WO2016113879A1 - 低圧鋳造方法及び低圧鋳造装置 - Google Patents

低圧鋳造方法及び低圧鋳造装置 Download PDF

Info

Publication number
WO2016113879A1
WO2016113879A1 PCT/JP2015/050947 JP2015050947W WO2016113879A1 WO 2016113879 A1 WO2016113879 A1 WO 2016113879A1 JP 2015050947 W JP2015050947 W JP 2015050947W WO 2016113879 A1 WO2016113879 A1 WO 2016113879A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
core
cavity
molten metal
low
Prior art date
Application number
PCT/JP2015/050947
Other languages
English (en)
French (fr)
Inventor
達也 増田
憲司 林
志賀 英俊
土屋 真一
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/050947 priority Critical patent/WO2016113879A1/ja
Priority to RU2017128493A priority patent/RU2650465C1/ru
Priority to EP15877831.6A priority patent/EP3246114B1/en
Priority to MX2017008694A priority patent/MX365480B/es
Priority to US15/541,333 priority patent/US10099282B2/en
Priority to BR112017014644-4A priority patent/BR112017014644B1/pt
Priority to CN201580072644.4A priority patent/CN107107180B/zh
Priority to JP2016569175A priority patent/JP6481696B2/ja
Priority to KR1020177018562A priority patent/KR101870591B1/ko
Publication of WO2016113879A1 publication Critical patent/WO2016113879A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/18Finishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/08Controlling, supervising, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould

Definitions

  • the present invention relates to a low pressure casting method and a low pressure casting apparatus, and more particularly to a low pressure casting method and a low pressure casting apparatus capable of preventing gas defects.
  • the molten metal discharged from the melting furnace has high cleanliness by removing inclusions such as hydrogen gas, oxides, and intermetallic compounds by flux treatment and degassing treatment.
  • inclusions such as hydrogen gas, oxides, and intermetallic compounds.
  • the core installed in the mold contains moisture, resin, and the like, and the moisture, resin, and the like are vaporized by the heat of the molten metal and become a gas generation source. If this gas remains inside the molded product, gas defects or shrinkage cavities will occur and the quality of the molded product will deteriorate.
  • moisture is a source of hydrogen gas that causes the molded product to become hydrogen embrittled, and in order to improve the quality of the molded product, it is important to remove moisture and the like that are vaporized by the heat of the molten metal.
  • the moisture is also contained in the air, and air enters the cavity when the mold is opened. Further, in order to prevent the core installed in the mold from containing moisture, it is necessary to store the core in a humidity-controlled room, which requires a large amount of cost for storing the core.
  • Patent Document 1 discloses that the mold itself and the core itself formed of casting sand are attached with a pipe for sucking gas, and while supplying molten metal to the cavity, the mold itself and It is disclosed that the inside of the core itself is sucked to partially reduce the pressure, and the gas generated from the inside of the mold itself or the core itself is sucked. And according to the said method, it is disclosed that the gas produced by thermal decomposition of the organic binder contained in the mold or the like is prevented from entering the molten steel, and the occurrence of gas defects can be prevented.
  • Patent Document 2 discloses that the method of sending hot air into the cavity and drying the sand mold facing the cavity can remove only the water present in the surface layer of the sand mold.
  • adsorbents such as zeolite or ALC is disclosed. That is, it is disclosed that the casting sand forming the mold is surrounded by an adsorbent such as zeolite or ALC, and moisture is adsorbed and removed to the inside of the casting sand by the adsorbent.
  • a core is formed by a sand mold formed of cast sand, an adsorbent embedded in the sand mold, and a reinforcing bar embedded in the adsorbent.
  • an adsorbent having a limit on the amount of adsorption is used, and it is necessary to store the mold and the core so as not to absorb moisture exceeding the amount of adsorption of the adsorbent.
  • man-hours are required for the production of the mold and the core, and the cost increases.
  • the present invention has been made in view of such problems of the prior art.
  • the purpose is to reduce the generation of gas due to the heat of the molten metal without special processing such as piping other than molding on the mold and core, and prevent the occurrence of gas defects and shrinkage nests.
  • An object of the present invention is to provide a low-pressure casting method and a low-pressure casting apparatus that facilitate the storage of the core.
  • the present inventor has found that in the low pressure casting method, after the core is installed in the mold and the mold is closed, the cavity is decompressed and filled before the molten metal is filled.
  • the present inventors have found that the above object can be achieved by drying the child, and have completed the present invention.
  • the present invention is based on the above knowledge, and the low-pressure casting method of the present invention is to place a core in a mold, close the mold, dry the core in the mold under reduced pressure, and then fill the cavity with molten metal. It is characterized by.
  • the low-pressure casting apparatus of the present invention includes a core that forms a cavity together with a mold, and a decompression device that dries the core under reduced pressure.
  • the core is placed in the mold and the mold is closed. After the child is dried under reduced pressure, the cavity is filled with molten metal.
  • the inside of the mold is decompressed to remove the moisture in the core and dry, so that generation of gas such as water vapor due to the heat of the molten metal is reduced, and gas defects, shrinkage nests are generated. Is prevented from occurring.
  • a core is placed in a mold, the cavity is decompressed to remove moisture contained in the core and dried, the cavity is filled with molten metal, cast, the mold is opened, and a molded product is taken out. It is.
  • Drying of the core starts from the surface, and when the moisture content on the surface decreases, moisture moves to the surface from the portion having a high moisture content inside and evaporates on the surface. By repeating these evaporation and movement, the drying proceeds to the inside of the core. Accordingly, the faster the moisture moves from the high moisture content portion to the low moisture content, the faster the drying. That is, the greater the difference in water vapor partial pressure and the higher the core temperature, the faster the drying rate.
  • a low pressure casting apparatus communicates a holding furnace containing molten metal and a cavity formed in a mold on the holding furnace with stalk, and pressurizes the holding furnace to form a cavity through the stalk. Filled with molten metal and solidified to obtain a molded product.
  • FIG. 1 shows a cross-sectional view of an example of the low-pressure casting apparatus of the present invention.
  • the lower end of the stalk 4 is immersed in the molten metal 3 in the holding furnace 2 that is hermetically sealed, and the gate 5 is provided at the upper end.
  • a mold 6 that can be divided into upper and lower parts is disposed on the holding furnace 2, and a core 8 positioned by a baseboard 7 is accommodated in the mold 6, and a cavity 9 is formed by the mold 6 and the core 8. Is formed.
  • the mold 6 may be entirely covered with a chamber 10. By having the chamber 10, heat radiation is suppressed, and thermal efficiency is improved.
  • the holding furnace 2 is provided with a pressurizing device 11, and an inert gas such as carbon dioxide is pumped or exhausted into the holding furnace to adjust the pressure in the holding furnace, and the melt 3 is filled into the cavity through the stalk 4.
  • the pressurizing device 11 includes a pressurizing pump 12, a valve 13, a pressure sensor (not shown), and the like.
  • the decompression device 14 for drying the core under reduced pressure is formed by a decompression pump 15, a decompression container 16, a valve 17, a suction pipe 18, etc., and a suction port 19 of the suction pipe 18 is provided in the chamber 10 and / or the mold 6. .
