WO2020004768A1 - 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템 - Google Patents

보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템 Download PDF

Info

Publication number
WO2020004768A1
WO2020004768A1 PCT/KR2019/001978 KR2019001978W WO2020004768A1 WO 2020004768 A1 WO2020004768 A1 WO 2020004768A1 KR 2019001978 W KR2019001978 W KR 2019001978W WO 2020004768 A1 WO2020004768 A1 WO 2020004768A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
energy storage
module
switching network
battery
Prior art date
Application number
PCT/KR2019/001978
Other languages
English (en)
French (fr)
Inventor
은근수
Original Assignee
주식회사 제이에스영테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이에스영테크 filed Critical 주식회사 제이에스영테크
Priority to US17/251,616 priority Critical patent/US11830999B2/en
Priority to CN201980043014.2A priority patent/CN112335149A/zh
Priority to EP19827476.3A priority patent/EP3817180A4/en
Priority to JP2020568454A priority patent/JP7140852B2/ja
Publication of WO2020004768A1 publication Critical patent/WO2020004768A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • An energy storage system is a system that stores the remaining power separately and supplies it when needed.
  • Energy storage systems can be classified into physical energy storage systems and chemical energy storage systems.
  • Typical physical energy storage systems include a positive power generation system, a compressed air storage system, and a flywheel, and chemical energy storage includes lithium batteries, lead acid batteries, and NaS batteries.
  • An example of a small energy storage system is the battery of an electric vehicle.
  • Electric vehicles are motor-driven vehicles equipped with large-capacity batteries.
  • lead-acid batteries were used as such batteries, but now nickel-hydrogen batteries and lithium batteries are mainly used, and lithium batteries are expected to be used in the future.
  • Lead batteries used in the past have the advantages of relatively low price and high reliability, but low output per unit weight, large volume, long time use, output voltage is lowered, and discharge rate is low, high power is required.
  • the life is shortened due to overheating. Therefore, the electric vehicle is not selected first and its use is avoided.
  • it is not suitable for charging the electrical energy recovered through regenerative braking.
  • Lithium batteries are in the spotlight as high-output, high-density batteries compared to other batteries.
  • lithium batteries are very expensive and their performance is highly dependent on temperature, and especially at high temperatures, electrolyte decomposition occurs, resulting in a significant decrease in lifespan. There is also a risk of fire and explosion.
  • Korean Patent Laid-Open Publication Nos. 2010-0001877, 2003-0100891, 2003-0100893 and the like disclose a method for cooling a battery.
  • lead-acid batteries can store about 1 kWh of electrical energy per 10 kg, the electric vehicle can drive 5 to 10 km with about 1 kWh of electrical energy. Therefore, in order to travel about 700km, which is the current driving distance of a car, even if a high density lead acid battery is used, a lead acid battery of about 1 ton is required. Therefore, a low density secondary battery such as lead acid battery cannot be used as a battery.
  • an electric vehicle capable of driving about 100 km on a single charge does not necessarily use a high density battery because the driving distance is short. Rather, if a low cost lead acid battery can be used, the cost is reduced, there is no risk of ignition and explosion, there is no need for a complicated structure for cooling. In addition, since there is no need to consider the risk of fire or explosion when arranging the battery, there is an advantage that the battery can be arranged more freely.
  • the lead-acid battery has a low output voltage when it is used for a long time, and thus it is difficult to run. It is difficult to cope with a case where a high output is required, such as when starting after stopping or driving down a hill, because the output is lower than that of a lithium battery, and a high discharge rate is achieved. There is a problem that the life is shortened if frequently exposed to this required load.
  • a lead storage battery has a problem in that it is difficult to be utilized for charging electric energy by regenerative braking.
  • the conventional hybrid battery system using alternating different types of batteries has a problem in that the amount of energy is rapidly changed according to the change in the type of batteries used, passengers or users can feel the impact of the change. In addition, there is a problem that the energy efficiency is also poor.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2010-0001877
  • Patent Document 2 Korean Unexamined Patent Publication No. 2003-0100891
  • Patent Document 3 Korean Unexamined Patent Publication No. 2003-0100893
  • Patent Document 4 Korean Patent Publication No. 10-1281066
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2010-093993
  • An object of the present invention is to provide a hybrid energy storage module system with high reliability while being able to cope with the demand of high power. For example, as an energy storage module system capable of driving about 100 km with a single charge, a reliable and inexpensive hybrid energy storage module system for an electric vehicle is provided.
  • the present invention provides an energy storage module system for supplying power required for driving a load
  • a second battery module a first battery module having a higher discharge rate than the second battery module, and a switching network configured to connect or disconnect the first battery module in parallel to the second battery module,
  • An energy storage device connected and configured to supply power
  • a controller for receiving data from the first sensing unit and the second sensing unit, generating a control signal for controlling the switching network, and transmitting the control signal to the switching network,
  • the controller generates a control signal for controlling the switching network so that the second battery module is first connected to the load before the first battery module is connected to the second battery module,
  • the controller generates a control signal for controlling the switching network to selectively connect or disconnect the first battery module to the second battery module based on data received from the first sensing unit and the second sensing unit.
  • a control signal for controlling the switching network to selectively connect or disconnect the first battery module to the second battery module based on data received from the first sensing unit and the second sensing unit.
  • the energy storage device further includes a current limiting circuit
  • the switching network is configured to selectively connect or disconnect the current limiting circuit to the first battery module or the second battery module, the controller Connecting the first battery module or the second battery module and the current limiting circuit before connecting the second battery module to the first battery module based on data received from the first sensing unit and the second sensing unit.
  • a hybrid energy storage module system for generating a control signal for controlling a switching network is provided.
  • the controller also provides a hybrid energy storage module system for generating a control signal for controlling the switching network such that the second battery module is disconnected from the load after the first battery module is disconnected from the second battery module.
  • the controller may generate a control signal for controlling the switching network to charge the first battery module after the first battery module is separated from the second battery module during charging by regenerative braking. To provide.
  • the controller may be further configured to connect the first battery module to the second battery module when the magnitude of the current value flowing through the output terminal of the second battery module received from the second sensing unit and the slope of the current value are greater than or equal to a predetermined value. It provides a hybrid energy storage module system for generating a control signal for controlling the switching network to be connected.
  • the switching network may further include a first diode that prevents current from flowing from the first battery module to the second battery module and a second diode that prevents current from flowing from the second battery module to the first battery module. It provides an installed hybrid energy storage module system.
  • the switching network provides a hybrid energy storage module system including switches installed in a network connecting the second battery module, the first battery module, and the current limiting circuit in parallel with each other.
  • the first battery module provides a hybrid energy storage module system that is a lithium battery module.
  • the lithium battery module provides a hybrid energy storage module system selected from a lithium polymer battery, a lithium manganese battery, a lithium iron battery, a lithium ion battery, and a lithium air battery.
  • the second battery module provides a hybrid energy storage module system that is a lead storage module.
  • the current limiting circuit also provides a hybrid energy storage module system that is a variable resistor.
  • the hybrid energy storage module system according to the present invention has the advantage of being able to cope with the demand of high power through an auxiliary battery such as a lithium battery module, and having high reliability.
  • the structure of the system is simple.
  • the lead-acid battery is fairly stable, only the lithium battery may be installed in a safe position in consideration of the safety of the occupant, and thus it is easy to arrange the electric vehicle.
  • 1 is a configuration diagram of an electric vehicle system.
  • FIG. 2 is a block diagram of a hybrid energy storage module system according to an embodiment of the present invention.
  • 3 to 7 are block diagrams according to connection states of components of the energy storage device illustrated in FIG. 2.
  • FIG. 8 is a block diagram of the controller shown in FIG.
  • FIG. 9 is a block diagram illustrating a connection state of components for regenerative braking of the energy storage device illustrated in FIG. 2.
  • FIG. 10 is a flowchart illustrating the operation of a hybrid energy storage module system according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of a hybrid energy storage module system according to another embodiment of the present invention.
  • the hybrid energy storage module system of the present invention can be used for various purposes, but will be described below as an example of the case used in an electric vehicle.
  • Electric vehicles include hybrid vehicles (HEVs), plug-in hybrid vehicles (PHEVs) and pure electric vehicles (EVs).
  • Electric vehicles include not only cars, vans and buses, but also motorcycles such as scooters and motorcycles, wheelchairs, electric forklifts, sweepers and electric bicycles.
  • HEVs hybrid vehicles
  • PHEVs plug-in hybrid vehicles
  • EVs pure electric vehicles
  • Electric vehicles include not only cars, vans and buses, but also motorcycles such as scooters and motorcycles, wheelchairs, electric forklifts, sweepers and electric bicycles.
  • a pure electric vehicle will be described as an example.
  • an electric vehicle includes a motor 1, a motor controller 2, a hybrid energy storage module system 10, a reduction gear 3, and a regenerative braking system 7.
  • the motor 1 of an electric vehicle is also called a motor generator. This is because when the brake is applied while driving, the motor 1 is used as a generator to charge an energy storage device such as a lithium battery module or a lead storage module of the hybrid energy storage module system 10. This is called regenerative braking.
  • the motor 1 is connected to the wheel 4 through the reduction gear 3.
  • the motor controller 2 includes a motor controller and an inverter for converting the direct current of the battery into three-phase alternating current for driving the motor 1 in response to a command of the motor controller.
  • the inverter converts direct current into alternating current by turning the power transistor on and off.
  • the energy storage device 20 of the hybrid energy storage module system 10 may be charged through a quick charging port 5 used for charging in a fast charging station similar to a general gas station for automobiles and a general power source used in homes. Can be charged via the charger (6). In addition, the energy storage device 20 may be charged by the regenerative braking system 7.
  • the energy storage device 20 includes a first battery module, a second battery module, a current limiting circuit, and a switching network 15.
  • the energy storage device 20 is connected to both ends of the load and serves to supply the necessary power to the motor 1 as the load.
  • the switching network 15 is installed on the lead 13 and the lead 13 connecting the lithium battery module 11, the lead storage module 12, and the variable resistor 16 in parallel with each other to selectively connect the lead 13. It includes a plurality of switches (14-1 ⁇ 14-4) for connecting or disconnecting.
  • the lithium battery module 11 includes a plurality of lithium battery cells (not shown) connected in parallel and in parallel.
