CN102823107A - 蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置 - Google Patents

蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置 Download PDF

Info

Publication number
CN102823107A
CN102823107A CN2011800038198A CN201180003819A CN102823107A CN 102823107 A CN102823107 A CN 102823107A CN 2011800038198 A CN2011800038198 A CN 2011800038198A CN 201180003819 A CN201180003819 A CN 201180003819A CN 102823107 A CN102823107 A CN 102823107A
Authority
CN
China
Prior art keywords
state
battery module
detection portion
detection signal
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800038198A
Other languages
English (en)
Other versions
CN102823107B (zh
Inventor
大仓计美
国光智德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN102823107A publication Critical patent/CN102823107A/zh
Application granted granted Critical
Publication of CN102823107B publication Critical patent/CN102823107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

本发明提供一种蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置。一个状态检测部检测与一个蓄电池模块的蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的一个检测信号。另一个状态检测部检测与另一个蓄电池模块的另一个蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的另一个检测信号。由一个状态检测部产生的一个检测信号通过一个运算处理装置发送至外部。由另一个状态检测部产生的另一个检测信号通过另一个运算处理装置被发送至外部。由一个状态检测部产生的一个检测信号通过信号线被传递至另一个运算处理装置及另一个状态检测部中的至少一方。

Description

蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置
技术领域
本发明涉及蓄电池系统、以及具备该蓄电池系统的电动车辆、移动体、电力贮藏装置及电源装置。
背景技术
在被用作电动机动车等移动体的驱动源或蓄电装置的蓄电池系统中,设置了可充放电的多个蓄电池模块。各蓄电池模块具有多个电池(蓄电池单元)例如被串联连接的结构。另外,在蓄电池系统中设置了用于检测蓄电池单元的过充电及过放电等异常的检测装置。
在专利文献1记载的车载组电池控制装置中,对应于构成组电池的多个单元组而设置了多个简易单元过充放电检测装置。各简易单元过充放电检测装置判定在所对应的单元组的蓄电池单元中是否发生了过充电或过放电,并将其结果发送至电池控制器。
专利文献1:日本特开2003-79059号公报
发明概要
在专利文献1记载的车载组电池控制装置中,由电池控制器检测单元组的蓄电池单元的过充电或过放电。然而,在简易单元过充放电检测装置与电池控制器之间的包括CPU(中央运算处理装置)或IC(集成电路)的通信路径产生了不良情况时,无法将蓄电池单元的过充电或过放电的判定结果发送至电池控制器。这种情况下,无法使蓄电池单元的充电及放电停止。其结果,车载组电池控制装置的可靠性下降了。
发明内容
本发明的目的在于提供一种既能抑制成本增加又能提高可靠性的蓄电池系统、以及具备该蓄电池系统的电动车辆、移动体、电力贮藏装置及电源装置。
本发明涉及的一种蓄电池系统,其具备:第1蓄电池模块;第2蓄电池模块;和第1通信路径;第1蓄电池模块包括:第1蓄电池单元组,其包括一个或多个蓄电池单元;第1状态检测部,其检测与第1蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的第1检测信号;和第1通信电路,其将由第1状态检测部产生的第1检测信号发送至外部;第2蓄电池模块包括:第2蓄电池单元组,其包括1个或多个蓄电池单元;第2状态检测部,其检测与第2蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的第2检测信号;和第2通信电路,其将由第2状态检测部产生的第2检测信号发送至外部;第1通信路径被设置成:将由第1状态检测部产生的第1检测信号传递至第2通信电路及第2状态检测部中的至少一方。
根据本发明,既能抑制成本增加,又能提高蓄电池系统以及具备该蓄电池系统的电动车辆、移动体、电力贮藏装置及电源装置的可靠性。
附图说明
图1是表示第1实施方式涉及的蓄电池系统的结构的框图。
图2是表示蓄电池模块的电压检测部、状态检测部及均衡化电路的结构的框图。
图3是表示印制电路基板的一结构例的示意性俯视图。
图4是表示印制电路基板的其他结构例的示意性俯视图。
图5是表示各蓄电池模块包括多个电压检测部及多个状态检测部的情况下的结构的框图。
图6是表示第2实施方式涉及的蓄电池系统的结构的框图。
图7是表示第3实施方式涉及的蓄电池系统的结构的框图。
图8是表示第4实施方式涉及的蓄电池系统的结构的框图。
图9是表示蓄电池模块的一例的外观立体图。
图10是表示具备蓄电池系统的电动机动车的结构的框图。
图11是表示电源装置的结构的框图。
图12是表示第1变形例涉及的蓄电池系统的结构的框图。
图13是表示第2变形例涉及的蓄电池系统的结构的框图。
图14是表示第2变形例的其他例中的蓄电池系统的结构的框图。
图15是表示第3变形例涉及的蓄电池系统的结构的框图。
图16是表示第3变形例的其他例中的蓄电池系统的结构的框图。
图17是表示第4变形例涉及的蓄电池系统的结构的框图。
具体实施方式
[1]第1实施方式
以下,参照附图,说明第1实施方式涉及的蓄电池系统。此外,本实施方式涉及的蓄电池系统被搭载于以电力为驱动源的电动车辆(例如,电动机动车)。蓄电池系统也可用于具备可充放电的多个蓄电池单元的蓄电装置或民生设备等。
(1)蓄电池系统的结构
图1是表示第1实施方式涉及的蓄电池系统的结构的框图。如图1所示,蓄电池系统500具备:多个蓄电池模块100、蓄电池ECU(ElectronicControl Unit:电子控制单元)510、接触器520、HV(High Voltage:高压)连接器530及服务插头(service plug)540。在本实施方式中,蓄电池系统500包括2个蓄电池模块100。在以下的说明中,将2个蓄电池模块100分别称作蓄电池模块100a、100b。
各蓄电池模块100a、100b包括:由多个蓄电池单元10构成的蓄电池单元组BL、电压检测部20、状态检测部30、运算处理装置40、通信驱动器60及均衡化电路70。蓄电池单元组BL的多个蓄电池单元10被串联连接。蓄电池单元组BL彼此相邻地配置,并且作为蓄电池块一体式保持。在蓄电池单元组BL中安装了用于检测温度的多个热敏电阻TH(参照图9)。各蓄电池单元10例如是锂离子电池或镍氢电池等二次电池。
多个蓄电池模块100a、100b的蓄电池单元组BL通过电源线及服务插头540被串联连接。服务插头540包括用于将蓄电池模块100a、100b之间电连接或电切断的开关。通过接通服务插头540的开关,使得多个蓄电池模块100a、100b的所有蓄电池单元10被串联连接。在蓄电池系统500维护等时,服务插头540的开关被断开。这种情况下,在蓄电池模块100a、100b中没有电流流过。由此,即便用户与蓄电池模块100a、100b接触,也能够防止用户触电。
首先,对蓄电池模块100a的各部分动作进行说明。电压检测部20检测多个蓄电池单元10的端子电压,将表示检测出的端子电压的值的检测信号DA给予至运算处理装置40。
状态检测部30检测有无多个蓄电池单元10的端子电压的异常,作为与所对应的蓄电池单元组BL的充放电相关的异常,并产生表示该检测结果的检测信号DT1。由蓄电池模块100a的状态检测部30产生的检测信号DT1,经由连接线Q1而给予至所对应的运算处理装置40,并且经由信号线P1而给予至蓄电池模块100b的运算处理装置40。为了防止各蓄电池单元10的过放电及过充电,规定了端子电压的容许电压范围。在本实施方式中,状态检测部30检测各蓄电池单元10的端子电压是否为容许电压范围的上限值(以下称作上限电压)以上,并且检测端子电压是否为容许电压范围的下限值(以下称作下限电压)以下。
在所对应的蓄电池单元组BL中的至少一个蓄电池单元10的端子电压为上限电压以上的情况下、或者为下限电压以下的情况下(检测出异常时),状态检测部30产生表示异常的例如“H”电平的检测信号DT1。在所对应的蓄电池单元组BL的所有蓄电池单元10的端子电压处于容许电压范围内的情况下(检测出正常时),状态检测部30产生表示正常的例如“L”电平的检测信号DT1。
运算处理装置40例如由CPU及存储器、或微型计算机而构成。该运算处理装置40经由通信驱动器60进行例如CAN(Controller AreaNetwork)通信。由此,运算处理装置40将由所对应的状态检测部30给予的检测信号DT1及由后述的蓄电池模块100b的状态检测部30给予的检测信号DT2经由通信驱动器60及总线BS而发送至蓄电池ECU510。另外,运算处理装置40基于由电压检测部20给予的检测信号DA,将多个蓄电池单元10的端子电压的值经由通信驱动器60及总线BS而发送至蓄电池ECU510。而且,运算处理装置40将由后述的图9的热敏电阻TH给予的蓄电池模块100a的温度的值经由通信驱动器60及总线BS而发送至蓄电池ECU510。
另外,运算处理装置40利用多个蓄电池单元10的端子电压的值及温度的值来进行各种运算处理及判定处理。而且,运算处理装置40从蓄电池ECU510经由总线BS及通信驱动器60而接收各种指令信号。
均衡化电路70根据运算处理装置40的控制,进行将蓄电池单元组BL的多个蓄电池单元10的端子电压均衡化的均衡化处理。
蓄电池模块100b的结构及动作,除了下述点之外,都与蓄电池模块100a的结构与动作相同。
蓄电池模块100b的状态检测部30检测有无多个蓄电池单元10的端子电压的异常,作为与所对应的蓄电池单元组BL的充放电相关的异常,并产生表示该检测结果的检测信号DT2。由蓄电池模块100b的状态检测部30产生的检测信号DT2,经由连接线Q2而给予至所对应的运算处理装置40,并且经由信号线P2而给予至蓄电池模块100a的运算处理装置40。
在所对应的蓄电池单元组BL中的至少一个蓄电池单元10的端子电压为上限电压以上的情况下、或者为下限电压以下的情况下(检测出异常时),状态检测部30产生表示异常的例如“H”电平的检测信号DT2。在所对应的蓄电池单元组BL的所有蓄电池单元10的端子电压处于容许电压范围内的情况下(检测出正常时),状态检测部30产生表示正常的例如“L”电平的检测信号DT2。
蓄电池模块100b的运算处理装置40将由所对应的状态检测部30给予的检测信号DT2及由蓄电池模块100a的状态检测部30给予的检测信号DT1经由通信驱动器60及总线BS而发送至蓄电池ECU510。另外,运算处理装置40将由后述的图9的热敏电阻TH给予的蓄电池模块100b的温度的值经由通信驱动器60及总线BS而发送至蓄电池ECU510。
蓄电池ECU510基于由蓄电池模块100a、100b的运算处理装置40给予的多个蓄电池单元10的端子电压的值,计算各蓄电池单元10的充电量。另外,蓄电池ECU510基于由各蓄电池模块100a、100b的运算处理装置40给予的多个蓄电池单元10的端子电压的值,判定有无与各蓄电池模块100a、100b的蓄电池单元组BL的充放电相关的异常。与蓄电池模块100a、100b的蓄电池单元组BL的充放电相关的异常,例如包括在蓄电池单元组BL中流过的电流、蓄电池单元10的端子电压、SOC(充电量)、过放电、过充电或温度的异常等。
而且,电池ECU510根据由蓄电池模块100a、100b的运算处理装置40给予的检测信号DT1、DT2,检测有无蓄电池模块100a、100b的多个蓄电池单元10的端子电压的异常。
与蓄电池模块100a的最高电位的正电极连接的电源线、以及与蓄电池模块100b的最低电位的负电极连接的电源线,连接于接触器520。另外,接触器520经由HV连接器530而与电动车辆的电机等负载连接。在蓄电池模块100a、100b中产生了异常的情况下,蓄电池ECU510使接触器520断开。由此,在异常时在多个蓄电池单元10中没有电流流过,故防止了蓄电池模块100a、100b的异常发热。
蓄电池ECU510经由总线而与电动车辆的主控制部300(参照后述的图10)连接。从蓄电池ECU510向主控制部300给予各蓄电池模块100a、100b的充电量(蓄电池单元10的充电量)。主控制部300基于其充电量,控制电动车辆的动力(例如,电机的旋转速度)。另外,若各蓄电池模块100a、100b的充电量变少,则主控制部300控制与电源线连接的未图示的发电装置,对各蓄电池模块100a、100b进行充电。
(2)电压检测部及状态检测部的结构
图2是表示蓄电池模块100a的电压检测部20、状态检测部30及均衡化电路70的结构的框图。
电压检测部20例如由ASIC(Application Specific Integrated Circuit:特定用途集成电路)构成。电压检测部20包括:多个差动放大器21、多路转换器(multiplexer)22、A/D(模拟/数字)变换器23及发送电路24。
各差动放大器21具有2个输入端子和输出端子。各差动放大器21将输入于2个输入端子的电压进行差动放大,并从输出端子输出被放大后的电压。各差动放大器21的2个输入端子分别经由导体线W1而与所对应的蓄电池单元10的正电极及负电极连接。由此,各蓄电池单元10的正电极与负电极之间的电压被各差动放大器21差动放大。各差动放大器21的输出电压相当于各蓄电池单元10的端子电压。从多个差动放大器21输出的端子电压被给予至多路转换器22。多路转换器22将由多个差动放大器21给予的端子电压依次输出至A/D变换器23。
A/D变换器23将由多路转换器22输出的端子电压变换成数字值。由A/D变换器23得到的数字值作为表示端子电压的值的检测信号DA,经由发送电路24而给予至运算处理装置40(参照图1)。
状态检测部30例如由ASIC构成。状态检测部30包括:多个差动放大器31、多路转换器32、开关电路33、基准电压输出部34、35、比较器36、检测信号输出电路37、接收电路38a及发送电路38b。