  • the suction ports 19 are preferably provided at a plurality of locations.
  • the core in the mold is dried under reduced pressure by reducing the pressure in the chamber 10 covering the entire mold 6 and reducing the pressure in the mold through the gap between the molds 6 that can be divided vertically.
  • 8 may be dried, or, as shown in FIG. 2, the cavity 9 may be directly decompressed to dry the core.
  • the core 8 can be sucked and dried under reduced pressure through the porous body 21 provided at the place where the base plate 7 for fixing the core 8 in the mold is installed, These may be combined and dried.
  • the mold 6 is closed and the cavity 9 is sucked, whereby the mold becomes a drying container for the core 8 and the core 8 can be efficiently dried.
  • the pressure reduction in the mold not only directly reduces the pressure in the cavity 9, but also reduces the pressure in the chamber 10 as shown in FIGS. Even if the mold 6 that can be divided into two does not form a completely airtight state, the air in the chamber 10 can be prevented from leaking into the cavity 9.
  • the core may be dried by suctioning from the baseboard portion and reducing the pressure in parallel with or independently of the pressure reduction of the cavity.
  • sucking from the baseboard part moisture inside the core can be directly sucked and dried, and heat from the molten metal can be easily transferred to the inside of the core, so that the drying speed of the core 8 can be improved.
  • a gas venting path connected to the porous body can be provided inside the core 8 and the baseboard 7. By sucking from the path, moisture evaporates not only from the vicinity of the baseboard 7 but also from the entire inside of the core, and the drying speed of the core 8 can be further improved.
  • the decompression device 14 directly connected to the cavity 9 sucks the cavity 9 not only when the core 8 is dried under reduced pressure but also when the molten metal 3 is filled in the casting process 9. Is preferred.
  • the cavity 9 When filling the molten metal 3, by sucking the cavity 9, it is possible to suck the gas generated by the thermal decomposition of the organic binder or the like forming the core 8, not only preventing gas defects, The hot water behavior is stable and high quality molded products can be obtained.
  • the pressure of the cavity 9 when the core 8 is dried under reduced pressure before filling the cavity 9 with the molten metal 3 depends on the size of the core 8, the temperature of the molten metal 3, the airtightness of the mold, etc.
  • the pressure is preferably about 0.75 atm, and more preferably 0.9 to 0.75 atm. If the pressure is less than 0.75 atm, the molten metal in the stalk rises excessively, and adverse effects such as a decrease in the molten metal temperature of the hot metal may occur at the start of casting.
  • the mold 6 is opened in a state where a predetermined amount of the molten metal 3 is stored in the holding furnace 2, and the core 8 is installed in the mold together with the baseboard 7 for determining the position of the core in the mold. close.
  • a powder release agent 22 may be applied to the inner wall of the mold 6 prior to the installation of the core 8 as necessary.
  • the powder release agent 22 can be applied by a conventionally known coating method such as spray coating.
  • the decompression device 14 directly connected to the cavity 9 preferably has a powder separation device 20 such as a cyclone.
  • a powder separation device 20 such as a cyclone.
  • a core using an inorganic binder in addition to an organic binder using a resin, a core using an inorganic binder can be used.
  • a core using an inorganic binder has a low adhesive strength and low strength while generating less gas during casting, but according to the present invention, the core can be sufficiently dried. The strength of the core using the binder is improved, and the defects due to the broken core are reduced.
  • Examples of the inorganic binder include magnesium sulfate (MgSO 4 ), sodium carbonate (Na 2 CO 3 ), sodium borate (Na 2 B 4 O 7 ), sodium sulfate (Na 2 SO 4 ), and the like.
  • MgSO 4 magnesium sulfate
  • Na 2 CO 3 sodium carbonate
  • Na 2 B 4 O 7 sodium borate
  • Na 2 SO 4 sodium sulfate
  • an inert gas is pumped into the holding furnace 2 by the pressurizing apparatus 10 to pressurize the molten metal surface, and the molten metal 3 is filled into the cavity 9 through the stalk 4.
  • the mold 6 is opened and the molded product is taken out.
  • the gas generated by the heat of the molten metal 3 is reduced, so that the behavior of the hot water is stable and the occurrence of gas defects and shrinkage cavities is prevented. Is done.
  • the cavity 9 it is preferable to fill the cavity 9 with the molten metal 3 while sucking the cavity 9.
  • the binder of the core 8 may evaporate due to the heat of the molten metal 3 and generate gas.
  • A is a step in which the mold 6 is sealed, the inside of the cavity is decompressed, and the core 8 is dried.
  • B is a step of raising the molten metal 3 in the stalk 4 by the first pressurization in the holding furnace 2.
  • C is a step in which the molten metal 3 reaches the gate 5 and is switched to the second pressurization in which the filling speed is controlled, and the suction in the mold 6 is started again.
  • D is a step of solidifying the molten metal in the mold 6.
  • FIG. 8B is an example in which the pressure in the cavity is maintained while the molten metal 3 in the stalk 4 is being raised by the first pressurization in the holding furnace 2.
  • FIG. 9 (a) shows the pressurization of the holding furnace 2, the pressure of the cavity, and the pressure of the core 8 when the suction pipe 11 is connected to the base 7 for fixing the core 8 shown in FIG. It is a figure which shows the timing of. Since the pressurization of the holding furnace 2 and the pressure reduction of the cavity are the same as those in FIG. 8, the timing for sucking the core 8 will be described.
  • A is a process in which the mold 6 is sealed and the core 8 is sucked and dried. The drying of the core 8 may be continued while the molten metal is rising in the stalk 4 by the first pressurization in the B holding furnace 2, as shown in FIG. When 3 reaches the gate 5 and starts to flow into the cavity, it stops. If the suction of the core 8 is continued even when the molten metal 3 flows in, the molten metal 3 may enter the core 8 and the sand may be caught.
  • the low pressure casting apparatus having one molten metal holding furnace has been described as an example.
  • the low pressure casting apparatus of the present invention is not limited to this, and the molten metal holding furnace includes two chambers, a molten metal holding chamber and a pressure chamber.
  • an electromagnetic pump may be used instead of the pressurizing pump filled with the molten metal 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

