WO2016117925A1 - 하이브리드 에너지 저장 모듈 시스템 - Google Patents

하이브리드 에너지 저장 모듈 시스템 Download PDF

Info

Publication number
WO2016117925A1
WO2016117925A1 PCT/KR2016/000584 KR2016000584W WO2016117925A1 WO 2016117925 A1 WO2016117925 A1 WO 2016117925A1 KR 2016000584 W KR2016000584 W KR 2016000584W WO 2016117925 A1 WO2016117925 A1 WO 2016117925A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
energy storage
lithium battery
module
lead
Prior art date
Application number
PCT/KR2016/000584
Other languages
English (en)
French (fr)
Inventor
은근수
Original Assignee
주식회사 제이에스영테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이에스영테크 filed Critical 주식회사 제이에스영테크
Priority to JP2017556504A priority Critical patent/JP6419992B2/ja
Priority to US15/545,100 priority patent/US10286805B2/en
Priority to EP16740398.9A priority patent/EP3248827B1/en
Priority to CN201680000100.1A priority patent/CN106068203B/zh
Publication of WO2016117925A1 publication Critical patent/WO2016117925A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an energy storage module system, and more particularly, to a hybrid energy storage module system that complements a lithium battery and a lead storage battery and selectively and selectively uses the battery according to a change in the amount of power required by a load.
  • An energy storage system is a system that stores the remaining power separately and supplies it when needed.
  • Energy storage systems can be classified into physical energy storage systems and chemical energy storage systems.
  • Typical physical energy storage systems include a positive power generation system, a compressed air storage system, and a flywheel.
  • Chemical energy storage includes lithium batteries, lead acid batteries, and NaS batteries.
  • Energy storage systems are actively researching energy storage systems in that they can solve the power supply problem by storing electricity discarded at night and using it at peak times.
  • An example of a small energy storage system is an electric vehicle battery.
  • Electric vehicles are motor-driven vehicles equipped with large-capacity batteries.
  • lead capacitors were used as such batteries, but now nickel hydrogen batteries and lithium batteries are mainly used, and lithium batteries are expected to be used in the future.
  • Lead capacitors used in the past are relatively inexpensive and have high reliability, but they have a low output per unit weight, a large volume, a long output, a low output voltage, and a low discharge rate. In the case of frequent exposure to the load, there is a problem of shortening the lifespan due to overheating. In addition, there was also a problem that it is not suitable for charging the electrical energy recovered through regenerative braking.
  • Lithium batteries are in the spotlight as high-output, high-density batteries compared to other batteries.
  • lithium batteries are very expensive and their performance is highly dependent on temperature, and especially at high temperatures, electrolyte decomposition occurs, resulting in a significant decrease in lifespan. There is also a risk of fire and explosion.
  • Japanese Patent Laid-Open Publication Nos. 2010-0001877, 2003-0100891, 2003-0100893 and the like disclose a method for cooling a battery.
  • lead-acid batteries can store about 1 kWh of electrical energy per 10 kg, the electric vehicle can drive 5 to 10 km with about 1 kWh of electrical energy. Therefore, in order to travel about 700km, which is the current driving distance of a car, even if a high density lead acid battery is used, a lead acid battery of about 1 ton is required. Therefore, a low density secondary battery such as lead acid battery cannot be used as a battery.
  • the driving distance is short, so it is not necessary to use a high density battery. Rather, if a low cost lead acid battery can be used, the cost is reduced, there is no risk of ignition and explosion, there is no need for a complicated structure for cooling. In addition, since there is no need to consider the risk of fire or explosion when arranging the battery, there is an advantage that the battery can be arranged more freely.
  • the lead-acid battery has a low output voltage when it is used for a long time, and thus, it is difficult to run, and it is difficult to cope with a case where a high output is required, such as when starting after stopping or driving down a hill because the output is lower than that of a lithium battery. There is a problem that the life is shortened if frequently exposed to this required load.
  • a lead storage battery has a problem in that it is difficult to be utilized for charging electric energy by regenerative braking.
  • the conventional hybrid battery system using alternating different types of batteries has a problem in that the amount of energy is changed drastically according to the change in the type of batteries used, so that passengers or users may feel the impact of the change. .
  • the energy efficiency is also poor.
  • a range extender may be driven and the battery may be driven by a lead storage battery to charge a lithium battery.
  • An object of the present invention is to provide a hybrid energy storage module system with high reliability while being able to cope with the demand of high power. For example, as an energy storage module system capable of driving about 100 km with a single charge, a reliable and inexpensive hybrid energy storage module system for an electric vehicle is provided.
  • an object of the present invention is to provide a hybrid energy storage module system that can increase the energy recovery efficiency of the regenerative braking device.
  • Hybrid energy storage module system for achieving the above object is an energy storage module system for supplying the power required to drive the load, the energy storage device, the first sensing unit and the second sensing unit, the controller Include.
  • the energy storage device includes at least one lithium battery module and at least one lead storage module. It also includes a switching network configured to connect them in different arrangement modes.
  • the energy storage device is connected at both ends of the load to supply power.
  • the switching network may include a path connecting the lithium battery module and the lead storage module to each other and a plurality of switches installed on the path.
  • the first sensing unit is configured to measure the temperature and voltage of the lithium battery modules
  • the second sensing unit is configured to measure the temperature and voltage of the lead storage module.
  • the controller controls the switching network to change the arrangement mode of the lithium battery module and the lead storage module of the energy storage device.
  • the controller includes a receiver, a measurer, a comparator, a signal generator, and a transmitter.
  • the receiver receives the values measured by the first sensing unit and the second sensing unit and the power values required to drive the load.
  • the measuring unit measures the remaining capacity of the lithium battery module and the lead storage module using the values measured by the first sensing unit and the second sensing unit received by the receiver.
  • the comparison unit compares the temperature of the lithium battery module received by the receiver with a reference temperature, and compares the voltage of the lead acid battery module with the reference voltage.
  • the signal generator generates a control signal for controlling the switching network by using the power value required for driving received by the receiver, the remaining capacity measured by the measurement unit, and the comparison result.
  • the transmitter transmits a control signal to the switching network.
  • the lead storage module and the lithium battery module may be selectively used to prevent degradation of the output voltage of the lead storage module and the increase of the temperature of the lithium battery module.
  • the manufacturing cost is reduced.
  • the sudden change of the output power amount is alleviated step by step through the module system to improve energy consumption efficiency and battery life.
  • the structure of the system is simple.
  • the lead-acid battery is fairly stable, only the lithium battery may be installed in a safe position in consideration of the safety of the occupant, and thus it is easy to arrange the electric vehicle.
  • the lithium battery modules when the instantaneous overload is applied during regenerative braking, the lithium battery modules are alternately charged, thereby improving energy recovery efficiency.
  • some modules of lead acid batteries are used for driving a vehicle while maximizing their utilization by charging the lithium battery with the energy generated by the range extender first and recharging the lead acid battery module secondly. You may.
  • 1 is a configuration diagram of an electric vehicle system.
  • FIG. 2 is a block diagram of a hybrid energy storage module system according to an embodiment of the present invention.
  • 3 to 6 are diagrams illustrating arrangement modes of the energy storage device illustrated in FIG. 2.
  • FIG. 7 is a block diagram of the controller shown in FIG. 2.
  • FIG. 10 is a flowchart illustrating the operation of a hybrid energy storage module system according to an embodiment of the present invention.
  • the hybrid energy storage module system of the present invention can be used for various purposes, but will be described below as an example of the case used in an electric vehicle.
  • Electric vehicles include hybrid vehicles (HEVs), plug-in hybrid vehicles (PHEVs) and pure electric vehicles (EVs).
  • Electric vehicles include not only cars, vans and buses, but also motorcycles such as scooters and motorcycles, wheelchairs, electric forklifts, sweepers, and electric bicycles.
  • HEVs hybrid vehicles
  • PHEVs plug-in hybrid vehicles
  • EVs pure electric vehicles
  • Electric vehicles include not only cars, vans and buses, but also motorcycles such as scooters and motorcycles, wheelchairs, electric forklifts, sweepers, and electric bicycles.
  • a pure electric vehicle will be described as an example.
  • an electric vehicle includes a motor 1, a motor controller 2, a hybrid energy storage module system 10, a reduction gear 3, and a regenerative braking system 7.
  • the motor 1 of an electric vehicle is also called a motor generator. This is because when the brake is applied while driving, the motor 1 is used as a generator to charge an energy storage device such as a lithium battery module or a lead storage module of the hybrid energy storage module system 10. This is called regenerative braking.
  • the motor 1 is connected to the wheel 4 through the reduction gear 3.
  • the motor controller 2 includes an inverter that converts the direct current of the battery into three-phase alternating current for driving the motor 1 in accordance with the command of the motor controller and the motor controller.
  • the inverter converts direct current into alternating current by turning the power transistor on and off.
  • the energy storage device 20 of the hybrid energy storage module system 10 may be charged through a quick charging port 5 used for charging in a fast charging station similar to a general gas station for automobiles and a general power source used in homes. Can be charged via the charger (6). In addition, the energy storage device 20 may be charged by the regenerative braking system 7.
  • the hybrid energy storage module system 10 includes an energy storage device 20, a first sensing unit 21, a second sensing unit 22, and a controller 30.
  • the energy storage device 20 includes two lithium battery modules 11, two lead storage modules 12, and a switching network 15.
  • the energy storage device 20 is connected to both ends of the load and serves to supply the necessary power to the motor 1 as the load.
  • the switching network 15 includes conductors 13 connecting the two lithium battery modules 11 and the two lead acid battery modules 12 and a plurality of switches 14-1 to 14-12 installed on the conductors 13. ).
  • two lithium battery modules 11 and two lead acid battery modules 12 are illustrated, but one or three or more modules may be used.
  • the lithium battery module 11 includes a plurality of lithium battery cells (not shown) connected in parallel and in parallel.
  • the performance of a battery can be expressed in terms of the amount of electrical energy that can be collected (unit: mAh) and the discharge rate (C-rate), which indicates how many times the battery capacity can be discharged in one hour.
  • Lithium batteries can store more electrical energy per unit weight than lead-acid batteries, and they also charge and discharge faster.
  • lithium batteries have a problem in that their properties deteriorate with increasing temperature, there is a risk of explosion, and the price is very expensive.
  • the lithium battery is a secondary battery using metal lithium as a negative electrode, and includes a lithium polymer battery, a lithium manganese battery, a lithium iron battery, a lithium ion battery, a lithium air battery, and the like.
  • lithium secondary batteries that are currently being developed or will be developed in the future may also be used.
  • the lead storage module 12 includes a plurality of lead storage cells (not shown) connected in parallel and in parallel.
  • Lead-acid batteries have a small amount of electrical energy that can be collected and a small amount of power that can be discharged per unit time, but they are inexpensive and have a merit of being a safe battery without the risk of explosion.