各差动放大器31具有2个输入端子和输出端子。各差动放大器31将输入于2个输入端子的电压进行差动放大,并从输出端子输出被放大后的电压。各差动放大器31的2个输入端子分别经由导体线W1而与所对应的蓄电池单元10的正电极及负电极连接。由此,各蓄电池单元10的正电极与负电极之间的电压被各差动放大器31差动放大。各差动放大器31的输出电压相当于各蓄电池单元10的端子电压。由多个差动放大器31输出的端子电压被给予至多路转换器32。多路转换器32将由多个差动放大器31给予的端子电压依次输出至比较器36。
开关电路33具有端子CP0、CP1、CP2。基准电压输出部34向开关电路33的端子CP1输出上限电压Vth_O。基准电压输出部35向输出端子CP2输出下限电压Vth_U。上限电压Vth_O例如被设定为4.2V(4.19V以上且4.21V以下),下限电压Vth_U例如被设定为约2.0V(1.99V以上且2.01V以下)。
比较器36具有2个输入端子和输出端子。比较器36的一个输入端子与多路转换器32连接。比较器36的另一个输入端子与开关电路33的端子CP0连接。开关电路33以固定周期按照端子CP0交替连接于多个端子CP1、CP2的方式进行切换。由此,向比较器36的一个输入端子给予由多路转换器32输出的端子电压,且向比较器36的另一个输入端子交替地给予上限电压Vth_O及下限电压Vth_U。这种情况下,比较器36将由多路转换器32给予的蓄电池单元10的端子电压与上限电压Vth_O及下限电压Vth_U顺序地进行比较,并将表示比较结果的信号输出至检测信号输出电路37。
检测信号输出电路37基于比较器36的输出信号,判定多个蓄电池单元10中的至少一个单元的端子电压是否为上限电压Vth_O以上,并且判定多个蓄电池单元10中的至少一个单元的端子电压是否为下限电压Vth_U以下。
在多个蓄电池单元10中的至少一个单元的端子电压为上限电压Vth_O以上的情况下、或者为下限电压Vth_U以下的情况下,检测信号输出电路37判定出所对应的蓄电池单元组BL的端子电压异常。在所有蓄电池单元10的端子电压不足上限电压Vth_O且超过下限电压Vth_U的情况下,检测信号输出电路37判定出所对应的蓄电池单元组BL的端子电压正常。
在图1及后述的图6的例子中,不向接收电路38a给予检测信号。因此,也可不设置接收电路38a。在判定出所对应的蓄电池单元组BL的端子电压异常的情况下,检测信号输出电路37产生表示异常的例如“H”电平的检测信号DT1。在判定出所对应的蓄电池单元组BL的端子电压正常的情况下,检测信号输出电路37产生表示正常的例如“L”电平的检测信号DT1。发送电路38b将由检测信号输出电路37产生的检测信号DT1通过图1的连接线Q1而给予至所对应的运算处理装置40,并且通过图1的信号线P1而给予至蓄电池模块100b的运算处理装置40。
均衡化电路70包括由电阻R及开关元件SW构成的多组串联电路。在各蓄电池单元10的正电极与负电极之间连接了由电阻R及开关元件SW构成的1组串联电路。开关元件SW的接通和断开,经由图1的运算处理装置40而被蓄电池ECU510控制。此外,在通常状态下,开关元件SW处于断开状态。
图1的蓄电池模块100b的电压检测部20、状态检测部30及均衡化电路70的结构,除了下述点之外,都与蓄电池模块100a的电压检测部20、状态检测部30及均衡化电路70的结构和动作相同。
在判定出所对应的蓄电池单元组BL的端子电压异常的情况下,蓄电池模块100b的检测信号输出电路37产生表示异常的例如“H”电平的检测信号DT2。在判定出所对应的蓄电池单元组BL的端子电压正常的情况下,检测信号输出电路37产生表示正常的例如“L”电平的检测信号DT2。蓄电池模块100b的发送电路38b将由检测信号输出电路37产生的检测信号DT2通过图1的连接线Q2而给予至所对应的运算处理装置40,并且通过信号线P2而给予至蓄电池模块100a的运算处理装置40。
(3)印制电路基板的一结构例
图1的各蓄电池模块100a、100b的电压检测部20、状态检测部30、运算处理装置40、通信驱动器60及均衡化电路70被安装于刚性印制电路基板(以下称作印制电路基板)。图3是表示印制电路基板的一结构例的示意性俯视图。如图3所示,在印制电路基板110中还安装了绝缘元件DIa、DIb、DIc、及连接器CNa、CNb、CNc、CNd。另外,印制电路基板110具有第1安装区域MT1、第2安装区域MT2及带状的绝缘区域INS。
第2安装区域MT2形成在印制电路基板110的一个角部。绝缘区域INS沿着第2安装区域MT2延伸地形成。第1安装区域MT1形成在印制电路基板110的剩余部分。第1安装区域MT1和第2安装区域MT2通过绝缘区域INS而彼此分离。由此,第1安装区域MT1和第2安装区域MT2被绝缘区域INS电绝缘。
在第1安装区域MT1中安装了电压检测部20、状态检测部30及均衡化电路70。作为电压检测部20、状态检测部30及均衡化电路70的电源,而将蓄电池单元组BL的多个蓄电池单元10与电压检测部20、状态检测部30及均衡化电路70连接。
除了电压检测部20、状态检测部30及均衡化电路70的安装区域以及连接线的形成区域之外,还在第1安装区域MT1中形成了接地图案GND1。接地图案GND1被保持为蓄电池单元组BL的多个蓄电池单元10的基准电位(接地电位)。
在第2安装区域MT2中安装了运算处理装置40、通信驱动器60及连接器CNa~CNd。作为运算处理装置40及通信驱动器60的电源,而将电动车辆的非动力用蓄电池BAT与运算处理装置40及通信驱动器60连接。
除了运算处理装置40、通信驱动器60及连接器CNa~CNd的安装区域以及多个连接线的形成区域之外,还在第2安装区域MT2中形成了接地图案GND2。接地图案GND2被保持为非动力用蓄电池BAT的基准电位(接地电位)。
这样,由蓄电池单元组BL的多个蓄电池单元10向电压检测部20、状态检测部30及均衡化电路70供给电力,由非动力用蓄电池BAT向运算处理装置40及通信驱动器60供给电力。由此,能够使运算处理装置40及通信驱动器60与电压检测部20、状态检测部30及均衡化电路70独立地稳定动作。
绝缘元件DIa以跨越绝缘区域INS的方式进行安装。绝缘元件DIa使电压检测部20与运算处理装置40彼此电绝缘,且在电压检测部20与运算处理装置40之间传送信号。绝缘元件DIb以跨越绝缘区域INS的方式进行安装。绝缘元件DIb使状态检测部30与运算处理装置40彼此电绝缘,且通过连接线Q1(或连接线Q2)而在状态检测部30的发送电路38b(参照图2)与运算处理装置40之间传送信号。另外,绝缘元件DIb使状态检测部30与连接器CNc彼此电绝缘,且在状态检测部30的发送电路38b(参照图2)与连接器CNc之间传送信号。绝缘元件DIc以跨越绝缘区域INS的方式进行安装。绝缘元件DIc使状态检测部30与连接器CNd彼此电绝缘,且在状态检测部30的接收电路38a(参照图2)与连接器CNd之间传送信号。作为绝缘元件DIa~DIc,例如能够采用数字隔离器或光电耦合器等。在本实施方式中,作为绝缘元件DIa~DIc而采用了数字隔离器。
在第2安装区域MT2中,经由通信驱动器60将运算处理装置40与连接器CNa连接起来。由此,由运算处理装置40输出的多个蓄电池单元10的端子电压的值、以及蓄电池模块100a、100b的温度的值,经由通信驱动器60而被给予至连接器CNa。连接器CNa连接图1的总线BS。连接器CNb与运算处理装置40连接。蓄电池模块100a的连接器CNc与蓄电池模块100b的连接器CNb,通过图1的信号线P1进行连接。蓄电池模块100a的连接器CNb与蓄电池模块100b的连接器CNc,通过图1的信号线P2进行连接。此外,在图1及后述的图6的例子中,也可不设置绝缘元件DIc和连接器CNd。
(4)印制电路基板的其他结构例
下面,说明印制电路基板110的其他结构例不同于图3的印制电路基板110之处。图4是表示印制电路基板110的其他结构例的示意性俯视图。如图4所示,运算处理装置40被安装于第1安装区域MT1而非第2安装区域MT2。
由蓄电池单元组BL的多个蓄电池单元10向运算处理装置40供给电力。这种情况下,用于向电压检测部20、状态检测部30、运算处理装置40及均衡化电路70供给电力的结构变得简单。
在第1安装区域MT2中,通过连接线Q1(或连接线Q2)将状态检测部30与运算处理装置40进行连接。连接器CNa经由通信驱动器60及绝缘元件DIa而与运算处理装置40连接。连接器CNb经由绝缘元件DIb而与运算处理装置40连接。连接器CNc经由绝缘元件DIb而与状态检测部30的发送电路38b(参照图2)连接。连接器CNd经由绝缘元件DIc而与状态检测部30的接收电路38a(参照图2)连接。通过图1的信号线P2进行连接。此外,在图1及后述的图6的例子中,也可不设置绝缘元件DIc和连接器CNd。
(5)蓄电池单元的端子电压的均衡化处理
蓄电池ECU510经由运算处理装置40而取得由电压检测部20检测出的各蓄电池单元10的端子电压的值。在这里,在判定出某一蓄电池单元10的端子电压的值高于其他蓄电池单元10的端子电压的值的情况下,蓄电池ECU510将使该蓄电池单元10所对应的均衡化电路70的开关元件SW接通的指令信号给予至运算处理装置40。由此,充电至该蓄电池单元10的电荷通过电阻R被放电。
在判定出该蓄电池单元10的端子电压的值下降至大致等于其他蓄电池单元10的端子电压的值的情况下,蓄电池ECU510将使该蓄电池单元10所对应的均衡化电路70的开关元件SW断开的指令信号给予至运算处理装置40。由此,能够确保所有蓄电池单元10的端子电压的值大致相等。因而,能够防止一部分的蓄电池单元10的过充电及过放电。其结果,能够防止蓄电池单元10的劣化。
(6)电压检测部及状态检测部的其他例
在蓄电池模块100a、100b中包含的蓄电池单元组BL的蓄电池单元10的个数多的情况下、或者电压检测部20或状态检测部30的耐压小的情况下,各蓄电池模块100a、100b也可包括被串联连接的多个电压检测部20及多个状态检测部30。
图5是表示各蓄电池模块100a、100b包括多个电压检测部20及多个状态检测部30的情况下的结构的框图。在图5中示出蓄电池模块100a的结构。在图5的例子中,蓄电池模块100a包括3个电压检测部20及3个状态检测部30。
一个电压检测部20(以下称作低电位电压检测部20L)对应于多个蓄电池单元10之中的低电位侧的1/3数目的蓄电池单元10(以下称作低电位蓄电池单元组10L)。另一个电压检测部20(以下称作中电位电压检测部20M)对应于多个蓄电池单元10之中的中电位的1/3数目的蓄电池单元10(以下称作中电位蓄电池单元组10M)。再一个电压检测部20(以下称作高电位电压检测部20H)对应于多个蓄电池单元10之中的高电位侧的1/3数目(在本例中为6个)蓄电池单元10(以下称作高电位蓄电池单元组10H)。
低电位电压检测部20L检测低电位蓄电池单元组10L的多个蓄电池单元10的端子电压。中电位电压检测部20M检测中电位蓄电池单元组10M的多个蓄电池单元10的端子电压。高电位电压检测部20H检测高电位蓄电池单元组10H的多个蓄电池单元10的端子电压。
由高电位电压检测部20H的发送电路24(参照图2)输出的检测信号DA,经由中电位电压检测部20M的发送电路24(参照图2)而被给予至低电位电压检测部20L的发送电路24(参照图2),从低电位电压检测部20L的发送电路24给予至运算处理装置40。由中电位电压检测部20M的发送电路24输出的检测信号DA被给予至低电位电压检测部20L的发送电路24,并从低电位电压检测部20L的发送电路24给与至运算处理装置40。由低电位电压检测部20L的发送电路24输出的检测信号DA被给予至运算处理装置40。
一个状态检测部30(以下称作低电位状态检测部30L)对应于低电位蓄电池单元组10L。另一个状态检测部30(以下称作中电位状态检测部30M)对应于中电位蓄电池单元组10M。再一个状态检测部30(以下称作高电位状态检测部30H)对应于高电位蓄电池单元组10H。
低电位状态检测部30L检测有无低电位蓄电池单元组10L的多个蓄电池单元10的异常。中电位状态检测部30M检测有无中电位蓄电池单元组10M的多个蓄电池单元10的异常。高电位状态检测部30H检测有无高电位蓄电池单元组10H的多个蓄电池单元10的异常。
这种情况下,高电位状态检测部30H的发送电路38b(参照图2)和中电位状态检测部30M的接收电路38a(参照图2)相连接。中电位状态检测部30M的发送电路38b(参照图2)和低电位状态检测部30L的接收电路38a(参照图2)相连接。低电位状态检测部30L的发送电路38b(参照图2)经由绝缘元件DIb(参照图3及图4)而与运算处理装置40(参照图3及图4)连接,并且经由绝缘元件DIb而与连接器CNc(参照图3及图4)连接。也可不设置高电位状态检测部30H的接收电路38a。
在高电位状态检测部30H中,在判定出所对应的高电位蓄电池单元组10H的端子电压异常的情况下,检测信号输出电路37(参照图2)产生表示异常的例如“H”电平的检测信号DT1H。另外,在判定出所对应的高电位蓄电池单元组10H的端子电压正常的情况下,检测信号输出电路37产生表示正常的例如“L”电平的检测信号DT1H。发送电路38b(参照图2)将由检测信号输出电路37产生的检测信号DT1H给予至中电位状态检测部30M。
在中电位状态检测部30M中,接收电路38a(参照图2)将由高电位状态检测部30H给予的检测信号DT1H给予至检测信号输出电路37(参照图2)。在判定出所对应的中电位蓄电池单元组10M的端子电压异常的情况下、或者由接收电路38a给予的检测信号DT1H为“H”电平(异常)的情况下,检测信号输出电路37产生表示异常的例如“H”电平的检测信号DT1M。另外,在判定出所对应的中电位蓄电池单元组10M的端子电压正常、且由接收电路38a给予的检测信号DT1H为“L”电平(正常)的情况下,检测信号输出电路37产生表示正常的例如“L”电平的检测信号DT1M。发送电路38b(参照图2)将由检测信号输出电路37产生的检测信号DT1M给予至低电位状态检测部30L。
在低电位状态检测部30L中,接收电路38a(参照图2)将由中电位状态检测部30M给予的检测信号DT1M给予至检测信号输出电路37(参照图2)。在判定出所对应的低电位蓄电池单元组10L的端子电压异常的情况下、或者由接收电路38a给予的检测信号DT1M为“H”电平(异常)的情况下,检测信号输出电路37产生表示异常的例如“H”电平的检测信号DT1L。另外,在判定出所对应的低电位蓄电池单元组10L的端子电压正常、且由接收电路38a给予的检测信号DT1M为“L”电平(正常)的情况下,检测信号输出电路37产生表示正常的例如“L”电平的检测信号DT1L。发送电路38b(参照图2)将由检测信号输出电路37产生的检测信号DT1L作为检测信号DT1,而给予至所对应的运算处理装置40(参照图1)及信号线P1(参照图1)。
另一个蓄电池模块100b的状态检测部30的动作,除了下面点之外,都与蓄电池模块100a的状态检测部30的动作相同。蓄电池模块100b的低电位状态检测部30L取代检测信号DT1而将检测信号DT2给予至所对应的运算处理装置40(参照图1)及信号线P2(参照图1)。
(7)蓄电池系统的动作及效果
以下,将蓄电池模块100a的蓄电池单元组BL、电压检测部20、状态检测部30、运算处理装置40及通信驱动器60,分别称作蓄电池单元组BLa、电压检测部20a、状态检测部30a、运算处理装置40a及通信驱动器60a。另外,将蓄电池模块100b的蓄电池单元组BL、电压检测部20、状态检测部30、运算处理装置40及通信驱动器60,分别称作蓄电池单元组BLb、电压检测部20b、状态检测部30b、运算处理装置40b及通信驱动器60b。
