US9783037B2 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
US9783037B2
US9783037B2 US14/636,182 US201514636182A US9783037B2 US 9783037 B2 US9783037 B2 US 9783037B2 US 201514636182 A US201514636182 A US 201514636182A US 9783037 B2 US9783037 B2 US 9783037B2
Authority
US
United States
Prior art keywords
battery set
accessory device
series
battery
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/636,182
Other versions
US20150273995A1 (en
Inventor
Kenji Muto
Akira Nakai
Hideaki Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUTO, KENJI, NAKAI, AKIRA, SAKAI, HIDEAKI
Publication of US20150273995A1 publication Critical patent/US20150273995A1/en
Application granted granted Critical
Publication of US9783037B2 publication Critical patent/US9783037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60L11/126
    • B60L11/1803
    • B60L11/1816
    • B60L11/1861
    • B60L11/1864
    • B60L11/1877
    • B60L11/1879
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • H01M2/1083
    • H01M2/206
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • Y02T10/6217
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7005
    • Y02T10/7044
    • Y02T10/7061
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7077
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7216
    • Y02T10/7241
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • Y02T90/127
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

A vehicle includes a body, a first battery set, a first accessory device, a second battery set, a second accessory device, a load device, and connecting wires. The first battery set is installed in the body and includes at least one first series unit including a predetermined number of battery cells connected in series. The first accessory device is installed in the body and connected to the first battery set. The second battery set is installed in the body and includes at least one second series unit including a predetermined number of battery cells connected in series. The second accessory device is installed in the body and connected to the second battery set. The load device is installed in the body and connected to the first battery set via the first accessory device and to the second battery set via the second accessory device.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2014-069219, filed Mar. 28, 2014, entitled “Vehicle.” The contents of this application are incorporated herein by reference in their entirety.
BACKGROUND
1. Field
The present disclosure relates to a vehicle.
2. Description of the Related Art
In recent years, battery electric vehicles (BEV) that have a motor driven solely by electric power provided by a battery are being developed. For example, Japanese Unexamined Patent Application Publication No. 2012-176751 discloses an electric vehicle that has a plurality of batteries installed underneath a floor panel of the vehicle and has one junction box connecting the batteries to electrical apparatuses.
Another example of known electric vehicles is a hybrid electric vehicle (HEV). An HEV achieves high fuel efficiency by using a motor at the time of start and switching the power source to an engine when it reaches a speed at which the engine is driven efficiently. For example, Japanese Unexamined Patent Application Publication No. 2013-147044 discloses an HEV that has a drive battery, a battery for an auxiliary machine, and one joint box connected to the drive battery and the battery for the auxiliary machine.
Furthermore, a fuel-cell electric vehicle (FCEV), which drives a motor not by using an energy resource like petroleum but by using electric power resulting from electrode reaction between hydrogen and oxygen and, thus, is environmentally friendly, is also being developed. For example, Japanese Unexamined Patent Application Publication No. 2009-190438 discloses an FCEV that has a fuel cell and a power controller unit for controlling electric power to be supplied to a motor.
SUMMARY
According to one aspect of the present invention, a vehicle includes a body, a first battery set, a first accessory device, a second battery set, a second accessory device, a load device, and connecting wires. The first battery set is installed in the body and includes at least one series unit that is formed of a predetermined number of battery cells connected in series. The first accessory device is installed in the body and is connected to the first battery set. The second battery set is installed in the body and includes at least one series unit. The second accessory device is installed in the body and is connected to the second battery set. The load device is installed in the body and is connected to the first battery set via the first accessory device and to the second battery set via the second accessory device. The connecting wires connect the first accessory device and the second accessory device so as to connect the at least one series unit of the first battery set and the at least one series unit of the second battery set in parallel.
According to another aspect of the present invention, a vehicle includes a body, a first battery set, a first accessory device, a second battery set, a second accessory device, a load device, and connecting wires. The first battery set is installed in the body and includes at least one first series unit including a predetermined number of battery cells connected in series. The first accessory device is installed in the body and connected to the first battery set. The second battery set is installed in the body and includes at least one second series unit including a predetermined number of battery cells connected in series. The second accessory device is installed in the body and connected to the second battery set. The load device is installed in the body and connected to the first battery set via the first accessory device and to the second battery set via the second accessory device. The connecting wires connect the first accessory device and the second accessory device so as to connect the at least one first series unit of the first battery set and the at least one second series unit of the second battery set in parallel.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
FIG. 1 illustrates the system configuration of a vehicle according to an embodiment of the present application.
FIG. 2 illustrates the configuration of a first battery pack and a second battery pack of the vehicle.
FIGS. 3A and 3B illustrate the arrangement of the first battery pack and the second battery pack, wherein FIGS. 3A and 3B are a side view and a plan view, respectively.
FIGS. 4A and 4B illustrate an example in which the first battery pack is installed in another type of vehicle, wherein FIG. 4A shows the system configuration of another type of vehicle, and FIG. 4B shows the configuration of the first battery pack.
FIGS. 5A and 5B illustrate a comparative example, wherein FIG. 5A shows the configuration of a battery pack installed in a vehicle according to the comparative example, and FIG. 5B shows a case where the battery pack shown in FIG. 5A is installed in another type of vehicle.
DESCRIPTION OF THE EMBODIMENTS
The embodiments will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings.
An embodiment of the present application will be described in detail below with reference to the drawings. An exemplary case where a vehicle V (see FIG. 1) is a BEV, which is powered by a battery, will be described.
Embodiment
Configuration of Vehicle
FIG. 1 illustrates the system configuration of a vehicle according to this embodiment. The vehicle V includes a body D (see FIG. 3), a storage battery unit 1, a voltage control unit (VCU) 2, an inverter 3, a driving motor 4, a converter 5, an auxiliary machine 6, a charger 7, and an electric control unit (ECU) 8. The body D (see FIG. 3) forms the outer shape of the vehicle V and accommodates the storage battery unit 1, the VCU 2, the inverter 3, the driving motor 4, the converter 5, the auxiliary machine 6, the charger 7, the ECU 8, etc.
The storage battery unit 1 is charged with electric power supplied from an external power supply (not shown) via the charger 7 or electric power supplied from the driving motor 4 (generator) when regenerative braking is used, and it discharges the charged electric power in response to the operation of the VCU 2 and the converter 5. A detailed description of the storage battery unit 1 will be given below. The VCU 2 controls charging and discharging of the storage battery unit 1 according to instructions from the ECU 8. The inverter 3 converts direct-current power supplied from the storage battery unit 1 via the VCU 2 into three-phase alternating-current power and outputs the three-phase alternating-current power to the driving motor 4. The inverter 3 also converts the three-phase alternating-current power supplied from the driving motor 4 during regenerative braking into direct-current power and outputs the direct-current power to the storage battery unit 1.