  • the lead-acid battery has a characteristic that the output voltage drops when used for a long time, and the output voltage recovers again after a certain period of time, and the discharge speed is also slow, and thus it is restricted to use as an electric vehicle battery. In addition, there is a problem that it is difficult to use for charging the electrical energy by regenerative braking due to the low charging speed.
  • the lithium battery module 11 has a problem of deterioration due to an increase in temperature, and thus the lithium battery module 11 may not be used for a long time without a cooling device, and the lead acid battery module 12 may not be used for a long time due to a decrease in output voltage, and the charge and discharge rate may be slow.
  • this problem is solved by using the lithium battery module 11 and the lead storage battery module 12 connected in various forms using the switching network 15.
  • the switches 14-3, 14-5, and 14-8 are turned on to connect the two lithium battery modules 11 in series, and the lead storage module 12 is not used. You can also output 72V.
  • the switches 14-6, 14-9, and 14-11 are turned on to connect the two lead acid battery modules in series with each other, and the lithium battery module may output 72 V in an unused manner. It may be.
  • the switch 14-4, 14-7, 14-9, 14-10, 14-12 is turned on in the lithium battery module 11 of the lithium battery module 11 disposed on the drawing Without using -1), the lead-acid battery module 12 connected in parallel with the lithium battery module 11-2 below may be connected in series to output 72V.
  • Which arrangement mode to use may be determined according to the values measured by the first sensing unit 21 and the second sensing unit 22 and the output required by the motor 1.
  • the first sensing unit 13 is connected to the lithium battery cells of the lithium battery module 11 to measure the temperature and voltage of each cell.
  • the first sensing unit 13 may be connected in series using one communication line, and may transmit information such as temperature and voltage of each cell to the controller 15 through a serial communication method.
  • the second sensing unit 14 is connected to the lead storage cells of the lead storage module 12 to measure the temperature and voltage of each cell, and transfers information such as temperature and voltage of each cell to the controller 15.
  • the controller 30 monitors the states of the lithium battery module 11 and the lead storage module 12 of the energy storage device 20 and manages the energy storage device 20 to maintain and use them under optimal conditions.
  • the controller 30 includes a receiver 31, a measurer 32, a comparator 33, a signal generator 34, and a transmitter 35.
  • the controller 30 monitors the temperature, voltage, and the like of the cells of the lithium battery module 11 and the lead storage battery module 12 based on the information received from the first sensing unit 21 and the second sensing unit 22. .
  • the control mode generated based on the state of the cells and the information received through the motor controller 2 is transmitted to the switching network 15 to change the arrangement mode of the lithium battery module 11 and lead acid battery module 12.
  • the energy storage device 20 is comprehensively managed.
  • the receiver 31 receives data such as temperature and voltage measured by the first sensing unit 21 and the second sensing unit 22.
  • the motor controller 2 receives power data necessary for driving the motor 1.
  • the measurement unit 32 measures the state of charge (SOC) of the lithium battery module 11 and the lead storage battery module 12 by using the data received from the receiver 31 by a coulomb count method. Determine the state of health (SOH). In addition, the power that can be output to the load is estimated.
  • SOC state of charge
  • SOH state of health
  • the comparator 33 checks whether the lithium battery cells are in a safe state by comparing the temperature of the lithium battery cells with a predetermined reference temperature using the data received by the receiver 31. In addition, the voltage of the lead-acid battery cells is compared with a predetermined reference voltage to check whether the lead-acid battery cells can be used.
  • the signal generator 34 receives the charge rate of the lithium battery module 11 and the lead storage battery module 12, the temperature of the lithium battery module 11, the voltage of the lead storage battery module 12, and the motor controller 2. In consideration of the driving state and the like, a control signal for determining the arrangement mode of the lithium battery module 11 and the lead storage battery module 12 is generated and transmitted to the energy storage device 20.
  • the lithium battery module 11 and the lead storage battery module 12 are sufficiently charged and are driven at a constant speed, and high power is not particularly required, the lithium battery module 11 may be arranged in an arrangement mode as shown in FIG. 3. ) And the lead storage battery module 12 can be used together.
  • the controller 15 controls to change the arrangement mode in which the lithium battery modules 11 are connected in series as shown in FIG. 4. A signal is generated and delivered to the energy storage device 20.
  • the controller 15 When a predetermined time elapses and the voltage of the lead storage battery module 12 becomes equal to or higher than the reference voltage, the controller 15 generates a control signal for changing to the arrangement mode again as shown in FIG. 3 to store the energy storage device 20. To pass on.
  • the lead storage battery module 12 is changed to an array mode connected in series. Generates a control signal for transmitting to the energy storage device 20.
  • the lead storage battery modules 12 connected in parallel with one lithium battery module 11 are arranged in series.
  • a control signal for changing to the mode may be generated and transmitted to the energy storage device 20.
  • the controller 30 is connected to the motor controller of the motor controller 2, so that the driving state can be checked such as stopping and starting again or traveling down a hill.
  • the controller converts the arrangement mode according to the request according to the driving condition, but considering the state of the lithium battery module 11 and the lead storage battery module 12, if it is difficult to switch the arrangement mode in response to the driving condition, Prior to the arrangement mode conversion according to this, the arrangement mode may be switched in a direction to protect the lithium battery module 11 and the lead storage battery module 12.
  • the energy storage device If a large output is required according to the driving state, the energy storage device generates a control signal for discharging the lithium battery module 11 in an array mode in which the lithium battery modules 11 are connected in series as shown in FIG. 4. Pass in 20. This is because the lead-acid battery module 12 has low power that can be taken out even when sufficiently charged.
  • the arrangement mode shown in FIG. 3 or 6 it is preferable to go through the arrangement mode shown in FIG. 3 or 6. If, as shown in Figure 5, the lead-acid battery module 12 is directly switched to the arrangement mode shown in Figure 4 in the arrangement mode connected in series with each other, as shown in Figure 8, by a sharp increase in discharge rate, etc. A sudden change may occur in the output of the energy storage device 20. However, through the arrangement mode shown in FIG. 3 or FIG. 6, as shown in FIG. 9, the output changes in stages. If necessary, all of the arrangement modes shown in FIGS. 3 and 6 may be sequentially passed. On the contrary, even when switching to the arrangement mode of FIG. 5 using only the lead acid battery module 12, since the large output is not necessary, the arrangement mode as shown in FIGS. 3 and 6 can be passed.
  • FIG. 9 illustrates the advantages of the hybrid energy storage module system according to the present invention.
  • the conventional hybrid battery system when switching from a high output operation to a low output operation, there was no choice but to select one of two modes, a high output of a lithium battery module and a low output of a lead acid battery module.
  • the hybrid module system according to the present invention instead of switching directly from the high power lithium battery module to the low power lead acid battery module, the low power lead acid battery is switched to the intermediate output state in which some modules of the lithium battery module and the lead storage module are coupled in parallel. It is possible to switch to the module. The same is true for a sharp rise in output.
  • multi-stage power reduction or power increase can be achieved, which can improve driver's or passenger's comfort, as well as save operating energy and efficiency.
  • one lithium battery module may be separated for charging, or as illustrated in FIG. 5, both lithium battery modules may be Can be separated for charging and connected to the charging device. Since the lead acid battery module 12 has a low charging efficiency and a low charging speed, it may be preferable to separate the lithium battery module 11 from the lead storage battery module 12 and to connect the charging device when charging. .
  • the regenerative braking system 7 preferentially uses the regenerative braking system 7 when the regenerative braking is not used due to low voltage or low charging rate. It is desirable to charge the module first by connecting to.
  • the lead storage battery module 12 may be charged by charging the lead storage module 12 using the electric energy of the charged lithium battery module 11.
  • a control signal capable of switching the arrangement mode of the switching network 15 to connect the lithium battery module 11 charged with the controller 30 and the lead-acid battery module 12 to be charged with each other is switched.
  • the regenerative braking system 7 or another charging device charges the lithium battery module 11, and the lead storage battery module 12 is charged through electrical energy stored in the lithium battery module 11.
  • some lead accumulator modules 12 may be charged through a charging device, and the other lead accumulator modules 12 may be charged through electrical energy stored in the lithium battery module 11.
  • Charging the lead acid battery module 12 may be performed in a state in which the charging of the lithium battery module 11 is completed or in a state in which charging is performed.
  • lithium energy is changed by appropriately changing the arrangement mode of the energy storage device 20 according to the state and the driving state of the lithium battery module 11 and the lead storage battery module 12.
  • the battery module 11 and the lead storage battery module 12 can be balanced. This can improve the life of the battery.
  • the first sensing unit 21 and the second sensing unit 22 measure the temperature and voltage of the cells of the lithium battery module 11 and the lead storage battery module 12 (S1 and S2). ).
  • the measuring unit 32 of the controller 30 uses the data measured by the first sensing unit 21 and the second sensing unit 22 to determine the lithium battery module 11 and the lead storage battery module 12. Filling rate, soundness, etc. are measured (S3). It is determined whether the driving state is possible once through the filling rate measurement result (S4). As a result of the measurement, the measured charging rate is transmitted to the driver through a display installed in the driver's seat of the electric vehicle. If the lithium battery module 11 and the lead storage battery module 12 both have low charging rates and require charging, the driver is informed that the charging is necessary through the display installed in the driver's seat of the electric vehicle (S12).
  • the comparison unit 33 of the controller 30 compares the temperature value of each cell of the lithium battery module 11 measured by the first sensing unit 21 with the reference temperature (S5).
  • the voltage value of each cell of the lead acid battery module 12 measured by the second sensing unit 22 is compared with the reference voltage (S6).
  • the controller 30 stops the operation of the electric vehicle.
  • the controller 30 receives driving state information of the vehicle through the motor controller of the motor controller 2 (S8).
  • Receive driving state information such as whether the vehicle is traveling at a constant speed, stopping and starting again, or driving on a hill.
  • Steps S4 to S8 are all performed in the controller 30 and may be performed simultaneously or in a different order than the above-described order.
  • the signal generator 34 of the controller 30 determines the arrangement mode based on the results obtained in steps S4 to S8, generates a control signal, and transmits the control signal to the energy storage device 20 (S9).
  • the energy storage device 20 discharges after arranging the lithium battery module 11 and the lead storage module 12 according to the control signal (S10).
  • switch 21 first sensing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 에너지 저장 모듈 시스템에 관한 것으로서, 더욱 상세하게는 리튬 전지와 납 축전지를 상호 보완하여, 부하에서 요구되는 전력량에 따라 선택적으로 사용하는 하이브리드 에너지 저장 모듈 시스템에 관한 것이다. 본 발명에 따른 하이브리드 에너지 저장 모듈 시스템은 부하의 구동에 필요한 전력을 공급하는 에너지 저장 모듈 시스템으로서, 에너지 저장 장치와, 제1감지유닛 및 제2감지유닛과, 제어기를 포함한다. 에너지 저장 장치는 적어도 하나의 리튬 전지 모듈과 적어도 하나의 납 축전지 모듈을 포함한다. 또한, 이들을 서로 다른 배열모드로 연결하도록 구성된 스위칭 네트워크를 포함한다. 에너지 저장 장치는 부하의 양단에 연결되어 전력을 공급한다. 스위칭 네트워크는 리튬 전지 모듈과 납 축전지 모듈을 서로 연결하는 경로와 이 경로 상에 설치되는 복수의 스위치를 포함할 수 있다. 제1감지유닛은 리튬 전지 모듈들의 온도 및 전압을 측정하도록 구성되며, 제2감지유닛은 납 축전지 모듈의 온도 및 전압을 측정하도록 구성된다. 제어기는 에너지 저장 장치의 리튬 전지 모듈과 납 축전지 모듈의 배열모드를 변경하기 위해 스위칭 네트워크를 제어하는 역할을 한다.