在蓄电池模块100a中,在判定出所对应的蓄电池单元组BLa的端子电压异常的情况下,状态检测部30a产生表示异常的检测信号DT1。另一方面,在判定出所对应的蓄电池单元组BLa的端子电压正常的情况下,状态检测部30a产生表示正常的检测信号DT1。由状态检测部30a产生的检测信号DT1,通过连接线Q1而给予至所对应的运算处理装置40a,并且通过信号线P1而给予至蓄电池模块100b的运算处理装置40b。
在蓄电池模块100b中,在判定出所对应的蓄电池单元组BLb的端子电压异常的情况下,状态检测部30b产生表示异常的检测信号DT2。另一方面,在判定出所对应的蓄电池单元组BLb的端子电压正常的情况下,状态检测部30b产生表示正常的检测信号DT2。由状态检测部30b产生的检测信号DT2,通过连接线Q2而给予至所对应的运算处理装置40b,并且通过信号线P2而给予至蓄电池模块100a的运算处理装置40a。
在蓄电池模块100a中,运算处理装置40a将由所对应的状态检测部30a给予的检测信号DT1以及由蓄电池模块100b的状态检测部30b给予的检测信号DT2,通过通信驱动器60a及总线BS而给予至蓄电池ECU510。
在蓄电池模块100b中,运算处理装置40b将由所对应的状态检测部30b给予的检测信号DT2以及由蓄电池模块100a的状态检测部30a给予的检测信号DT1,通过通信驱动器60b及总线BS而给予至蓄电池ECU510。
即、在本实施方式中,若检测出与作为第1蓄电池模块的蓄电池模块100a的第1蓄电池单元组、即蓄电池单元组BLa的充放电相关的异常状态,则作为第1状态检测部的状态检测部30a产生作为第1检测信号的检测信号DT1。若检测出与作为第2蓄电池模块的蓄电池模块100b的第2蓄电池单元组、即蓄电池单元组BL2的充放电相关的异常状态,则作为第2状态检测部的状态检测部30b产生作为第2检测信号的状态检测部DT2。
由状态检测部30a产生的检测信号DT1,通过作为第1通信电路的运算处理装置40a而发送至外部。具体而言,由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第1通信路径的信号线P1而传递至运算处理装置40b。
由状态检测部30b产生的检测信号DT2,通过作为第2通信电路的运算处理装置40b而发送至外部。具体而言,由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第4通信路径的信号线P2而传递至运算处理装置40a。
这样,在判定出蓄电池模块100a、100b的所有蓄电池单元10的端子电压正常的情况下,蓄电池ECU510从蓄电池模块100a、100b中取得表示正常的检测信号DT1、DT2。另一方面,在判定出蓄电池模块100a、100b的至少一个蓄电池单元10的端子电压异常的情况下,蓄电池ECU510从蓄电池模块100a、100b中取得表示异常的检测信号DT1、DT2。由此,蓄电池ECU510能够检测有无蓄电池模块100a、100b的多个蓄电池单元10的端子电压的异常。
根据上述结构,即便在蓄电池模块100a的运算处理装置40a或通信驱动器60a发生故障时、或者连接线Q1发生了不良情况时,也能从蓄电池模块100a的状态检测部30a通过信号线P1、蓄电池模块100b的运算处理装置40b及通信驱动器60b以及总线BS,而将检测信号DT1发送至蓄电池ECU510。另外,即便在蓄电池模块100b的运算处理装置40b或通信驱动器60b发生故障时、或者连接线Q2发生了不良情况时,也能从蓄电池模块100b的状态检测部30b通过信号线P2、蓄电池模块100a的运算处理装置40a及通信驱动器60a以及总线BS,而将检测信号DT2发送至蓄电池ECU510。因此,在蓄电池系统500中不设置追加的通信电路的情况下,也能将蓄电池单元组BLa、BLb的端子电压的异常可靠地通知给蓄电池ECU510。其结果,既能抑制蓄电池系统500的成本增加又能提高蓄电池系统500的可靠性。
同时,蓄电池ECU510从蓄电池模块100a的电压检测部20a中通过运算处理装置40a、通信驱动器60a及总线BS而取得蓄电池单元组BLa的多个蓄电池单元10的端子电压的值。另外,蓄电池ECU510从蓄电池模块100b的电压检测部20b中通过运算处理装置40b、通信驱动器60b及总线BS而取得蓄电池单元组BLb的多个蓄电池单元10的端子电压的值。由此,蓄电池ECU510基于取得的端子电压的值能够检测有无蓄电池模块100a、100b的多个蓄电池单元10的异常。
根据上述结构,即便在状态检测部30a、30b发生了故障时、或者信号线P1、P2发生了不良情况时,也能将由蓄电池模块100a的电压检测部20a检测出的蓄电池单元组BLa的端子电压的值通过运算处理装置40a、通信驱动器60a及总线BS而通知给蓄电池ECU510。另外,能够将由蓄电池模块100b的电压检测部20b检测出的蓄电池单元组BLb的端子电压的值通过运算处理装置40b、通信驱动器60b及总线BS而通知给蓄电池ECU510。另一方面,即便在电压检测部20a、20b发生了故障时,也能将由蓄电池模块100a的状态检测部30a检测出的蓄电池单元组BLa的端子电压的异常通过连接线Q1、运算处理装置40a、通信驱动器60a及总线BS而通知给蓄电池ECU510。另外,能够将由蓄电池模块100b的状态检测部30b检测出的蓄电池单元组BLb的端子电压的异常通过连接线Q2、运算处理装置40b、通信驱动器60b及总线BS而通知给蓄电池ECU510。其结果,能够进一步提高蓄电池系统500的可靠性。
[2]第2实施方式
(1)蓄电池系统的结构
下面,说明第2实施方式涉及的蓄电池系统500不同于第1实施方式涉及的蓄电池系统500之处。图6是表示第2实施方式涉及的蓄电池系统500的结构的框图。
如图6所示,蓄电池模块100a的状态检测部30a检测有无所对应的蓄电池单元组BLa的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT1。由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1而给予至所对应的运算处理装置40a,并且经由信号线P1而给予至蓄电池模块100b的运算处理装置40b。
蓄电池模块100b的状态检测部30b检测有无所对应的蓄电池单元组BLb的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT2。由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2而给予至所对应的运算处理装置40b,并且经由信号线P2而给予至蓄电池ECU510。
这种情况下,蓄电池模块100a的印制电路基板110(参照图3及图4)的连接器CNc与蓄电池模块100b的印制电路基板110(参照图3及图4)的连接器CNb,通过信号线P1进行连接。另外,蓄电池模块100b的印制电路基板110的连接器CNc与蓄电池ECU510,通过信号线P2进行连接。也可在蓄电池模块100a的印制电路基板110中不设置连接器CNb。
(2)蓄电池系统的动作及效果
在蓄电池模块100a中,由状态检测部30a产生的检测信号DT1,通过连接线Q1而给予至所对应的运算处理装置40a,并且通过信号线P1而给予至蓄电池模块100b的运算处理装置40b。在蓄电池模块100b中,由状态检测部30b产生的检测信号DT2,通过连接线Q2而给予至所对应的运算处理装置40b,并且通过信号线P2而给予至蓄电池ECU510。
在蓄电池模块100a中,运算处理装置40a将由所对应的状态检测部30a给予的检测信号DT1通过通信驱动器60a及总线BS而给予至蓄电池ECU510。在蓄电池模块100b中,运算处理装置40b将由所对应的状态检测部30b给予的检测信号DT2以及由蓄电池模块100a的状态检测部30a给予的检测信号DT1,通过通信驱动器60b及总线BS而给予至蓄电池ECU510。
即、由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第1通信路径的信号线P1而传递至运算处理装置40b。由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第7通信路径的信号线P2而传递至作为外部的蓄电池ECU510。
根据上述结构,即便在蓄电池模块100a的运算处理装置40a或通信驱动器60a发生故障时、或者连接线Q1发生了不良情况时,也能从蓄电池模块100a的状态检测部30a通过信号线P1、蓄电池模块100b的运算处理装置40b及通信驱动器60b以及总线BS,而将检测信号DT1发送至蓄电池ECU510。另外,即便在蓄电池模块100b的运算处理装置40b或通信驱动器60b发生故障时、或者连接线Q2发生了不良情况时,也能从蓄电池模块100b的状态检测部30b通过信号线P2,而将检测信号DT2发送至蓄电池ECU510。因此,在蓄电池系统500中不设置追加的通信电路的情况下,也能将蓄电池单元组BLa、BLb的端子电压的异常可靠地通知给蓄电池ECU510。其结果,既能抑制蓄电池系统500的成本增加又能提高蓄电池系统500的可靠性。
[3]第3实施方式
(1)蓄电池系统的结构
下面,说明第3实施方式涉及的蓄电池系统500不同于第1实施方式涉及的蓄电池系统500之处。图7是表示第3实施方式涉及的蓄电池系统500的结构的框图。
如图7所示,蓄电池模块100a的状态检测部30a检测有无所对应的蓄电池单元组BLa的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT1。由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1而给予至所对应的运算处理装置40a,并且经由信号线P1而给予至蓄电池模块100b的状态检测部30b。
蓄电池模块100b的状态检测部30b检测有无所对应的蓄电池单元组BLb的多个蓄电池单元10的端子电压的异常,并基于该检测结果及由蓄电池模块100a的状态检测部30a给予的检测信号DT1而产生检测信号DT2。由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2而给予至所对应的运算处理装置40b,并且经由信号线P2而给予至蓄电池ECU510。
这种情况下,蓄电池模块100a的印制电路基板110(参照图3及图4)的连接器CNc与蓄电池模块100b的印制电路基板110(参照图3及图4)的连接器CNd,通过信号线P1进行连接。另外,蓄电池模块100b的印制电路基板110的连接器CNc与蓄电池ECU510,通过信号线P2进行连接。也可在蓄电池模块100a的印制电路基板110中不设置连接器CNb、CNd以及绝缘元件DIc(参照图3及图4)。
(2)蓄电池系统的动作及效果
在蓄电池模块100a中,由状态检测部30a产生的检测信号DT1,通过连接线Q1而给予至所对应的运算处理装置40a,并且通过信号线P1而给予至蓄电池模块100b的状态检测部30b。
蓄电池模块100b的状态检测部30b的接收电路38a(参照图2),将被给予至连接器CNd的检测信号DT1给予至检测信号输出电路37。在判定出所对应的蓄电池单元组BL的端子电压异常的情况下、或者由接收电路38a给予的检测信号DT1为“H”电平(异常)的情况下,检测信号输出电路37产生表示异常的例如“H”电平的检测信号DT2。在判定出所对应的蓄电池单元组BL的端子电压正常、且由接收电路38a给予的检测信号DT1为“L”电平(正常)的情况下,检测信号输出电路37产生表示正常的例如“L”电平的检测信号DT2。发送电路38b输出由检测信号输出电路37产生的检测信号DT2。这样,在蓄电池模块100b中,由状态检测部30b产生的检测信号DT2,通过连接线Q2而给予至所对应的运算处理装置40b,并且通过信号线P2而给予至蓄电池ECU510。即、在蓄电池模块100a的蓄电池单元组BLa的端子电压异常的情况下,表示异常的检测信号DT1作为检测信号DT2,从蓄电池模块100b的状态检测部30b给予至蓄电池模块100b的运算处理装置40b及蓄电池ECU510。
在蓄电池模块100a中,运算处理装置40a将由所对应的状态检测部30a给予的检测信号DT1通过通信驱动器60a及总线BS而给予至蓄电池ECU510。在蓄电池模块100b中,运算处理装置40b将由所对应的状态检测部30b给予的检测信号DT2,通过通信驱动器60b及总线BS而给予至蓄电池ECU510。
即、由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第3通信路径的信号线P1而传递至状态检测部30b。由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第7通信路径的信号线P2而传递至蓄电池ECU510。
根据上述结构,即便在蓄电池模块100a的运算处理装置40a或通信驱动器60a发生故障时、或者连接线Q1发生了不良情况时,也能从蓄电池模块100a的状态检测部30a通过信号线P1、蓄电池模块100b的状态检测部30b、运算处理装置40b及通信驱动器60b以及总线BS,而将检测信号DT1作为检测信号DT2发送至蓄电池ECU510。另外,能够将检测信号DT1作为检测信号DT2,从蓄电池模块100a的状态检测部30a通过信号线P1、蓄电池模块100b的状态检测部30b及信号线P2而发送至蓄电池ECU510。
另外,即便在蓄电池模块100b的运算处理装置40b或通信驱动器60b发生故障时、或者连接线Q2发生了不良情况时,也能从蓄电池模块100b的状态检测部30b通过信号线P2,而将检测信号DT2发送至蓄电池ECU510。因此,在蓄电池系统500中不设置追加的通信电路的情况下,也能将蓄电池单元组BLa、BLb的端子电压的异常可靠地通知给蓄电池ECU510。
在上述结构中,即便在蓄电池模块100a的运算处理装置40a及通信驱动器60a以及蓄电池模块100b的运算处理装置40b及通信驱动器60b发生故障、且连接线Q1、Q2发生不良情况时,也可将蓄电池单元组BLa、BLb的端子电压的异常可靠地通知给蓄电池ECU510,因而既能抑制蓄电池系统500的成本增加又能提高蓄电池系统500的可靠性。
[4]第4实施方式
(1)蓄电池系统的结构
下面,说明第4实施方式涉及的蓄电池系统500不同于第3实施方式涉及的蓄电池系统500之处。图8是表示第4实施方式涉及的蓄电池系统500的结构的框图。
如图8所示,蓄电池模块100a的状态检测部30a检测有无所对应的蓄电池单元组BLa的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT1。由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1而给予至所对应的运算处理装置40a,并且经由信号线P1而给予至蓄电池模块100b的状态检测部30b。另外,由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由信号线P3而给予至蓄电池模块100b的运算处理装置40b。
蓄电池模块100b的状态检测部30b检测有无所对应的蓄电池单元组BLb的多个蓄电池单元10的端子电压的异常,并基于该检测结果及由蓄电池模块100a的状态检测部30a给予的检测信号DT1而产生检测信号DT2。由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2而给予至所对应的运算处理装置40b,并且经由信号线P2而给予至蓄电池ECU510。
