整摄像头6位置,使得在显示屏5上观察标靶50的中心在显示屏中心处的分划37重合,如果观察不是很清楚,适当旋转调焦按钮4,放大镜头焦距,使得标靶40的中心和屏幕中心处的分划37重合,如图10所示;
(3)开枪射击,此时处理器14会立即锁定射击后的图像画面,如图11所示。在图11上寻找标靶上弹着点位置41,然后用手点击该弹着点位置41,处理器14记录该弹着点位置41在显示屏上面的像素坐标42,如图12所示,该坐标将被保存到内存中,同时记录的还有枪械的仰视角数据和当前摄像头6焦距。
(4)在图13弹出的画面43中:输入当前弹着点和数字瞄准器1的距离即标靶距离44,保存然后退出;以及
(5)解除当前锁定画面图11,进入下一个弹着点测试画面,重复以上(1)到(4)的步骤,直到获取该子弹的完整弹道轨迹数据存入到数据库中。
图14是数字瞄准器1实现对目标的“快速跟踪、自动锁定目标和精确射击”的方法逻辑流程框图,图15到图18是图14的详细实现示意图。实现的步骤是:
(1)如图15所示,调整摄像头6,观察显示屏5,使显示屏5中 心处的分划37对准目标36,处理器14自动调整摄像头6焦距,使得目标36比较清晰的呈现在显示屏5上;
(2)如图16所示,激光测距传感器7快速测算目标距离45,然后以一定频率刷新在显示屏5上,用户观察显示屏5,如果确信目标距离45已经实测准确,按下前面板32上的LOCK按键34,处理器14会立即锁定该目标距离45,同时从弹道轨迹数据库中调出和目标距离45匹配的弹着点向量,向量元素包括该距离的弹着点像素坐标42、焦距、枪械的仰视角参数;
(3)如图17所示,处理器14从弹道轨迹数据库调出的该距离的测试弹着点位置42暂时会以一个点的形式46在显示屏5上出现,同时立即启动“弹道参数实时误差修正和补偿”算法程序,采集相关传感器数据,通过数据处理后修正当前射击环境下的实际弹着点坐标位置48;
(4)如图18所示,处理器14立即更新当前的分划37位置、颜色、亮度、摄像头6焦距等,通过图像实时处理技术,以实际弹着点48坐标为屏幕中心点呈现在显示屏5上,同时处理器14驱动摄像头6焦距会自动调焦,以匹配该实际弹着点48的参数,这个时候使用者需要根据分划47在屏幕中的位置,重新调整摄像头6,使得分划47瞄准目标36要打击的区域;以及
(5)开枪,此时子弹会非常精确的击中目标36,同时处理器14会驱动摄像头拍下射击后的照片存入存储器中。
从步骤(1)到步骤(5),数字瞄准器1从跟踪目标、瞄准到锁定目标时间限制在3秒以内,基本不需要太多人工参与,真正实现了对目标的“快速跟踪、自动锁定、精确打击”的目的。
通过上述实施例,本发明的目的已经被完全有效的达到了。熟悉该项技艺的人士应该明白本发明包括但不限于附图和上面具体实施方式中描述的内容。任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims (9)