鋳型と共にキャビティを形成する中子と、上記中子減圧乾燥する減圧乾燥装置とを有する低圧鋳造装置を用い、鋳型内に中子を設置し鋳型を閉じて中子を減圧乾燥した後、キャビティに溶湯を充填する。

Description

低圧鋳造方法及び低圧鋳造装置
 本発明は、低圧鋳造方法及び低圧鋳造装置に係り、更に詳細には、ガス欠陥を防止できる低圧鋳造方法及び低圧鋳造装置に関する。
 溶解炉から出湯した溶湯は、フラックス処理・脱ガス処理によって、水素ガスや酸化物、金属間化合物等の介在物が除去され、高い清浄度を有している。しかし、低圧鋳造法においては、溶湯が空気と接触することが不可避であり、溶湯の清浄度は徐々に低下する。
 また、鋳型内に設置する中子内部には水分や樹脂等が含まれており、上記水分や樹脂等は溶湯の熱によって気化しガスの発生源となる。このガスが成形品の内部に残存すると、ガス欠陥となったり、引け巣が生じたりして成形品の品質が低下する。
 特に、水分は成形品を水素脆化させる水素ガスの発生源でもあり、成形品の品質向上には、溶湯の熱によって気化する水分等を除去することが重要である。
 しかし、上記水分は空気中にも含まれるものであり、鋳型を開けた際にキャビティに空気が入ってしまう。また、鋳型内に設置する中子が水分を含まないようにするには、調湿された部屋に中子を保管する必要があり、中子の保管に多大な費用を要することになる。
 低圧鋳造に関するものではないが、特許文献1には、鋳砂で形成された鋳型自体や中子自体の内部に、ガスを吸引する配管を取り付け、キャビティに溶湯を供給しながら、上記鋳型自体や中子自体の内部を吸引して部分的に減圧し、鋳型自体や中子自体の内部から発生するガスを吸引することが開示されている。そして、上記方法によれば、鋳型等に含まれる有機バインダが熱分解して生じたガスが溶鋼中に侵入することが防止され、ガス欠陥の発生を防止できる旨が開示されている。
 また、同じく低圧鋳造に関するものではないが、特許文献2には、キャビティに熱風を送り込んでキャビティに面した砂型を乾燥させる方法では、砂型の表層に存在する水分しか除去できないため、前記方法に替えてゼオライト又はALC等の吸着材を用いることが開示されている。
 すなわち、鋳型を形成する鋳砂をゼオライト又はALC等の吸着材で囲い、上記吸着材によって鋳砂の内部まで水分を吸着除去することが開示されている。また、中子を用いる場合は、鋳砂で成形された砂型と、砂型の内部に埋設された吸着材と、吸着材の内部に埋設された鉄筋とで中子を形成する旨が記載されている。
 しかしながら、特許文献1に記載の方法にあっては、溶湯を鋳砂間にまで吸引して砂噛みが生じたり、減圧が不十分でガス欠陥が生じたりすることがある。
 すなわち、鋳型自体や中子自体の内部を均一に減圧することが困難であり、鋳型等の内部圧力にバラツキが生じ易い。また、鋳型等から生じるガスは、有機バインダに由来するガスだけでなく、鋳型等に含まれる水分もガスの発生源であり、上記水分量は、鋳型等が保管される環境等によって変化するため、注湯で生じるガスの量を予め知ることも困難である。
 また、特許文献2に記載の方法にあっては、吸着量に限界がある吸着材を用いるものであり、鋳型や中子が吸着材の吸着量以上の水分を吸収しないように保管する必要があり、加えて、鋳型や中子の作製に工数を要し、コストが増大する。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。その目的とするところは、鋳型や中子に成型以外の配管等の特別な加工をしなくても、溶湯の熱によるガスの発生が低減され、ガス欠陥や引け巣の発生を防止できると共に、中子の保管を容易にする低圧鋳造方法及び低圧鋳造装置を提供することにある。
 本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、低圧鋳造方法において、鋳型内に中子を設置し型を閉じた後、溶湯を充填する前に、キャビティを減圧して中子を乾燥させることで、上記目的が達成できることを見出し、本発明を完成するに至った。
 本発明は上記知見に基づくものであって、本発明の低圧鋳造方法は、鋳型内に中子を設置し鋳型を閉じ、鋳型内の中子を減圧乾燥した後、キャビティに溶湯を充填することを特徴とする。
 また、本発明の低圧鋳造装置は、鋳型と共にキャビティを形成する中子と、該中子を減圧乾燥する減圧装置とを有するものであり、鋳型内に中子を設置して鋳型を閉じ、中子を減圧乾燥した後、キャビティに溶湯を充填することを特徴とする。
 本発明によれば、鋳型に溶湯を充填する前に、鋳型内を減圧し中子の水分を除去し乾燥させるため、溶湯の熱による水蒸気等のガスの発生が低減され、ガス欠陥、引け巣の発生が防止される。加えて、ガス発生が防止されて湯廻りの挙動が安定し、高品質の成形品が得られ、さらに中子等の保管を容易にする、低圧鋳造方法及び低圧鋳造装置を提供することができる。
本発明の低圧鋳造装置の一例を示す概略図である。 本発明の低圧鋳造装置の他の一例を示す概略図である。 本発明の低圧鋳造装置のさらに他の一例を示す概略図である。 本発明の低圧鋳造方法の中子を設置する工程の一例を示す概略図である。 本発明の低圧鋳造方法の型閉じ工程の一例を示す概略図である。 本発明の低圧鋳造方法の減圧工程の一例を示す概略図である。 本発明の低圧鋳造装置の鋳造工程一例を示す概略図である。 保持炉の加圧と鋳型内の減圧とのタイミングの一例を示す概略図である。 保持炉の加圧と中子及び鋳型内の減圧とのタイミングの一例を示す概略図である。