这种情况下,蓄电池模块100a的印制电路基板110(参照图3及图4)的连接器CNc与蓄电池模块100b的印制电路基板110(参照图3及图4)的连接器CNd,通过信号线P1进行连接。另外,蓄电池模块100a的印制电路基板110的连接器CNc与蓄电池模块100b的印制电路基板110的连接器CNb,通过信号线P3进行连接。而且,蓄电池模块100b的印制电路基板110的连接器CNc与蓄电池ECU510,通过信号线P2进行连接。也可在蓄电池模块100a的印制电路基板110中不设置连接器CNb、CNd以及绝缘元件DIc(参照图3及图4)。
(2)蓄电池系统的动作及效果
在蓄电池模块100a中,由状态检测部30a产生的检测信号DT1,通过连接线Q1而给予至所对应的运算处理装置40a,并且通过信号线P1而给予至蓄电池模块100b的状态检测部30b。另外,由状态检测部30a产生的检测信号DT1,通过信号线P3而给予至蓄电池模块100b的运算处理装置40b。在蓄电池模块100b中,由状态检测部30b产生的检测信号DT2,通过连接线Q2而给予至所对应的运算处理装置40b,并且通过信号线P2而给予至蓄电池ECU510。即、在蓄电池模块100a的蓄电池单元组BLa的端子电压异常的情况下,表示异常的检测信号DT1作为检测信号DT2,从蓄电池模块100b的状态检测部30b给予至蓄电池模块100b的运算处理装置40b及蓄电池ECU510。
在蓄电池模块100a中,运算处理装置40a将由所对应的状态检测部30a给予的检测信号DT1通过通信驱动器60a及总线BS而给予至蓄电池ECU510。在蓄电池模块100b中,运算处理装置40b将由所对应的状态检测部30b给予的检测信号DT2以及由蓄电池模块100a的状态检测部30a给予的检测信号DT1,通过通信驱动器60b及总线BS而给予至蓄电池ECU510。
即、由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第1通信路径的信号线P1而传递至运算处理装置40b,通过作为第3通信路径的信号线P3而传递至状态检测部30b。由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第7通信路径的信号线P2而传递至蓄电池ECU510。
根据上述结构,即便在蓄电池模块100a的运算处理装置40a或通信驱动器60a发生故障时、或者连接线Q1发生了不良情况时,也能从蓄电池模块100a的状态检测部30a通过信号线P1、蓄电池模块100b的状态检测部30b、运算处理装置40b及通信驱动器60b以及总线BS,而将检测信号DT1作为检测信号DT2发送至蓄电池ECU510。另外,能够将检测信号DT1作为检测信号DT2,从蓄电池模块100a的状态检测部30a通过信号线P1、蓄电池模块100b的状态检测部30b及信号线P2而发送至蓄电池ECU510。而且,能够从蓄电池模块100a的状态检测部30a通过信号线P3、蓄电池模块100b的运算处理装置40b及通信驱动器60b以及总线SB而将检测信号DT1发送至蓄电池ECU510。
另外,即便在蓄电池模块100b的运算处理装置40b或通信驱动器60b发生故障时、或者连接线Q2发生了不良情况时,也能从蓄电池模块100b的状态检测部30b通过信号线P2,而将检测信号DT2发送至蓄电池ECU510。因此,在蓄电池系统500中不设置追加的通信电路的情况下,也能将蓄电池单元组BLa、BLb的端子电压的异常可靠地通知给蓄电池ECU510。
在上述结构中,即便在蓄电池模块100a的运算处理装置40a及通信驱动器60a以及蓄电池模块100b的运算处理装置40b及通信驱动器60b发生故障、且连接线Q1、Q2发生不良情况时,也可将蓄电池单元组BLa、BLb的端子电压的异常可靠地通知给蓄电池ECU510,因而既能抑制蓄电池系统500的成本增加又能提高蓄电池系统500的可靠性。
[5]电池模块
下面,对蓄电池模块100的构造进行说明。图9是表示蓄电池模块100的一例的外观立体图。此外,在图9中,如箭头X、Y、Z所示,将相互正交的三个方向定义为X方向、Y方向及Z方向。另外,在本例中,X方向及Y方向是平行于水平面的方向,Z方向是正交于水平面的方向。此外,上方向是箭头Z朝向的方向。
如图9所示,在蓄电池模块100中,具有扁平的大致长方体形状的多个蓄电池单元10沿着X方向排列配置。具有大致板形状的一对端面框EP与YZ平面平行地配置。一对上端框FR1及一对下端框FR2沿着X延伸配置。在一对端面框EP的四角,形成了用于连接一对上端框FR1及一对下端框FR2的连接部。在一对端面框EP之间配置了多个蓄电池单元10的状态下,在一对端面框EP的上侧的连接部安装了一对上端框FR1,在一对端面框EP的下侧的连接部安装了一对下端框FR2。由此,多个蓄电池单元10被一对端面框EP、一对上端框FR1及一对下端框FR2一体式固定。由多个蓄电池单元10、一对端面框EP、一对上端框FR1及一对下端框FR2构成了大致长方体形状的蓄电池块BLK。蓄电池块BLK包括图1的蓄电池单元组BL。
在一方的端面框EP安装了印制电路基板110。在蓄电池块BLK的侧面安装了用于检测蓄电池模块100的温度的多个热敏电阻TH。
在这里,各蓄电池单元10以沿着Y方向排列的方式在蓄电池块BLK的上面具有正电极10a及负电极10b。在蓄电池模块100中,各蓄电池单元10在相邻的蓄电池单元10之间配置成:Y方向上的正电极10a及负电极10b的位置关系互逆。另外,多个蓄电池单元10的一方的电极10a、10b沿着X方向排列成一列,多个蓄电池单元10的另一方的电极10a、10b沿着X方向排列成一列。
由此,在相邻的2个蓄电池单元10之间,一方的蓄电池单元10的正电极10a与另一方的蓄电池单元10的负电极10b靠近,一方的蓄电池单元10的负电极10b与另一方的蓄电池单元10的正电极10a靠近。在这种状态下,在靠近的2个电极10a、10b安装了例如由铜制成的母线BB。由此,多个蓄电池单元10被串联连接。
在Y方向上的多个蓄电池单元10的一端部侧,沿着X方向延伸的长尺状的软性印制电路基板(以下简称为FPC基板)120共同连接于多个母线BB。同样地,在Y方向上的多个蓄电池单元10的另一端部侧,沿着X方向延伸的长尺状的FPC基板120共同连接于多个母线BB。
FPC基板120具有主要在绝缘层上形成了后述的图2的多个导体线W1的结构,且具有弯曲性及可挠性。作为构成FPC基板120的绝缘层的材料例如使用聚酰亚胺,作为导体线W1的材料例如使用铜。各FPC基板120在蓄电池单元组BL的一方的端面框EP的上端部分,朝向内侧折回成直角,进而朝向下方折回,与印制电路基板110连接。由此,图1的电压检测部20、状态检测部30及均衡化电路70与蓄电池单元10的正电极10a及负电极10b连接。
[6]电动车辆
(1)结构及动作
下面,对电动车辆进行说明。电动车辆具备上述实施方式涉及的蓄电池系统500。此外,以下作为电动车辆的一例而说明电动机动车。
图10是表示具备蓄电池系统500的电动机动车的结构的框图。如图10所示,电动机动车600具备车体610。在车体610中设置了图1的蓄电池系统500以及非动力用蓄电池BAT、电力变换部601、电机602、驱动轮603、加速器装置604、制动器装置605、旋转速度传感器606及主控制部300。在电机602是交流(AC)电机的情况下,电力变换部601包括逆变器电路。在蓄电池系统500中包含图1的蓄电池ECU510。
蓄电池系统500经由电力变换部601而与电机602连接且与主控制部300连接。
从蓄电池系统500的蓄电池ECU510向主控制部300给予蓄电池模块100(参照图1)的充电量。另外,主控制部300连接加速器装置604、制动器装置605及旋转速度传感器606。主控制部300例如由CPU及存储器、或微型计算机构成。
加速器装置604包括:电动机动车600所具备的加速器踏板604a、和用于检测加速器踏板604a的操作量(踩踏量)的加速器检测部604b。当用户操作了加速器踏板604a时,加速器检测部604b以未被用户操作的状态作为基准,检测加速器踏板604a的操作量。检测出的加速器踏板604a的操作量被给予至主控制部300。
制动器装置605包括:电动机动车600所具备的制动器踏板605a、和用于检测用户进行的制动器踏板605a的操作量(踩踏量)的制动器检测部605b。当用户操作了制动器踏板605a时,制动器检测部605b检测制动器踏板605a的操作量。检测出的制动器踏板605a的操作量被给予至主控制部300。旋转速度传感器606检测电机602的旋转速度。检测出的旋转速度被给予至主控制部300。
如上述,向主控制部300给予了蓄电池模块100的充电量、加速器踏板604a的操作量、制动器踏板605a的操作量以及电机602的旋转速度。主控制部300基于这些信息,进行蓄电池模块100的充放电控制及电力变换部601的电力变换控制。例如,在基于加速器操作的电动机动车600出发时或加速时,从蓄电池系统500向电力变换部601供给蓄电池模块100的电力。
另外,主控制部300基于所给予的加速器踏板604a的操作量,计算应该传递至驱动轮603的旋转力(指令转矩),将基于该指令转矩的控制信号给予至电力变换部601。
接受了上述控制信号的电力变换部601,将由蓄电池系统500供给的电力变换成驱动驱动轮603所需的电力(驱动电力)。由此,由电力变换部601变换后的驱动电力被供给至电机602,基于该驱动电力的电机602的旋转力被传递至驱动轮603。
另一方面,在基于制动器操作的电动机动车600减速时,电机602作为发电装置发挥功能。这种情况下,电力变换部601将由电机602产生的再生电力变换成适合多个蓄电池单元10充电的电力,并给予至多个蓄电池单元10。由此,多个蓄电池单元10被充电。
(2)效果
通过来自蓄电池系统500的电力驱动了电机602。通过该电机602的旋转力使驱动轮603旋转,由此作为电动车辆的电动机动车600进行移动。
在电动机动车600中,由于设置了上述实施方式涉及的蓄电池系统500,因而既能抑制电动机动车600的成本增加又能提高电动机动车600的可靠性。
此外,主控制部300也可具有蓄电池ECU510的功能。这种情况下,主控制部300通过总线BS而与各蓄电池系统500中含有的各蓄电池模块100a、100b的通信驱动器60a、60b(参照图1)连接。另外,在第2~第4实施方式中,主控制部300通过信号线P2还与各蓄电池系统500中包含的蓄电池模块100b的状态检测部30b(参照图1)连接。此外,也可在主控制部300具有蓄电池ECU510的功能的情况下,在各蓄电池系统500中不设置蓄电池ECU510。
(3)其他移动体
上述说明了图1的蓄电池系统500搭载于电动车辆的例子,但是蓄电池系统500也可搭载于船舶、航空器、电梯或步行机器人等其他移动体。
搭载了蓄电池系统500的船舶,例如取代图10的车体610而具备船体,取代驱动轮603而具备螺旋桨,取代加速器装置604而具备加速输入部,取代制动器装置605而具备减速输入部。驾驶员在使船体加速之际取代加速器装置604而操作加速输入部,驾驶员在使船体减速之际取代制动器装置605而操作减速输入部。这种情况下,船体相当于移动主体部,电机相当于动力源,螺旋桨相当于驱动部。在这种结构中,电机接受来自蓄电池系统500的电力并将该电力变换成动力,通过该动力使螺旋桨旋转,从而船体移动。
同样地,搭载了蓄电池系统500的航空器,例如取代图10的车体610而具备机体,取代驱动轮603而具备推进器,取代加速器装置604而具备加速输入部,取代制动器装置605而具备减速输入部。这种情况下,机体相当于移动主体部,电机相当于动力源,推进器相当于驱动部。在这种结构中,电机接受来自蓄电池系统500的电力并将该电力变换成动力,通过该动力使推进器旋转,从而机体移动。
搭载了蓄电池系统500的电梯,例如取代图10的车体610而具备轿厢,取代驱动轮603而具备安装于轿厢的升降用绳索,取代加速器装置604而具备加速输入部,取代制动器装置605而具备减速输入部。这种情况下,轿厢相当于移动主体部,电机相当于动力源,升降用绳索相当于驱动部。在这种结构中,电机接受来自蓄电池系统500的电力并将该电力变换成动力,通过该动力使升降用绳索卷起,从而轿厢升降。
搭载了蓄电池系统500的步行机器人,例如取代图10的车体610而具备躯体,取代驱动轮603而具备腿脚,取代加速器装置604而具备加速输入部,取代制动器装置605而具备减速输入部。这种情况下,躯体相当于移动主体部,电机相当于动力源,腿脚相当于驱动部。在这种结构中,电机接受来自蓄电池系统500的电力并将该电力变换成动力,通过该动力使腿脚驱动,从而躯体移动。
这样,来自蓄电池系统500的电力被动力源变换成动力,并通过该动力使移动主体部移动。在搭载了蓄电池系统500的移动体中,动力源接受来自蓄电池系统500的电力并将该电力变换成动力,驱动部通过被动力源变换后的动力而使移动主体部移动。
[7]电源装置
(1)结构及动作
下面,对电源装置进行说明。图11是表示电源装置的结构的框图。如图11所示,电源装置700具备电力贮藏装置710及电力变换装置720。电力贮藏装置710具备蓄电池系统组711及控制器712。蓄电池系统组711包括多个蓄电池系统500。多个蓄电池系统500既可以相互并联连接,又可以相互串联连接。
控制器712例如由CPU及存储器、或微型计算机构成。控制器712与各蓄电池系统500中包含的蓄电池ECU510(参照图1)连接。控制器712基于由各蓄电池ECU510给予的各蓄电池单元10的充电量,控制电力变换装置720。控制器712作为与蓄电池系统500的蓄电池模块100的放电或充电相关的控制,而进行后述的控制。
电力变换装置720包括DC/DC(直流/直流)转换器721及DC/AC(直流/交流)逆变器722。DC/DC转换器721具有输入输出端子721a、721b,DC/AC逆变器722具有输入输出端子722a、722b。DC/DC转换器721的输入输出端子721a经由各蓄电池系统500的HV连接器530(参照图1)而与电力贮藏装置710的蓄电池系统组711连接。
DC/DC转换器721的输入输出端子721b及DC/AC逆变器722的输入输出端子722a,彼此连接且与电力输出部PU1连接。DC/AC逆变器722的输入输出端子722b,与电力输出部PU2连接且与其他电力系统连接。
电力输出部PU1、PU2例如包括插座。电力输出部PU1、PU2例如连接各种负载。其他电力系统例如包括商用电源或太阳能电池。电力输出部PU1、PU2及其他电力系统是与电源装置相连接的外部的例子。此外,在作为电力系统而采用太阳能电池的情况下,DC/DC转换器721的输入输出端子721b连接太阳能电池。另一方面,在作为电力系统而采用包括太阳能电池的太阳光发电系统的情况下,DC/AC逆变器722的输入输出端子722b连接太阳光发电系统的功率调整装置的AC输出部。
DC/DC转换器721及DC/AC逆变器722被控制器712控制,由此进行蓄电池系统组711的放电及充电。在蓄电池系统组711放电时,由蓄电池系统组711给予的电力被DC/DC转换器721进行DC/DC(直流/直流)变换,进而被DC/AC逆变器722进行DC/AC(直流/交流)变换。
在电源装置700用作直流电源的情况下,由DC/DC转换器721进行DC/DC变换后的电力被供给至电力输出部PU1。在电源装置700用作交流电源的情况下,由DC/AC逆变器722进行DC/AC变换后的电力被供给至电力输出部PU2。另外,也能将由DC/AC逆变器722变换成交流的电力供给至其他电力系统。