  1. 一种数字瞄准器,其特征在于:其包括目视镜、高清摄像头、多核处理器、大容量存储器、高清带有触摸功能的显示屏、激光测距仪、各类传感器、GPS模块、无线通信模块、大容量锂电池;
    所述摄像头带有高感光度和夜视功能的变焦镜头,变焦、夜视和感光度功能由软件自动控制完成,摄像头实时拍摄高清的目标图像,图像像素实际分辨率大于在显示屏上显示的图像像素分辨率,通过数字信号处理技术,使得所述数字瞄准器的目标图像放大倍数等于高清摄像头镜头的光学放大倍数乘上数字图像放大倍数,目标图像经过模数信号转换后传输至所述多核处理器处理;
    所述传感器为光敏传感器、温度传感器、湿度传感器、压力传感器、风速和风向传感器、三轴陀螺仪、重力加速度传感器和电子罗盘;所述无线通信模块为带有蓝牙功能的Wi-Fi模块。
  2. 根据权利要求1所述的数字瞄准器,其特征在于:所述数字瞄准器的偏光小型高清显示器所发射的光线经过所述目视镜后,影像因折射产生类似远方效果,利用此效果将近处物体放大至远处观赏而达到高清全像视觉。
  3. 根据权利要求1所述数字瞄准器,其特征在于:所述数字瞄准器包含通过实弹射击标靶测试得到、吻合所属枪械和弹药类型的弹道轨迹数 据库,所述弹道轨迹数据库有两种方式可以获取:一种是由瞄准器拥有者自行通过实弹射击测试得到,还有一种是从云服务器下载得到,云服务器上的弹道轨迹数据库是全球其他所述数字瞄准器拥有者或所述数字瞄准器厂家经过实弹射击测试后上传的各类枪械或弹药的弹道轨迹数据,包含了民用或警用常用枪械的种类及其匹配的多种弹药在不同环境下、不同距离处的飞行下落轨迹;单个弹道轨迹数据库由若干个不同距离处的弹着点向量构建而成,弹着点向量是一个以距离作为标量索引号的参数集合,这个参数集合的元素是:弹着点离枪械的距离、弹着点在图像抓取时候在显示屏上呈现的像素坐标、弹着点在图像抓取时候的镜头焦距、弹着点在枪械射击时候的仰视角和水平角度数、弹着点在枪械射击时候的风飘、弹着点在枪械射击时候的外界温度及大气压力。
  4. 根据权利要求3所述的数字瞄准器,其特征在于:所述数字瞄准器和目标的距离由所述激光测距仪实测得到,所述多核处理器以目标距离作为索引号从弹道轨迹数据库中调出弹着点向量。
  5. 根据权利要求1所述的数字瞄准器,其特征在于:所述数字瞄准器建立了一种户外射击和狩猎的物联网,该网络的拓扑结构由云服务器、数字瞄准器、移动终端应用程序和社交网站四要素构成。云服务器负责各类数据和程序的备份和更新;移动终端应用程序负责户外数字瞄准器与云服务器或社交网站交换数据的路由器功能;通过上述四要素的相互配合,构成一个完整的户外射击和狩猎物联网。
  6. 一种使用权利要求1所述数字瞄准器对目标快速跟踪、自动锁定和精确射击的方法,其特征在于:
    (1)让显示屏分划对准要射击的目标,程序驱动摄像头焦距自动调焦使目标清晰映射在显示屏上;
    (2)激光测距仪测出目标距离,处理器以目标距离作为索引号从弹道轨迹数据库中调出弹着点向量;
    (3)处理器实时采集相关传感器数据,获取当前的环境数据,特别是风飘参数和目标移动速度,以步骤(2)中的弹着点向量为基础,用弹道参数误差实时修正和补偿算法修正和补偿当前射击环境下的实际弹着点在显示屏上的像素坐标位置;
    (4)处理器即时更新分划位置、颜色、亮度、摄像头焦距,以实际弹着点为屏幕中心点呈现在显示屏上,处理器驱动摄像头焦距实现自动调焦,以匹配该实际弹着点的参数,重新调整摄像头,使分划瞄准目标要射击的区域;以及
    (5)开枪射击,此时子弹会精确的击中目标,同时处理器驱动摄像头拍下射击后的照片存入存储器中,
    由此,实现了所述数字瞄准器对目标快速跟踪、自动锁定和精确射击的目的。