 本発明の低圧鋳造方法及び低圧鋳造装置について詳細に説明する。
 本発明は、鋳型内に中子を設置し、キャビティを減圧して中子に含まれる水分等を除去乾燥した後、キャビティに溶湯を充填して鋳造し、鋳型を開けて成形品を取り出すものである。
 中子の乾燥は、表面から始まり、表面の含水率が低くなると、その内側の含水率の高い部分から水分が表面に移動して表面で蒸発する。これらの蒸発と移動とを繰り返すことで中子の内部まで乾燥が進行する。
 したがって、含水率の高い部分から低い部分へ水分が移動する速度が速いほど、乾燥が速く進む。すなわち、水蒸気分圧の差が大きいほど、また、中子の温度が高いほど、乾燥速度が速くなる。
 低圧鋳造装置は、一般的に、溶湯を収容する保持炉と該保持炉上の鋳型内に形成されたキャビティとをストークで連通させ、保持炉内を加圧することで上記ストークを介してキャビティに溶湯を充填して、凝固させることで成形品を得る。
 このような、低圧鋳造装置においては、溶湯の熱がストークを介してキャビティに供給されるため、鋳型を閉じると中子が加熱されて表面から水分が蒸発する。さらに中子の内部の温度が上昇すると、中子内部の水分が気化して内部の圧力が上昇する。
 そして、キャビティを減圧することで、中子内部の圧力と中子外部との圧力差が大きくなって、中子内部の水分が速やかに表面に移動するため、中子の内部まで速やかに乾燥させることができる。
 したがって、予め、中子に含まれる水分量を調節する必要がなく中子の保管が容易になり、加えて、中子の乾燥工程により鋳造時間(サイクルタイム)が長くなることがない。
 図1に、本発明の低圧鋳造装置の一例の断面図を示す。低圧鋳造装置1は、気密に密閉された保持炉2内の溶湯3に、ストーク4の下端が浸漬され、その上端には湯口5が設けられる。
 保持炉2の上には、上下に分割可能な鋳型6が配置され、該鋳型6の中には巾木7によって位置決めされた中子8が収められ、鋳型6と中子8とでキャビティ9が形成される。上記鋳型6はチャンバ10で全体が覆われていてもよい。チャンバ10を有することで放熱が抑えられ、熱効率が向上する。
 保持炉2には加圧装置11が設けられ、保持炉内に二酸化炭素等の不活性ガスを圧送又は排気して保持炉内の圧力を調節し、ストーク4を介してキャビティに溶湯3を充填する。該加圧装置11は、加圧ポンプ12、バルブ13、図示しない圧力センサ等を有する。
 中子を減圧乾燥する減圧装置14は、減圧ポンプ15、減圧容器16、バルブ17、吸引管18等で形成され、該吸引管18の吸引口19は、チャンバ10及び/又は鋳型6に設けられる。上記吸引口19は複数個所に設けられることが好ましい。
 上記鋳型内の中子の減圧乾燥は、図1に示すように、鋳型6全体を覆うチャンバ10内を減圧し、上下に分割可能な鋳型6の隙間を介して鋳型内を減圧し、中子8を乾燥してもよく、また、図2に示すように、キャビティ9を直接減圧して中子を乾燥してもよい。
 さらに、図3に示すように、鋳型内に中子8を固定する巾木7が設置される箇所に設けられた多孔質体21を介して中子8を吸引し減圧乾燥することもでき、これらを合わせて乾燥させてもよい。
 低圧鋳造委方法においては、鋳型6を閉じてキャビティ9を吸引することで、鋳型が中子8の乾燥容器となり、中子8を効率よく乾燥できる。
 鋳型内の減圧は、キャビティ9を直接減圧するだけでなく、図2,3に示すように、チャンバ10内をも減圧することで、チャンバ10内とキャビティ9との圧力差が小さくなり、上下に分割可能な鋳型6が完全な気密状態を形成していなくても、チャンバ10内の空気がキャビティ9に漏れることを防止できる。
 また、キャビティの減圧と並行して又は単独で、巾木部分から吸引し減圧し中子を乾燥してもよい。巾木部分から吸引することで、中子内部の水分を直接吸引し乾燥できると共に、溶湯からの熱が中子内部に伝わりやすくなって、中子8の乾燥速度を向上することができる。
 なお、多孔質体20を介して中子8を吸引し減圧乾燥する場合は、上記中子8及び巾木7の内部に多孔質体に接続するガス抜き経路を設けることもできる。該経路から吸引することで、巾木7付近からだけでなく、中子内部全体から水分が蒸発し、中子8の乾燥速度をさらに向上させることができる。
 また、上記キャビティ9に直接接続される減圧装置14は、中子8を減圧乾燥する減圧乾燥工程だけでなく、鋳造工程における溶湯3をキャビティ9に充填する際にも、キャビティ9を吸引することが好ましい。溶湯3を充填する際にも、キャビティ9を吸引することで、中子8を形成する有機バインダ等が熱分解して生じるガスを吸引することができ、ガス欠陥が防止されるだけでなく、湯廻りの挙動が安定し、高品質の成形品を得ることができる。
 キャビティ9に溶湯3を充填する前に、中子8を減圧乾燥する際のキャビティ9の圧力は、中子8の大きさや溶湯3の温度、鋳型の気密性等にもよるが、大気圧~0.75気圧程度であることが好ましく、0.9気圧~0.75気圧であることがより好ましい。0.75気圧未満にするとストーク内の溶湯が過剰に上昇して、鋳造開始時には先湯の溶湯温度が低下するなどの悪影響が生じることがある。
 次に、上記低圧鋳造装置1を用いた低圧鋳造方法について説明する。