控制器712作为与蓄电池系统组711的蓄电池模块100的放电相关的控制的一例,而进行下述控制。在蓄电池系统组711放电时,控制器712基于计算出的充电量,判定是否停止蓄电池系统组711的放电、或者是否限制放电电流(或放电电力),并基于判定结果控制电力变换装置720。具体而言,若蓄电池系统组711中包含的多个蓄电池单元10(参照图1)之中的其中一个蓄电池单元10的充电量变得小于预先规定的阈值,则控制器712控制DC/DC转换器721及DC/AC逆变器722,以便蓄电池系统组711的放电被停止、或者放电电流(或放电电力)被限制。由此,防止了各蓄电池单元10的过放电。
通过蓄电池系统组711的电压被限制为固定的基准电压,来进行放电电流(或放电电力)的限制。另外,由控制器712基于蓄电池单元10的充电量来设定基准电压。
另一方面,在蓄电池系统组711充电时,由其他电力系统给予的交流的电力被DC/AC逆变器722进行AC/DC(交流/直流)变换,进而被DC/DC转换器721进行DC/DC(直流/直流)变换。通过从DC/DC转换器721向蓄电池系统组711给予电力,从而蓄电池系统组711中包含的多个蓄电池单元10(参照图1)被充电。
控制器712作为与蓄电池系统组711的蓄电池模块100的充电相关的控制的一例,而进行下述控制。在蓄电池系统组711充电时,控制器712基于计算出的充电量,判定是否停止蓄电池系统组711的充电、或者是否限制充电电流(或充电电力),并基于判定结果控制电力变换装置720。具体而言,若蓄电池系统组711中包含的多个蓄电池单元10(参照图1)之中的其中一个蓄电池单元10的充电量变得大于预先规定的阈值,则控制器712控制DC/DC转换器721及DC/AC逆变器722,以便蓄电池系统组711的充电被停止、或者充电电流(或充电电力)被限制。由此,防止了各蓄电池单元10的过充电。
通过蓄电池系统组711的电压被限制为固定的基准电压,来进行充电电流(或充电电力)的限制。另外,由控制器712基于蓄电池单元10的充电量来设定基准电压。
此外,若在电源装置700与外部之间可彼此供给电力,则电力变换装置720也可只具有DC/DC转换器721及DC/AC逆变器722之中的其中一方。另外,若在电源装置700与外部之间可彼此供给电力,则也可不设置电力变换装置720。
(2)效果
在电力贮藏装置710中,通过作为系统控制部的控制器712,进行与上述的蓄电池系统500的蓄电池模块100a、100b的充电或放电相关的控制。由此,能够防止蓄电池模块100a、100b的劣化、过放电及过充电。
在电源装置700中,在蓄电池系统500与外部之间,通过电力变换装置720进行电力变换。电力变换装置720进行与电力贮藏装置710的蓄电池模块100a、100b的充电或放电相关的控制。具体而言,通过控制器712控制蓄电池系统组711与外部之间的电力供给。由此,防止了蓄电池系统组711中包含的蓄电池模块100a、100b的各蓄电池单元10的过放电及过充电。
在电源装置700中,因为设置了上述实施方式涉及的蓄电池系统500,所以既能抑制电源装置700的成本增加又能提高电源装置700的可靠性。
在检测出蓄电池单元组BL的端子电压异常的情况下,控制器712控制电力变换装置720。由此,也可在各蓄电池系统500中不设置图1的接触器520。
控制器712也可具有蓄电池ECU510的功能。这种情况下,控制器712通过总线BS而与各蓄电池系统500中包含的各蓄电池模块100a、100b的通信驱动器60a、60b(参照图1)连接。另外,在第2~第4实施方式中,控制器712通过信号线P3还与各蓄电池系统500中包含的蓄电池模块100b的状态检测部30b(参照图1)连接。此外,在控制器712具有蓄电池ECU510的功能的情况下,也可在各蓄电池系统500中不设置蓄电池ECU510。
[8]其他实施方式
(1)在上述实施方式中,状态检测部30在检测出异常时产生例如“H”电平的检测信号,在检测出正常时产生例如“L”电平的检测信号,但是并不限定于此。状态检测部30也可产生以下的检测信号。
在所对应的蓄电池单元组BL中的至少一个蓄电池单元10的端子电压为上限电压以上的情况下(检测出第1异常时),状态检测部30产生具有第1占空比(例如75%)的检测信号。在所对应的蓄电池单元组BL中的至少一个蓄电池单元10的端子电压为下限电压以下的情况下(检测出第2异常时),状态检测部30产生具有第2占空比(例如25%)的检测信号。在检测出正常时,状态检测部30产生具有第3占空比(例如50%)的检测信号。
另外,在发生了接地(地絡)的情况下,检测信号变为“L”电平。另一方面,在发生了接天(天絡)的情况下,检测信号变为“H”电平。此外,“接地”是指,由于状态检测部DT的信号线断开且与接地端子等接触,使得该信号线被保持在接地电位的状态。另外,“接天”是指,由于状态检测部DT的信号线断开且与电源端子等接触,使得该信号线被保持在电源电位的状态。因此,状态检测部30、运算处理装置40及蓄电池ECU510,在发生了接地的情况下接受“L”电平的检测信号,在发生了接天的情况下接受“H”电平的检测信号。
蓄电池ECU510通过接受具有上述的第1~第3占空比的检测信号以及“L”电平及“H”电平的检测信号,从而能够检测蓄电池单元10的第1及第2异常、正常、接地及接天的发生。
(2)在上述实施方式中,状态检测部30检测与蓄电池单元组BL的充放电相关的异常状态及正常状态,并产生表示异常或正常的检测信号,但是并不限定于此。也可,状态检测部30只检测与蓄电池单元组BL的充放电相关的异常状态,并产生只表示异常的检测信号。另外,也可,状态检测部30只检测与蓄电池单元组BL的充放电相关的正常状态,并产生只表示正常的检测信号。
(3)在上述实施方式中,蓄电池模块100包括多个蓄电池单元10,但是并不限定于此。也可,蓄电池模块100包括1个蓄电池单元10。
(4)在上述实施方式中,由蓄电池模块100a的状态检测部30a产生的检测信号DT1不通过运算处理装置40a就给予至蓄电池模块100b的状态检测部30b及运算处理装置40b中的至少一方,但是并不限定于此。也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1通过运算处理装置40a而给予至蓄电池模块100b的状态检测部30b及运算处理装置40b中的至少一方。
同样地,也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2通过运算处理装置40b而给予至蓄电池模块100a的状态检测部30a及运算处理装置40a中的至少一方。
图12是表示第1变形例涉及的蓄电池系统500的结构的框图。如图12所示,由蓄电池模块100a的状态检测部30a产生的检测信号DT1经由连接线Q1而给予至所对应的运算处理装置40a,并且经由连接线Q1、运算处理装置40a及信号线P1而给予至蓄电池模块100b的运算处理装置40b。
由蓄电池模块100b的状态检测部30b产生的检测信号DT2经由连接线Q2而给予至所对应的运算处理装置40b,并且经由连接线Q2、运算处理装置40b及信号线P2而给予至蓄电池模块100a的运算处理装置40a。
即、由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第1通信路径的连接线Q1及信号线P1而传递至运算处理装置40b。由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第4通信路径的连接线Q2及信号线P2而传递至运算处理装置40a。
也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1、运算处理装置40a及信号线P1而给予至蓄电池模块100b的状态检测部30b。另外,也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1、运算处理装置40a及信号线P1而给予至蓄电池模块100b的运算处理装置40b,进而经由连接线Q1、运算处理装置40a及其他信号线而给予至蓄电池模块100b的运算处理装置40b。
也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2、运算处理装置40b及信号线P2而给予至蓄电池模块100a的状态检测部30a。另外,也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2、运算处理装置40b及信号线P2而给予至蓄电池模块100a的运算处理装置40a,进而经由连接线Q2、运算处理装置40b及其他信号线而给予至蓄电池模块100a的运算处理装置40a。
运算处理装置40a、40b具有符合CAN、UART(Universal AsynchronousReceiver Transmitter)、I2C(Inter-Integrated Circuit)、LIN(Local InterconnectNetwork)及以太网(Ethernet:注册商标)等规格的多个通信端子。因此,运算处理装置40a、40b容易与多个通信设备连接。
因此,蓄电池模块100a的状态检测部30a通过运算处理装置40a的多个通信端子,能够容易地将检测信号DT1给予至蓄电池模块100b的状态检测部30b及运算处理装置40b。同样,蓄电池模块100b的状态检测部30b通过运算处理装置40b的多个通信端子,能够容易地将检测信号DT2给予至蓄电池模块100a的状态检测部30a及运算处理装置40a。
(5)在上述实施方式中,蓄电池系统500包括2个蓄电池模块100a、100b,但是并不限定于此。也可,蓄电池系统500包括3个以上的蓄电池模块100。
图13是表示第2变形例涉及的蓄电池系统500的结构的框图。如图13所示,蓄电池系统500除了包括作为第1蓄电池模块的蓄电池模块100a及作为第2蓄电池模块的蓄电池模块100b之外,还包括作为第1个第3蓄电池模块的蓄电池模块100c。即、该蓄电池系统500包括第1蓄电池模块、第2蓄电池模块及N个第3蓄电池模块。在第2变形例中,N为1。
蓄电池模块100c的结构与蓄电池模块100a、100b的结构相同。将蓄电池模块100c的蓄电池单元组BL、电压检测部20、状态检测部30、运算处理装置40及通信驱动器60,分别称作蓄电池单元组BLc、电压检测部20c、状态检测部30c、运算处理装置40c及通信驱动器60c。此外,在图13中,省略了图1的接触器520、HV连接器530及服务插头540的图示。
蓄电池模块100a的状态检测部30a检测有无所对应的蓄电池单元组BLa的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT1。由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1而给予至所对应的运算处理装置40a,并且经由信号线P1而给予至蓄电池模块100b的运算处理装置40b。
蓄电池模块100b的状态检测部30b检测有无所对应的蓄电池单元组BLb的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT2。由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2而给予至所对应的运算处理装置40b,并且经由信号线P2而给予至蓄电池模块100c的运算处理装置40c。
蓄电池模块100c的状态检测部30c检测有无所对应的蓄电池单元组BLc的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT3。由蓄电池模块100c的状态检测部30c产生的检测信号DT3,经由连接线Q3而给予至所对应的运算处理装置40a,并且经由信号线P5而给予至蓄电池模块100a的运算处理装置40a。
即、作为第3状态检测部的状态检测部30c,在检测出与作为第3蓄电池模块的蓄电池模块100c的第3蓄电池单元组、即蓄电池单元组BLc的充放电相关的异常状态时,产生作为第3检测信号的检测信号DT3。
由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第1通信路径的信号线P1而传递至运算处理装置40b。由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第8通信路径的信号线P2而传递至运算处理装置40c。
也可,由蓄电池模块100c的状态检测部30c产生的检测信号DT3,经由信号线P5不给予至蓄电池模块100a的运算处理装置40a,而经由信号线P5给予至蓄电池ECU510。
这种情况下,蓄电池模块100a的印制电路基板110(参照图3及图4)的连接器CNc与蓄电池模块100b的印制电路基板110(参照图3及图4)的连接器CNb,通过信号线P1进行连接。另外,蓄电池模块100b的印制电路基板110的连接器CNc与蓄电池模块100c的印制电路基板110(参照图3及图4)的连接器CNb,通过信号线P2进行连接。而且,蓄电池模块100c的印制电路基板110的连接器CNc与蓄电池模块100a的印制电路基板110的连接器CNb,通过信号线P5进行连接。
此外,在由蓄电池模块100c的状态检测部30c产生的检测信号DT3,经由信号线P5而给予至蓄电池ECU510的情况下,蓄电池模块100c的印制电路基板110的连接器CNc与蓄电池ECU510,通过信号线P5进行连接。这种情况下,也可在蓄电池模块100a的印制电路基板110中不设置连接器CNb。
在第2变形例中,也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1通过运算处理装置40a而给予至蓄电池模块100b的状态检测部30b及运算处理装置40b中的至少一方。也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2通过运算处理装置40b而给予至蓄电池模块100c的状态检测部30c及运算处理装置40c中的至少一方。也可,由蓄电池模块100c的状态检测部30c产生的检测信号DT3通过运算处理装置40c而给予至蓄电池模块100a的状态检测部30a及运算处理装置40a中的至少一方。
图14是表示第2变形例的其他例中的蓄电池系统500的结构的框图。在图14中,省略了各蓄电池模块100a~100c的蓄电池单元10、电压检测部20、通信驱动器60及均衡化电路70的图示。另外,省略了图1的蓄电池ECU510、接触器520、HV连接器530及服务插头540的图示。
由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由信号线P1而给予至蓄电池模块100b的运算处理装置40b,并且还经由信号线P1’而给予至蓄电池模块100c的运算处理装置40c。
由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由信号线P2而给予至蓄电池模块100c的运算处理装置40c,并且还经由信号线P2’而给予至蓄电池模块100a的运算处理装置40a。
由蓄电池模块100c的状态检测部30c产生的检测信号DT3,经由信号线P5而给予至蓄电池模块100a的运算处理装置40a,并且还经由信号线P5’而给予至蓄电池模块100b的运算处理装置40b。
图15是表示第3变形例涉及的蓄电池系统500的结构的框图。如图15所示,蓄电池系统500包括:作为第1蓄电池模块的蓄电池模块100a、作为第2蓄电池模块的蓄电池模块100b、作为第1个第3蓄电池模块的蓄电池模块100c、及作为第N个蓄电池模块的蓄电池模块100d。即、该蓄电池系统500包括第1蓄电池模块、第2蓄电池模块及N个蓄电池模块。在第3变形例中,N为2。