The driving motor 4 (load device) is, for example, a synchronous motor and is driven by electric power supplied via the inverter 3. The converter 5 is a DC-to-DC converter that reduces the voltage of the storage battery unit 1. The auxiliary machine 6 (load device) is, for example, an air conditioner (not shown) or a car navigation system (not shown) and is driven by electric power supplied via the converter 5. The ECU 8 integrally controls the operation of the VCU 2, the inverter 3, and the converter 5.
Configuration of Storage Battery Unit
FIG. 2 illustrates the configuration of a first battery pack and a second battery pack of the vehicle. The storage battery unit 1 includes a first battery pack 10 and a second battery pack 20. The first battery pack 10 and the second battery pack 20 are connected to the VCU 2 (see FIG. 1), the converter 5, and the charger 7 via terminals T1 and T2.
First Battery Pack
The first battery pack 10 includes series units 11 a and 11 b and a junction board 12. The series unit 11 a includes a predetermined number of battery cells C that are connected in series. An example of the battery cells C is a lithium-ion storage cell. In the example shown in FIG. 2, the series unit 11 a is formed of cell blocks B and B connected in series via a switch S. Each cell block B includes a plurality of battery cells C connected in series. The other series unit 11 b has the same configuration as the series unit 11 a. A “first battery set”, which includes at least one series unit that is formed of a predetermined number of battery cells C connected in series, includes the series units 11 a and 11 b.
The series units 11 a and 11 b have the same number of battery cells C and have substantially the same voltage. As will be described below, the series units 11 a and 11 b are connected in parallel via the junction board 12. Hence, the voltages of the series units 11 a and 11 b are the same.
The junction board 12 (first accessory device) serves to connect the series units 11 a and 11 b in parallel and to switch between connection and disconnection of the load device (the driving motor 4 and the auxiliary machine 6, see FIG. 1) and the series units 11 a and 11 b. The junction board 12 is connected to a positive terminal of the series unit 11 a via a terminal T3 and to a negative terminal of the series unit 11 a via a terminal T4. The junction board 12 is also connected to the series unit 11 b via terminals T5 and T6.
The junction board 12 has main contactors 12 a, 12 b, 12 c, and 12 d, current sensors 12 e and 12 f, fuses 12 g and 12 h, pre-charge contactors 12 i and 12 j, and pre-charge resistors 12 m and 12 n. As shown in FIG. 2, the main contactor 12 a, the current sensor 12 e, the fuse 12 g, the series unit 11 a, and the main contactor 12 b are sequentially connected in series. The pre-charge contactor 12 i and the pre-charge resistor 12 m, connected to each other in series, are connected in parallel to the main contactor 12 a.
The main contactors 12 a and 12 b (first contactor) are, for example, electromagnetic switches and serve to connect or disconnect between the series unit 11 a and the VCU 2 (see FIG. 1), the converter 5, and the charger 7. The main contactors 12 a and 12 b switch the connection and disconnection in accordance with an instruction from the ECU 8 (see FIG. 1). In a normal use state, the main contactors 12 a and 12 b are on.
The current sensor 12 e detects a charging or discharging current of the series unit 11 a and outputs the detected value to the ECU 8 (see FIG. 1). The fuse 12 g protects the series unit 11 a and the devices on the junction board 12 by blowing when a current exceeding the rated current runs through it.
The pre-charge contactor 12 i and the pre-charge resistor 12 m are provided to reduce the current flowing through the series unit 11 a immediately after the start of charging or discharging. For example, the ECU 8 (see FIG. 1) connects the pre-charge contactor 12 i immediately after the start of charging or discharging. As a result, a current flows through the pre-charge resistor 12 m, reducing the current flowing to the series unit 11 a. Then, the main contactor 12 a is connected, and the charging or discharging of the series unit 11 a is continued while the pre-charge contactor 12 i is disconnected.
The main contactor 12 c, the current sensor 12 f, the fuse 12 h, the series unit 11 b, and the main contactor 12 d are sequentially connected in series, and the pre-charge contactor 12 j and the pre-charge resistor 12 n are connected in parallel to the main contactor 12 c. Because the configuration of these devices is the same as that of the devices on the series unit 11 a, a description thereof will be omitted.
As shown in FIG. 2, the series units 11 a and 11 b are connected in parallel, and a connection point therebetween on the positive side, H1, is connected to the terminals T1 and T7, and a connection point therebetween on the negative side, H2, is connected to the terminals T2 and T8. The cell blocks B of the series units 11 a and 11 b and the junction board 12 are accommodated in a plastic housing G1 (see FIG. 3).
Second Battery Pack
The second battery pack 20 shown in FIG. 2 includes a series unit 21 and a junction board 22. The series unit 21 is formed of cell blocks B and B connected in series via a switch S. Each cell block B includes a plurality of battery cells C connected in series. The number of battery cells C in the series unit 21 is the same as the number of battery cells C in the series units 11 a and 11 b of the first battery pack 10. A “second battery set”, which includes at least one series unit that is formed of a predetermined number of battery cells C connected in series, includes the series unit 21.
The junction board 22 (second accessory device) serves to switch between connection and disconnection of the series unit 21 and the load device (the driving motor 4 and the auxiliary machine 6, see FIG. 1). The junction board 22 is connected to a positive terminal of the series unit 21 via a terminal T9 and to a negative terminal of the series unit 21 via a terminal T10.
The junction board 22 has main contactors 22 a and 22 b (second contactors), a current sensor 22 c, a fuse 22 d, a pre-charge contactor 22 e, and a pre-charge resistor 22 f. The main contactor 22 a, the current sensor 22 c, the fuse 22 d, the series unit 21, and the main contactor 22 b are sequentially connected in series. The positive side of the circuit including the above-mentioned devices is connected to the terminal T7 of the junction board 12 via a terminal T11 and a connecting wire K1. The negative side of the circuit is connected to a terminal T8 of the junction board 12 via a terminal T12 and a connecting wire K2.
The pre-charge contactor 22 e and the pre-charge resistor 22 f, connected to each other in series, is connected in parallel to the main contactor 22 a. The configuration of these devices is the same as the configuration of the devices connected to the series units 11 a and 11 b of the first battery pack 10, so, a description thereof will be omitted. The cell blocks B of the series unit 21 and the junction board 22 are accommodated in a plastic housing G2 (see FIG. 3).
Connecting Wire
The connecting wire K1 on the positive side connects the terminal T7 on the junction board 12 and the terminal T11 on the junction board 22. The connecting wire K2 on the negative side connects the terminal T8 on the junction board 12 and the terminal T12 on the junction board 22. By connecting the connecting wires K1 and K2 to the junction boards 12 and 22, the series units 11 a and 11 b of the first battery pack 10 and the series unit 21 of the second battery pack 20 are connected in parallel.
The driving motor 4 (see FIG. 1) and the auxiliary machine 6, which serve as the “load devices”, are connected to the series units 11 a and 11 b (first battery set) via the junction board 12, etc. and to the series unit 21 (second battery set) via the junction board 22, etc.
Arrangement of Battery Pack
FIGS. 3A and 3B illustrate the arrangement of the first battery pack and the second battery pack. In FIGS. 3A and 3B, illustration of wires connecting the cell blocks B and the junction boards 12 and 22 is omitted. In the example shown in FIGS. 3A and 3B, the first battery pack 10 is formed of four horizontally arranged cell blocks B and the junction board 12 accommodated in the plastic housing G1. The second battery pack 20 is formed of two horizontally arranged cell blocks B and the junction board 22 accommodated in the plastic housing G2. The arrangement of the cell blocks B and the junction boards 12 and 22 may be appropriately changed.