 まず、保持炉2内に所定量の溶湯3を貯留した状態で鋳型6を開けて、鋳型内での中子の位置を決める巾木7と共に中子8を鋳型内に設置し、鋳型6を閉じる。
 上記鋳型6の内壁には、必要に応じて、図4に示すように、中子8の設置に先んじて紛体離型剤22を塗布してもよい。上記紛体離型剤22はスプレー塗工等、従来公知の塗工方法によって塗布することができる。
 また、鋳型6を閉じる前に、キャビティ9の一部を解放した半閉状態とし、キャビティ9にガスが流入可能な状態でキャビティ9に直接接続された減圧装置14によりキャビティ9を吸引してもよい。キャビティ9を半閉状態で予め吸引することで、鋳型面に溶着していない紛体離型剤21や、中子設置の際に混入した異物等を除去することができる。
 上記キャビティ9に直接接続される減圧装置14は、サイクロン等の紛体分離装置20を有することが好ましい。紛体分離装置20を有することで、鋳型内部の粉塵を捕集でき減圧ポンプの故障を防止できる。
 鋳型6が閉じられると、図5に示すように、溶湯3の熱によって熱せられた熱気23が上昇しキャビティの温度が上がる。中子8はキャビティの熱気23によって加熱され中子8の乾燥が始まる。
 減圧装置14のバルブ17を開きキャビティ9内のガスを吸引すると、図6に示すように、熱気23が減圧装置14によって吸引され、キャビティ9が熱気23で満たされると共に、キャビティ9が減圧される。したがって、キャビティの温度上昇と圧力低下とが相俟って中子8の水分の蒸発が促進され、中子8が速やかに乾燥される。
 本発明においては、樹脂を用いた有機バインダの他、無機バインダを用いた中子を使用することができる。無機バインダを用いた中子は、鋳造時のガスの発生が少ない一方で、粘着力が弱く強度が低いものであるが、本発明によれば、中子を充分乾燥させることができるため、無機バインダを用いた中子の強度が向上し中子折れに起因する不良が低下する。
 上記無機バインダとしては、例えば、硫酸マグネシウム(MgSO)、炭酸ナトリウム(NaCO)、4ホウ酸ナトリウム(Na)、硫酸ナトリウム(NaSO)等が挙げられる。
 次に、図7に示すように、加圧装置10により保持炉2内に不活性ガスを圧送して溶湯面を加圧し、ストーク4を介してキャビティ9に溶湯3を充填する。そして、溶湯3が凝固したら、鋳型6を開けて、成形品を取り出す。
 本発明においては、予め、中子8の水分が除去されているため、溶湯3の熱によって生じるガスが低減されているため、湯廻りの挙動が安定し、ガス欠陥、引け巣の発生が防止される。
 また、鋳造工程において、キャビティ9への溶湯3の充填は、キャビティ9を吸引しながら行うことが好ましい。中子8のバインダが溶湯3の熱によって蒸発しガスを発生することがあり、キャビティ9を吸引しながら溶湯3を充填することで、湯廻りの挙動が安定し、ガス欠陥、引け巣の発生が防止される。
 ここで、保持炉2の加圧と鋳型6内の減圧とのタイミングを、図8を用いて説明する。図8(a)中、Aは、鋳型6が密閉されキャビティ内を減圧し中子8の乾燥を行う工程である。Bは、保持炉2内を一段目の加圧によりストーク4内の溶湯3を上昇させる工程である。Cは、溶湯3が湯口5に達し、充填速度が制御された二段目の加圧に切り替えると共に、鋳型6内の吸引を再度開始する工程である。鋳型6内が溶湯3で満たされたら保持炉2の加圧を停止し、溶湯3が凝固するまで圧力を維持する。一方、キャビティ内の吸引は鋳型6が溶湯3で満たされてもしばらくの間継続する。吸引を継続することで、不純物を含む先湯が鋳型6内から出て成形品の品質が向上する。Dは、鋳型6内の溶湯を凝固させる工程である。溶湯3が凝固したら保持炉2の圧力を徐々に下げ、鋳型6開いて鋳造品を取り出す。
 図8(b)は、保持炉2内の一段目の加圧によりストーク4内の溶湯3を上昇させている最中にもキャビティ内の減圧を維持する例である。
 また、図9(a)は、図3に示す、中子8を固定する巾木7に吸引管11を接続した場合の保持炉2の加圧と、キャビティの減圧と、中子8の減圧のタイミングを示す図である。 保持炉2の加圧とキャビティの減圧は図8と同様であるので、中子8を吸引するタイミングについて説明する。
 Aは、鋳型6が密閉され、中子8を吸引し乾燥する工程である。中子8の乾燥は、図9(b)に示すように、Bの保持炉2内の一段目の加圧により溶湯がストーク4内を上昇している間は継続してもよいが、溶湯3が湯口5に達し、キャビティ内への流入が開始されたら停止する。溶湯3が流入しても中子8の吸引を継続すると、中子8内に溶湯3が入りこみ、砂噛み込みが生じることがある。
 以上、溶湯保持炉が1室の低圧鋳造装置を例に説明したが、本発明の低圧鋳造装置はこれに限るものではなく、溶湯保持炉を溶湯保持室と加圧室との2室で構成してもよく、また、溶湯3の充填する加圧ポンプに替えて電磁ポンプを用いてもよい。
1  低圧鋳造装置
2  保持炉
3  溶湯
4  ストーク
5  湯口
6  鋳型
7  巾木
8  中子
9  キャビティ
10 チャンバ
11 加圧装置
12 加圧ポンプ
13 バルブ
14 減圧装置
15 減圧ポンプ
16 減圧容器
17 バルブ
18 吸引管
19 吸引口
20 紛体分離装置
21 多孔質体
22 紛体離型剤
23 紛体分離装置
24 熱気
日本国特開平8-33944号公報 日本国特開2014-136245号公報