蓄电池模块100d的结构与蓄电池模块100a~100c的结构相同。将蓄电池模块100d的蓄电池单元组BL、状态检测部30及运算处理装置40,分别称作蓄电池单元组BLd、状态检测部30d及运算处理装置40d。在图15中,省略了各蓄电池模块100a~100d的蓄电池单元10、电压检测部20、通信驱动器60及均衡化电路70的图示。另外,省略了图1的蓄电池ECU510、接触器520、HV连接器530及服务插头540的图示。
蓄电池模块100a的状态检测部30a检测有无所对应的蓄电池单元组BLa的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT1。由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由连接线Q1而给予至所对应的运算处理装置40a,并且经由作为第1通信路径的信号线P1而给予至蓄电池模块100b的运算处理装置40b。也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1,不给予至蓄电池模块100b的运算处理装置40b,而如点划线所示那样给予至状态检测部30b。
蓄电池模块100b的状态检测部30b检测有无所对应的蓄电池单元组BLb的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT2。由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由连接线Q2而给予至所对应的运算处理装置40b,并且经由作为第8通信路径的信号线P2而给予至蓄电池模块100c的运算处理装置40c。也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2,不给予至蓄电池模块100c的运算处理装置40c,而如点划线所示那样给予至状态检测部30c。
蓄电池模块100c的状态检测部30c检测有无所对应的蓄电池单元组BLc的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT3。由蓄电池模块100c的状态检测部30c产生的检测信号DT3,经由连接线Q31而给予至所对应的运算处理装置40c,并且经由作为第1个第9通信路径的信号线P51而给予至蓄电池模块100d的运算处理装置40d。也可,由蓄电池模块100c的状态检测部30c产生的检测信号DT3,不给予至蓄电池模块100d的运算处理装置40d,而如点划线所示那样给予至状态检测部30d。
蓄电池模块100d的状态检测部30d检测有无所对应的蓄电池单元组BLd的多个蓄电池单元10的端子电压的异常,并产生表示该检测结果的检测信号DT4。由蓄电池模块100d的状态检测部30d产生的检测信号DT4,经由连接线Q32而给予至所对应的运算处理装置40d,并且经由作为第N个(在本例中为第2个)第9通信路径的信号线P52而给予至蓄电池模块100a的运算处理装置40a。也可,由蓄电池模块100d的状态检测部30d产生的检测信号DT4,不给予至蓄电池模块100a的运算处理装置40a,而如点划线所示那样给予至状态检测部30a。
在第3变形例中,也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1通过运算处理装置40a、即第1通信电路而给予至蓄电池模块100b的状态检测部30b及运算处理装置40b中的至少一方。也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2通过运算处理装置40b、即第2通信电路而给予至蓄电池模块100c的状态检测部30c及运算处理装置40c中的至少一方。也可,由蓄电池模块100c的状态检测部30c产生的检测信号DT3通过运算处理装置40c、即第1个第3通信电路而给予至蓄电池模块100d的状态检测部30d及运算处理装置40d中的至少一方。也可,由蓄电池模块100d的状态检测部30d产生的检测信号DT4通过运算处理装置40d、即第2个第3通信电路而给予至蓄电池模块100a的状态检测部30a及运算处理装置40a中的至少一方。
图16是表示第3变形例的其他例中的蓄电池系统500的结构的框图。在图16中,省略了各蓄电池模块100a~100d的蓄电池单元10、电压检测部20、通信驱动器60及均衡化电路70的图示。另外,省略了图1的蓄电池ECU510、接触器520、HV连接器530及服务插头540的图示。
由蓄电池模块100a的状态检测部30a产生的检测信号DT1,经由信号线P1而给予至蓄电池模块100b的运算处理装置40b,并且还经由信号线P1’而给予至蓄电池模块100d的运算处理装置40d。也可,由蓄电池模块100a的状态检测部30a产生的检测信号DT1,不给予至蓄电池模块100d的运算处理装置40d,而如双点划线所示那样给予至状态检测部30d。
由蓄电池模块100b的状态检测部30b产生的检测信号DT2,经由信号线P2而给予至蓄电池模块100c的运算处理装置40c,并且还经由信号线P2’而给予至蓄电池模块100a的运算处理装置40a。也可,由蓄电池模块100b的状态检测部30b产生的检测信号DT2,不给予至蓄电池模块100a的运算处理装置40a,而如双点划线所示那样给予至状态检测部30a。
由蓄电池模块100c的状态检测部30c产生的检测信号DT3,经由信号线P51而给予至蓄电池模块100d的运算处理装置40d,并且还经由信号线P51’而给予至蓄电池模块100b的运算处理装置40b。也可,由蓄电池模块100c的状态检测部30c产生的检测信号DT3,不给予至蓄电池模块100b的运算处理装置40b,而如双点划线所示那样给予至状态检测部30b。
由蓄电池模块100d的状态检测部30d产生的检测信号DT4,经由信号线P52而给予至蓄电池模块100a的运算处理装置40a,并且还经由信号线P52’而给予至蓄电池模块100c的运算处理装置40c。也可,由蓄电池模块100d的状态检测部30d产生的检测信号DT4,不给予至蓄电池模块100c的运算处理装置40c,而如双点划线所示那样给予至状态检测部30c。
这样,第2及第3变形例涉及的蓄电池系统还具备:第10通信路径(信号线P1’)、和第1个~第N个的N个(在图14的例子中N=1,在图16的例子中N=2)第11通信路径(在图14的例子中为信号线P5’,在图16的例子中为信号线P51’、P52’)。第10通信路径被设置成:将由第1蓄电池模块(蓄电池模块100a)的第1状态检测部(状态检测部30a)产生的第1检测信号(检测信号DT1)传递至第N个第3蓄电池模块(在图14的例子中为蓄电池模块100c,在图16的例子中为蓄电池模块100d)的第3通信电路(在图14的例子中为运算处理装置40c,在图16的例子中为运算处理装置40d)以及第3状态检测部(在图14的例子中为状态检测部30c,在图16的例子中为状态检测部30d)中的至少一方。在N为1的情况下(在图14的例子的情况下),第1个第11通信路径(信号线P5’)被设置成:将由第1个第3蓄电池模块(蓄电池模块100c)的第3状态检测部(状态检测部30c)产生的第3检测信号(检测信号DT3)传递至第2蓄电池模块(蓄电池模块100b)的第2通信电路(运算处理装置40b)及第2状态检测部(状态检测部30b)中的至少一方。在N为2以上的情况下(在图16的例子的情况下),第j个(j为2~N的自然数)第11通信路径(信号线P52’)被设置成:将由第j个第3蓄电池模块(蓄电池模块100d)的第3状态检测部(状态检测部30d)产生的第3检测信号(检测信号DT4)传递至第(j-1)个第3蓄电池模块(蓄电池模块100c)的第3通信电路(运算处理装置40c)及第3状态检测部(状态检测部30c)中的至少一方。第1个第11通信路径(信号线P51’)被设置成:将由第1个第3蓄电池模块(蓄电池模块100c)的第3状态检测部(状态检测部30c)产生的第3检测信号(检测信号DT3)传递至第2蓄电池模块(蓄电池模块100b)的第2通信电路(运算处理装置40b)及第2状态检测部(状态检测部30b)中的至少一方。
另外,在第2及第3变形例涉及的蓄电池系统中,也可,第10通信路径通过第1通信电路来传递第1检测信号。同样,也可,第11通信路径通过第3通信电路来传递第3检测信号。
(6)在上述实施方式中,状态检测部30a、30b检测了多个蓄电池单元10的端子电压的异常,作为与所对应的蓄电池单元组BLa、BLb的充放电相关的异常,但是并不限定于此。也可,状态检测部30a、30b检测蓄电池单元组BLa、BLb中流过的电流、蓄电池单元10的SOC(充电量)、过放电、过充电或温度的异常等,作为与所对应的蓄电池单元组BLa、BLb的充放电相关的异常。
在状态检测部30a、30b检测蓄电池单元组BLa、BLb中流过的电流的异常而作为与所对应的蓄电池单元组BLa、BLb的充放电相关的异常的情况下,蓄电池模块100a、100b具有用于检测在蓄电池单元组BLa、BLb中流过的电流的电流检测部。
(7)在第1实施方式中,由蓄电池模块100b的状态检测部30b产生的检测信号DT2被给予至蓄电池模块100a的运算处理装置40a,但是并不限定于此。
图17是表示第4变形例涉及的蓄电池系统500的结构的框图。如图17所示,由蓄电池模块100b的状态检测部30b产生的检测信号DT2,也可经由信号线P4而给予至蓄电池模块100a的状态检测部30a。这种情况下,蓄电池模块100b的连接器CNc(参照图3及图4)与蓄电池模块100a的连接器CNd(参照图3及图4),通过信号线P4进行连接。通过采用该结构,检测信号DT2作为检测信号DT1,从蓄电池模块100b的状态检测部30b通过信号线P4、蓄电池模块100a的状态检测部30a、运算处理装置40a及通信驱动器60a以及总线BS而给予至蓄电池ECU510。
另外,蓄电池模块100a的状态检测部30a与蓄电池ECU510,也可通过信号线P3进行连接。这种情况下,蓄电池模块100a的连接器CNc(参照图3及图4)与蓄电池ECU510,通过信号线P3进行连接。通过采用该结构,检测信号DT2从蓄电池模块100b的状态检测部30b通过信号线P4、蓄电池模块100a的状态检测部30a及信号线P3而给予至蓄电池ECU510。
即、由状态检测部30a产生的检测信号DT1,通过作为第2通信路径的连接线Q1而传递至运算处理装置40a,并且通过作为第1通信路径的信号线P1而传递至运算处理装置40b。由状态检测部30b产生的检测信号DT2,通过作为第5通信路径的连接线Q2而传递至运算处理装置40b,并且通过作为第4通信路径的信号线P2而传递至运算处理装置40a,通过作为第6通信路径的信号线P4而传递至状态检测部30a。
在第4变形例中,由蓄电池模块100a的状态检测部30a产生的检测信号DT1,也可通过运算处理装置40a而给予至蓄电池模块100b的运算处理装置40b。由蓄电池模块100b的状态检测部30b产生的检测信号DT2,也可通过运算处理装置40b而给予至蓄电池模块100a的状态检测部30a及运算处理装置40a。
[9]权利要求的各构成要素与实施方式的各部分之间的对应关系
以下,说明权利要求的各构成要素与实施方式的各部分之间的对应例,但是本发明并不限定于下面的例子。
蓄电池模块100a为第1蓄电池模块的例子,蓄电池模块100b为第2蓄电池模块的例子,蓄电池模块100c为第1个第3蓄电池模块的例子,蓄电池模块100d为第2个第3蓄电池模块的例子。蓄电池单元10为蓄电池单元的例子,蓄电池单元组BLa为第1蓄电池单元组的例子,蓄电池单元组BLb为第2蓄电池单元组的例子,蓄电池单元组BLc、BLd为第3蓄电池单元组的例子。检测信号DT1为第1检测信号的例子,检测信号DT2为第2检测信号的例子,检测信号DT3、DT4为第3检测信号的例子。状态检测部30a为第1状态检测部的例子,状态检测部30b为第2状态检测部的例子,状态检测部30c、30d为第3状态检测部的例子。运算处理装置40a为第1通信电路的例子,运算处理装置40b为第2通信电路的例子,运算处理装置40c、40d为第3通信电路的例子,蓄电池系统500为蓄电池系统的例子。
电机602为电机的例子,驱动轮603为驱动轮的例子,电动机动车600为电动车辆的例子,车体610、船舶的船体、航空器的机体、电梯的轿厢或步行机器人的躯体为移动主体部的例子。电机602、驱动轮603、螺旋桨、推进器、升降用绳索的卷起电机或步行机器人的腿脚为动力源的例子,电动机动车600、船舶、航空器、电梯或步行机器人为移动体的例子。控制器712为系统控制部的例子,电力贮藏装置710为电力贮藏装置的例子,电源装置700为电源装置的例子,电力变换装置720为电力变换装置的例子。
在第1实施方式(参照图1)中,信号线P1为第1通信路径的例子。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。信号线P2为第4通信路径的例子。连接线Q2为第4通信路径的其他例(第5通信路径的例子)。
在第2实施方式(参照图6)中,信号线P1为第1通信路径的例子。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。连接线Q2为第4通信路径的例子(第5通信路径的例子)。信号线P2为第7通信路径的例子。
在第3实施方式(参照图7)中,信号线P1为第1通信路径的例子(第3通信路径的例子)。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。连接线Q2为第4通信路径的例子(第5通信路径的例子)。信号线P2为第7通信路径的例子。
在第4实施方式(参照图8)中,信号线P1为第1通信路径的例子。信号线P3为第1通信路径的其他例(第3通信路径的例子)。连接线Q1为第1通信路径的又一其他例(第2通信路径的例子)。连接线Q2为第4通信路径的例子(第5通信路径的例子)。信号线P2为第7通信路径的例子。
在第1变形例(参照图12)中,连接线Q1及信号线P1为第1通信路径的例子。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。连接线Q2及信号线P2为第4通信路径的例子。连接线Q2为第4通信路径的其他例(第5通信路径的例子)。
在第2变形例(参照图13及图14)中,信号线P1为第1通信路径的例子。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。信号线P2为第8通信路径的例子。连接线Q2为第4通信路径的其他例(第5通信路径的例子)。信号线P5为第1个第9通信路径的例子。
在第3变形例(参照图15及图16)中,信号线P1为第1通信路径的例子。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。信号线P2为第8通信路径的例子。连接线Q2为第4通信路径的其他例(第5通信路径的例子)。信号线P51为第1个第9通信路径的例子。信号线P52为第2个第9通信路径的例子。
在第4变形例(参照图17)中,信号线P1为第1通信路径的例子。连接线Q1为第1通信路径的其他例(第2通信路径的例子)。信号线P2为第4通信路径的例子。信号线P4为第4通信路径的其他例(第6通信路径的例子)。连接线Q2为第4通信路径的又一其他例(第5通信路径的例子)。
作为权利要求的各构成要素,也能采用具有权利要求记载的结构或功能的其他各种要素。