Description

하이브리드 에너지 저장 모듈 시스템
본 발명은 에너지 저장 모듈 시스템에 관한 것으로서, 더욱 상세하게는 리튬 전지와 납 축전지를 상호 보완하여, 부하에서 요구되는 전력량의 변화에 따라 적절하게 선택적으로 사용하는 하이브리드 에너지 저장 모듈 시스템에 관한 것이다.
에너지 저장 시스템은 남은 전력을 따로 저장했다가 필요한 시기에 공급하는 시스템이다. 에너지 저장 시스템은 저장방식에 따라 크게 물리적 에너지 저장 시스템과 화학적 에너지 저장 시스템으로 구분할 수 있다. 대표적인 물리적 에너지 저장 시스템으로는 양수 발전 시스템과 압축공기저장 시스템, 플라이휠 등을 들 수 있으며, 화학적 에너지저장으로는 리튬전지, 납축전지, NaS 전지 등이 있다.
에너지 저장 시스템은 야간에 버려지는 전기 등을 저장하여 피크 시간대에 사용하면 전력수급 문제를 해결할 수 있다는 점에서 에너지 저장 시스템에 대해 활발한 연구가 진행되고 있다.
소규모 에너지 저장 시스템의 일례로 전기자동차의 배터리가 있다. 전기자동차는 모터를 이용해서 구동되는 자동차로서 대용량의 배터리가 장착된다. 이러한 배터리로 과거에는 납 축전기가 사용되었으나, 현재는 니켈 수소전지와 리튬 전지 등이 주로 사용되고 있으며, 향후에는 리튬 전지가 주로 사용될 것으로 예상된다.
과거에 사용되었던 납 축전기는 가격이 상대적으로 매우 싸며, 높은 신뢰성을 가진다는 장점이 있으나, 단위 무게당 출력이 낮으며, 부피가 크고, 장시간 사용하면 출력 전압이 저하되며, 방전율이 낮아서 고출력이 요구되는 부하에 자주 노출되는 경우 과열로 수명이 단축되는 문제가 있어서 전기자동차에는 우선적으로 선택되지 않고, 사용이 기피되고 있다. 또한, 회생제동을 통해서 회수된 전기 에너지의 충전에 적합하지 않다는 문제도 있었다.
리튬 전지는 다른 전지에 비해 고출력, 고밀도 전지로써 각광을 받고 있다. 하지만, 리튬 전지는 가격이 매우 비싸며, 온도에 따라 성능이 크게 좌우되며, 특히 고온에서는 전해질 분해가 일어나며, 이에 따라 수명이 현저하게 떨어진다. 또한, 발화 및 폭발의 위험도 있다. 이러한 문제점을 개선하기 위해서, 공개특허공보 제2010-0001877호, 제2003-0100891호, 제2003-0100893호 등에는 배터리를 냉각하기 위한 방법이 개시되어 있다.
현재 사용되는 납 축전지는 10㎏당 1㎾h 정도의 전기에너지를 저장할 수 있으며, 1㎾h 정도의 전기에너지로 전기자동차는 5 내지 10㎞를 주행할 수 있다. 따라서 현재의 자동차의 주행거리인 700㎞ 정도를 주행하기 위해서는 고밀도의 납 축전지를 사용하더라도 1톤 정도의 납 축전지가 필요하다. 따라서 납 축전지와 같은 저밀도의 이차전지를 배터리로 사용할 수 없다.
그러나 한 번의 충전으로 100㎞ 정도의 주행이 가능한 전기 자동차의 경우에는 주행거리가 짧으므로, 반드시 고밀도 전지를 사용할 필요가 없다. 오히려 저가의 납 축전지를 사용할 수 있다면, 비용이 절감되며, 발화 및 폭발의 위험이 없어 냉각을 위한 복잡한 구조가 필요 없다는 장점이 있다. 또한, 전지를 배치할 때 발화나 폭발의 위험을 고려할 필요가 없으므로 좀 더 자유롭게 전지를 배치할 수 있다는 장점도 있다.
그러나 상술한 바와 같이 납 축전지는 장시간 사용하면 출력 전압이 낮아져 주행이 어려우며, 리튬 전지에 비해서 출력이 낮아서 정지 후 출발하거나, 언덕길을 주행하는 경우와 같이 고출력이 요구되는 경우에 대응하기 어렵고, 높은 방전율이 요구되는 부하에 자주 노출되는 경우 수명이 단축되는 문제가 있다. 또한, 납 축전지는 회생제동에 의한 전기에너지의 충전에 활용되기 어렵다는 문제가 있다.
또한, 서로 다른 종류의 전지를 번갈아 가며 사용하는 종래의 하이브리드 전지 시스템의 경우에는 사용되는 전지 종류의 변화에 따라 에너지량이 급격히 변화하여, 승객이나 사용자가 그 변화에 따른 충격을 느낄 수 있다는 문제점이 있었다. 또한, 에너지 효율도 떨어진다는 문제가 있었다.
또한, 플러그인 하이브리드 자동차에 하이브리드 전지 시스템을 사용할 경우에 레인지 익스텐더(range extender)를 구동시키며 주행과 동시에 충전을 할 경우에는 납 축전지로 구동하고, 리튬전지를 충전해야 하는 문제가 있었다.
[선행기술문헌]
공개특허공보 제2010-0001877호
공개특허공보 제2003-0100891호
공개특허공보 제2003-0100893호
등록특허공보 제10-1281066호
일본 공개특허공보 제2010-093993호
본 발명의 목적은 고출력의 요구에 대응이 가능하면서도, 신뢰성이 높은 하이브리드 에너지 저장 모듈 시스템을 제공하는 것이다. 예를 들어, 한 번의 충전으로 100㎞ 정도의 주행이 가능한 에너지 저장 모듈 시스템으로서 신뢰성이 높고, 가격이 매우 저렴한 전기 자동차용 하이브리드 에너지 저장 모듈 시스템을 제공하는 것이다.
또한, 에너지 소비 효율이 향상되고, 출력의 급격한 변화가 완화되어 수명이 향상된 하이브리드 에너지 저장 모듈 시스템을 제공하는 것을 목적으로 한다.
또한, 회생제동 장치의 에너지 회수효율을 높일 수 있는 하이브리드 에너지 저장 모듈 시스템을 제공하는 것을 목적으로 한다.
또한, 플러그인 하이브리드 자동차의 레인지 익스텐더의 활용성을 극대화할 수 있는 하이브리드 에너지 저장 모듈 시스템을 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위한 본 발명에 따른 하이브리드 에너지 저장 모듈 시스템은 부하의 구동에 필요한 전력을 공급하는 에너지 저장 모듈 시스템으로서, 에너지 저장 장치와, 제1감지유닛 및 제2감지유닛과, 제어기를 포함한다.
에너지 저장 장치는 적어도 하나의 리튬 전지 모듈과 적어도 하나의 납 축전지 모듈을 포함한다. 또한, 이들을 서로 다른 배열모드로 연결하도록 구성된 스위칭 네트워크를 포함한다. 에너지 저장 장치는 부하의 양단에 연결되어 전력을 공급한다. 스위칭 네트워크는 리튬 전지 모듈과 납 축전지 모듈을 서로 연결하는 경로와 이 경로 상에 설치되는 복수의 스위치를 포함할 수 있다.
제1감지유닛은 리튬 전지 모듈들의 온도 및 전압을 측정하도록 구성되며, 제2감지유닛은 납 축전지 모듈의 온도 및 전압을 측정하도록 구성된다.
제어기는 에너지 저장 장치의 리튬 전지 모듈과 납 축전지 모듈의 배열모드를 변경하기 위해 스위칭 네트워크를 제어하는 역할을 한다. 제어기는 수신부, 측정부, 비교부, 신호 생성부 및 송신부를 포함한다.
수신부는 제1감지유닛 및 제2감지유닛에서 측정된 값과 부하의 구동에 필요한 전력 값을 수신한다. 측정부는 수신부에서 수신한 제1감지유닛 및 제2감지유닛에서 측정된 값을 이용하여 리튬 전지 모듈 및 납 축전지 모듈의 잔존용량을 측정한다. 비교부는 수신부에서 수신한 리튬 전지 모듈의 온도를 기준온도와 비교하고 납 축전지 모듈의 전압을 기준전압과 비교한다. 신호 생성부는 수신부에서 수신한 구동에 필요한 전력 값과 측정부에서 측정된 잔존용량과 비교부의 비교결과를 이용하여 스위칭 네트워크를 제어하는 제어신호를 생성한다. 송신부는 제어신호를 스위칭 네트워크에 송신한다.
본 발명에 따른 하이브리드 에너지 저장 모듈 시스템은 납 축전지 모듈과 리튬 전지 모듈을 선택적으로 사용하여, 납 축전지 모듈의 출력 전압 저하와 리튬 전지 모듈의 온도 상승에 따른 열화를 방지할 수 있다. 또한, 가격이 저렴한 납 축전지 모듈을 함께 사용하므로, 제조비용이 절감된다.
또한, 출력 전력량의 급격한 변화를 모듈 시스템을 통해서 단계별로 완화시켜 에너지 소비 효율이 향상되고, 전지 수명도 향상된다.
또한, 리튬 전지의 계속적인 사용에 의해서 리튬 전지의 온도가 상승하는 것을 방지하기 위한 별도의 냉각시스템의 필요성이 낮으므로, 시스템의 구조가 간단하다. 또한, 납 축전지는 상당히 안정적이므로, 리튬 전지만 탑승자의 안전을 고려하여 안전한 위치에 설치하면 되므로, 전기 자동차에 배치하기 용이하다.
또한, 일부 실시예의 경우에는 회생 제동시 순간적 과부하가 걸리는 경우에 리튬 전지 모듈이 교대로 충전되므로 에너지 회수효율이 향상된다.
또한, 플러그인 하이브리드 자동차에 적용할 경우 납 축전지의 일부 모듈은 차량 운행에 사용하면서, 레인지 익스텐더에서 발전되는 에너지를 일차적으로 리튬 전지에 충전하고, 이차적으로 납 축전지 모듈에 재충전하는 방법으로 활용성을 극대화할 수도 있다.
도 1은 전기자동차 시스템의 구성도이다.
도 2는 본 발명의 일실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 블록도이다.
도 3 내지 6은 도 2에 도시된 에너지 저장 장치의 배열모드들을 나타낸 도면들이다.
도 7은 도 2에 도시된 제어기의 블록도이다.
도 8과 9는 배열모드의 전환에 따른 에너지 저장 장치의 출력변화를 나타낸 도면들이다.
도 10은 본 발명의 일실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 작용을 나타낸 순서도이다.
이하, 첨부된 도면을 참고하여 본 발명의 일실시예에 대해서 상세히 설명한다.
다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명의 하이브리드 에너지 저장 모듈 시스템은 다양한 용도로 사용될 수 있으나, 이하에서는 전기자동차에 사용되는 경우를 예로서 설명한다. 전기자동차에는 하이브리드카(HEV), 플러그인 하이브리드카(PHEV), 순수 전기차(EV) 등이 포함된다. 그리고 전기자동차에는 승용차, 승합차, 버스뿐 아니라 스쿠터나 오토바이와 같은 이륜자동차, 휠체어, 전기 지게차, 청소차, 전기자전거 등도 모두 포함된다. 이하에서는 순수 전기차를 예로 들어 설명한다.
도 1은 전기자동차 시스템의 구성도이다. 도 1을 참고하면, 전기자동차는 모터(1), 모터컨트롤러(2), 하이브리드 에너지 저장 모듈 시스템(10), 감속기어(3) 및 회생제동시시템(7)을 포함한다.
전기자동차의 모터(1)는 모터제너레이터라고도 불린다. 운행 중에 브레이크를 밟았을 때 모터(1)를 발전기로 하여 하이브리드 에너지 저장 모듈 시스템(10)의 리튬 전지 모듈이나 납 축전지 모듈 등과 같은 에너지 저장 장치를 충전하기 때문이다. 이를 회생 제동이라고 한다. 모터(1)는 감속기어(3)를 통해서 바퀴(4)와 연결된다.
모터컨트롤러(2)는 모터제어기와 모터제어기의 명령에 따라서 모터(1)를 구동하기 위해서 배터리의 직류를 3상 교류로 전환하는 인버터를 포함한다. 인버터를 파워트랜지스터를 On-Off하는 방식으로 직류를 교류로 변환한다.
하이브리드 에너지 저장 모듈 시스템(10)의 에너지 저장 장치(20)는 일반 자동차용 주유소와 유사한 급속충전소에서 충전할 때 사용되는 급속 충전구(5)와 가정에서 사용하는 일반 전원을 통해서 충전할 수 있는 일반 충전기(6)를 통해서 충전될 수 있다. 또한, 에너지 저장 장치(20)는 회생제동시스템(7)에 의해서 충전될 수도 있다.
도 2는 본 발명의 일실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 블록도이다. 도 2를 참조하면, 하이브리드 에너지 저장 모듈 시스템(10)은 에너지 저장 장치(20)와, 제1감지유닛(21) 및 제2감지유닛(22)과, 제어기(30)를 포함한다.
도 3은 도 2에 도시된 에너지 저장 장치의 블록도이다. 도 3을 참조하면, 에너지 저장 장치(20)는 두 개의 리튬 전지 모듈(11), 두 개의 납 축전지 모듈(12) 및 스위칭 네트워크(15)를 포함한다. 에너지 저장 장치(20)는 부하의 양단에 연결되어 부하인 모터(1)에 필요한 전력을 공급하는 역할을 한다. 스위칭 네트워크(15)는 두 개의 리튬 전지 모듈(11)과 두 개의 납 축전지 모듈(12)을 연결하는 도선들(13)과 도선들(13)에 설치된 복수의 스위치(14-1~14-12)를 포함한다. 도 3에서는 두 개의 리튬 전지 모듈(11)과 두 개의 납 축전지 모듈(12)을 사용하는 것으로 도시되어 있으나, 각각의 모듈을 하나 또는 세 개 이상 사용할 수도 있다.
리튬 전지 모듈(11)은 직·병렬로 연결된 다수의 리튬 전지 셀들(미도시)을 포함한다. 전지의 성능은 모을 수 있는 전기에너지(단위는 ㎾h)의 크기와 한 시간에 배터리 용량의 몇 배를 방전할 수 있는지를 나타내는 방전율(C-rate) 등으로 나타낼 수 있다. 리튬 전지는 납 축전지에 비해서 단위 무게당 많은 전기에너지를 저장할 수 있으며, 충방전 속도도 빠르다. 그러나 리튬 전지는 온도가 증가하면 특성이 열화되고, 폭발의 위험성이 있으며, 가격이 매우 비싸다는 문제가 있다. 본 발명에 있어서, 리튬 전지는 음극에 금속리튬을 사용하는 2차 전지로서, 리튬 폴리머 전지, 리튬 망간 전지, 리튬 철 전지, 리튬 이온 전지 및 리튬 공기 전지 등을 모두 포함한다. 또한, 현재 개발되고 있거나, 향후 개발될 리튬 2차 전지도 사용될 수 있다.
납 축전지 모듈(12)은 직·병렬로 연결된 다수의 납 축전지 셀들(미도시)을 포함한다. 납 축전지는 모을 수 있는 전기에너지의 크기가 작고, 단위 시간당 방전할 수 있는 전력의 크기도 작지만, 가격이 저렴하며 폭발 위험성 등이 없는 안전한 배터리라는 장점이 있다. 납 축전지는 장기간 사용하면 출력 전압이 떨어지며, 일정 시간이 경과해야 다시 출력 전압이 회복되는 특성이 있으며, 방전 속도도 느려서 전기자동차용 배터리로 사용하는데 제약이 따른다. 또한, 충전 속도도 느려서 회생제동에 의한 전기에너지의 충전용으로 사용하기 어렵다는 문제가 있다.
상술한 바와 같이 리튬 전지 모듈(11)은 온도 증가에 따른 열화 문제가 있어서, 냉각 장치 없이 장시간 사용할 수 없으며, 납 축전지 모듈(12)은 출력 전압의 저하로 장시간 사용할 수 없으며, 충방전 속도가 느리다는 문제가 있다. 본 실시예에서는 리튬 전지 모듈(11)과 납 축전지 모듈(12)을 스위칭 네트워크(15)를 이용하여 다양한 형태로 연결하여 사용함으로써 이러한 문제를 해결하였다.
예를 들어, 구동전압이 72V이며, 각각의 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 출력 전압이 36V인 경우, 도 3에 도시된 바와 같이, 스위치 14-1, 14-2, 14-4, 14-5, 14-7, 14-9, 14-10, 14-12를 온시켜 두 개의 리튬 전지 모듈(11)을 병렬로 연결하고, 두 개의 납 축전지 모듈을 병렬(12)도 연결한 후 이들을 직렬로 연결하는 방법으로 72V를 출력할 수 있다.