Claims (9)

  1.  鋳型内に中子を設置する中子設置工程と、
     鋳型を閉じる型閉じ工程と、
     該鋳型内のキャビティに溶湯を充填し凝固させる鋳造工程と、
     該鋳造工程で成形された成形品を取り出す型開け工程と、を有する低圧鋳造方法であって、
     さらに、上記型閉じ工程後、鋳造工程前に、中子を減圧乾燥する減圧乾燥工程を有することを特徴とする低圧鋳造方法。
  2.  上記型閉じ工程前に、鋳型に離型剤を塗布する離型剤塗布工程を有することを特徴とする請求項1に記載の低圧鋳造方法。
  3.  上記鋳造工程が、キャビティに溶湯を充填しながらキャビティを吸引するものであることを特徴とする請求項1又は2に記載の低圧鋳造方法。
  4.  鋳型と、
     該鋳型と共にキャビティを形成する中子と、
     溶湯を保持する保持炉と、
     該保持炉内の溶湯に下端が浸漬され上記鋳型に溶湯を充填するストークと、
     上記保持炉内を加圧し、ストークを介して溶湯をキャビティに充填する加圧装置と、を有する低圧鋳造装置であって、
     上記キャビティを減圧する減圧装置をさらに有し、
     上記鋳型を閉じた後、キャビティに溶湯を充填する前に、上記中子を減圧乾燥することを特徴とする低圧鋳造装置。
  5.  上記鋳型が、吸引口を複数有することを特徴とする請求項4に記載の低圧鋳造装置。
  6.  上記複数の吸引口のうち、一つの吸引口がキャビティに設けられ、他の吸引口が中子を固定する巾木が設置される箇所の多孔質体に設けられていることを特徴とする請求項5に記載の低圧鋳造装置。
  7.  上記鋳型が、離型剤を塗布されたものであることを特徴とする請求項4乃至6のいずれか1つの項に記載の低圧鋳造装置。
  8.  キャビティに溶湯を充填しながらキャビティを吸引することを特徴とする請求項4乃至7のいずれか1つの項に記載の低圧鋳造装置。
  9.  上記中子が無機バインダで成形されたものであることを特徴とする請求項4乃至8のいずれか1つの項に記載の低圧鋳造装置。
PCT/JP2015/050947 2015-01-15 2015-01-15 低圧鋳造方法及び低圧鋳造装置 WO2016113879A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2015/050947 WO2016113879A1 (ja) 2015-01-15 2015-01-15 低圧鋳造方法及び低圧鋳造装置
RU2017128493A RU2650465C1 (ru) 2015-01-15 2015-01-15 Способ литья под низким давлением и устройство литья под низким давлением
EP15877831.6A EP3246114B1 (en) 2015-01-15 2015-01-15 Low-pressure casting method
MX2017008694A MX365480B (es) 2015-01-15 2015-01-15 Metodo de colada a baja presion y aparato de colada a baja presion.
US15/541,333 US10099282B2 (en) 2015-01-15 2015-01-15 Low-pressure casting method and low-pressure casting apparatus
BR112017014644-4A BR112017014644B1 (pt) 2015-01-15 2015-01-15 Método de fundição de baixa pressão e aparelho de fundição de baixa pressão
CN201580072644.4A CN107107180B (zh) 2015-01-15 2015-01-15 低压铸造方法及低压铸造装置
JP2016569175A JP6481696B2 (ja) 2015-01-15 2015-01-15 低圧鋳造方法及び低圧鋳造装置
KR1020177018562A KR101870591B1 (ko) 2015-01-15 2015-01-15 저압 주조 방법 및 저압 주조 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050947 WO2016113879A1 (ja) 2015-01-15 2015-01-15 低圧鋳造方法及び低圧鋳造装置

Publications (1)

Publication Number Publication Date
WO2016113879A1 true WO2016113879A1 (ja) 2016-07-21

Family

ID=56405440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050947 WO2016113879A1 (ja) 2015-01-15 2015-01-15 低圧鋳造方法及び低圧鋳造装置

Country Status (9)

Country Link
US (1) US10099282B2 (ja)
EP (1) EP3246114B1 (ja)
JP (1) JP6481696B2 (ja)
KR (1) KR101870591B1 (ja)
CN (1) CN107107180B (ja)
BR (1) BR112017014644B1 (ja)
MX (1) MX365480B (ja)
RU (1) RU2650465C1 (ja)
WO (1) WO2016113879A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695322B (zh) * 2017-09-29 2019-07-05 张勇 一种制备泡沫铝或泡沫铜的装置及其制备方法
DE102020205545A1 (de) * 2020-04-30 2021-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Herstellen einer Materialpatrone, Behälter zur Anwendung in einem entsprechenden Verfahren, Materialpatrone sowie Verfahren zum Herstellen eines Gussproduktes unter Verwendung der Materialpatrone, sowie entsprechendes Gussprodukt
PL442666A1 (pl) * 2022-10-27 2024-04-29 Sieć Badawcza Łukasiewicz - Krakowski Instytut Technologiczny Stanowisko do wytwarzania odlewów o strukturze tiksotropowej i sposób wytwarzania odlewów o strukturze tiksotropowej