  • the performance of a battery can be expressed in terms of the amount of electrical energy that can be collected (unit: mAh) and the discharge rate (C-rate), which indicates how many times the battery capacity can be discharged in one hour.
  • Lithium batteries can store more electrical energy per unit weight than lead-acid batteries, and they also charge and discharge faster.
  • lithium batteries have a problem in that their properties deteriorate with increasing temperature, there is a risk of explosion, and the price is very expensive.
  • a lithium battery is a secondary battery using metal lithium as a negative electrode, and includes a lithium polymer battery, a lithium manganese battery, a lithium iron battery, a lithium ion battery, a lithium air battery, and the like.
  • lithium secondary batteries which are currently being developed, may be used in the future.
  • the lead storage module 12 includes a plurality of lead storage cells (not shown) connected in parallel and in parallel.
  • Lead-acid batteries have a small amount of electrical energy that can be collected and a small amount of power that can be discharged per unit time, but they are inexpensive and have a merit of being a safe battery without the risk of explosion.
  • the lead acid battery has a characteristic that the output voltage drops when used for a long time, and the output voltage recovers again after a certain time, and the discharge speed is also slow, and thus it is restricted to use as an electric vehicle battery. In addition, there is a problem that it is difficult to use for charging the electrical energy by regenerative braking due to the low charging speed.
  • the lithium battery module 11 has a problem of deterioration due to an increase in temperature, and thus the lithium battery module 11 may not be used for a long time without a cooling device, and the lead acid battery module 12 may not be used for a long time due to a decrease in output voltage, and the charge and discharge rate may be slow. Has a problem. In this embodiment, this problem is improved by using the lithium battery module 11 connected to the lead storage battery module 12 in parallel using the switching network 15 only when necessary.
  • the lithium battery module 11 when high power is required, such as rapid acceleration or hill climbing, the lithium battery module 11 is connected in parallel to the lead acid battery module 12, and when high power is not required such as constant speed driving, a lead storage battery is required. Only module 12 can be connected to the load.
  • the resistance value of the variable resistor 16 can be appropriately selected according to the state of the lithium battery module 11. In addition, initially, the resistance value may be increased, and the resistance value may gradually decrease. As shown in FIG. 5, the second switch 14-2 is turned on to connect the lead storage battery module 12 and the lithium battery module 11 in parallel. After a while, as shown in FIG. 6, the third switch 14-3 is turned off.
  • the balance between the lead acid battery module 12 and the lithium battery module 11 may be determined according to the values measured by the first sensing unit 21 and the second sensing unit 22, and the lithium battery module 11 may be determined.
  • the need for the connection of can be determined according to the output required by the motor 1.
  • the first sensing unit 21 is connected to the lithium battery cells of the lithium battery module 11 to measure the temperature and voltage of each cell, the current flowing through the output terminal of the lithium battery module 11, and the like.
  • the first sensing unit 21 may be connected in series using one communication line, and may transmit information such as temperature and voltage of each cell to the controller 15 through a serial communication method.
  • the second sensing unit 22 is connected to the lead storage cells of the lead storage module 12 to measure the temperature and voltage of each of the cells, the current flowing through the output terminal of the lead storage module 12, and then the temperature and voltage of each cell. Information, and the like, to the controller 15.
  • the controller 30 monitors the states of the lithium battery module 11 and the lead storage module 12 of the energy storage device 20 and manages the energy storage device 20 to maintain and use them under optimal conditions.
  • the controller 30 includes a receiver 31, a measurer 32, a comparator 33, a signal generator 34, and a transmitter 35.
  • the controller 30 uses the information received from the first sensing unit 21 and the second sensing unit 22 to control the temperature, voltage, and output of the cells of the lithium battery module 11 and the lead storage battery module 12. Monitor the current and other conditions.
  • the control signal generated based on the state of the cells and the information received through the motor controller 2 is transmitted to the switching network 15 to the lithium battery module 11, lead acid battery module 12 and the variable resistor (16). By changing the connection state of the) it serves to comprehensively manage the energy storage device (20).
  • the receiver 31 receives data such as temperature, voltage, and current measured by the first and second sensing units 21 and 22.
  • the motor controller 2 receives power data necessary for driving the motor 1.
  • the measurement unit 32 measures the state of charge (SOC) of the lithium battery module 11 and the lead storage battery module 12 by using the data received from the receiver 31 by a coulomb count method. Determine the state of health (SOH). In addition, the power that can be output to the load is estimated. The rate of change of the current is also calculated.
  • SOC state of charge
  • SOH state of health
  • the comparator 33 checks whether the lithium battery cells are in a safe state by comparing the temperature of the lithium battery cells with a predetermined reference temperature using the data received by the receiver 31. In addition, the voltage of the lead-acid battery cells is compared with a predetermined reference voltage to check whether the lead-acid battery cells can be used. In addition, it is also determined whether or not it is time to couple the lithium battery module 11 to the lead storage battery module 12 by comparing the current value and the rate of change of the current of the lead storage battery module 12. That is, it is determined whether the current value of the lead acid battery module 12 and the rate of change of the current are equal to or greater than a predetermined value, so that a discharge exceeding the discharge rate of the lead acid battery module 12 is required.
  • the signal generator 34 receives the charge rate of the lithium battery module 11 and the lead storage battery module 12, the temperature of the lithium battery module 11, the voltage of the lead storage battery module 12, and the motor controller 2. In consideration of the driving state, the current value of the lead acid battery module 12 and the rate of change of the current, a control signal for determining the connection state of the lithium battery module 11, the lead acid battery module 12 and the variable resistor 16 is generated. It delivers to the energy storage device 20.
  • the lithium battery module 11 and the lead storage battery module 12 are sufficiently charged and are driven at a constant speed, and a high output is not particularly required, only the lead storage battery module 12 may be used.
  • the controller 30 is connected to the motor controller of the motor controller 2, so that the driving state can be checked such as stopping and starting again or traveling down a hill.
  • the driving state can be checked such as stopping and starting again or traveling down a hill.
  • the controller converts the connection state according to the request according to the driving state.
  • the connection state may be switched in a direction protecting the lithium battery module 11 and the lead storage module 12.
  • a control signal for converting the lithium battery module 11 into the connected state is generated and transmitted to the energy storage device 20. This is because the lead-acid battery module 12 has low power that can be taken out even when sufficiently charged.
  • the driving state can also be determined based on the current value of the lead storage module 12 and the rate of change of the current. That is, when the current value of the lead acid battery module 12 and the rate of change of the current are greater than or equal to a predetermined value, and it is determined that a discharge exceeding the discharge rate of the lead acid battery module 12 is required, the lithium battery module 11 is connected to the load. Generate a control signal if possible.
  • the first switch 14-1 and the second switch 14-2 are turned on, and the third switch 14-3 and the fourth switch ( 14-4) is turned off so that the lithium battery module 11 is connected to the regenerative braking system 7. Since the lead-acid battery module 12 is hardly charged by regenerative braking, it is necessary to separate the lithium battery module 11 from the lead-acid battery module 12 and connect the regenerative braking system 7 during regenerative braking. There is an advantage that can improve the charging efficiency.
  • the lead storage battery module 12 may be charged by charging the lead storage module 12 through the charged lithium battery module 11. As described above, the lead storage module 12 is hardly charged by regenerative braking. In this case, the controller 30 transmits a control signal to the switching network 15 to switch the connection state of the switching network 15 such that the charged lithium battery module 11 and the lead storage battery module 12 are connected to each other. do.
  • the first and second sensing units 21 and 22 detect temperature, voltage, and current of the output terminals of the cells of the lithium battery module 11 and the lead storage module 12. It measures (S1, S2).
  • the measuring unit 32 of the controller 30 uses the data measured by the first sensing unit 21 and the second sensing unit 22 to determine the lithium battery module 11 and the lead storage battery module 12. Filling rate, soundness, etc. are measured (S3). It is determined whether the driving state is possible once through the filling rate measurement result (S4). As a result of the measurement, the measured charging rate is transmitted to the driver through the display installed in the driver's seat of the electric vehicle. If both the lithium battery module 11 and the lead storage battery module 12 have a low charging rate and require charging, the driver is informed that the charging is necessary through the display installed in the driver's seat of the electric vehicle (S12).
  • the comparison unit 33 of the controller 30 compares the temperature value of each cell of the lithium battery module 11 measured by the first sensing unit 21 with the reference temperature (S5).
  • the voltage value of each cell of the lead acid battery module 12 measured by the first sensing unit 22 is compared with the reference voltage (S6).
  • the controller 30 stops the operation of the electric vehicle.
  • the controller 30 receives the driving state information of the vehicle through the current value and the rate of change of the current of the motor controller or the lead storage module 12 of the motor controller 2 (S8). For example, when the current value and the rate of change of the current of the lead-acid battery module 12 is greater than or equal to a predetermined value, the vehicle may be stopped and restarted, or it may be determined that the vehicle is driving down a hill. It is possible to determine that the vehicle is running.
  • Steps S4 to S8 are all performed in the controller 30 and may be performed simultaneously or in a different order than the above-described order.
  • the signal generator 34 of the controller 30 determines the connection state based on the result obtained in steps S4 to S8, generates a control signal, and transmits the control signal to the energy storage device 20 (S9).
  • the energy storage device 20 arranges and discharges the lithium battery module 11, the lead storage battery module 12, and the variable resistor 16 according to a control signal (S10).
  • the hybrid energy storage module system may further include a first diode 17 and a second diode 18.
  • the first diode 17 and the second diode 18 are safety devices for preventing inrush current from flowing from the lead acid battery module 12 to the lithium battery module 11 or vice versa. As described above, when the lithium battery module 11 is connected in a state where the balance between the lead storage battery module 12 and the lithium battery module 11 is balanced, the inrush current is likely to flow, but in case The first diode 17 and the second diode 18 can be provided.
  • the second diode 18 blocks current from flowing from the lead acid battery module 12 toward the lithium battery module 11 rather than the load, and the first diode 17 from the lithium battery module 11 leads to the lead acid battery module 12. Current flow to the load only.
  • a separate switching device capable of changing the directions of the first diode 17 and the second diode 18 may be required for regenerative braking.
  • variable resistor 16 is used as the current limiting circuit, a general resistor may be used.
  • a current limiting circuit in which the resistance changes may be configured by selectively connecting a plurality of resistors in series or in parallel. Further, the current limiting circuit may be configured by selecting one of a plurality of resistors having different resistance values.