또한, 도 4에 도시된 바와 같이, 스위치 14-3, 14-5, 14-8을 온시켜 두 개의 리튬 전지 모듈(11)을 서로 직렬로 연결하고, 납 축전지 모듈(12)은 사용하지 않는 방법으로 72V를 출력할 수도 있다.
또한, 도 5에 도시된 바와 같이, 스위치 14-6, 14-9, 14-11을 온시켜 두 개의 납 축전지 모듈을 서로 직렬로 연결하고, 리튬 전지 모듈은 사용하지 않는 방법으로 72V를 출력할 수도 있다.
또한, 도 6에 도시된 바와 같이, 스위치 14-4, 14-7, 14-9, 14-10, 14-12를 온시켜 리튬 전지 모듈(11) 중에서 도면상 위에 배치되는 리튬 전지 모듈(11-1)을 사용하지 않고, 아래의 리튬 전지 모듈(11-2)과 병렬로 연결된 납 축전지 모듈(12)을 직렬로 연결하여 72V를 출력할 수도 있다.
어떠한 배열모드를 사용할 것인지 여부는 제1감지유닛(21) 및 제2감지유닛(22)에서 측정된 값과 모터(1)에서 요구하는 출력에 따라서 결정될 수 있다.
제1감지유닛(13)은 리튬 전지 모듈(11)의 리튬 전지 셀들과 연결되어 셀 각각의 온도 및 전압을 측정한다. 제1감지유닛(13)은 하나의 통신선을 이용하여 직렬로 연결되고, 각 셀의 온도 및 전압 등의 정보를 시리얼 통신 방식을 통해서 제어기(15)에 전달할 수 있다.
제2감지유닛(14)은 납 축전지 모듈(12)의 납 축전지 셀과 연결되어 셀 각각의 온도 및 전압을 측정한 후 각 셀의 온도 및 전압 등의 정보를 제어기(15)에 전달한다.
제어기(30)는 에너지 저장 장치(20)의 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 상태를 모니터링하여 최적의 조건에서 유지 및 사용할 수 있도록 에너지 저장 장치(20)를 관리한다.
도 7에 도시된 바와 같이, 제어기(30)는 수신부(31), 측정부(32), 비교부(33), 신호 생성부(34) 및 송신부(35)를 포함한다. 제어기(30)는 제1감지유닛(21)과 제2감지유닛(22)에서 전달받은 정보를 통해서 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 셀들의 온도, 전압 등 상태를 감시한다. 또한, 셀들의 상태와 모터컨트롤러(2)를 통해서 입력받은 정보를 바탕으로 생성된 제어신호를 스위칭 네트워크(15)에 송신하여 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 배열모드를 변경시킴으로써 에너지 저장 장치(20)를 종합적으로 관리하는 역할을 한다.
수신부(31)는 제1감지유닛(21)과 제2감지유닛(22)에서 측정된 온도, 전압 등의 데이터를 전달받는다. 또한, 모터컨트롤러(2)를 통해서 모터(1) 구동을 위해서 필요한 전력 데이터를 전달받는다.
측정부(32)는 수신부(31)에서 수신된 데이터를 이용하여, 쿨롬 카운트 방식 등으로 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 충전율(SOC, state of charge)을 측정하며, 건전도(SOH, state of health)를 결정한다. 또한, 부하에 출력할 수 있는 전력을 추정한다.
비교부(33)는 수신부(31)에서 수신된 데이터를 이용하여, 리튬 전지 셀들의 온도를 미리 정해진 기준온도와 비교하여 리튬 전지 셀들이 안전한 상태인지를 검사한다. 또한, 납 축전지 셀들의 전압을 미리 정해진 기준전압과 비교하여 납 축전지 셀들이 사용할 수 있는 상태인지를 검사한다.
신호 생성부(34)는 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 충전율과 리튬 전지 모듈(11)의 온도 및 납 축전지 모듈(12)의 전압, 모터컨트롤러(2)를 통해서 전달받은 주행 상태 등을 고려하여 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 배열모드를 결정하는 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다.
예를 들어, 리튬 전지 모듈(11) 및 납 축전지 모듈(12)이 충분하게 충전되어 있으며, 정속 주행 중이라 특별히 고출력이 요구되지 않는다면, 도 3에 도시된 바와 같은 배열모드로 리튬 전지 모듈(11) 및 납 축전지 모듈(12)을 함께 사용하도록 할 수 있다.
만약, 납 축전지 모듈(12)의 전압이 장시간 사용으로 인해서 기준전압 이하로 떨어지면 제어기(15)는 도 4에 도시된 바와 같이, 리튬 전지 모듈(11)이 직렬로 연결된 배열모드로 변경하기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다.
일정 시간이 경과하여 납 축전지 모듈(12)의 전압이 기준전압 이상이 되면, 제어기(15)는 다시 도 3에 도시된 바와 같은 배열모드로 변경하기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다.
만약, 계속 리튬 전지 모듈(11)을 사용하여 리튬 전지 모듈(11)의 온도가 기준온도 이상으로 상승한다면 도 5에 도시된 바와 같이, 납 축전지 모듈(12)이 직렬로 연결된 배열모드로 변경하기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다.
또한, 리튬 전지 모듈(11) 중 하나의 온도가 기준온도 이상으로 상승한다면 도 6에 도시된 바와 같이, 하나의 리튬 전지 모듈(11)과 병렬로 연결된 납 축전지 모듈(12)이 직렬로 연결된 배열모드로 변경하기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달할 수 있다.
제어기(30)는 모터컨트롤러(2)의 모터제어기와 연결되어 있어, 정지하였다 다시 출발하거나 언덕길을 주행하는 등 주행상태를 확인할 수 있다. 이하에서는 주행상태에 따른 배열모드의 변화에 대해서 설명한다. 제어기는 주행상태에 따른 요구에 따라 배열모드를 변환하지만, 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 상태를 고려할 때, 주행상태에 대응하여 배열모드를 변환하기 어려운 경우에는 주행상태에 따른 배열모드 변환에 우선하여, 리튬 전지 모듈(11)과 납 축전지 모듈(12)을 보호하는 방향으로 배열모드를 전환할 수 있다.
만약, 주행상태에 따라서 큰 출력이 필요한 경우에는 도 4에 도시된 바와 같은 리튬 전지 모듈(11)이 직렬로 연결된 배열모드로 리튬 전지 모듈(11)을 방전시키기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다. 납 축전지 모듈(12)은 충분하게 충전되어 있는 경우에도 꺼내 쓸 수 있는 전력이 낮기 때문이다.
이때, 급격하게 모드 전환을 하게 되면, 에너지 저장 장치(20)의 출력이 급격히 변화하여, 충격이 생길 수 있다. 따라서 도 4에 도시된 배열모드로 전환하기 전에, 도 3이나 도 6에 도시된 배열모드를 거치는 것이 바람직하다. 만약, 도 5에 도시된 바와 같이, 납 축전지 모듈(12)이 서로 직렬로 연결된 배열모드에서 도 4에 도시된 배열모드로 바로 전환된다면, 도 8에 도시된 바와 같이, 방전율의 급격한 증가 등에 의해서 에너지 저장 장치(20)의 출력에 급격한 변화가 생길 수 있다. 그러나 도 3이나 도 6에 도시된 배열모드를 거치면, 도 9에 도시된 바와 같이, 출력이 단계적으로 변화한다. 필요한 경우에는 도 3과 도 6에 도시된 배열모드 모두를 순서대로 거칠 수도 있다. 반대로, 큰 출력이 필요 없어서, 납 축전지 모듈(12)만을 사용하는 도 5의 배열모드로 전환하는 경우에도, 도 3이나 6에 도시된 바와 같은 배열모드를 거칠 수 있다.
즉, 납 축전지 모듈(12)만을 사용하거나 리튬 전지 모듈(11)만을 사용하는 배열모드로 전환하는 경우에는 납 축전지 모듈(12)과 리튬 전지 모듈(11)을 함께 사용하는 배열모드를 거친 후 전환하는 것이 바람직하다.
도 9는 본 발명에 따른 하이브리드 에너지 저장 모듈 시스템의 장점을 잘 설명할 수 있다. 종래의 하이브리드 전지 시스템의 경우 고출력 운행에서 저출력 운행으로 전환 시에 리튬 전지 모듈의 고출력과 납 축전지 모듈의 저출력의 두 가지 모드 중에서 하나를 선택할 수밖에 없었다. 그러나 본 발명에 따른 하이브리드 모듈 시스템의 경우 고출력 리튬 전지 모듈에서 저출력 납 축전지 모듈로 바로 전환하는 대신에 리튬 전지 모듈의 일부 모듈과 납 축전지 모듈이 병렬로 결합된 중간 출력 상태로 전환한 다음 저출력 납 축전지 모듈로 전환하는 것이 가능하다. 그 반대의 급격한 출력 상승의 경우도 마찬가지이다. 경우에 따라 다단계 출력 감소나 출력 상승도 가능하여 운전자나 탑승객의 승차감 향상은 물론 운영 에너지 절약 및 효율 향상도 기할 수 있다.
회생제동에 따른 충전이나 일반 전원을 이용한 충전 등이 필요한 경우에는 도 6에 도시된 바와 같이, 하나의 리튬 전지 모듈을 충전용으로 분리하거나, 도 5에 도시된 바와 같이, 두 개의 리튬 전지 모듈 모두를 충전용으로 분리하여 충전장치와 연결할 수 있다. 납 축전지 모듈(12)은 충전효율이 낮으며, 충전속도가 늦기 때문에 충전 시에는 리튬 전지 모듈(11)을 납 축전지 모듈(12)과 분리하여, 충전 장치와 연결하는 것이 바람직할 수 있기 때문이다.
특히, 납 축전지 모듈(12)은 회생제동에 따른 충전이 거의 되지 않으므로, 회생제동 시에는 회생제동시스템(7)을 전압이 낮거나 충전율이 낮아서 사용되지 않는 상태의 리튬 전지 모듈(11)과 우선적으로 연결하여 그 모듈을 먼저 충전하는 것이 바람직하다.
또한, 리튬 전지 모듈(11)이 충전되면, 충전된 리튬 전지 모듈(11)의 전기에너지를 이용해서 납 축전지 모듈(12)을 충전하는 방법으로 납 축전지 모듈(12)을 충전할 수 있다. 이 경우에는 제어기(30)가 충전된 리튬 전지 모듈(11)과 충전 대상인 납 축전지 모듈(12)이 서로 연결되도록 스위칭 네트워크(15)의 배열모드를 전환할 수 있는 제어 신호를 스위칭 네트워크(15)에 송신한다.
다시 설명하면, 회생제동시스템(7)이나 다른 충전장치는 리튬 전지 모듈(11)을 충전하고, 납 축전지 모듈(12)은 리튬 전지 모듈(11)에 저장된 전기에너지를 통해서 충전되는 것이 바람직하다. 또한, 일부 납 축전지 모듈(12)은 충전장치를 통해서 충전되고, 나머지 납 축전지 모듈(12)은 리튬 전지 모듈(11)에 저장된 전기 에너지를 통해서 충전될 수도 있다. 납 축전지 모듈(12)의 충전은 리튬 전지 모듈(11)의 충전이 완료된 상태 또는 충전이 진행되는 상태에서 이루어질 수 있다.
이와 같이, 본 실시예에 따른 하이브리드 에너지 저장 모듈 시스템은 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 상태와 주행 상태에 따라서 에너지 저장 장치(20)의 배열모드를 적절하게 변경함으로써, 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 균형을 맞출 수 있다. 이를 통해서 전지의 수명을 향상시킬 수 있다.
이하, 상술한 하이브리드 에너지 저장 모듈 시스템의 작용을 도 10을 참조하여 설명한다.
차량의 주행이 시작되면, 제1감지유닛(21)과 제2감지유닛(22)은 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 셀들의 온도, 전압 등을 측정한다(S1, S2).
다음, 제어기(30)의 측정부(32)는 제1감지유닛(21)과 제2감지유닛(22)에서 측정된 데이터를 이용하여, 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 충전율, 건전도 등을 측정한다(S3). 충전율 측정결과를 통해서 일단 주행이 가능한 상태인지를 판단한다(S4). 측정결과 주행할 수 있는 상태라면 측정된 충전율은 전기자동차의 운전석에 설치된 디스플레이를 통해서 운전자에게 전달된다. 만약, 리튬 전지 모듈(11)과 납 축전지 모듈(12) 모두 충전율이 낮아서 충전이 필요한 경우에는 전기자동차의 운전석에 설치된 디스플레이를 통해서 운전자에게 충전이 필요함을 알린다(S12).
다음, 제어기(30)의 비교부(33)는 제1감지유닛(21)에서 측정된 리튬 전지 모듈(11)의 각 셀의 온도 값과 기준온도를 비교한다(S5). 또한, 제2감지유닛(22)에서 측정된 납 축전지 모듈(12)의 각 셀의 전압 값과 기준전압을 비교한다(S6). 비교결과 리튬 전지 모듈(11)의 각 셀의 온도 값이 기준온도 이상이고, 납 축전지 모듈(12)의 각 셀의 전압 값이 기준전압 이하라 주행이 어려운 경우에는 전기자동차의 운전석에 설치된 디스플레이를 통해서 운전자에게 경고를 하여 운전자가 대처할 수 있도록 한다(S13). 또한, 필요한 경우에는 제어기(30)가 전기자동차의 운행을 중지시킨다.
다음, 제어기(30)는 모터컨트롤러(2)의 모터제어기를 통해서 차량의 주행상태 정보를 수신한다(S8). 차량이 정속으로 주행하고 있는지, 정지하였다 다시 출발하는지, 언덕길을 주행하고 있는지 여부 등과 같은 차량의 주행상태 정보를 수신한다.
S4 내지 S8 단계는 모두 제어기(30)에서 진행되며, 동시에 진행되거나 상술한 순서와 다른 순서로 진행될 수 있다.
다음, 제어기(30)의 신호 생성부(34)는 S4 내지 S8 단계에서 얻어진 결과를 통해서 배열모드를 결정하여 제어신호를 생성하여, 에너지 저장 장치(20)에 송신한다(S9).
다음, 에너지 저장 장치(20)는 제어신호에 따라서 리튬 전지 모듈(11)과 납 축전지 모듈(12)을 배열한 후 방전한다(S10).
일정시간이 경과(S11)하면, S1 내지 S10 단계를 다시 반복한다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.
[부호의 설명]
1: 모터 2: 모터컨트롤러
3: 감속기어
10: 하이브리드 에너지 저장 모듈 시스템
20: 에너지 저장 장치 11: 리튬 전지 모듈
12: 납 축전지 모듈 13: 스위칭 네트워크
15: 스위치 21: 제1감지유닛
22: 제2감지유닛 30: 제어기
40: 충전회로

Claims (7)

  1. 부하의 구동에 필요한 전력을 공급하는 에너지 저장 모듈 시스템으로서,
    적어도 하나의 리튬 전지 모듈과, 적어도 하나의 납 축전지 모듈과, 상기 리튬 전지 모듈과 납 축전지 모듈 전체 또는 일부를 서로 연결하여 서로 다른 배열모드를 이루도록 구성된 스위칭 네트워크를 포함하며, 상기 부하에 연결되어 전력을 공급하도록 구성된 에너지 저장 장치와,
    상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 신호 생성부 및 상기 제어신호를 상기 스위칭 네트워크에 송신하는 송신부를 구비한 제어기를 포함하며,
    상기 에너지 저장 장치의 출력의 급격한 변화를 방지하도록, 상기 제어기는 상기 리튬 전지 모듈이 직렬로 연결된 제2배열모드에서 상기 납 축전지 모듈이 직렬로 연결된 제3배열모드로 상기 에너지 저장 장치의 배열모드가 변환되거나, 상기 제3배열모드에서 제2배열모드로 상기 에너지 저장 장치의 배열모드가 변환될 때, 서로 병렬로 연결된 복수의 리튬 전지 모듈 블록 또는 하나의 리튬 전지 모듈과 서로 병렬로 연결된 복수의 납 축전지 모듈 블록 또는 하나의 납 축전지 모듈이 직렬로 연결된 제1배열모드를 거쳐서 변환되도록 하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  2. 제1항에 있어서,
    상기 제어기는 회생제동에 의한 상기 에너지 저장 장치의 충전 시에 상기 에너지 저장 장치의 하나 또는 그 이상의 리튬 전지 모듈만이 충전되도록, 상기 에너지 저장 장치의 배열모드가 변환되도록 하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  3. 제1항에 있어서,
    상기 제어기는 상기 에너지 저장 장치의 충전 시에 적어도 하나의 납 축전지 모듈이 먼저 충전된 리튬 전지 모듈의 전기에너지를 이용하여 충전되도록 상기 에너지 저장 장치의 배열모드가 변환되게 하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  4. 제1항에 있어서,
    상기 리튬 전지 모듈의 온도 및 전압을 측정하도록 구성된 제1감지유닛과, 상기 납 축전지 모듈의 온도 및 전압을 측정하도록 구성된 제2감지유닛을 더 포함하며,
    상기 제어기는,
    상기 제1감지유닛 및 제2감지유닛에서 측정된 값과 상기 부하의 구동에 필요한 전력 값을 수신하는 수신부와, 상기 수신부에서 수신한 상기 제1감지유닛 및 제2감지유닛에서 측정된 값을 이용하여 상기 리튬 전지 모듈 및 납 축전지 모듈의 잔존용량을 측정하는 측정부와, 상기 수신부에서 수신한 상기 리튬 전지 모듈의 온도를 기준온도와 비교하고 상기 납 축전지 모듈의 전압을 기준전압과 비교하는 비교부를 더 포함하며,
    상기 신호 생성부는 상기 수신부에서 수신한 구동에 필요한 전력 값과 상기 측정부에서 측정된 잔존용량과 상기 비교부의 비교결과를 이용하여 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며, 상기 송신부는 상기 제어신호를 상기 스위칭 네트워크에 송신하는 하이브리드 에너지 저장 모듈 시스템.
  5. 제4항에 있어서,
    상기 제어기는 리튬 전지 모듈 중 그 온도가 기준온도 이상인 리튬 전지 모듈과 납 축전지 모듈 중 그 전압이 기준전압 이하인 납 축전지 모듈이 부하와 연결되지 않도록, 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  6. 제1항에 있어서,
    상기 스위칭 네트워크는 상기 리튬 전지 모듈과, 납 축전지 모듈들을 연결하는 네트워크에 설치된 복수의 스위치들을 포함하는 하이브리드 에너지 저장 모듈 시스템.
  7. 제1항에 있어서,
    상기 리튬 전지 모듈에 사용되는 전지는 리튬 폴리머 전지, 리튬 망간 전지, 리튬 철 전지, 리튬 이온 전지 및 리튬 공기 전지 중에서 선택되는 하이브리드 에너지 저장 모듈 시스템.
PCT/KR2016/000584 2015-01-20 2016-01-20 하이브리드 에너지 저장 모듈 시스템 WO2016117925A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017556504A JP6419992B2 (ja) 2015-01-20 2016-01-20 ハイブリッドエネルギー貯蔵モジュールシステム
US15/545,100 US10286805B2 (en) 2015-01-20 2016-01-20 Hybrid energy storage module system
EP16740398.9A EP3248827B1 (en) 2015-01-20 2016-01-20 Hybrid energy storage module system
CN201680000100.1A CN106068203B (zh) 2015-01-20 2016-01-20 混合能量存储模块系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0009369 2015-01-20
KR1020150009369A KR101553063B1 (ko) 2015-01-20 2015-01-20 하이브리드 에너지 저장 모듈 시스템

Publications (1)

Publication Number Publication Date
WO2016117925A1 true WO2016117925A1 (ko) 2016-07-28

Family

ID=54248269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000584 WO2016117925A1 (ko) 2015-01-20 2016-01-20 하이브리드 에너지 저장 모듈 시스템

Country Status (6)

Country Link
US (1) US10286805B2 (ko)
EP (1) EP3248827B1 (ko)
JP (1) JP6419992B2 (ko)
KR (1) KR101553063B1 (ko)
CN (1) CN106068203B (ko)
WO (1) WO2016117925A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190207257A1 (en) * 2016-09-06 2019-07-04 Murata Manufacturing Co., Ltd. Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
CN115268536A (zh) * 2022-08-02 2022-11-01 阳光电源股份有限公司 一种储能系统的温度控制方法及相关装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744560B1 (ko) * 2015-11-04 2017-06-08 한국기술교육대학교 산학협력단 하이브리드 전기저장장치 관리 시스템
US10097010B2 (en) * 2016-04-19 2018-10-09 Infineon Technologies Ag Control of freewheeling voltage
JP6779708B2 (ja) * 2016-08-25 2020-11-04 矢崎総業株式会社 急速充電装置
DE102017222192A1 (de) * 2017-12-07 2019-06-13 Audi Ag HV-Batterieanordnung für ein Kraftfahrzeug, Bordnetz, Kraftfahrzeug und Verfahren zum Steuern einer HV-Batterieanordnung
JP7006263B2 (ja) * 2017-12-27 2022-01-24 トヨタ自動車株式会社 充電装置
KR102413075B1 (ko) * 2017-12-29 2022-06-24 두산산업차량 주식회사 전동 지게차 및 이의 구동 방법
KR102020566B1 (ko) 2018-01-18 2019-11-05 주식회사 블루윙모터스 이륜 또는 삼륜 차량용 전기 에너지 제어 장치 및 방법
JP6977581B2 (ja) 2018-01-22 2021-12-08 トヨタ自動車株式会社 蓄電システム
JP6992540B2 (ja) * 2018-01-23 2022-01-13 トヨタ自動車株式会社 電池システム
DE102018104414A1 (de) * 2018-02-27 2019-08-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur elektrischen Aufladung eines Energiespeichers
CN108933310B (zh) * 2018-05-25 2021-07-02 四川大学 一种高容量高功率型锂离子/空气混合电池系统
KR101930214B1 (ko) 2018-06-27 2018-12-17 주식회사 제이에스영테크 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템
EP3841655A4 (en) * 2018-08-20 2022-01-19 BTU Research LLC POWER OVER ETHERNET INTEGRATED WITH OR IN A FACILITY SECURITY SYSTEM
CN109484246B (zh) * 2018-11-06 2022-01-14 贾哲敏 电动汽车电池连接结构
CN109532564A (zh) * 2018-12-14 2019-03-29 宁波石墨烯创新中心有限公司 一种电源系统及电动汽车
DE102018221836A1 (de) * 2018-12-14 2020-06-18 Robert Bosch Gmbh Energiespeicher für ein elektrisch antreibbares Fortbewegungsmittel
CN113574714A (zh) * 2019-05-16 2021-10-29 Oppo广东移动通信有限公司 供电电路、充放电电路与智能终端
US11548396B2 (en) * 2020-02-05 2023-01-10 Gravic, Inc. System and method to reconfigure internal power source and load impedance elements
WO2023167883A1 (en) * 2022-03-02 2023-09-07 REON Technology, Inc. Software-defined energy storage system interface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117341A (ja) * 1997-06-18 1999-01-12 Toshiba Corp 電源装置
JP2010093993A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp 電源管理装置およびこれを備えた車両
JP2013031249A (ja) * 2011-07-27 2013-02-07 Mitsubishi Motors Corp バッテリ装置の充電システム
KR20130042088A (ko) * 2011-10-18 2013-04-26 송영길 전기자동차용 하이브리드 배터리 시스템
US20140097799A1 (en) * 2009-12-30 2014-04-10 Lg Chem, Ltd. Method and apparatus for managing battery pack

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037031B2 (ja) * 2000-03-27 2008-01-23 日本碍子株式会社 直列段数切換電源装置
JP2004025979A (ja) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
KR100559334B1 (ko) 2003-12-30 2006-03-15 현대자동차주식회사 전기자동차의 배터리 냉각장치 및 방법
KR20050070727A (ko) 2003-12-30 2005-07-07 현대자동차주식회사 전기자동차의 배터리 냉각장치
CN101318489B (zh) * 2008-05-07 2011-09-21 中国科学院电工研究所 车载电池管理系统控制方法
JP2010022108A (ja) * 2008-07-09 2010-01-28 Fuji Heavy Ind Ltd 電源装置
KR20110081622A (ko) 2010-01-08 2011-07-14 (주)브이이엔에스 전기자동차 및 전기자동차의 배터리 냉각 방법
TWI398068B (zh) * 2010-01-22 2013-06-01 Nat Chip Implementation Ct Nat Applied Res Lab 單元化充放電之電池電源管理系統及其可程式化電池管理模組
DE102010041040A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh Energieversorgungsnetz und Verfahren zum Laden mindestens einer als Energiespeicher für einen Gleichspannungszwischenkreis dienenden Energiespeicherzelle in einem Energieversorgungsnetz
KR101223623B1 (ko) * 2011-01-05 2013-01-17 삼성에스디아이 주식회사 에너지 저장 장치
DE102011003810A1 (de) * 2011-02-08 2012-08-09 Robert Bosch Gmbh Steuerbarer Energiespeicher und Verfahren zum Betreiben eines steuerbaren Energiespeichers
CN103597697A (zh) * 2011-06-09 2014-02-19 丰田自动车株式会社 受电装置、车辆以及非接触供电系统
CN102377228A (zh) * 2011-12-02 2012-03-14 苏州海格新能源汽车电控系统科技有限公司 用于混合动力客车复合电源的管理系统电路
US9461482B2 (en) * 2014-04-15 2016-10-04 Win Sheng Cheng Multi-chemistry battery pack system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117341A (ja) * 1997-06-18 1999-01-12 Toshiba Corp 電源装置
JP2010093993A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp 電源管理装置およびこれを備えた車両
US20140097799A1 (en) * 2009-12-30 2014-04-10 Lg Chem, Ltd. Method and apparatus for managing battery pack
JP2013031249A (ja) * 2011-07-27 2013-02-07 Mitsubishi Motors Corp バッテリ装置の充電システム
KR20130042088A (ko) * 2011-10-18 2013-04-26 송영길 전기자동차용 하이브리드 배터리 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248827A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190207257A1 (en) * 2016-09-06 2019-07-04 Murata Manufacturing Co., Ltd. Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
US11005126B2 (en) * 2016-09-06 2021-05-11 Murata Manufacturing Co., Ltd. Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
CN115268536A (zh) * 2022-08-02 2022-11-01 阳光电源股份有限公司 一种储能系统的温度控制方法及相关装置
CN115268536B (zh) * 2022-08-02 2024-05-14 阳光电源股份有限公司 一种储能系统的温度控制方法及相关装置

Also Published As

Publication number Publication date
CN106068203B (zh) 2017-12-08
US10286805B2 (en) 2019-05-14
EP3248827A4 (en) 2018-01-24
EP3248827A1 (en) 2017-11-29
US20170368958A1 (en) 2017-12-28
JP2018506260A (ja) 2018-03-01
CN106068203A (zh) 2016-11-02
EP3248827B1 (en) 2018-12-19
KR101553063B1 (ko) 2015-09-15
JP6419992B2 (ja) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2016117925A1 (ko) 하이브리드 에너지 저장 모듈 시스템
WO2013058568A1 (ko) 전기자동차용 하이브리드 배터리 시스템
WO2020004768A1 (ko) 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템
CN103072490B (zh) 车辆用的电源装置和具备该电源装置的车辆
CN101165963B (zh) 电池管理系统及其驱动方法
EP2993074A1 (en) Battery pack and hybrid vehicle including the battery pack
EP2874270A1 (en) Battery pack and electric vehicle
WO2012018206A2 (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
WO2011105794A2 (ko) 직병렬 전환회로를 구비한 하이브리드 전지 시스템
WO2011148926A1 (ja) 電源装置
CN102823107A (zh) 蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置
WO2013089516A1 (ko) 전기자동차 및 그 제어방법
WO2013089517A1 (ko) 전기자동차 및 그 제어방법
EP4035922B1 (en) On-board distributed power supply system and on-board power supply control method and apparatus
CN214189325U (zh) 一种车用充电宝系统
CN215904349U (zh) 一种基于分布式汽车电池的增程系统
WO2022014953A1 (ko) 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템
JP2012074333A (ja) 蓄電装置及びそれに用いられる監視制御装置
KR20210028991A (ko) 전기자동차의 보조배터리 운영 방법
CN214607166U (zh) 一种具有均衡电路结构的共享式储能系统
KR102594856B1 (ko) 전기차의 탈착형 보조 배터리 운용 시스템 및 그 방법
KR20190023388A (ko) 전기 자동차의 충전 제어장치 및 그 방법
TW202200442A (zh) 跨坐型車輛電池組及跨坐型車輛
WO2023158427A1 (en) Electrical storage for battery electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556504

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016740398

Country of ref document: EP