  7. 根据权利要求6所述的使用数字瞄准器对目标快速跟踪、自动锁定和精确射击的方法,其特征在于:所述弹道参数实时误差修正和补偿的 算法是一个实时多变量输入和单变量输出的数值滤波器,基本原理是:处理器实时采集三轴陀螺仪和重力加速度传感器确定枪械在三维空间的旋转姿态和仰视角度;处理器实时采集智能罗盘传感器确定枪械在三维空间的移动方向;处理器实时采集加速度传感器确定枪械在三维空间的移动加速度,通过和初速度的对比,判定可能的移动轨迹;处理器实时采集激光测距传感器测算目标和枪械的相对距离;通过上述数据,通过三边定位法确定枪械和目标之间的相对移动速度和移动角度,从而确定目标在三维空间的移动位移坐标;所述数字瞄准器的处理器实时采集风速和风向传感器的数值即风飘,根据风飘对子弹在空间飞行距离和飞行角度的理论公式,计算出子弹在不同空间坐标所产生的偏移误差;所述数字瞄准器处理器根据目标和枪械在空间的平面距离,调出弹道轨迹数据库实际测试得到在平面距离处的弹着点在显示屏上的像素坐标,结合风飘产生的偏移误差,修正该偏移误差,就得到该目标距离处子弹精确的弹着点在显示屏上的像素坐标。
  8. 根据权利要求6所述的使用数字瞄准器对目标的快速跟踪、自动锁定和精确射击的方法,其特征在于:所述弹道轨迹数据库的获取是通过实弹射击测试得到,实弹射击测试获取弹道轨迹数据库的方法包括以下步骤:
    (1)用户输入数据库名称、枪械名称和弹药名称;
    (2)将标靶放置到预先测量好的固定距离,然后输入标靶距离作为 后续参数的数据库索引号存入数据库中;
    (3)判断是否是第一次射击,如果是,将分划对准标靶中心点,调节摄像头焦距使得屏幕中心的分划和标靶中心点重合,这个中心点作为光轴点和坐标零点;如果否,调整摄像头使得分划去对准前面最近一次射击得到的弹着点(在显示屏上会用红十字显示),然后让分划和红十字重合;
    (4)处理器记录当前的摄像头焦距,存入数据库中;
    (5)处理器采集三轴陀螺仪传感器、重力加速度传感器和电子罗盘传感器数据,计算得到枪械仰角存入数据库中;
    (6)处理器采集风速和风向传感器,计算得到当前的风飘数据存入数据库中;
    (7)分划对准标靶中心开枪,处理器锁定开枪后的标靶图像,通过缩放及拖动方式,在图像上找到子弹穿过标靶的弹孔即弹着点,当前弹着点和坐标零点在图像上的像素差作为坐标值存储到数据库中;
    (8)双击屏幕解除屏幕锁定,分划自动跳转到图像弹着点位置作为屏幕中心点;以及
    (9)移动标靶距离,到新的测试点,重复上述(2)~(8)步,完整得到所属枪械子弹弹道轨迹数据,全部保存到弹道轨迹数据库中,数据库以所述数字瞄准器到标靶的距离作为索引。
  9. 据权利要求6所述的使用数字瞄准器对目标的快速跟踪、自动锁定和精确射击的方法,其特征在于:所述弹道轨迹数据库的获取通过从云 服务器下载得到,从云服务器下载弹道轨迹数据库方法包括以下步骤:
    (1)登录云服务器,查阅服务器列出数据库里面所有弹道轨迹数据库列表;
    (2)根据枪械和弹药类型选择合适的弹道轨迹数据库,下载保存到存储器中,可以根据需要下载多个弹道轨迹数据库到本地存储器中,以不同的数据库命名即可,每一个子弹弹道轨迹数据库表示不同的子弹类型、不同的枪械;以及
    (3)在本地弹道轨迹数据库中选择匹配枪械的弹道数据库作为缺省的数据库作为实际射击使用。
PCT/CN2015/074730 2015-01-30 2015-03-20 数字瞄准器及使用其对目标快速跟踪、自动锁定和精确射击的方法 WO2016119291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510050444.0 2015-01-30
CN201510050444.0A CN104613816B (zh) 2015-01-30 2015-01-30 数字瞄准器及使用其对目标跟踪、锁定和精确射击的方法