Abstract

본 발명은 에너지 저장 모듈 시스템에 관한 것이다. 본 발명은 부하의 구동에 필요한 전력을 공급하는 에너지 저장 모듈 시스템으로서, 제2 전지 모듈과, 상기 제2 전지 모듈에 비해서 방전율이 높은 제1 전지 모듈과, 상기 제2 전지 모듈에 상기 제1 전지 모듈을 병렬로 연결 또는 분리하도록 구성된 스위칭 네트워크를 포함하며, 상기 부하에 연결되어 전력을 공급하도록 구성된 에너지 저장 장치와, 상기 제1 전지 모듈의 상태를 나타내는 데이터를 측정하도록 구성된 제1 감지유닛과, 상기 제2 전지 모듈의 상태를 나타내는 데이터를 측정하도록 구성된 제2 감지유닛과, 상기 제1 감지유닛과 제2 감지유닛에서의 데이터를 수신하고, 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며, 상기 제어신호를 상기 스위칭 네트워크에 송신하는 제어기를 포함하며, 상기 제어기는 상기 제1 전지 모듈이 상기 제2 전지 모듈에 연결되기 전에 상기 제2 전지 모듈이 먼저 부하에 연결되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며, 상기 제어기는 상기 제1 감지유닛과 제2 감지유닛으로부터 수신한 데이터를 바탕으로 상기 제2 전지 모듈에 상기 제1 전지 모듈이 선택적으로 연결 또는 분리되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.

Description

보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템
본 발명은 에너지 저장 모듈 시스템에 관한 것으로서, 더욱 상세하게는 주 배터리와 특성이 다른 리튬 전지와 같은 보조 배터리로 납 축전지와 같은 주 배터리를 보완하여, 부하에서 요구되는 전력량의 변화에 따라 적절하게 대응할 수 있는 하이브리드 에너지 저장 모듈 시스템에 관한 것이다.
에너지 저장 시스템은 남은 전력을 따로 저장했다가 필요한 시기에 공급하는 시스템이다. 에너지 저장 시스템은 저장방식에 따라 크게 물리적 에너지 저장 시스템과 화학적 에너지 저장 시스템으로 구분할 수 있다. 대표적인 물리적 에너지 저장 시스템으로는 양수 발전 시스템과 압축공기저장 시스템, 플라이 휠 등을 들 수 있으며, 화학적 에너지저장으로는 리튬전지, 납축전지, NaS 전지 등이 있다.
야간에 버려지는 전기 등을 에너지 저장 시스템에 저장하여 피크 시간대에 사용하면 전력수급 문제를 해결할 수 있다는 점에서 에너지 저장 시스템에 대한 연구가 활발하게 진행되고 있다.
소규모 에너지 저장 시스템의 일례로 전기 자동차의 배터리가 있다. 전기 자동차는 모터를 이용해서 구동되는 자동차로서 대용량의 배터리가 장착된다. 이러한 배터리로 과거에는 납 축전지가 사용되었으나, 현재는 니켈 수소전지와 리튬 전지 등이 주로 사용되고 있으며, 향후에는 리튬 전지가 주로 사용될 것으로 예상된다.
과거에 사용되었던 납 축전지는 가격이 상대적으로 매우 싸며, 높은 신뢰성을 가진다는 장점이 있으나, 단위 무게당 출력이 낮으며, 부피가 크고, 장시간 사용하면 출력 전압이 저하되며, 방전율이 낮아서 고출력이 요구되는 부하에 자주 노출되는 경우 과열로 수명이 단축되는 문제가 있어서 전기 자동차에는 우선적으로 선택되지 않고, 사용이 기피되고 있다. 또한, 회생제동을 통해서 회수된 전기 에너지의 충전에 적합하지 않다는 문제도 있었다.
리튬 전지는 다른 전지에 비해 고출력, 고밀도 전지로써 각광을 받고 있다. 하지만, 리튬 전지는 가격이 매우 비싸며, 온도에 따라 성능이 크게 좌우되며, 특히 고온에서는 전해질 분해가 일어나며, 이에 따라 수명이 현저하게 떨어진다. 또한, 발화 및 폭발의 위험도 있다. 이러한 문제점을 개선하기 위해서, 한국 공개특허공보 제2010-0001877호, 제2003-0100891호, 제2003-0100893호 등에는 배터리를 냉각하기 위한 방법이 개시되어 있다.
현재 사용되는 납 축전지는 10㎏당 1㎾h 정도의 전기에너지를 저장할 수 있으며, 1㎾h 정도의 전기에너지로 전기 자동차는 5 내지 10㎞를 주행할 수 있다. 따라서 현재의 자동차의 주행거리인 700㎞ 정도를 주행하기 위해서는 고밀도의 납 축전지를 사용하더라도 1톤 정도의 납 축전지가 필요하다. 따라서 납 축전지와 같은 저밀도의 이차전지를 배터리로 사용할 수 없다.
그러나 한 번의 충전으로 100㎞ 정도의 주행이 가능한 전기 자동차는 주행거리가 짧으므로, 반드시 고밀도 전지를 사용할 필요가 없다. 오히려 저가의 납 축전지를 사용할 수 있다면, 비용이 절감되며, 발화 및 폭발의 위험이 없어 냉각을 위한 복잡한 구조가 필요 없다는 장점이 있다. 또한, 전지를 배치할 때 발화나 폭발의 위험을 고려할 필요가 없으므로 좀 더 자유롭게 전지를 배치할 수 있다는 장점도 있다.
그러나 상술한 바와 같이 납 축전지는 장시간 사용하면 출력 전압이 낮아져 주행이 어려우며, 리튬 전지에 비해서 출력이 낮아서 정지 후 출발하거나, 언덕길을 주행하는 경우와 같이 고출력이 요구되는 경우에 대응하기 어렵고, 높은 방전율이 요구되는 부하에 자주 노출되는 경우 수명이 단축되는 문제가 있다. 또한, 납 축전지는 회생제동에 의한 전기에너지의 충전에 활용되기 어렵다는 문제가 있다.
또한, 서로 다른 종류의 전지를 번갈아 가며 사용하는 종래의 하이브리드 전지 시스템은 사용되는 전지 종류의 변화에 따라 에너지량이 급격히 변화하여, 승객이나 사용자가 그 변화에 따른 충격을 느낄 수 있다는 문제점이 있었다. 또한, 에너지 효율도 떨어진다는 문제가 있었다.
또한, 하이브리드 전지 시스템을 장착한 플러그인 하이브리드 자동차에서 주행과 동시에 충전이 필요할 경우 레인지 익스텐더(range extender)를 구동시켜 리튬전지에 충전을 하고 전기자동차의 운행은 납축전지를 사용하게 됨에 따라 필요 이상의 큰 용량의 리튬전지를 구비하여 충전해야 하는 문제가 있었다.
[선행기술문헌]
(특허문헌 1) 한국 공개특허공보 제2010-0001877호
(특허문헌 2) 한국 공개특허공보 제2003-0100891호
(특허문헌 3) 한국 공개특허공보 제2003-0100893호
(특허문헌 4) 한국 등록특허공보 제10-1281066호
(특허문헌 5) 일본 공개특허공보 제2010-093993호
본 발명의 목적은 고출력의 요구에 대응이 가능하면서도, 신뢰성이 높은 하이브리드 에너지 저장 모듈 시스템을 제공하는 것이다. 예를 들어, 한 번의 충전으로 100㎞ 정도의 주행이 가능한 에너지 저장 모듈 시스템으로서 신뢰성이 높고, 가격이 매우 저렴한 전기 자동차용 하이브리드 에너지 저장 모듈 시스템을 제공하는 것이다.
상술한 목적을 달성하기 위해서 본 발명은 부하의 구동에 필요한 전력을 공급하는 에너지 저장 모듈 시스템으로서,
제2 전지 모듈과, 상기 제2 전지 모듈에 비해서 방전율이 높은 제1 전지 모듈과, 상기 제2 전지 모듈에 상기 제1 전지 모듈을 병렬로 연결 또는 분리하도록 구성된 스위칭 네트워크를 포함하며, 상기 부하에 연결되어 전력을 공급하도록 구성된 에너지 저장 장치와,
상기 제1 전지 모듈의 상태를 나타내는 데이터를 측정하도록 구성된 제1 감지유닛과, 상기 제2 전지 모듈의 상태를 나타내는 데이터를 측정하도록 구성된 제2 감지유닛과,
상기 제1 감지유닛과 제2 감지유닛에서의 데이터를 수신하고, 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며, 상기 제어신호를 상기 스위칭 네트워크에 송신하는 제어기를 포함하며,
상기 제어기는 상기 제1 전지 모듈이 상기 제2 전지 모듈에 연결되기 전에 상기 제2 전지 모듈이 먼저 부하에 연결되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며,
상기 제어기는 상기 제1 감지유닛과 제2 감지유닛으로부터 수신한 데이터를 바탕으로 상기 제2 전지 모듈에 상기 제1 전지 모듈이 선택적으로 연결 또는 분리되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 에너지 저장 장치는 전류제한회로를 더 포함하며, 상기 스위칭 네트워크는 상기 전류제한회로를 상기 제1 전지 모듈 또는 상기 제2 전지 모듈에 선택적으로 연결 또는 분리하도록 구성되며, 상기 제어기는 상기 제1 감지유닛과 제2 감지유닛으로부터 수신한 데이터를 바탕으로 상기 제1 전지 모듈에 상기 제2 전지 모듈을 연결하기 전에 상기 제1 전지 모듈 또는 상기 제2 전지 모듈과 상기 전류제한회로를 연결하도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 제어기는 상기 제1 전지 모듈이 상기 제2 전지 모듈에서 분리된 후에 상기 제2 전지 모듈이 부하에서 분리되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 제어기는 회생제동에 의한 충전시 상기 제1 전지 모듈이 상기 제2 전지 모듈에서 분리된 후 상기 제1 전지 모듈이 충전되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 제어기는 상기 제2 감지유닛으로부터 수신한 상기 제2 전지 모듈의 출력단에 흐르는 전류 값의 크기와 전류 값의 기울기가 미리 정해진 값 이상이면, 상기 제2 전지 모듈에 상기 제1 전지 모듈이 연결되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 스위칭 네트워크에는 상기 제1 전지 모듈로부터 상기 제2 전지 모듈로 전류가 흐르는 것을 방지하는 제1 다이오드와 상기 제2 전지 모듈로부터 상기 제1 전지 모듈로 전류가 흐르는 것을 방지하는 제2 다이오드가 설치된 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 스위칭 네트워크는 상기 제2 전지 모듈과, 상기 제1 전지 모듈과, 상기 전류제한회로를 서로 병렬로 연결하는 네트워크에 설치된 스위치들을 포함하는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 제1 전지 모듈은 리튬 전지 모듈인 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 리튬 전지 모듈은 리튬 폴리머 전지, 리튬 망간 전지, 리튬 철 전지, 리튬 이온 전지 및 리튬 공기 전지 중에서 선택되는 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 제2 전지 모듈은 납 축전지 모듈인 하이브리드 에너지 저장 모듈 시스템을 제공한다.
또한, 상기 전류제한회로는 가변저항인 하이브리드 에너지 저장 모듈 시스템을 제공한다.
본 발명에 따른 하이브리드 에너지 저장 모듈 시스템은 리튬 전지 모듈과 같은 보조 배터리를 통해서 고출력의 요구에 대응이 가능하면서도, 신뢰성이 높다는 장점이 있다.
또한, 가격이 저렴한 납 축전지 모듈을 주 배터리로 사용하므로, 제조비용이 절감된다.
또한, 기존 하이브리드 배터리 시스템에 비하여 작은 용량의 보조 배터리 사용이 가능하므로 이에 따른 비용절감 효과가 크다.
또한, 리튬 전지의 계속적인 사용에 의해서 리튬 전지의 온도가 상승하는 것을 방지하기 위한 별도의 냉각시스템의 필요성이 낮으므로, 시스템의 구조가 간단하다. 또한, 납 축전지는 상당히 안정적이므로, 리튬 전지만 탑승자의 안전을 고려하여 안전한 위치에 설치하면 되므로, 전기 자동차에 배치하기 용이하다.
도 1은 전기 자동차 시스템의 구성도이다.
도 2는 본 발명의 일실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 블록도이다.
도 3 내지 7은 도 2에 도시된 에너지 저장 장치의 부품들의 연결 상태에 따른 블록도들이다.
도 8은 도 2에 도시된 제어기의 블록도이다.
도 9는 도 2에 도시된 에너지 저장 장치의 회생제동을 위한 부품들의 연결 상태를 나타낸 블록도이다.
도 10은 본 발명의 일실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 작용을 나타낸 순서도이다.
도 11은 본 발명의 다른 실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 블록도이다.
이하, 첨부된 도면을 참고하여 본 발명의 일실시예에 대해서 상세히 설명한다.
다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명의 하이브리드 에너지 저장 모듈 시스템은 다양한 용도로 사용될 수 있으나, 이하에서는 전기 자동차에 사용되는 경우를 예로서 설명한다. 전기 자동차에는 하이브리드카(HEV), 플러그인 하이브리드카(PHEV), 순수 전기차(EV) 등이 포함된다. 그리고 전기 자동차에는 승용차, 승합차, 버스뿐 아니라 스쿠터나 오토바이와 같은 이륜자동차, 휠체어, 전기 지게차, 청소차, 전기 자전거 등도 모두 포함된다. 이하에서는 순수 전기차를 예로 들어 설명한다.
도 1은 전기 자동차 시스템의 구성도이다. 도 1을 참고하면, 전기 자동차는 모터(1), 모터컨트롤러(2), 하이브리드 에너지 저장 모듈 시스템(10), 감속기어(3) 및 회생제동시스템(7)을 포함한다.
전기 자동차의 모터(1)는 모터제너레이터라고도 불린다. 운행 중에 브레이크를 밟았을 때 모터(1)를 발전기로 하여 하이브리드 에너지 저장 모듈 시스템(10)의 리튬 전지 모듈이나 납 축전지 모듈 등과 같은 에너지 저장 장치를 충전하기 때문이다. 이를 회생 제동이라고 한다. 모터(1)는 감속기어(3)를 통해서 바퀴(4)와 연결된다.
모터컨트롤러(2)는 모터제어기와, 모터제어기의 명령에 따라서 모터(1)를 구동하기 위해서 배터리의 직류를 3 상 교류로 전환하는 인버터를 포함한다. 인버터는 파워트랜지스터를 On-Off 하는 방식으로 직류를 교류로 변환한다.
하이브리드 에너지 저장 모듈 시스템(10)의 에너지 저장 장치(20)는 일반 자동차용 주유소와 유사한 급속충전소에서 충전할 때 사용되는 급속 충전구(5)와 가정에서 사용하는 일반 전원을 통해서 충전할 수 있는 일반 충전기(6)를 통해서 충전될 수 있다. 또한, 에너지 저장 장치(20)는 회생제동시스템(7)에 의해서 충전될 수도 있다.
도 2는 본 발명의 일실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 블록도이다. 도 2를 참조하면, 하이브리드 에너지 저장 모듈 시스템(10)은 에너지 저장 장치(20)와, 제1 감지유닛(21) 및 제2 감지유닛(22)과, 제어기(30)를 포함한다.
도 3은 도 2에 도시된 에너지 저장 장치의 블록도이다. 도 3을 참조하면, 에너지 저장 장치(20)는 제1 전지 모듈, 제2 전지 모듈, 전류제한회로 및 스위칭 네트워크(15)를 포함한다.
제1 전지 모듈은 고출력이 요구될 때 제2 전지 모듈을 보조하기 위한 것으로서, 제2 전지 모듈에 비해서 방전율이 더 높다. 예를 들어, 제1 전지 모듈은 리튬 전지 모듈(11)이고, 제2 전지 모듈은 납 축전지 모듈(12)일 수 있다. 전류제한회로로는 가변저항(16)을 사용할 수 있다.
에너지 저장 장치(20)는 부하의 양단에 연결되어 부하인 모터(1)에 필요한 전력을 공급하는 역할을 한다. 스위칭 네트워크(15)는 리튬 전지 모듈(11), 납 축전지 모듈(12) 및 가변저항(16)을 서로 병렬로 연결하는 도선(13)과 도선(13)에 설치되어 선택적으로 도선(13)을 연결 또는 차단하는 복수의 스위치(14-1~14-4)를 포함한다.
리튬 전지 모듈(11)은 직·병렬로 연결된 다수의 리튬 전지 셀들(미도시)을 포함한다. 전지의 성능은 모을 수 있는 전기에너지(단위는 ㎾h)의 크기와 한 시간에 배터리 용량의 몇 배를 방전할 수 있는지를 나타내는 방전율(C-rate) 등으로 나타낼 수 있다. 리튬 전지는 납 축전지에 비해서 단위 무게당 많은 전기에너지를 저장할 수 있으며, 충방전 속도도 빠르다. 그러나 리튬 전지는 온도가 증가하면 특성이 열화되고, 폭발의 위험성이 있으며, 가격이 매우 비싸다는 문제가 있다. 본 발명에서, 리튬 전지는 음극에 금속 리튬을 사용하는 2차 전지로서, 리튬 폴리머 전지, 리튬 망간 전지, 리튬 철 전지, 리튬 이온 전지 및 리튬 공기 전지 등을 모두 포함한다. 또한, 현재 개발되고 있어나, 향후 개발될 리튬 2차 전지도 사용될 수 있다.
납 축전지 모듈(12)은 직·병렬로 연결된 다수의 납 축전지 셀들(미도시)을 포함한다. 납 축전지는 모을 수 있는 전기에너지의 크기가 작고, 단위 시간당 방전할 수 있는 전력의 크기도 작지만, 가격이 저렴하며 폭발 위험성 등이 없는 안전한 배터리라는 장점이 있다. 납 축전지는 장기간 사용하면 출력 전압이 떨어지며, 일정 시간이 지나야 다시 출력 전압이 회복되는 특성이 있으며, 방전 속도도 느려서 전기 자동차용 배터리로 사용하는데 제약이 따른다. 또한, 충전 속도도 느려서 회생제동에 의한 전기에너지의 충전용으로 사용하기 어렵다는 문제가 있다.
상술한 바와 같이 리튬 전지 모듈(11)은 온도 증가에 따른 열화 문제가 있어서, 냉각 장치 없이 장시간 사용할 수 없으며, 납 축전지 모듈(12)은 출력 전압의 저하로 장시간 사용할 수 없으며, 충방전 속도가 느리다는 문제가 있다. 본 실시예에서는 필요한 경우에만 리튬 전지 모듈(11)을 납 축전지 모듈(12)에 스위칭 네트워크(15)를 이용하여 병렬로 연결하여 사용함으로써 이러한 문제를 개선하였다.
예를 들어, 급가속이나, 언덕길 등판과 같이, 고출력이 필요한 경우에는 리튬 전지 모듈(11)을 납 축전지 모듈(12)에 병렬로 연결하고, 정속 주행과 같이 고출력이 필요하지 않을 경우에는 납 축전지 모듈(12)만을 부하에 연결할 수 있다.
고출력이 필요한 경우 납 축전지 모듈(12)이 부하와 연결된 상태에서 리튬 전지 모듈(11)을 납 축전지 모듈(12) 및 부하에 병렬로 바로 연결할 경우 부하로 전류가 흐르게 된다. 납 축전지 모듈(12)과 리튬 전지 모듈(11) 사이의 전위차가 크지 않고 시스템에 흐르는 전류량이 크지 않을 경우에는 리튬 전지 모듈(11)을 바로 납 축전지 모듈(12)에 병렬로 연결할 수 있다.
그러나 전위가 낮은 모듈로 돌입전류(in rush current)가 흐르게 되어 납 축전지 모듈(12) 또는 리튬 전지 모듈(11)이 손상될 가능성이 있는 경우에는, 연결 전에 납 축전지 모듈(12)과 리튬 전지 모듈(11) 사이에 균형을 맞추는 것이 바람직하다. 예를 들어 리튬 전지 모듈(11)의 전위가 높을 경우에는 먼저, 도 4에 도시된 바와 같이, 제2 스위치(14-2)를 끄고, 제1 스위치(14-1), 제3 스위치(14-3), 제4 스위치(14-4)를 켜서, 리튬 전지 모듈(11)을 가변저항(16)과 병렬로 연결한다. 이러한 상태에서 납 축전지 모듈(12)과 리튬 전지 모듈(11) 사이에 균형이 맞을 때까지 잠시 방치한다. 이때, 가변저항(16)의 저항값은 리튬 전지 모듈(11)의 상태에 따라서 적절히 선택할 수 있다. 또한, 처음에는 저항값을 크게 하고, 점차 저항값이 낮아지게 할 수도 있다. 그리고 도 5에 도시된 바와 같이, 제2 스위치(14-2)를 켜서, 납 축전지 모듈(12)과 리튬 전지 모듈(11)을 병렬로 연결한다. 그리고 잠시 후 도 6에 도시된 바와 같이, 제3 스위치(14-3)를 끈다.
반대로 납 축전지 모듈(12)의 전위가 높을 경우에는 먼저, 도 7에 도시된 바와 같이, 제1 스위치(14-1)를 끄고, 제2 스위치(14-2), 제3 스위치(14-3) 및 제4 스위치(14-4)를 켜서, 리튬 전지 모듈(12)을 가변저항(16)과 병렬로 연결한다. 이러한 상태에서 잠시 방치하여 납 축전지 모듈(12)과 리튬 전지 모듈(11) 사이에 균형이 맞게 되면, 도 5에 도시된 바와 같이, 제1 스위치(14-1)를 켜서, 납 축전지 모듈(12)과 리튬 전지 모듈(13)을 병렬로 연결한다. 그리고 잠시 후 도 6에 도시된 바와 같이, 제3 스위치(14-3)를 끈다.
납 축전지 모듈(12)과 리튬 전지 모듈(11) 사이에 균형이 맞는지는 제1 감지유닛(21) 및 제2 감지유닛(22)에서 측정된 값에 따라서 결정될 수 있으며, 리튬 전지 모듈(11)의 연결이 필요한지는 모터(1)에서 요구하는 출력에 따라서 결정될 수 있다.
제1 감지유닛(21)은 리튬 전지 모듈(11)의 리튬 전지 셀들과 연결되어 셀 각각의 온도 및 전압, 리튬 전지 모듈(11)의 출력단에 흐르는 전류 등을 측정한다. 제1 감지유닛(21)은 하나의 통신선을 이용하여 직렬로 연결되고, 각 셀의 온도 및 전압 등의 정보를 시리얼 통신 방식을 통해서 제어기(15)에 전달할 수 있다.
제2 감지유닛(22)은 납 축전지 모듈(12)의 납 축전지 셀과 연결되어 셀 각각의 온도 및 전압, 납 축전지 모듈(12)의 출력단에 흐르는 전류 등을 측정한 후 각 셀의 온도 및 전압 등의 정보를 제어기(15)에 전달한다.
제어기(30)는 에너지 저장 장치(20)의 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 상태를 모니터링하여 최적의 조건에서 유지 및 사용할 수 있도록 에너지 저장 장치(20)를 관리한다.
도 8에 도시된 바와 같이, 제어기(30)는 수신부(31), 측정부(32), 비교부(33), 신호 생성부(34) 및 송신부(35)를 포함한다. 제어기(30)는 제1 감지유닛(21)과 제2 감지유닛(22)에서 전달받은 정보를 통해서 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 셀들의 온도, 전압, 모듈의 출력단의 전류 등 상태를 감시한다. 또한, 셀들의 상태와 모터컨트롤러(2)를 통해서 입력받은 정보를 바탕으로 생성된 제어신호를 스위칭 네트워크(15)에 송신하여 리튬 전지 모듈(11), 납 축전지 모듈(12) 및 가변저항(16)의 연결 상태를 변경시킴으로써 에너지 저장 장치(20)를 종합적으로 관리하는 역할을 한다.
수신부(31)는 제1 감지유닛(21)과 제2 감지유닛(22)에서 측정된 온도, 전압, 전류 등의 데이터를 전달받는다. 또한, 모터컨트롤러(2)를 통해서 모터(1) 구동을 위해서 필요한 전력 데이터를 전달받는다.
측정부(32)는 수신부(31)에서 수신된 데이터를 이용하여, 쿨롬 카운트 방식 등으로 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 충전율(SOC, state of charge)을 측정하며, 건전도(SOH, state of health)를 결정한다. 또한, 부하에 출력할 수 있는 전력을 추정한다. 또한, 전류의 변화율도 계산한다.
비교부(33)는 수신부(31)에서 수신된 데이터를 이용하여, 리튬 전지 셀들의 온도를 미리 정해진 기준온도와 비교하여 리튬 전지 셀들이 안전한 상태인지를 검사한다. 또한, 납 축전지 셀들의 전압을 미리 정해진 기준전압과 비교하여 납 축전지 셀들이 사용할 수 있는 상태인지를 검사한다. 또한, 미리 정해진 납 축전지 모듈(12)의 전류 값 및 전류의 변화율과 비교하여, 납 축전지 모듈(12)에 리튬 전지 모듈(11)을 결합해야 하는 시점인지 여부도 판단한다. 즉, 납 축전지 모듈(12)의 전류 값 및 전류의 변화율이 미리 정해진 값 이상이어서, 납 축전지 모듈(12)의 방전율을 초과하는 방전이 요구되는지 판단한다.
신호 생성부(34)는 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 충전율과 리튬 전지 모듈(11)의 온도 및 납 축전지 모듈(12)의 전압, 모터컨트롤러(2)를 통해서 전달받은 주행 상태, 납 축전지 모듈(12)의 전류 값 및 전류의 변화율 등을 고려하여 리튬 전지 모듈(11), 납 축전지 모듈(12) 및 가변저항(16)의 연결 상태를 결정하는 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다.
예를 들어, 리튬 전지 모듈(11) 및 납 축전지 모듈(12)이 충분하게 충전되어 있으며, 정속 주행 중이라 특별히 고출력이 요구되지 않는다면, 납 축전지 모듈(12)만 사용하도록 할 수 있다.
또한, 계속 리튬 전지 모듈(11)을 함께 사용하여 리튬 전지 모듈(11)의 온도가 기준온도 이상으로 상승한다면, 납 축전지 모듈(12)만 사용하도록 변경하기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다.
제어기(30)는 모터컨트롤러(2)의 모터제어기와 연결되어 있어, 정지하였다 다시 출발하거나 언덕길을 주행하는 등 주행상태를 확인할 수 있다. 이하에서는 주행상태에 따른 연결 상태의 변화에 대해서 설명한다. 제어기는 주행상태에 따른 요구에 따라 연결 상태를 변환하지만, 리튬 전지 모듈(11)과 납 축전지 모듈(12)의 상태를 고려할 때, 주행상태에 대응하여 연결 상태를 변환하기 어려운 경우에는 주행상태에 따른 연결 상태 변환에 우선하여, 리튬 전지 모듈(11)과 납 축전지 모듈(12)을 보호하는 방향으로 연결 상태를 전환할 수 있다.
만약, 주행상태에 따라서 큰 출력이 필요한 경우에는 리튬 전지 모듈(11)이 연결된 상태로 전환하기 위한 제어신호를 발생시켜 에너지 저장 장치(20)에 전달한다. 납 축전지 모듈(12)은 충분하게 충전되어 있는 경우에도 꺼내 쓸 수 있는 전력이 낮기 때문이다.
주행상태는 납 축전지 모듈(12)의 전류 값 및 전류의 변화율을 통해서도 판단할 수 있다. 즉, 납 축전지 모듈(12)의 전류 값 및 전류의 변화율이 미리 정해진 값 이상이어서, 납 축전지 모듈(12)의 방전율을 초과하는 방전이 요구된다고 판단되면, 리튬 전지 모듈(11)이 부하에 연결되도록 제어신호를 발생시킨다.
이때, 리튬 전지 모듈(11)을 납 축전지 모듈(12)에 바로 연결할 수도 있으나, 바로 연결하면, 에너지 저장 장치(20)의 출력이 급격히 변화하여, 충격이 생길 수 있다. 따라서 먼저 리튬 전지 모듈(11)을 가변저항(16)과 연결한 후 리튬 전지 모듈(11)이 납 축전지 모듈(12)과 균형이 맞은 상태에서 리튬 전지 모듈(11)을 납 축전지 모듈(12)에 연결하는 것이 바람직하다. 그리고 잠시 후 가변저항(16)을 분리한다.
회생제동에 따른 충전이 필요한 경우에는 도 9에 도시된 바와 같이, 제1 스위치(14-1)와 제2 스위치(14-2)를 켜고, 제3 스위치(14-3)와 제4 스위치(14-4)를 꺼서, 리튬 전지 모듈(11)이 회생제동시스템(7)과 연결되도록 한다. 납 축전지 모듈(12)은 회생제동에 따른 충전이 거의 되지 않으므로, 회생제동 시에는 리튬 전지 모듈(11)을 납 축전지 모듈(12)과 분리하여, 회생제동시스템(7)과 연결하는 것이 회생제동에 따른 충전효율을 향상시킬 수 있다는 장점이 있다.
또한, 리튬 전지 모듈(11)의 충전이 완료되면, 충전된 리튬 전지 모듈(11)을 통해서 납 축전지 모듈(12)을 충전하는 방법으로 납 축전지 모듈(12)을 충전할 수 있다. 상술한 바와 같이, 납 축전지 모듈(12)은 회생제동에 따른 충전이 거의 되지 않는다. 이 경우에는 제어기(30)가 충전된 리튬 전지 모듈(11)과 납 축전지 모듈(12)이 서로 연결되도록 스위칭 네트워크(15)의 연결 상태를 전환할 수 있는 제어 신호를 스위칭 네트워크(15)에 송신한다.
이하, 상술한 하이브리드 에너지 저장 모듈 시스템의 작용을 도 10을 참조하여 설명한다.
차량의 주행이 시작되면, 제1 감지유닛(21)과 제2 감지유닛(22)은 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 셀들의 온도, 전압, 모듈의 출력단의 전류 등을 측정한다(S1, S2).
다음, 제어기(30)의 측정부(32)는 제1 감지유닛(21)과 제2 감지유닛(22)에서 측정된 데이터를 이용하여, 리튬 전지 모듈(11) 및 납 축전지 모듈(12)의 충전율, 건전도 등을 측정한다(S3). 충전율 측정결과를 통해서 일단 주행이 가능한 상태인지를 판단한다(S4). 측정결과 주행할 수 있는 상태라면 측정된 충전율이 전기 자동차의 운전석에 설치된 디스플레이를 통해서 운전자에게 전달된다. 만약, 리튬 전지 모듈(11)과 납 축전지 모듈(12) 모두 충전율이 낮아서 충전이 필요한 경우에는 전기 자동차의 운전석에 설치된 디스플레이를 통해서 운전자에게 충전이 필요함을 알린다(S12).
다음, 제어기(30)의 비교부(33)는 제1 감지유닛(21)에서 측정된 리튬 전지 모듈(11)의 각 셀의 온도 값과 기준온도를 비교한다(S5). 또한, 제1 감지유닛(22)에서 측정된 납 축전지 모듈(12)의 각 셀의 전압 값과 기준전압을 비교한다(S6). 비교 결과 리튬 전지 모듈(11)의 각 셀의 온도 값이 기준온도 이상이고, 납 축전지 모듈(12)의 각 셀의 전압 값이 기준전압 이하라 주행이 어려운 경우에는 전기 자동차의 운전석에 설치된 디스플레이를 통해서 운전자에게 경고를 하여 운전자가 대처할 수 있도록 한다(S13). 또한, 필요한 경우에는 제어기(30)가 전기 자동차의 운행을 중지시킨다.
다음, 제어기(30)는 모터컨트롤러(2)의 모터제어기 또는 납 축전지 모듈(12)의 전류 값 및 전류의 변화율을 통해서 차량의 주행상태 정보를 수신한다(S8). 예를 들어, 납 축전지 모듈(12)의 전류 값 및 전류의 변화율이 미리 정해진 값 이상일 경우에는 차량이 정지하였다 다시 출발하거나, 언덕길을 주행하고 있는 것으로 판단할 수 있으며, 그렇지 않을 경우에는 차량이 정속으로 주행하고 있는 것을 판단할 수 있다.
S4 내지 S8 단계는 모두 제어기(30)에서 진행되며, 동시에 진행되거나 상술한 순서와 다른 순서로 진행될 수 있다.
다음, 제어기(30)의 신호 생성부(34)는 S4 내지 S8 단계에서 얻어진 결과를 통해서 연결 상태를 결정하여 제어신호를 생성하여, 에너지 저장 장치(20)에 송신한다(S9).
다음, 에너지 저장 장치(20)는 제어신호에 따라서 리튬 전지 모듈(11), 납 축전지 모듈(12) 및 가변저항(16)을 배열한 후 방전한다(S10).
일정시간이 지나(S11)면, S1 내지 S10 단계를 다시 반복한다.
도 11은 본 발명의 다른 실시예에 따른 하이브리드 에너지 저장 모듈 시스템의 블록도이다. 도 11에 도시된 바와 같이, 하이브리드 에너지 저장 모듈 시스템은 제1 다이오드(17)와 제2 다이오드(18)를 더 포함할 수 있다.
제1 다이오드(17)와 제2 다이오드(18)는 납 축전지 모듈(12)에서 리튬 전지 모듈(11)로 또는 반대로 돌입전류가 흐르는 것을 방지하기 위한 안전장치이다. 상술한 바와 같이, 납 축전지 모듈(12)과 리튬 전지 모듈(11) 사이의 균형을 맞춘 상태에서 리튬 전지 모듈(11)을 연결하면, 돌입전류가 흐를 가능성이 작지만, 만약의 경우를 대비하여 제1 다이오드(17)와 제2 다이오드(18)를 설치할 수 있다. 제2 다이오드(18)는 납 축전지 모듈(12)에서 부하가 아닌 리튬 전지 모듈(11) 쪽으로 전류가 흐르는 것을 차단하며, 제1 다이오드(17)는 리튬 전지 모듈(11)에서 납 축전지 모듈(12)로 전류가 흐르는 것을 차단하고, 부하로만 전류가 흐르도록 한다.
본 실시예의 경우에는 회생제동을 위해서 제1 다이오드(17)와 제2 다이오드(18)의 방향을 변경할 수 있는 별도의 스위칭 장치가 필요할 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.
예를 들어, 전류제한회로로 가변저항(16)을 사용하는 것으로 설명하였으나, 일반 저항을 사용할 수도 있다. 또한, 복수의 저항을 선택적으로 직렬 또는 병렬로 연결하는 방법으로 저항이 변화하는 전류제한회로를 구성할 수도 있다. 또한, 저항값이 다른 복수의 저항 중 하나의 저항을 선택하는 방식으로 전류제한회로를 구성할 수도 있다.

Claims (11)

  1. 부하의 구동에 필요한 전력을 공급하는 에너지 저장 모듈 시스템으로서,
    제2 전지 모듈과, 상기 제2 전지 모듈에 비해서 방전율이 높은 제1 전지 모듈과, 상기 제2 전지 모듈에 상기 제1 전지 모듈을 병렬로 연결 또는 분리하도록 구성된 스위칭 네트워크를 포함하며, 상기 부하에 연결되어 전력을 공급하도록 구성된 에너지 저장 장치와,
    상기 제1 전지 모듈의 상태를 나타내는 데이터를 측정하도록 구성된 제1 감지유닛과, 상기 제2 전지 모듈의 상태를 나타내는 데이터를 측정하도록 구성된 제2 감지유닛과,
    상기 제1 감지유닛과 제2 감지유닛에서의 데이터를 수신하고, 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며, 상기 제어신호를 상기 스위칭 네트워크에 송신하는 제어기를 포함하며,
    상기 제어기는 상기 제1 전지 모듈이 상기 제2 전지 모듈에 연결되기 전에 상기 제2 전지 모듈이 먼저 부하에 연결되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며,
    상기 제어기는 상기 제1 감지유닛과 제2 감지유닛으로부터 수신한 데이터를 바탕으로 상기 제2 전지 모듈에 상기 제1 전지 모듈이 선택적으로 연결 또는 분리되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하며,
    상기 스위칭 네트워크는 상기 제2 전지 모듈과 상기 제1 전지 모듈을 서로 병렬로 연결하는 네트워크에 설치된 적어도 하나의 스위치를 포함하는 하이브리드 에너지 저장 모듈 시스템.
  2. 제1항에 있어서,
    상기 에너지 저장 장치는 전류제한회로를 더 포함하며,
    상기 스위칭 네트워크는 상기 전류제한회로를 상기 제1 전지 모듈 또는 상기 제2 전지 모듈에 선택적으로 연결 또는 분리하도록 구성되며,
    상기 제어기는 상기 제1 감지유닛과 제2 감지유닛으로부터 수신한 데이터를 바탕으로 상기 제1 전지 모듈에 상기 제2 전지 모듈을 연결하기 전에 상기 제1 전지 모듈 또는 상기 제2 전지 모듈과 상기 전류제한회로를 연결하도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  3. 제1항에 있어서,
    상기 제어기는 상기 제1 전지 모듈이 상기 제2 전지 모듈에서 분리된 후에 상기 제2 전지 모듈이 부하에서 분리되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  4. 제1항에 있어서,
    상기 제어기는 회생제동에 의한 충전시 상기 제1 전지 모듈이 상기 제2 전지 모듈에서 분리된 후 상기 제1 전지 모듈이 충전되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  5. 제1항에 있어서,
    상기 제어기는 상기 제2 감지유닛으로부터 수신한 상기 제2 전지 모듈의 출력단에 흐르는 전류 값의 크기와 전류 값의 기울기가 미리 정해진 값 이상이면, 상기 제2 전지 모듈에 상기 제1 전지 모듈이 연결되도록 상기 스위칭 네트워크를 제어하는 제어신호를 생성하는 하이브리드 에너지 저장 모듈 시스템.
  6. 제1항에 있어서,
    상기 스위칭 네트워크에는 상기 제1 전지 모듈로부터 상기 제2 전지 모듈로 전류가 흐르는 것을 방지하는 제1 다이오드와 상기 제2 전지 모듈로부터 상기 제1 전지 모듈로 전류가 흐르는 것을 방지하는 제2 다이오드가 설치된 하이브리드 에너지 저장 모듈 시스템.
  7. 제2항에 있어서,
    상기 스위칭 네트워크는 상기 제2 전지 모듈과, 상기 제1 전지 모듈과, 상기 전류제한회로를 서로 병렬로 연결하는 네트워크에 설치된 스위치들을 포함하는 하이브리드 에너지 저장 모듈 시스템.
  8. 제1항에 있어서,
    상기 제1 전지 모듈은 리튬 전지 모듈인 하이브리드 에너지 저장 모듈 시스템.
  9. 제8항에 있어서,
    상기 리튬 전지 모듈은 리튬 폴리머 전지, 리튬 망간 전지, 리튬 철 전지, 리튬 이온 전지 및 리튬 공기 전지 중에서 선택되는 하이브리드 에너지 저장 모듈 시스템.
  10. 제1항에 있어서,
    상기 제2 전지 모듈은 납 축전지 모듈인 하이브리드 에너지 저장 모듈 시스템.
  11. 제2항에 있어서,
    상기 전류제한회로는 가변저항인 하이브리드 에너지 저장 모듈 시스템.
PCT/KR2019/001978 2018-06-27 2019-02-19 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템 WO2020004768A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/251,616 US11830999B2 (en) 2018-06-27 2019-02-19 Hybrid energy storage module system having auxiliary battery
CN201980043014.2A CN112335149A (zh) 2018-06-27 2019-02-19 具备辅助电池的混合储能模块系统
EP19827476.3A EP3817180A4 (en) 2018-06-27 2019-02-19 HYBRID ENERGY STORAGE MODULE SYSTEM WITH AUXILIARY BATTERY
JP2020568454A JP7140852B2 (ja) 2018-06-27 2019-02-19 補助バッテリーを備えたハイブリッドエネルギー貯蔵モジュールシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0073832 2018-06-27
KR1020180073832A KR101930214B1 (ko) 2018-06-27 2018-06-27 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템

Publications (1)

Publication Number Publication Date
WO2020004768A1 true WO2020004768A1 (ko) 2020-01-02

Family

ID=65007424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001978 WO2020004768A1 (ko) 2018-06-27 2019-02-19 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템

Country Status (6)

Country Link
US (1) US11830999B2 (ko)
EP (1) EP3817180A4 (ko)
JP (1) JP7140852B2 (ko)
KR (1) KR101930214B1 (ko)
CN (1) CN112335149A (ko)
WO (1) WO2020004768A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022029393A (ja) * 2020-08-04 2022-02-17 旭 成定 蓄電池型電気自動車

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102111412B1 (ko) * 2018-12-26 2020-05-15 한국기술교육대학교 산학협력단 하이브리드 에너지저장장치
CN113574714A (zh) * 2019-05-16 2021-10-29 Oppo广东移动通信有限公司 供电电路、充放电电路与智能终端
JP7357068B2 (ja) * 2019-10-24 2023-10-05 日本碍子株式会社 ユーザーインターフェース提供装置、二次電池システムの放電能力の提供方法及び二次電池システムの充放電能力の提供方法
CN113964914B (zh) * 2021-11-08 2023-07-21 深圳市迪浦电子有限公司 一种手机电池电源管理系统及方法
CN114537165B (zh) * 2022-02-17 2023-07-18 岚图汽车科技有限公司 锂电池系统、锂电池控制方法、可读存储介质和控制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100001877A (ko) 2008-06-27 2010-01-06 웅진코웨이주식회사 미세조절장치의 커버를 가지는 좌변기용 비데
JP2010093993A (ja) 2008-10-10 2010-04-22 Toyota Motor Corp 電源管理装置およびこれを備えた車両
JP2012070609A (ja) * 2010-09-24 2012-04-05 Lite On Clean Energy Technology Corp ハイブリッドバッテリーモジュール及びバッテリーの管理方法
KR20130042088A (ko) * 2011-10-18 2013-04-26 송영길 전기자동차용 하이브리드 배터리 시스템
KR20150014890A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 배터리 제어 장치 및 방법
KR101553063B1 (ko) * 2015-01-20 2015-09-15 주식회사 제이에스영테크 하이브리드 에너지 저장 모듈 시스템
JP2017214040A (ja) * 2016-06-02 2017-12-07 日立化成株式会社 車両用電源システムおよび自動車

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050070727A (ko) 2003-12-30 2005-07-07 현대자동차주식회사 전기자동차의 배터리 냉각장치
KR100559334B1 (ko) 2003-12-30 2006-03-15 현대자동차주식회사 전기자동차의 배터리 냉각장치 및 방법
KR20110081622A (ko) 2010-01-08 2011-07-14 (주)브이이엔에스 전기자동차 및 전기자동차의 배터리 냉각 방법
JP5494498B2 (ja) * 2010-02-03 2014-05-14 株式会社デンソー 車載電源装置
WO2013115034A1 (ja) * 2012-01-31 2013-08-08 三洋電機株式会社 車両用の電源装置及びこの電源装置を備える車両
KR101397023B1 (ko) 2012-03-23 2014-05-20 삼성에스디아이 주식회사 배터리 팩 및 배터리 팩의 제어 방법
JP6124292B2 (ja) * 2013-03-29 2017-05-10 三洋電機株式会社 車載用の電源装置及び電源装置を備える車両
US9527402B2 (en) 2014-01-23 2016-12-27 Johnson Controls Technology Company Switched passive architectures for batteries having two different chemistries
JP2016067142A (ja) 2014-09-25 2016-04-28 日立化成株式会社 電源システムおよび自動車
JP6409635B2 (ja) 2015-03-17 2018-10-24 日立化成株式会社 蓄電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100001877A (ko) 2008-06-27 2010-01-06 웅진코웨이주식회사 미세조절장치의 커버를 가지는 좌변기용 비데
JP2010093993A (ja) 2008-10-10 2010-04-22 Toyota Motor Corp 電源管理装置およびこれを備えた車両
JP2012070609A (ja) * 2010-09-24 2012-04-05 Lite On Clean Energy Technology Corp ハイブリッドバッテリーモジュール及びバッテリーの管理方法
KR20130042088A (ko) * 2011-10-18 2013-04-26 송영길 전기자동차용 하이브리드 배터리 시스템
KR101281066B1 (ko) 2011-10-18 2013-07-09 송영길 전기자동차용 하이브리드 배터리 시스템
KR20150014890A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 배터리 제어 장치 및 방법
KR101553063B1 (ko) * 2015-01-20 2015-09-15 주식회사 제이에스영테크 하이브리드 에너지 저장 모듈 시스템
JP2017214040A (ja) * 2016-06-02 2017-12-07 日立化成株式会社 車両用電源システムおよび自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817180A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022029393A (ja) * 2020-08-04 2022-02-17 旭 成定 蓄電池型電気自動車

Also Published As

Publication number Publication date
CN112335149A (zh) 2021-02-05
US20210111452A1 (en) 2021-04-15
EP3817180A4 (en) 2022-03-09
JP2021529497A (ja) 2021-10-28
US11830999B2 (en) 2023-11-28
EP3817180A1 (en) 2021-05-05
JP7140852B2 (ja) 2022-09-21
KR101930214B1 (ko) 2018-12-17

Similar Documents

Publication Publication Date Title
WO2016117925A1 (ko) 하이브리드 에너지 저장 모듈 시스템
WO2020004768A1 (ko) 보조 배터리를 구비한 하이브리드 에너지 저장 모듈 시스템
WO2013058568A1 (ko) 전기자동차용 하이브리드 배터리 시스템
CN101165963B (zh) 电池管理系统及其驱动方法
CN103072490B (zh) 车辆用的电源装置和具备该电源装置的车辆
EP2874270B1 (en) Battery pack and electric vehicle
EP2993074A1 (en) Battery pack and hybrid vehicle including the battery pack
WO2012018206A2 (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
EP2802492B1 (en) Systems and methods for de-energizing battery packs
WO2011148926A1 (ja) 電源装置
US9270135B2 (en) Power supply apparatus and power supply switching method
WO2014030839A1 (ko) 릴레이 제어 시스템 및 그 제어 방법
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2019078616A2 (ko) 전기 자동차 충전 장치
WO2013089516A1 (ko) 전기자동차 및 그 제어방법
KR100508788B1 (ko) 차재전지의제어장치
WO2013089517A1 (ko) 전기자동차 및 그 제어방법
CN215663047U (zh) 能够进行电压切换的电动车电池箱
WO2013089512A1 (ko) 전기자동차 및 그 제어방법
WO2022014953A1 (ko) 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템
CN215904349U (zh) 一种基于分布式汽车电池的增程系统
JP2012074333A (ja) 蓄電装置及びそれに用いられる監視制御装置
CN211731115U (zh) 电动汽车的电池组系统
CN220410306U (zh) 动力电池系统及电动车辆
KR20190023388A (ko) 전기 자동차의 충전 제어장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019827476

Country of ref document: EP

Effective date: 20210127