The first battery pack 10 is disposed below a floor panel F (at around the center as viewed from above) of the vehicle V. Because the first battery pack 10 has a larger number of cell blocks B than the second battery pack 20, the volume thereof is larger than that of the second battery pack 20. Therefore, it is desirable that the first battery pack 10 be disposed below the floor panel F, where a relatively large space is ensured in the vehicle V.
The junction board 12 is often installed in a frame (not shown) constituting a center console L (shown schematically in FIG. 3B) and extending in a front-rear direction. In this embodiment, because the junction board is divided into two (junction boards 12 and 22), the longitudinal and transverse widths of the junction board 12 can be reduced, compared with a case where one junction board corresponding to the series units 11 a, 11 b, and 21 is provided. Thus, there is no need to increase the transverse width of the center console L in accordance with the size of the junction board 12, ensuring a sufficient transverse width for a front seat Qa, improving the comfort of an occupant.
The second battery pack 20 is disposed below the floor panel F, at a position behind a rear seat Qb. Because the second battery pack 20 includes a relatively small number of cell blocks B, a sufficient space for the second battery pack 20 is ensured even behind the rear seat Qb.
In another type of vehicle (for example, an FCEV), a tank (not shown) filled with fuel gas is often disposed behind the rear seat. Although a detailed description will be given below, for example, when only the first battery pack 10 is installed in another type of vehicle (i.e., when the first battery pack 10 is shared with another type of vehicle) without changing the configuration, it is only necessary that a tank is installed instead of the second battery pack 20. There is no need to change the configuration and arrangement of the first battery pack 10. Hence, it is possible to share the first battery pack 10 between the vehicle V according to this embodiment and another type of vehicle, reducing the manufacturing cost of these vehicles.
Exemplary Installation in Another Type of Vehicle
An exemplary case where the first battery pack 10 is installed in an REV, serving as another type of vehicle VA, will be described. As shown in FIG. 4A, in another type of vehicle VA, an engine for generator 91 and a generator 92 connected to the engine for generator 91 are provided in addition to the configuration of the vehicle V (BEV) according to this embodiment, and a storage battery unit 1A includes the first battery pack 10 (see FIG. 4B). Although a detailed description will be omitted, when the first battery pack 10 is running out of power, the engine for generator 91 is driven to make the generator 92 generate power and charge the series units 11 a and 11 b (see FIG. 4) of the storage battery unit 1A with the generated power.
As shown in FIG. 4B, the storage battery unit 1A of another type of vehicle VA includes the first battery pack 10. That is, the storage battery unit 1A has the same configuration as the storage battery unit 1 (see FIG. 2) of the vehicle V (see FIG. 1) according to this embodiment but without the second battery pack 20. Because the REV has the engine for generator 91 and the generator 92, the charging capacity of the storage battery unit 1A may be smaller than that of a BEV, which does not have the engine for generator 91 and the generator 92.
Furthermore, in this embodiment, the charging capacity required by the vehicle V (three series units 11 a, 11 b, and 21) is divided into the charging capacity required by another type of vehicle VA (two series units 11 a and 11 b) and the remaining charging capacity (one series unit 21), and two junction boards 12 and 22 are provided correspondingly. This enables the series units 11 a and 11 b and the junction board 12 of the vehicle V according to this embodiment to be used in another type of vehicle VA without changing the configuration. That is, it is possible to share the series units 11 a and 11 b and the junction board 12 between the vehicle V according to this embodiment and another type of vehicle VA, reducing the manufacturing cost of the vehicles V and VA.
Although FIGS. 4A and 4B show the example in which the first battery pack 10 is installed in another type of vehicle VA without changing the configuration, the vehicles V and VA may have different number of cell blocks B in the series units 11 a and 11 b, while using the same junction board 12.
Advantage
In the vehicle V according to this embodiment, by forming the first battery pack 10 so as to be suitable for use in another type of vehicle VA (for example, an REV) that requires a smaller charging capacity than the vehicle V, serving as a BEV, the series units 11 a and 11 b and the junction board 12 can be shared between the vehicle V and the vehicle VA. Thus, the series unit and the junction board can be mass-produced, reducing the manufacturing cost of the vehicles V and VA, compared with a case where the series unit and the junction board suitable only for the vehicle V according to this embodiment are produced.
As shown in a comparative example in FIG. 5A, in a conventional BEV, for example, three series units 11 a, 11 b, and 21 are connected to one junction board 32. Because the junction board 32 is custom-made in accordance with the charging capacity of the vehicle, the junction board 32 cannot be shared with another type of vehicle. In particular, because the number of production of BEVs is smaller than that of HEVs, etc., the use of a junction board designed specially for BEVs will result in an increase in manufacturing cost.
FIG. 5B shows a configuration of the junction board 32 shown in FIG. 5A when used in an REV without changing the configuration. The REV does not require the main contactors 22 a and 22 b, the current sensor 22 c, the fuse 22 d, the pre-charge contactor 22 e, or the pre-charge resistor 22 f shown in FIG. 5B. In particular, the main contactors 22 a and 22 b and the pre-charge contactor 22 e are more expensive than the other devices, and the use of these devices is waste of manufacturing cost.
In contrast, in the vehicle V according to this embodiment, the series units 11 a and 11 b (see FIG. 2) and the junction board 12 are configured in accordance with the charging capacity of another type of vehicle VA, and the shortfall in charging capacity is compensated for by the series unit 21 and the junction board 22. This enables to share the series units 11 a and 11 b and the junction board 12 between the vehicles V and VA, which have different power plants. As a result, it is possible to mass-produce the common devices, namely, the series units 11 a and 11 b and the junction board 12, reducing the manufacturing cost of the vehicles V (BEVs), which are relatively small in number of production.
Furthermore, in this embodiment, unlike the comparative example shown in FIG. 5B, the devices including the main contactors 22 a and 22 b and the pre-charge contactor 22 e are efficiently utilized. In particular, by efficiently utilizing the contactors, which are relatively expensive, heavy, and large devices, the manufacturing cost can be drastically reduced, and the installation space for the storage battery unit 1 and 1A can be reduced to a minimum, compared with the conventional configuration.
Moreover, because the junction board 12 shown in FIG. 2 is connected to a smaller number of series units 11 a and 11 b than the junction board according to the comparative example shown in FIG. 5A, the longitudinal and transverse widths of the junction board 12 can be reduced correspondingly. Accordingly, there is no need to increase the transverse width of the center console L (see FIG. 3B) corresponding to the size of the junction board 12, providing a sufficient installation space for the front seat Qa (see FIG. 3B).
Modification
Although the vehicle V of the present application has been described according to the above-described embodiment, the present application is not limited to the description above, but may be modified in various ways. Although a configuration in which the first battery pack 10, among the first battery pack 10 and the second battery pack 20 to be installed in the vehicle V, is configured such that it can be installed in an REV has been discussed in the above embodiment, the possible configurations are not limited thereto. For example, the second battery pack 20 may be installed, without changing the configuration, in another type of vehicle, such as an FCEV or an HEV, having a relatively small battery charging capacity. In other words, the second battery pack 20 may be configured so as to be suitable for use in another type of vehicle, and the shortfall of the charging capacity may be compensated for by the first battery pack 10. By doing so, the second battery pack 20 may be shared between the vehicle V according to this embodiment and another type of vehicle.
Furthermore, it is possible to configure such that the first battery pack 10 can be installed in an REV and the second battery pack 20 can be installed in an FCEV or an HEV. By doing so, the series units 11 a, 11 b, and 21 and the junction boards 12 and 22 can be shared among wide variety of vehicles, reducing the manufacturing cost of these vehicles.
Although a configuration in which the first battery pack 10 includes two series units, 11 a and 11 b, and the second battery pack 20 includes one series unit, 21, has been discussed in the above embodiment, the possible configurations are not limited thereto. For example, the number of series units in the first battery pack 10 and second battery pack 20 may be appropriately changed, and the circuit configuration of the junction boards 12 and 22 may be changed correspondingly. For example, the first battery pack 10 and the second battery pack 20 may have the same number of series units.
Although a configuration in which the “accessory device” connected to the series unit (for example, the series units 11 a and 11 b, see FIG. 2) is the junction board (for example, the junction board 12, see FIG. 2) has been described in the above embodiment, the possible configurations are not limited thereto. For example, a first converter (not shown) may be installed instead of the junction board 12, and a second converter (not shown) may be installed instead of the junction board 22. In such a case, the first converter charges or discharges the series units 11 a and 11 b in accordance with an instruction from the ECU 8. Furthermore, the second converter charges or discharges the series unit 21 in accordance with an instruction from the ECU 8.
Although a configuration in which the series units 11 a and 11 b and the junction board 12 are accommodated in the single housing, G1, to form the first battery pack 10 has been described in the above embodiment, the possible configurations are not limited thereto. For example, the series units 11 a and 11 b may be accommodated in the housing G1 and installed below the floor panel of the vehicle V, and the junction board 12 may be installed outside the housing G1. This configuration may also be applied to the second battery pack 20.
Although a configuration in which the first battery pack 10 is installed below the floor panel of the vehicle V and the second battery pack 20 is installed behind the rear seat Qb has been described in the above embodiment, the position of installation of the first battery pack 10 and the second battery pack 20 may be appropriately changed. Furthermore, although a configuration in which the vehicle V is a BEV has been described in the above embodiment, the possible configurations are not limited thereto. For example, the vehicle V may be an FCEV, and one or both of two battery packs installed in this FCEV may be configured so as to be shared with another type of vehicle.
A vehicle of the present application includes a body; a first battery set that is installed in the body and includes at least one series unit that is formed of a predetermined number of battery cells connected in series; a first accessory device that is installed in the body and is connected to the first battery set; a second battery set that is installed in the body and includes at least one series unit; a second accessory device that is installed in the body and is connected to the second battery set; a load device that is installed in the body and is connected to the first battery set via the first accessory device and to the second battery set via the second accessory device; and connecting wires that connect the first accessory device and the second accessory device so as to connect the at least one series unit of the first battery set and the at least one series unit of the second battery set in parallel.
In this configuration, the first battery set is connected to the load device via the first accessory device, and the second battery set is connected to the load device via the second accessory device. Thus, for example, by configuring the first battery set and the first accessory device so as to be suitable for use in another type of vehicle that has a smaller charging capacity than the vehicle of the present application, the first battery set and the first accessory device can be used in (i.e., shared with) another type of vehicle without changing the configuration. Thus, the first battery set and the first accessory device can be mass-produced, reducing the manufacturing cost thereof, compared with a case where the battery set and the accessory device suitable only for the vehicle according to the present application are produced. The same applies to a case where the second battery set and the second accessory device are to be shared with another type of vehicle. That is, the present application increases the compatibility of devices, such as the first battery set, the first accessory device, the second battery set, and the second accessory device, among vehicles having different power plants. Accordingly, it is possible to reduce the manufacturing cost of the vehicle according to the present application, as well as the other type of vehicles.
It is desirable that the number of series units in the first battery set be greater than the number of series units in the second battery set.
In this configuration, the number of series units in the first battery set is greater than the number of series units in the second battery set. This configuration enables the first battery set, which includes a relatively large number of series units, and the first accessory device connected thereto to be installed, without changing the configuration, in another type of vehicle, such as a range extender electric vehicle (REV), that requires a relatively large charging capacity. By enabling the first battery set and the first accessory device to be used in another type of vehicle without changing the configuration, mass-production of these devices becomes possible, reducing the manufacturing cost of the vehicles.
Furthermore, the second battery set, which includes a relatively small number of series units, and the second accessory device connected thereto can be installed, without changing the configuration, in another type of vehicle, such as an FCEV or an HEV, that requires a relatively small charging capacity. By enabling the second battery set and the second accessory device to be used in another type of vehicle without changing the configuration, mass-production of these devices becomes possible, reducing the manufacturing cost of the vehicles.
Furthermore, it is desirable that the first battery set be disposed below a floor panel of the vehicle and that the second battery set be disposed behind a rear seat.
In this configuration, the first battery set, which includes a relatively large number of series units (and hence, has a large volume), can be disposed below the floor panel of the vehicle, where a large installation space is ensured. Furthermore, by disposing the second battery set behind the rear seat, where a fuel tank is often disposed, the compatibility with another type of vehicle can be increased, thus reducing the manufacturing cost of the vehicles.
Furthermore, it is desirable that the first accessory device include a first contactor that switches between connection and disconnection between the first battery set and the load device, and the second accessory device include a second contactor that switches between connection and disconnection between the second battery set and the load device.
In this configuration, the first accessory device includes the first contactor, and the second accessory device includes the second contactor. Hence, for example, by installing the first battery set and the first accessory device in another type of vehicle without changing the configuration, the contactor, which is a relatively expensive, heavy, and large device, can be efficiently utilized, thus reducing the manufacturing cost of the vehicles.
The present application provides vehicles that can be manufactured at low cost.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Claims (21)