Publications (1)

Publication Number Publication Date
WO2016119291A1 true WO2016119291A1 (zh) 2016-08-04

Family

ID=53148378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074730 WO2016119291A1 (zh) 2015-01-30 2015-03-20 数字瞄准器及使用其对目标快速跟踪、自动锁定和精确射击的方法

Country Status (2)

Country Link
CN (1) CN104613816B (zh)
WO (1) WO2016119291A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178981A1 (en) 2017-03-30 2018-10-04 Double Shoot Ltd. Firearm and/or firearm sight calibration and/or zeroing
CN112711035A (zh) * 2020-12-17 2021-04-27 安徽科创中光科技有限公司 一种可自动修正弹道轨迹的便携式测风激光雷达系统
CN112731458A (zh) * 2020-12-24 2021-04-30 彩虹无人机科技有限公司 一种测量导弹发射方向的方法
CN113050113A (zh) * 2021-03-10 2021-06-29 广州南方卫星导航仪器有限公司 一种激光点定位方法和装置
CN114166065A (zh) * 2021-12-08 2022-03-11 合肥英睿系统技术有限公司 一种枪瞄设备十字分划校准方法及相关装置
CN114322659A (zh) * 2021-12-31 2022-04-12 吉林市江机民科实业有限公司 一种白光瞄准镜分划投影显示方法
CN114322656A (zh) * 2021-06-07 2022-04-12 湘潭大学 一种具有实时弹道计算功能的分体式电子瞄准镜
CN114593635A (zh) * 2022-03-18 2022-06-07 北京航空航天大学 一种智能化榴弹发射器瞄准装置
CN117968466A (zh) * 2024-03-29 2024-05-03 中国兵器工业试验测试研究院 一种小尺寸超高速破片飞行姿态测速系统及方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613816B (zh) * 2015-01-30 2016-08-24 浙江工商大学 数字瞄准器及使用其对目标跟踪、锁定和精确射击的方法
CN104842359B (zh) * 2015-05-28 2016-10-05 江南大学 一种弹射式快速抓取机器人
CN105091666B (zh) * 2015-08-31 2017-05-10 中山市神剑警用器材科技有限公司 一种观瞄系统信息采样和数据叠加显示方法
CN105300175B (zh) * 2015-10-30 2017-10-17 北京艾克利特光电科技有限公司 一种红外及微光两相融合的夜视瞄准器
CN105300181B (zh) * 2015-10-30 2017-11-17 北京艾克利特光电科技有限公司 一种可预先提示射击的精准光电瞄准器及其调校方法
CN105300182B (zh) * 2015-10-30 2017-11-17 北京艾克利特光电科技有限公司 一种信息实时交互的电子瞄准器
CN105300185B (zh) * 2015-10-30 2017-10-17 北京艾克利特光电科技有限公司 一种实现长距离及高精度测距的电子瞄准器
CN105300184B (zh) * 2015-10-30 2017-12-15 北京艾克利特光电科技有限公司 一种可对目标物进行三维定位及显示的光电瞄准器
CN105387768A (zh) * 2015-10-30 2016-03-09 北京艾克利特光电科技有限公司 一种可实现对周边生命体探测的电子瞄准器
CN105300186B (zh) * 2015-10-30 2018-03-16 北京艾克利特光电科技有限公司 一种方便调校的一体化精准光电瞄准系统
CN105300183B (zh) * 2015-10-30 2017-08-01 北京艾克利特光电科技有限公司 一种可实现自动追踪瞄准的瞄准器组件及自动追踪瞄准的射击方法
CN105490727B (zh) * 2015-11-26 2018-10-09 中国科学院半导体研究所 基于无源光开关的空间激光通信转发系统
CN105526829B (zh) * 2016-01-15 2017-05-24 南通巨浪光电科技有限公司 一种在不同初速度下的瞄准镜瞄准方法
CN107029425B (zh) * 2016-02-04 2020-06-19 网易(杭州)网络有限公司 一种射击游戏的操控系统、方法及终端
CN106568346B (zh) * 2016-10-27 2018-04-13 北京艾克利特光电科技有限公司 一种用于一体化精准光电瞄准系统的俯仰角拟合方法
CN106546129B (zh) * 2016-10-27 2018-04-13 北京艾克利特光电科技有限公司 一种用于一体化精准光电瞄准系统的射向角拟合方法
CN109932811B (zh) * 2017-12-15 2021-08-13 信泰光学(深圳)有限公司 补偿机构及瞄准器
CN107158701B (zh) * 2017-05-16 2018-08-31 广州四三九九信息科技有限公司 出射力度的提示方法和装置
CN109084624A (zh) * 2017-06-13 2018-12-25 麦永景 一种电子瞄准器及其校准方法
CN107797571B (zh) * 2017-10-13 2020-06-23 深圳共分享网络科技有限公司 一种感知调节系统
CN108288290B (zh) * 2017-12-07 2021-10-15 中国航空工业集团公司西安航空计算技术研究所 一种应用于智能狙击枪的靶心在线自动标定方法
CN108387139A (zh) * 2018-02-13 2018-08-10 中山职业技术学院 一种自动校正准星的瞄准器
CN108398053A (zh) * 2018-02-27 2018-08-14 深圳市蓝海快舟创新科技有限公司 动态瞄准的校正方法、装置、计算机设备和枪械
CN108458627A (zh) * 2018-03-22 2018-08-28 军鹏特种装备股份公司 通用型多功能射击显示装置
CN108404406A (zh) 2018-03-22 2018-08-17 腾讯科技(深圳)有限公司 虚拟环境中的弹道轨迹的显示方法、装置、设备及可读介质
CN108654040B (zh) * 2018-05-21 2020-03-27 哈尔滨工业大学 一种自适应射箭辅助训练系统
WO2019237724A1 (zh) * 2018-06-12 2019-12-19 贺磊 一种人工及智能反恐制止现场犯罪的打击装置
CN108731542B (zh) * 2018-08-14 2024-01-19 成都昊图新创科技有限公司 带修正功能的辅助瞄准装置、瞄准镜及辅助瞄准修正方法
CN109547674A (zh) * 2018-10-12 2019-03-29 陈家桢 一种枪瞄高倍摄像机
CN109737810B (zh) * 2018-12-17 2024-05-07 湘潭大学 带分化距离及弹着点位置的电子镜分划板及方法
CN111356893A (zh) * 2019-02-28 2020-06-30 深圳市大疆创新科技有限公司 可移动平台的射击瞄准控制方法、设备及可读存储介质
CN112824933A (zh) * 2019-11-19 2021-05-21 北京小米移动软件有限公司 测距方法、测距装置及电子设备
CN112883754B (zh) * 2019-11-29 2024-04-12 华晨宝马汽车有限公司 叉车的辅助操作系统
CN110940231B (zh) * 2019-12-10 2022-03-04 天津爱思达新材料科技有限公司 用于安装观瞄系统的箱体及其制备装配工艺
CN111487758A (zh) * 2020-05-11 2020-08-04 湖南源信光电科技股份有限公司 一种微光夜视瞄准镜
CN111692916B (zh) * 2020-06-01 2023-07-18 中光智控(北京)科技有限公司 一种瞄准装置及瞄准方法
CN111609759B (zh) * 2020-06-01 2023-01-13 中光智控(北京)科技有限公司 一种智能枪械瞄具射击控制方法及装置
CN111609760B (zh) * 2020-06-01 2022-07-05 中光智控(北京)科技有限公司 一种智能瞄准镜射击时机判定方法及系统
CN111609753B (zh) * 2020-06-01 2022-07-08 中光智控(北京)科技有限公司 一种扳机控制方法及系统
CN111707140B (zh) * 2020-07-28 2022-05-06 中国人民解放军陆军装甲兵学院 狙击步枪瞄准点自动校正方法及系统
CN111912289A (zh) * 2020-08-10 2020-11-10 安徽信息工程学院 一种自行式电磁火炮控制系统、方法和装置
CN112099028A (zh) * 2020-09-03 2020-12-18 深圳市迈测科技股份有限公司 激光点自动追踪方法、装置、存储介质及激光测距装置
CN112504012B (zh) * 2020-10-30 2023-05-02 陈凯儒 一种射击风偏修正仪
CN112361882B (zh) * 2020-11-12 2022-12-30 河南平原光电有限公司 一种枪械瞄准设备
CN112432552A (zh) * 2020-12-18 2021-03-02 中国人民解放军陆军边海防学院乌鲁木齐校区 一种微型智能射击弹道修正仪
CN114322657A (zh) * 2021-06-07 2022-04-12 湘潭大学 一种集成弹道计算功能的电子瞄准镜
CN114035186B (zh) * 2021-10-18 2022-06-28 北京航天华腾科技有限公司 一种目标方位跟踪指示系统及方法
CN113932653A (zh) * 2021-10-19 2022-01-14 合肥英睿系统技术有限公司 一种基于前置红外设备的放大瞄准方法及相关组件
CN113983866A (zh) * 2021-10-26 2022-01-28 湖南数军物联网科技有限公司 自动瞄准方法、枪械和计算机可读存储介质
CN113959261B (zh) * 2021-11-19 2023-06-30 湖南华南光电(集团)有限责任公司 一种高精度电子变倍低照度数字化瞄准镜
CN114459292A (zh) * 2021-12-28 2022-05-10 中国人民解放军国防科技大学 一种火控修正用弹道解算系统
CN114295001A (zh) * 2021-12-30 2022-04-08 平裕(成都)科技有限公司 一种破玻设备的瞄准方法
CN114636351A (zh) * 2022-01-18 2022-06-17 深圳市恒天伟焱科技股份有限公司 瞄准镜的测距方法、装置、瞄准镜及存储介质
CN114459291A (zh) * 2022-02-14 2022-05-10 武汉高德智感科技有限公司 一种自动射击的方法、装置、枪支及存储介质
CN117146647B (zh) * 2023-10-31 2023-12-22 南通蓬盛机械有限公司 一种光学瞄准镜的速调校准方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026158A (en) * 1988-07-15 1991-06-25 Golubic Victor G Apparatus and method for displaying and storing impact points of firearm projectiles on a sight field of view
CN101065638A (zh) * 2004-06-07 2007-10-31 雷斯昂公司 用于枪械的电子瞄准器及其操作方法
CN101441053A (zh) * 2007-12-19 2009-05-27 王智勇 射击环境参数智能校正装置
US20100236535A1 (en) * 2009-03-20 2010-09-23 Jerry Rucinski Electronic weapon site
CN101975530A (zh) * 2010-10-19 2011-02-16 李丹韵 电子瞄准器及调整和确定其分划的方法
CN103808204A (zh) * 2014-02-24 2014-05-21 浙江工业大学之江学院 基于靶上实弹弹孔与枪支姿态检测的射击瞄准轨迹检测方法
CN104613816A (zh) * 2015-01-30 2015-05-13 杭州硕数信息技术有限公司 数字瞄准器及使用其对目标跟踪、锁定和精确射击的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542863B1 (fr) * 1983-03-17 1987-02-27 Sfim Systeme heliporte de localisation et de determination des parametres de deplacement d'une cible, et procede pour sa mise en oeuvre
US20060005447A1 (en) * 2003-09-12 2006-01-12 Vitronics Inc. Processor aided firing of small arms
BE1016871A3 (fr) * 2005-12-05 2007-08-07 Fn Herstal Sa Dispositif ameliore pour la telecommande d'une arme.
CN101881580A (zh) * 2010-06-29 2010-11-10 浙江工业大学 火炮快速自动瞄准装置
US8651381B2 (en) * 2010-11-18 2014-02-18 David Rudich Firearm sight having an ultra high definition video camera
US8881981B2 (en) * 2012-03-05 2014-11-11 James A. Millett Digital targeting scope apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026158A (en) * 1988-07-15 1991-06-25 Golubic Victor G Apparatus and method for displaying and storing impact points of firearm projectiles on a sight field of view
CN101065638A (zh) * 2004-06-07 2007-10-31 雷斯昂公司 用于枪械的电子瞄准器及其操作方法
CN101441053A (zh) * 2007-12-19 2009-05-27 王智勇 射击环境参数智能校正装置
US20100236535A1 (en) * 2009-03-20 2010-09-23 Jerry Rucinski Electronic weapon site
CN101975530A (zh) * 2010-10-19 2011-02-16 李丹韵 电子瞄准器及调整和确定其分划的方法
CN103808204A (zh) * 2014-02-24 2014-05-21 浙江工业大学之江学院 基于靶上实弹弹孔与枪支姿态检测的射击瞄准轨迹检测方法
CN104613816A (zh) * 2015-01-30 2015-05-13 杭州硕数信息技术有限公司 数字瞄准器及使用其对目标跟踪、锁定和精确射击的方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443981B2 (en) 2017-03-30 2019-10-15 Double Shoot Ltd. Firearm and/or firearm sight calibration and/or zeroing
EP3420299A4 (en) * 2017-03-30 2019-10-16 Double Shoot Ltd. FIREARM AND / OR FIREARM CALIBRATION AND / OR ZEROING
US11047648B2 (en) 2017-03-30 2021-06-29 Double Shoot Ltd. Firearm and/or firearm sight calibration and/or zeroing
WO2018178981A1 (en) 2017-03-30 2018-10-04 Double Shoot Ltd. Firearm and/or firearm sight calibration and/or zeroing
CN112711035A (zh) * 2020-12-17 2021-04-27 安徽科创中光科技有限公司 一种可自动修正弹道轨迹的便携式测风激光雷达系统
CN112731458B (zh) * 2020-12-24 2023-03-14 彩虹无人机科技有限公司 一种测量导弹发射方向的方法
CN112731458A (zh) * 2020-12-24 2021-04-30 彩虹无人机科技有限公司 一种测量导弹发射方向的方法
CN113050113B (zh) * 2021-03-10 2023-08-01 广州南方卫星导航仪器有限公司 一种激光点定位方法和装置
CN113050113A (zh) * 2021-03-10 2021-06-29 广州南方卫星导航仪器有限公司 一种激光点定位方法和装置
CN114322656A (zh) * 2021-06-07 2022-04-12 湘潭大学 一种具有实时弹道计算功能的分体式电子瞄准镜
CN114166065A (zh) * 2021-12-08 2022-03-11 合肥英睿系统技术有限公司 一种枪瞄设备十字分划校准方法及相关装置
CN114166065B (zh) * 2021-12-08 2024-01-30 合肥英睿系统技术有限公司 一种枪瞄设备十字分划校准方法及相关装置
CN114322659A (zh) * 2021-12-31 2022-04-12 吉林市江机民科实业有限公司 一种白光瞄准镜分划投影显示方法
CN114322659B (zh) * 2021-12-31 2024-03-26 吉林市江机民科实业有限公司 一种白光瞄准镜分划投影显示方法
CN114593635A (zh) * 2022-03-18 2022-06-07 北京航空航天大学 一种智能化榴弹发射器瞄准装置
CN117968466A (zh) * 2024-03-29 2024-05-03 中国兵器工业试验测试研究院 一种小尺寸超高速破片飞行姿态测速系统及方法

Also Published As

Publication number Publication date
CN104613816A (zh) 2015-05-13
CN104613816B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2016119291A1 (zh) 数字瞄准器及使用其对目标快速跟踪、自动锁定和精确射击的方法
US11656060B2 (en) Apparatus and method for calculating aiming point information
US9285189B1 (en) Integrated electronic sight and method for calibrating the reticle thereof
CN104567543B (zh) 瞄准系统及其操作方法
US7810273B2 (en) Firearm sight having two parallel video cameras
CN105953654B (zh) 一种高集成化的电子瞄准器及分划精确的调校方法
US11480410B2 (en) Direct enhanced view optic
US20160091282A1 (en) Mobile ballistics processing and targeting display system
CN105300186B (zh) 一种方便调校的一体化精准光电瞄准系统
US20140110482A1 (en) System and method for automatically targeting a weapon
US9689644B1 (en) Photoelectric sighting device capable of performing 3D positioning and display of target object
TWI649533B (zh) 利用彈道變焦之光學裝置及用於瞄準目標之方法
CN106017213A (zh) 小型瞄准装置
CN204555824U (zh) 一种高集成化的电子瞄准器
TWI647421B (zh) 目標獲取裝置及其系統
TW201432215A (zh) 數位標靶瞄準鏡裝置
US20230384058A1 (en) Enhanced multi-purpose fire control clip-on riflescope display
CN116222305A (zh) 一种无人机与火炮集成指挥系统及其方法
CN111023902A (zh) 一种森林灭火装备的侦查操瞄系统
PL227288B1 (pl) Sposób tworzenia obrazu w symulatorach lunet i celowników optycznych oraz zestaw do tworzenia obrazu w symulatorach lunet i celowników optycznych

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15879499

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15879499

Country of ref document: EP

Kind code of ref document: A1