Claims (12)

1.一种蓄电池系统,其具备:
第1蓄电池模块;
第2蓄电池模块;和
第1通信路径,
所述第1蓄电池模块包括:
第1蓄电池单元组,其包括一个或多个蓄电池单元;
第1状态检测部,其检测与所述第1蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的第1检测信号;和
第1通信电路,其将由所述第1状态检测部产生的第1检测信号发送至外部,
所述第2蓄电池模块包括:
第2蓄电池单元组,其包括1个或多个蓄电池单元;
第2状态检测部,其检测与所述第2蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的第2检测信号;和
第2通信电路,其将由所述第2状态检测部产生的第2检测信号发送至外部,
所述第1通信路径被设置成:将由所述第1状态检测部产生的所述第1检测信号传递至所述第2通信电路及所述第2状态检测部中的至少一方。
2.根据权利要求1所述的蓄电池系统,其中,
所述第1通信路径将由所述第1状态检测部产生的第1检测信号通过所述第1通信电路而传递至所述第2通信电路及所述第2状态检测部中的至少一方。
3.根据权利要求1或2所述的蓄电池系统,其中,
所述第1通信路径包括:
第2通信路径,其将由所述第1状态检测部产生的第1检测信号传递至所述第1通信路径;和
第3通信路径,其将由所述第1状态检测部产生的第1检测信号传递至所述第2状态检测部。
4.根据权利要求1至3中任一项所述的蓄电池系统,其中,
所述蓄电池系统还具备第4通信路径,该第4通信路径将由所述第2状态检测部产生的所述第2检测信号传递至所述第1通信电路及所述第1状态检测部中的至少一方。
5.根据权利要求4所述的蓄电池系统,其中,
所述第4通信路径将由所述第2状态检测部产生的所述第2检测信号通过所述第2通信电路而传递至所述第1通信电路及所述第1状态检测部中的至少一方。
6.根据权利要求4或5所述的蓄电池系统,其中,
所述第4通信路径包括:
第5通信路径,其将由所述第2状态检测部产生的第2检测信号传递至所述第2通信电路;和
第6通信路径,其将由所述第2状态检测部产生的第2检测信号传递至所述第1状态检测部。
7.根据权利要求1至6中任一项所述的蓄电池系统,其中,
所述蓄电池系统还具备第7通信路径,该第7通信路径将由所述第2状态检测部产生的第2检测信号不经由所述第1通信电路及所述第2通信电路而传递至外部。
8.根据权利要求1至7中任一项所述的蓄电池系统,其中,
所述蓄电池系统还具备:
第1个至第N个的N个第3蓄电池模块,其中,N为1以上的自然数;
第8通信路径;和
第1个至第N个的N个第9通信路径,
所述N个第3蓄电池模块的各个模块包括:
第3蓄电池单元组,其包括1个或多个蓄电池单元;
第3状态检测部,其检测与所述第3蓄电池单元组的充放电相关的异常状态或正常状态,并产生表示检测出的状态的第3检测信号;和
第3通信电路,其将由所述第3状态检测部产生的第3检测信号发送至外部,
所述第8通信路径被设置成:将由所述第2蓄电池模块的所述第2状态检测部产生的所述第2检测信号传递至第1个第3蓄电池模块的所述第3通信电路及所述第3状态检测部中的至少一方,
在N为1的情况下,
第1个第9通信路径被设置成:将由所述第1个第3蓄电池模块的所述第3状态检测部产生的所述第3检测信号传递至所述第1蓄电池模块的所述第1通信电路及所述第1状态检测部中的至少一方,
在N为2以上的情况下,
第i个第9通信路径被设置成:将由第i个第3蓄电池模块的所述第3状态检测部产生的所述第3检测信号传递至第(i+1)个第3蓄电池模块的所述第3通信电路及所述第3状态检测部中的至少一方,其中,i为1至(N-1)的自然数,
第N个第9通信路径被设置成:将由第N个第3蓄电池模块的所述第3状态检测部产生的所述第3检测信号传递至所述第1蓄电池模块的所述第1通信电路及所述第1状态检测部中的至少一方。
9.一种电动车辆,其具备:
权利要求1至8中任一项所述的蓄电池系统;
电机,其通过所述蓄电池系统的电力进行驱动;和
驱动轮,其通过所述电机的旋转力进行旋转。
10.一种移动体,其具备:
权利要求1至8中任一项所述的蓄电池系统;
移动主体部;和
动力源,其将来自所述蓄电池系统的电力变换成用于使所述移动主体部移动的动力。
11.一种电力贮藏装置,其具备:
权利要求1至8中任一项所述的蓄电池系统;和
系统控制部,其进行与所述蓄电池系统的所述第1蓄电池模块及所述第2蓄电池模块的放电或充电相关的控制。
12.一种电源装置,其能与外部进行连接,其中,所述电源装置具备:
权利要求11所述的电力贮藏装置;和
电力变换装置,其由所述电力贮藏装置的所述系统控制部控制,且在所述电力贮藏装置的所述蓄电池系统与所述外部之间进行电力变换。
CN201180003819.8A 2011-03-25 2011-09-13 蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置 Active CN102823107B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-068084 2011-03-25
JP2011068084 2011-03-25
PCT/JP2011/005148 WO2012131808A1 (ja) 2011-03-25 2011-09-13 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置