What is claimed is:
1. A vehicle comprising:
a body;
a first battery set that is installed in the body and includes a plurality of series units that are each formed of a predetermined number of battery cells connected in series;
a first accessory device that is installed in a first housing in the body and is connected to each of the series units of the first battery set by pairs of series unit terminals that respectively correspond to each of the series units, the first accessory device including a load device terminal and a first terminal in the first housing;
a second battery set that is installed in the body and includes at least one series unit;
a second accessory device that is installed in a second housing in the body and is connected to the second battery set, the second accessory device including a second terminal in the second housing;
a load device that is installed in the body and is connected to the first battery set via the load device terminal of the first accessory device and to the second battery set via the second accessory device; and
connecting wires that connect the first accessory device and the second accessory device so as to connect the series units of the first battery set and the at least one series unit of the second battery set in parallel, one of the connecting wires connecting the first terminal of the first accessory device and the second terminal of the second accessory device, the first accessory device and the second accessory device being connected in parallel, wherein
the plurality of series units of the first battery set includes two series units each of which comprises a predetermined number of battery cells connected in series, and
the first accessory device connects the two series units of the first battery set to each other in parallel.
2. The vehicle according to claim 1, wherein the number of series units in the first battery set is greater than the number of series units in the second battery set.
3. The vehicle according to claim 2, wherein
the first battery set is disposed below a floor panel of the vehicle, and
the second battery set is disposed behind a rear seat.
4. The vehicle according to claim 1, wherein
the first accessory device includes a first contactor that switches between connection and disconnection between the first battery set and the load device, and
the second accessory device includes a second contactor that switches between connection and disconnection between the second battery set and the load device.
5. The vehicle according to claim 2, wherein
the first accessory device includes a first contactor that switches between connection and disconnection between the first battery set and the load device, and
the second accessory device includes a second contactor that switches between connection and disconnection between the second battery set and the load device.
6. The vehicle according to claim 3, wherein
the first accessory device includes a first contactor that switches between connection and disconnection between the first battery set and the load device, and
the second accessory device includes a second contactor that switches between connection and disconnection between the second battery set and the load device.
7. The vehicle according to claim 1, wherein
the first accessory device is disposed below a floor panel of the vehicle, and
the second accessory device is disposed behind a rear seat.
8. The vehicle according to claim 1,
wherein the first battery set is operable to provide power or to receive power via the first accessory device when the one of the connecting wires is disconnected from the first and second terminals.
9. The vehicle according to claim 1, wherein
an entirety of the batteries for providing electric power to the load device are collectively disposed in the first housing and the second housing.
10. A vehicle comprising:
a body;
a first battery set installed in the body and including a plurality of first series units each comprising a predetermined number of battery cells connected in series;
a first accessory device installed in a first housing in the body and connected to each of the plurality of first series units of the first battery set by pairs of series unit terminals that respectively correspond to each of the first series units, the first accessory device including a load device terminal and a first terminal in the first housing;
a second battery set installed in the body and including at least one second series unit comprising a predetermined number of battery cells connected in series;
a second accessory device installed in a second housing in the body and connected to the second battery set, the second accessory device including a second terminal in the second housing;
a load device installed in the body and connected to the first battery set via the load device terminal of the first accessory device and to the second battery set via the second accessory device; and
connecting wires which connect the first accessory device and the second accessory device so as to connect the first series units of the first battery set and the at least one second series unit of the second battery set in parallel, one of the connecting wires connecting the first terminal of the first accessory device and the second terminal of the second accessory device, the first accessory device and the second accessory device being connected in parallel, wherein
the first series units includes two first series units each of which comprises a predetermined number of battery cells connected in series, and
the first accessory device connects the two first series units to each other in parallel.
11. The vehicle according to claim 10, wherein a total number of the first series units in the first battery set is greater than a total number of the at least one second series unit in the second battery set.
12. The vehicle according to claim 11, wherein
the first battery set is disposed below a floor panel of the vehicle, and
the second battery set is disposed behind a rear seat of the vehicle.
13. The vehicle according to claim 10, wherein
the first accessory device includes a first contactor to be switched between connection and disconnection between the first battery set and the load device, and
the second accessory device includes a second contactor to be switched between connection and disconnection between the second battery set and the load device.
14. The vehicle according to claim 11, wherein
the first accessory device includes a first contactor to be switched between connection and disconnection between the first battery set and the load device, and
the second accessory device includes a second contactor to be switched between connection and disconnection between the second battery set and the load device.
15. The vehicle according to claim 12, wherein
the first accessory device includes a first contactor to be switched between connection and disconnection between the first battery set and the load device, and
the second accessory device includes a second contactor to be switched between connection and disconnection between the second battery set and the load device.
16. The vehicle according to claim 13, wherein
the first contactor and a first one of the first series units of the first battery set are connected in series, and
the second contactor and the at least one second series unit of the second battery set are connected in series.
17. The vehicle according to claim 10, wherein
the first accessory device is disposed below a floor panel of the vehicle, and
the second accessory device is disposed behind a rear seat.
18. The vehicle according to claim 10,
wherein the first battery set is operable to provide power or to receive power via the first accessory device when the one of the connecting wires is disconnected from the first and second terminals.
19. The vehicle according to claim 10, wherein
an entirety of the batteries for providing electric power to the load device are collectively disposed in the first housing and the second housing.
20. A vehicle comprising:
a body;
a first battery set installed in the body and including at least one first series unit comprising a predetermined number of battery cells connected in series;
a second battery set installed in the body and including at least one second series unit comprising a predetermined number of battery cells connected in series;
a load device installed in the body to receive electric power supplied from the first battery unit and the second battery unit;
a first accessory device installed in the body and electrically connected to the first battery set and the load device, the first accessory device comprising:
an electric supply path to connect the first battery set and the load device;
a first switch provided on the electric supply path to switch between connection and disconnection between the first battery set and the load device;
a branched path branched from the electric supply path between the first switch and the load device; and
a first terminal connected to the branched path; and
a second accessory device installed in the body and electrically connected to the second battery set and the load device, the second accessory device comprising:
a second switch to switch between connection and disconnection between the second battery set and the load device; and
a second terminal connected to the first terminal via a connecting wire, the at least one first series unit of the first battery set and the at least one second series unit of the second battery set being connected in parallel.
21. The vehicle according to claim 20, wherein
the first battery set is disposed below a floor panel of the vehicle, and
the second battery set is disposed behind the first battery in the vehicle.
US14/636,182 2014-03-28 2015-03-03 Vehicle Active US9783037B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069219 2014-03-28
JP2014069219A JP6180982B2 (en) 2014-03-28 2014-03-28 vehicle

Publications (2)

Publication Number Publication Date
US20150273995A1 US20150273995A1 (en) 2015-10-01
US9783037B2 true US9783037B2 (en) 2017-10-10

Family

ID=54189184

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/636,182 Active US9783037B2 (en) 2014-03-28 2015-03-03 Vehicle

Country Status (2)

Country Link
US (1) US9783037B2 (en)
JP (1) JP6180982B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170120772A1 (en) * 2015-10-30 2017-05-04 Faraday&Future Inc. Electric vehicle battery charge and discharge management
US20180069425A1 (en) * 2016-09-07 2018-03-08 Thunder Power New Energy Vehicle Development Company Limited Electric vehicle system
US9950601B2 (en) * 2015-10-20 2018-04-24 Honda Motor Co., Ltd. Vehicle with high voltage equipment arranged behind seat
US10516189B2 (en) * 2016-11-15 2019-12-24 Ford Global Technologies, Llc High voltage bus contactor fault detection
US11465532B2 (en) 2021-01-22 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11465764B2 (en) 2020-12-08 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11661180B2 (en) 2020-07-08 2023-05-30 Archer Aviation Inc. Systems and methods for power distribution in electric aircraft
US11919631B2 (en) 2021-02-08 2024-03-05 Archer Aviation, Inc. Vertical take-off and landing aircraft with aft rotor tilting

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235529B2 (en) * 2015-05-25 2017-11-22 トヨタ自動車株式会社 Electric vehicle and battery pack
CN109301140A (en) * 2015-06-02 2019-02-01 重庆大学 A kind of type power battery pack in groups of connecting
DE102016203923B4 (en) * 2016-03-10 2022-09-08 Volkswagen Aktiengesellschaft Battery system with spatially separated partial batteries
DE102016207572A1 (en) * 2016-05-03 2017-11-09 Robert Bosch Gmbh Battery module, battery and device
JP6423389B2 (en) * 2016-06-29 2018-11-14 矢崎総業株式会社 Wire harness
DE102016014932A1 (en) * 2016-12-15 2018-06-21 Man Truck & Bus Ag Technology for variably interconnecting a traction energy storage system
CN107221616B (en) * 2017-05-11 2020-07-03 山东鲁阔车辆制造有限公司 Distributed electric vehicle battery placing mechanism
WO2018226981A1 (en) * 2017-06-07 2018-12-13 Carrier Corporation Energy control for a transport refrigeration unit with an energy storage device
US11233419B2 (en) * 2017-08-10 2022-01-25 Zoox, Inc. Smart battery circuit
IT201800002789A1 (en) * 2018-02-19 2019-08-19 Alfazero S P A BATTERY PACK AND ONE ELECTRIC PROPULSION VEHICLE INCLUDING SAID BATTERY PACK
EP3597554B1 (en) * 2018-07-18 2021-10-20 Avdu Milan Marovac Transport pallet, transport container and transportation vehicle with at least one such pallet or container
US10596917B2 (en) * 2018-08-14 2020-03-24 GM Global Technology Operations LLC Vehicle and electrical system with dual battery modules
EP4022705A4 (en) * 2019-08-28 2023-09-06 Briggs & Stratton, LLC Battery system with parallel joining protection
GB2591755A (en) * 2020-02-05 2021-08-11 Dar Yun Energy Science Tech Co Ltd Power-supplying battery of electric vehicle

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721947A (en) * 1972-07-13 1973-03-20 E Robin Battery terminal guard
US3989544A (en) * 1973-08-22 1976-11-02 Santo Charles P Quick disconnect battery
US4690478A (en) * 1986-04-10 1987-09-01 United Technologies Automotive, Inc. Sealed electrical connector assembly
US5187328A (en) * 1990-11-28 1993-02-16 Electro Wire Products, Inc. Environmentally sealed vehicular air bag sensor
US5390754A (en) * 1992-01-16 1995-02-21 Honda Giken Kogyo Kabushiki Kaisha Battery box for an electric vehicle
JP2003059541A (en) 2001-08-10 2003-02-28 Nissan Motor Co Ltd Battery pack, battery pack structure, vehicle equipped with battery pack or battery pack structure, and cotrol method of battery pack or battery pack structure
US20060173586A1 (en) * 2005-01-21 2006-08-03 Thermo King Corporation Control system for auxiliary power unit
US20090205897A1 (en) * 2006-05-17 2009-08-20 Toyota Jidosha Kabushiki Kaisha Power supply apparatus and vehicle
JP2009190438A (en) 2008-02-12 2009-08-27 Nissan Motor Co Ltd On-vehicle structure of fuel cell system
US20100114762A1 (en) * 2007-04-02 2010-05-06 Mitoshi Ishii Storage battery, storage battery accommodation device, storage battery charging device, and usage amount payment settlement device for storage battery
US20100177543A1 (en) * 2009-01-10 2010-07-15 Ford Global Technologies Llc Power Converter Mounting Assemblies
US20100315043A1 (en) * 2009-06-15 2010-12-16 Hak Hon Chau Fault tolerant modular battery management system
US20110044005A1 (en) * 2007-12-19 2011-02-24 Robert Bosch Gmbh Control unit housing
US20120146386A1 (en) * 2009-08-25 2012-06-14 Terry Charles Rowlands Motorised wheelbarrow
JP2012176751A (en) 2012-04-16 2012-09-13 Nissan Motor Co Ltd Vehicle battery mounting structure
US20120312610A1 (en) * 2011-06-10 2012-12-13 Kia Motors Corporation Battery cooling structure for electric vehicle
WO2013030884A1 (en) 2011-08-30 2013-03-07 トヨタ自動車株式会社 Vehicle
US20130078498A1 (en) * 2011-01-13 2013-03-28 Ferrari S.P.A. Storage system for the storage of electric energy for a vehicle with electric propulsion
US20130112491A1 (en) * 2010-08-03 2013-05-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Rear protection structure for vehicle
US20130113290A1 (en) * 2010-05-18 2013-05-09 Suzuki Motor Corporation Control device for power supply circuit
US20130119934A1 (en) * 2010-08-02 2013-05-16 Nec Energy Devices, Ltd. Secondary battery pack connection control method, power storage system, and secondary battery pack
JP2013147044A (en) 2012-01-17 2013-08-01 Nissan Motor Co Ltd Battery system element arrangement structure for electric vehicle
US20130205560A1 (en) * 2012-02-13 2013-08-15 Ford Global Technologies, Llc Mounting System for an Electronic Control Module Housing in a Vehicle
US20130264975A1 (en) * 2010-12-20 2013-10-10 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method for controlling the same
US20140091085A1 (en) * 2011-05-18 2014-04-03 Toyota Jidosha Kabushiki Kaisha Onboard device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939546B2 (en) * 2001-12-06 2007-07-04 パナソニック・イーブイ・エナジー株式会社 Battery power device for electric vehicle
JP2008029071A (en) * 2006-07-19 2008-02-07 Honda Motor Co Ltd Motor-driven vehicle
JP4998348B2 (en) * 2008-03-27 2012-08-15 トヨタ自動車株式会社 vehicle
JP5528772B2 (en) * 2009-11-05 2014-06-25 三洋電機株式会社 Power supply device, vehicle equipped with the same, and waterproof case
WO2011135762A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Battery module

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721947A (en) * 1972-07-13 1973-03-20 E Robin Battery terminal guard
US3989544A (en) * 1973-08-22 1976-11-02 Santo Charles P Quick disconnect battery
US4690478A (en) * 1986-04-10 1987-09-01 United Technologies Automotive, Inc. Sealed electrical connector assembly
US5187328A (en) * 1990-11-28 1993-02-16 Electro Wire Products, Inc. Environmentally sealed vehicular air bag sensor
US5390754A (en) * 1992-01-16 1995-02-21 Honda Giken Kogyo Kabushiki Kaisha Battery box for an electric vehicle
JP2003059541A (en) 2001-08-10 2003-02-28 Nissan Motor Co Ltd Battery pack, battery pack structure, vehicle equipped with battery pack or battery pack structure, and cotrol method of battery pack or battery pack structure
US20060173586A1 (en) * 2005-01-21 2006-08-03 Thermo King Corporation Control system for auxiliary power unit
US20090205897A1 (en) * 2006-05-17 2009-08-20 Toyota Jidosha Kabushiki Kaisha Power supply apparatus and vehicle
US20100114762A1 (en) * 2007-04-02 2010-05-06 Mitoshi Ishii Storage battery, storage battery accommodation device, storage battery charging device, and usage amount payment settlement device for storage battery
US20110044005A1 (en) * 2007-12-19 2011-02-24 Robert Bosch Gmbh Control unit housing
JP2009190438A (en) 2008-02-12 2009-08-27 Nissan Motor Co Ltd On-vehicle structure of fuel cell system
US20100177543A1 (en) * 2009-01-10 2010-07-15 Ford Global Technologies Llc Power Converter Mounting Assemblies
US20100315043A1 (en) * 2009-06-15 2010-12-16 Hak Hon Chau Fault tolerant modular battery management system
US20120146386A1 (en) * 2009-08-25 2012-06-14 Terry Charles Rowlands Motorised wheelbarrow
US20130113290A1 (en) * 2010-05-18 2013-05-09 Suzuki Motor Corporation Control device for power supply circuit
US20130119934A1 (en) * 2010-08-02 2013-05-16 Nec Energy Devices, Ltd. Secondary battery pack connection control method, power storage system, and secondary battery pack
US20130112491A1 (en) * 2010-08-03 2013-05-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Rear protection structure for vehicle
US20130264975A1 (en) * 2010-12-20 2013-10-10 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method for controlling the same
US20130078498A1 (en) * 2011-01-13 2013-03-28 Ferrari S.P.A. Storage system for the storage of electric energy for a vehicle with electric propulsion
US20140091085A1 (en) * 2011-05-18 2014-04-03 Toyota Jidosha Kabushiki Kaisha Onboard device
US20120312610A1 (en) * 2011-06-10 2012-12-13 Kia Motors Corporation Battery cooling structure for electric vehicle
WO2013030884A1 (en) 2011-08-30 2013-03-07 トヨタ自動車株式会社 Vehicle
JP2013147044A (en) 2012-01-17 2013-08-01 Nissan Motor Co Ltd Battery system element arrangement structure for electric vehicle
US20130205560A1 (en) * 2012-02-13 2013-08-15 Ford Global Technologies, Llc Mounting System for an Electronic Control Module Housing in a Vehicle
JP2012176751A (en) 2012-04-16 2012-09-13 Nissan Motor Co Ltd Vehicle battery mounting structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Japanese Office Action for corresponding JP Application No. 2014-069219, dated Dec. 6, 2016 (w/ English machine translation).

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950601B2 (en) * 2015-10-20 2018-04-24 Honda Motor Co., Ltd. Vehicle with high voltage equipment arranged behind seat
US20170120772A1 (en) * 2015-10-30 2017-05-04 Faraday&Future Inc. Electric vehicle battery charge and discharge management
US10259337B2 (en) * 2015-10-30 2019-04-16 Faraday & Future Inc. Electric vehicle battery charge and discharge management
US20180069425A1 (en) * 2016-09-07 2018-03-08 Thunder Power New Energy Vehicle Development Company Limited Electric vehicle system
US10516189B2 (en) * 2016-11-15 2019-12-24 Ford Global Technologies, Llc High voltage bus contactor fault detection
US11661180B2 (en) 2020-07-08 2023-05-30 Archer Aviation Inc. Systems and methods for power distribution in electric aircraft
US11465764B2 (en) 2020-12-08 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11945594B2 (en) 2020-12-08 2024-04-02 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11465532B2 (en) 2021-01-22 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11919631B2 (en) 2021-02-08 2024-03-05 Archer Aviation, Inc. Vertical take-off and landing aircraft with aft rotor tilting

Also Published As

Publication number Publication date
US20150273995A1 (en) 2015-10-01
JP6180982B2 (en) 2017-08-16
JP2015189387A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
US9783037B2 (en) Vehicle
US10195929B2 (en) Electrically-driven vehicle
CN106183767B (en) Electric vehicle and battery pack
CN102673415B (en) Electric vehicle
US10967746B2 (en) Vehicle
CN104972885B (en) Electric power system of hybrid vehicle
US20160229293A1 (en) Electrically driven vehicle
US11362524B2 (en) Battery system and a method for use in the battery system
EP3974239A1 (en) Electric power supply system comprising a first and a second battery in a vehicle
JPWO2013035176A1 (en) Battery control device, power storage device, and vehicle
WO2012133706A1 (en) Power supply system, power supply device, and vehicle equipped with power supply system or power supply device
CN110356254B (en) High-voltage framework system, electric vehicle and driving mode switching method
KR20140095320A (en) Power Relay Assembly And Battery Pack Module Comprising The Same
US20190275908A1 (en) Electric vehicle battery charging system and method using multi-layer division method
JP2018085790A (en) Battery controller of electric vehicle and battery control method of electric vehicle
JP2013112303A (en) Power supply device for hybrid vehicle
CN114365375A (en) Multi-voltage storage system for an at least partially electrically driven vehicle
JP2018114869A (en) Power source system
US20220410825A1 (en) Wiring module and power distribution apparatus having the same
US20220297556A1 (en) Power distribution device
JP2016157564A (en) Power supply device for vehicle
US9553288B2 (en) Step configuration for traction battery housing
JP2012147617A (en) Battery charger for vehicle
CN218085085U (en) Electric automobile and high-voltage electric integrated system thereof
CN109849675B (en) High-voltage charging device and method and electric vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUTO, KENJI;NAKAI, AKIRA;SAKAI, HIDEAKI;REEL/FRAME:035070/0692

Effective date: 20150226

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4