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146862A (ja) * 1991-11-27 1993-06-15 Mazda Motor Corp 低圧鋳造方法
JPH06182520A (ja) * 1992-10-23 1994-07-05 Toyota Motor Corp 吸引鋳造装置
JPH0952150A (ja) * 1995-08-16 1997-02-25 Showa:Kk 中子乾燥装置
JPH11226697A (ja) * 1998-02-10 1999-08-24 Nissan Motor Co Ltd 鋳型のガス排出装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737559U (ja) * 1980-08-14 1982-02-27
SU1060294A1 (ru) * 1982-07-01 1983-12-15 Предприятие П/Я Р-6930 Способ лить в песчаные формы с противодавлением
JPS61123458A (ja) 1984-11-21 1986-06-11 Kobe Steel Ltd AlまたはAl合金の低圧鋳造法
US4641703A (en) * 1985-11-27 1987-02-10 General Motors Corporation Countergravity casting mold and core assembly
FR2616363B1 (fr) 1987-06-11 1991-04-19 Cegedur Procede et dispositif de moulage en sable de pieces composites a matrice en alliage leger et insert fibreux
US4957153A (en) * 1989-05-02 1990-09-18 General Motors Corporation Countergravity casting apparatus and method
ATE166011T1 (de) 1992-11-20 1998-05-15 Erana Agustin Arana Vorrichtung zum giessen von nichteisenmetallen in sandformen mittels nachdruck
JPH0833944A (ja) 1994-07-20 1996-02-06 Mitsubishi Heavy Ind Ltd 鋳物の部分減圧注湯方法
RU2172227C2 (ru) * 1995-04-25 2001-08-20 Даидо Токусуко Кабусики Кайся Способ литья металла и устройство для его осуществления
FR2773337B1 (fr) 1998-01-07 2000-02-11 Seva Procede et installation de coulee sous basse pression dans un moule a coquille ceramique
DE10014591C1 (de) * 2000-03-27 2001-08-02 Actech Gmbh Adv Casting Tech Verfahren zum steigenden Gießen in Sandformen mit gerichteter Erstarrung von Gußteilen
JP2004330287A (ja) 2003-05-12 2004-11-25 Nissan Motor Co Ltd ダイカスト装置用金型の乾燥方法およびダイカスト装置
CN1302875C (zh) * 2005-04-20 2007-03-07 王一诚 一种金属型真空重力精密铸造方法
JP5393344B2 (ja) * 2009-08-24 2014-01-22 大東工業株式会社 水溶性鋳型の造型法
CN101869975A (zh) * 2010-07-07 2010-10-27 姚会元 利用负压浇注砂型的铸造方法
JP5704641B2 (ja) 2011-02-25 2015-04-22 学校法人早稲田大学 低温金型・低圧鋳造法
CN102335723B (zh) * 2011-10-31 2016-09-28 王卫民 薄壁结构负压铸造成型方法
JP2013173183A (ja) 2012-01-23 2013-09-05 Yushiro Chemical Industry Co Ltd 離型剤組成物
JP5146862B1 (ja) * 2012-08-20 2013-02-20 ▲たか▼田 伸子 変色麺の製造方法及び変色麺
JP2014136245A (ja) 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd 鋳造用鋳型
CN103317119B (zh) * 2013-06-05 2014-12-24 南通爱尔思轻合金精密成型有限公司 金属型低压铸造工艺
JP6182520B2 (ja) * 2014-12-01 2017-08-16 三洋化成工業株式会社 磁性シリカ粒子、該磁性シリカ粒子を用いた測定対象物質測定方法及び測定対象物質測定用試薬

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146862A (ja) * 1991-11-27 1993-06-15 Mazda Motor Corp 低圧鋳造方法
JPH06182520A (ja) * 1992-10-23 1994-07-05 Toyota Motor Corp 吸引鋳造装置
JPH0952150A (ja) * 1995-08-16 1997-02-25 Showa:Kk 中子乾燥装置
JPH11226697A (ja) * 1998-02-10 1999-08-24 Nissan Motor Co Ltd 鋳型のガス排出装置

Also Published As

Publication number Publication date
US20170348768A1 (en) 2017-12-07
MX2017008694A (es) 2017-11-17
RU2650465C1 (ru) 2018-04-13
EP3246114A4 (en) 2018-01-10
MX365480B (es) 2019-06-05
US10099282B2 (en) 2018-10-16
BR112017014644A2 (pt) 2018-01-23
EP3246114A1 (en) 2017-11-22
EP3246114B1 (en) 2019-05-22
JPWO2016113879A1 (ja) 2017-10-12
JP6481696B2 (ja) 2019-03-13
CN107107180A (zh) 2017-08-29
KR101870591B1 (ko) 2018-06-22
CN107107180B (zh) 2022-03-29
KR20170084340A (ko) 2017-07-19
BR112017014644B1 (pt) 2021-12-28

Similar Documents

Publication Publication Date Title
JP5527451B1 (ja) 鋳造装置
JP6481696B2 (ja) 低圧鋳造方法及び低圧鋳造装置
WO2001051237A1 (fr) Procede de coulee sous pression et machine de coulee sous pression
JP6406617B2 (ja) 低圧鋳造方法及び低圧鋳造装置
JP6439999B2 (ja) 鋳造装置及び鋳造方法
JP4352397B2 (ja) 減圧鋳型造型の注湯方法
JP4507209B2 (ja) フルモールド鋳造法および該鋳造法に用いられる鋳型
JP6485696B2 (ja) 加圧鋳造装置及び鋳造方法
JP5547035B2 (ja) 低圧鋳造炉及び該低圧鋳造炉を用いた低圧鋳造方法
JPS6195760A (ja) 鋳造方法及び鋳造装置
JP6183272B2 (ja) 鋳造装置及び鋳造方法
JP6133879B2 (ja) 相変化を生じる体積減少材を用いて電子部品を封止する方法および装置
JP2001105121A (ja) 石膏鋳型を用いた鋳造方法及び鋳造装置
JP2016123987A (ja) 鋳造装置及び鋳造方法
JP6458008B2 (ja) チタンアルミナイド部品を鋳造するための方法及び装置
JP2005088033A (ja) 内燃機関用ピストンの製造方法
JP5726672B2 (ja) 溶湯供給装置及び溶湯供給方法
JP2020045532A (ja) アルミ溶湯の溶存水素処理装置およびそれを用いた溶存水素処理方法
JP5920189B2 (ja) 鋳造装置及び鋳造方法
JP2008213030A (ja) 消失模型鋳造装置と鋳枠
KR101279874B1 (ko) 진공감압주조장치 및 진공감압주조방법
JP6460326B2 (ja) 鋳造装置及び鋳造方法
JP2002037671A (ja) セラミックスの成形方法及びその装置
JP2016123988A (ja) 鋳造方法及び鋳造装置
JPH02160160A (ja) 鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569175

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/008694

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15541333

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177018562

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015877831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017128493

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017014644

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017014644

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170706