Publications (2)

Publication Number Publication Date
CN102823107A true CN102823107A (zh) 2012-12-12
CN102823107B CN102823107B (zh) 2014-07-30

Family

ID=46929653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180003819.8A Active CN102823107B (zh) 2011-03-25 2011-09-13 蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置

Country Status (5)

Country Link
US (1) US8742619B2 (zh)
EP (1) EP2642630B1 (zh)
KR (1) KR101199102B1 (zh)
CN (1) CN102823107B (zh)
WO (1) WO2012131808A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071497A (zh) * 2015-08-28 2015-11-18 中国电子科技集团公司第十八研究所 锂离子蓄电池组智能均衡模块
CN105829160A (zh) * 2013-08-06 2016-08-03 睿能创意公司 使用单个或多个电池单元为电动车供电的系统和方法
CN111262293A (zh) * 2014-12-17 2020-06-09 深圳市大疆创新科技有限公司 电池管理系统

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2737601B1 (en) 2011-07-26 2020-04-08 Gogoro Inc. Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries
US8560147B2 (en) 2011-07-26 2013-10-15 Gogoro, Inc. Apparatus, method and article for physical security of power storage devices in vehicles
ES2720202T3 (es) 2011-07-26 2019-07-18 Gogoro Inc Aparato, método y artículo para un compartimento de dispositivo de almacenamiento de energía
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
ES2701745T3 (es) 2011-07-26 2019-02-25 Gogoro Inc Aparato, método y artículo para la redistribución de dispositivos de almacenamiento de energía, como por ejemplo baterías, entre máquinas de recogida, carga y distribución
ES2967056T3 (es) 2011-07-26 2024-04-25 Gogoro Inc Aparato, método y artículo para autenticación, seguridad y control de dispositivos de almacenamiento de energía, como por ejemplo baterías
WO2013016564A2 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
ES2748199T3 (es) 2011-07-26 2020-03-13 Gogoro Inc Aparato, método y artículo para proporcionar información sobre la disponibilidad de dispositivos de almacenamiento de energía en una máquina de recogida, carga y distribución de dispositivos de almacenamiento de energía
US9437058B2 (en) 2011-07-26 2016-09-06 Gogoro Inc. Dynamically limiting vehicle operation for best effort economy
JP5793245B2 (ja) 2011-07-26 2015-10-14 ゴゴロ インク 乗り物診断データを提供するための装置、方法、および物品
JP6010619B2 (ja) 2011-07-26 2016-10-19 ゴゴロ インク ユーザープロファイルに基づいた電池などの電力貯蔵装置の認証、セキュリティ、及び制御のための装置、方法、及び物品
KR101262556B1 (ko) * 2011-10-14 2013-05-08 엘지이노텍 주식회사 무선전력 송신장치
JP5775935B2 (ja) 2011-10-20 2015-09-09 日立オートモティブシステムズ株式会社 電池システムの監視装置およびこれを備えた蓄電装置
JP5814156B2 (ja) * 2012-02-22 2015-11-17 トヨタ自動車株式会社 電動車両およびその制御方法
US20190317463A1 (en) 2012-05-19 2019-10-17 Growing Energy Labs, Inc. Adaptive energy storage operating system for multiple economic services
US9817376B1 (en) * 2012-05-19 2017-11-14 Growing Energy Labs, Inc. Adaptive energy storage operating system for multiple economic services
JP6810504B2 (ja) 2012-11-16 2021-01-06 ゴゴロ インク 車両方向指示器のための装置、方法及び物品
JP5942838B2 (ja) * 2012-12-20 2016-06-29 住友電気工業株式会社 中継機、コネクタ装置、充電ケーブル及び給電システム
CN103901250B (zh) * 2012-12-31 2017-11-28 上海大郡动力控制技术有限公司 车载蓄电池电压检测及处理方法
US11222485B2 (en) 2013-03-12 2022-01-11 Gogoro Inc. Apparatus, method and article for providing information regarding a vehicle via a mobile device
WO2014164812A1 (en) 2013-03-12 2014-10-09 Gogoro, Inc. Apparatus, method and article for changing portable electrical power storage device exchange plans
CN105210257B (zh) 2013-03-15 2018-11-13 睿能创意公司 用于对电存储设备进行收集和分配的模块化系统
KR101461895B1 (ko) * 2013-05-03 2014-11-13 현대자동차 주식회사 배터리 팩의 셀 밸런싱 시스템 및 셀 밸런싱 방법
WO2015047448A1 (en) * 2013-09-27 2015-04-02 Ge Aviation Systems Llc Inverter with improved shoot through immunity
US10193190B2 (en) 2013-11-01 2019-01-29 Hitachi, Ltd. Battery control system
EP3097626B1 (en) 2014-01-23 2019-03-20 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
ES2721769T3 (es) 2014-08-11 2019-08-05 Gogoro Inc Conector y enchufe eléctricos multidireccionales
USD789883S1 (en) 2014-09-04 2017-06-20 Gogoro Inc. Collection, charging and distribution device for portable electrical energy storage devices
DE102015201869A1 (de) * 2015-02-03 2016-08-04 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Steuervorrichtung für ein Mehrspannungsbordnetz
KR101668287B1 (ko) * 2015-02-16 2016-10-24 세방전지(주) 배터리의 수명 예측시스템 및 그 방법
CN104882931B (zh) * 2015-05-27 2017-01-25 沈阳航空航天大学 航空电源电池管理系统及其方法
ES2934213T3 (es) 2015-06-05 2023-02-20 Gogoro Inc Sistemas y métodos para detección de carga de vehículo y respuesta
JP6930745B2 (ja) * 2016-09-13 2021-09-01 三洋電機株式会社 管理装置および電源システム
CN106655105A (zh) * 2016-12-16 2017-05-10 河南新太行电源股份有限公司 一种蓄电池防过度充电保护装置
JP2018117438A (ja) * 2017-01-17 2018-07-26 太陽誘電株式会社 リチウムイオンキャパシタを備えた電源モジュール
US11545841B2 (en) * 2019-11-18 2023-01-03 Semiconductor Components Industries, Llc Methods and apparatus for autonomous balancing and communication in a battery system
US11870047B2 (en) 2020-11-16 2024-01-09 Ford Global Technologies, Llc Traction battery thermal management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399453A (zh) * 2007-09-27 2009-04-01 株式会社日立制作所 监视装置和使用了该监视装置的蓄电装置控制系统、铁路车辆
JP2009261193A (ja) * 2008-04-21 2009-11-05 Toyota Motor Corp 駆動源制御装置および車両制御装置
CN101860053A (zh) * 2009-04-09 2010-10-13 福特环球技术公司 电池监视和控制系统及其使用方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203784B2 (ja) 2001-08-30 2009-01-07 株式会社デンソー 車載組電池制御装置
DE10142408A1 (de) * 2001-08-31 2003-04-03 Bosch Gmbh Robert Verfahren und Versorgungsleitungstruktur zur Übertragung von Informationen zwischen elektrischen Kraftfahrzeugkomponenten
US6959777B2 (en) * 2001-10-05 2005-11-01 Ford Global Technologies, Llc High voltage energy regulated conversion circuit
JP3804682B2 (ja) 2005-03-18 2006-08-02 日産自動車株式会社 車両用組電池の電圧検出装置
JP5048963B2 (ja) 2006-04-06 2012-10-17 パナソニック株式会社 電池システム
JP4722067B2 (ja) * 2007-03-06 2011-07-13 日立ビークルエナジー株式会社 蓄電装置,蓄電池管理制御装置及びモータ駆動装置
US8319476B2 (en) 2007-07-06 2012-11-27 Seiko Instruments Inc. Battery state monitoring circuit and battery device
US8324868B2 (en) * 2007-08-24 2012-12-04 Valence Technology, Inc. Power source with temperature sensing
GB2453207B (en) 2007-09-27 2010-11-10 Hitachi Ltd Battery monitoring device, battery control system, and railway vehicle
JP5459946B2 (ja) * 2007-09-28 2014-04-02 株式会社日立製作所 車両用直流電源装置
JP5502335B2 (ja) 2009-02-04 2014-05-28 セイコーインスツル株式会社 バッテリ状態監視回路及びバッテリ装置
KR20110015880A (ko) 2009-08-10 2011-02-17 엘지전자 주식회사 배터리 제어 장치 및 그 방법
US8698351B2 (en) * 2009-10-20 2014-04-15 Motiv Power Systems, Inc. System and method for managing a power system with multiple power components
US20110101920A1 (en) * 2009-10-30 2011-05-05 Sanyo Electric Co., Ltd. Battery module, battery system and electric vehicle including the same
JP6147668B2 (ja) * 2010-11-02 2017-06-14 ナビタス ソリューションズ,インコーポレイテッド スマート電池管理システムのための無線電池エリアネットワーク
US9118191B2 (en) * 2011-08-29 2015-08-25 Samsung Sdi Co., Ltd. Cell balancing method, cell balancing device, and energy storage system including the cell balancing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399453A (zh) * 2007-09-27 2009-04-01 株式会社日立制作所 监视装置和使用了该监视装置的蓄电装置控制系统、铁路车辆
JP2009261193A (ja) * 2008-04-21 2009-11-05 Toyota Motor Corp 駆動源制御装置および車両制御装置
CN101860053A (zh) * 2009-04-09 2010-10-13 福特环球技术公司 电池监视和控制系统及其使用方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829160A (zh) * 2013-08-06 2016-08-03 睿能创意公司 使用单个或多个电池单元为电动车供电的系统和方法
CN105829160B (zh) * 2013-08-06 2017-10-24 睿能创意公司 使用单个或多个电池单元为电动车供电的系统和方法
CN111262293A (zh) * 2014-12-17 2020-06-09 深圳市大疆创新科技有限公司 电池管理系统
US11721995B2 (en) 2014-12-17 2023-08-08 SZ DJI Technology Co., Ltd. Battery management system
CN105071497A (zh) * 2015-08-28 2015-11-18 中国电子科技集团公司第十八研究所 锂离子蓄电池组智能均衡模块

Also Published As

Publication number Publication date
WO2012131808A1 (ja) 2012-10-04
US8742619B2 (en) 2014-06-03
KR20120120111A (ko) 2012-11-01
KR101199102B1 (ko) 2012-11-08
US20120280573A1 (en) 2012-11-08
EP2642630A4 (en) 2014-11-19
EP2642630A1 (en) 2013-09-25
CN102823107B (zh) 2014-07-30
EP2642630B1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
CN102823107B (zh) 蓄电池系统、电动车辆、移动体、电力贮藏装置及电源装置
US9329239B2 (en) Battery system, electric-powered vehicle, movable equipment, power storage device, and power source apparatus
CN108377009B (zh) 供电系统
EP2369713B1 (en) Battery control device and battery system
US9783037B2 (en) Vehicle
JP5735098B2 (ja) バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
US9627896B2 (en) Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
US9397371B2 (en) Storage system and storage controller for storage system
EP2874270B1 (en) Battery pack and electric vehicle
US8754654B2 (en) Power supply device for detecting disconnection of voltage detection lines
US8970062B2 (en) Automotive power source apparatus and vehicle equipped with the power source apparatus
WO2012131809A1 (ja) バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
CN108780928B (zh) 电池管理系统
US9270135B2 (en) Power supply apparatus and power supply switching method
CN102110842A (zh) 电池系统和具备该电池系统的电动车辆
JP5008782B1 (ja) バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
US20230238807A1 (en) Power distribution module
WO2012132177A1 (ja) バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
EP2988190B1 (en) Communication terminal for constructing daisy chain communication network without distinction between input connector and output connector
WO2010107381A1 (en) System and method for controlling an energe storage pack
CN103963656A (zh) 蓄电池系统
CN112776630A (zh) 运输工具以及用于给运输工具的至少两个电蓄能器进行充电的方法
CN112238757A (zh) 运输工具和用于运行运输工具的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant