WO2016103842A1 - エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機 - Google Patents

エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機 Download PDF

Info

Publication number
WO2016103842A1
WO2016103842A1 PCT/JP2015/078430 JP2015078430W WO2016103842A1 WO 2016103842 A1 WO2016103842 A1 WO 2016103842A1 JP 2015078430 W JP2015078430 W JP 2015078430W WO 2016103842 A1 WO2016103842 A1 WO 2016103842A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
viscosity
vinyl monomer
maleic anhydride
Prior art date
Application number
PCT/JP2015/078430
Other languages
English (en)
French (fr)
Inventor
康太郎 荒谷
悟 天羽
新太郎 武田
土屋 賢治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016103842A1 publication Critical patent/WO2016103842A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition and a molded product using the same.
  • Epoxy resin cured products are excellent in heat resistance, adhesion, chemical resistance, mechanical strength, etc., and a wide range of product fields such as paints, heavy electrical equipment, semiconductor integrated circuits, printed circuits, various electronic components and small electrical components Has been applied.
  • the cured epoxy resin has excellent characteristics as described above, but has a hard and brittle property.In particular, in application to heavy electrical equipment such as high-voltage molding equipment, outdoor molding equipment, and rotating equipment, An epoxy resin having excellent crack resistance has been demanded.
  • an insulating layer in which an epoxy resin is molded is provided on the outer periphery of a vacuum insulating container made of ceramics or the like to maintain external insulation.
  • a vacuum insulating container made of ceramics or the like to maintain external insulation.
  • Patent Document 1 discloses a technique for improving crack resistance by a technique of dispersing an inorganic filler such as glass fiber in an epoxy resin.
  • Patent Document 2 also discloses a technique for improving crack resistance by a technique of dispersing various elastomers and inorganic fillers in an epoxy resin.
  • Patent Document 3 discloses a technique for improving crack resistance by a technique of providing a stress relaxation layer such as conductive rubber at a joint between a vacuum insulating container and an epoxy resin.
  • Patent Document 4 discloses a technique for improving crack resistance by a method of providing a stress relaxation layer formed of an epoxy resin mixed with a diluent at a joint between a vacuum insulating container and an epoxy resin. Yes.
  • Patent Document 1 and Patent Document 2 a method of adding an inorganic filler or the like is adopted in order to improve crack resistance. Since the viscosity of the epoxy resin is increased by the addition of the elastomer or the inorganic filler, it has been a big problem in the manufacturing process, such as worsening of foaming. In addition, the addition of the elastomer or the like itself leads to an increase in material cost, which is a problem from the cost aspect.
  • an epoxy resin composition according to the present invention comprises an epoxy resin having an equivalent amount of an epoxy resin that is liquid at room temperature of 200 g / eq or less, an acid anhydride that is liquid at room temperature, and a liquid that is liquid at room temperature.
  • a radical polymerization initiator that accelerates the curing reaction between the phenylmaleimide and the phenylmaleimide.
  • the epoxy resin composition of the present invention can reduce the viscosity of the epoxy resin itself by adding a monofunctional vinyl monomer, maleic anhydride, and phenylmaleimide. The problem can be solved. In addition, the crack resistance can be improved while maintaining this low viscosity, and the stress relaxation layer provided between the vacuum insulation container and the epoxy resin layer can be made unnecessary. There is.
  • an epoxy resin having an equivalent amount of an epoxy resin that is liquid at room temperature of 200 g / eq or less, an acid anhydride that is liquid at room temperature, a monofunctional vinyl monomer that is liquid at room temperature, phenylmaleimide, and maleic anhydride
  • An epoxy resin curing catalyst that accelerates the curing reaction of an epoxy resin, an acid anhydride, and maleic anhydride, and a radical polymerization initiator that accelerates the curing reaction of a monofunctional vinyl monomer, maleic anhydride, and phenylmaleimide
  • An epoxy resin composition is provided. Furthermore, core-shell rubber particles, crushed crystalline silica, scale-like fillers, a dispersant, and a coupling agent may be added.
  • Epoxy Resin The epoxy resin used in the present invention is preferably a bisphenol A type or bisphenol F type epoxy resin. More preferable epoxy resins are those having an epoxy equivalent of 200 g / eq or less from the viewpoint of reducing the varnish viscosity.
  • EPICLON 840 (epoxy equivalent 180 to 190 g / eq, viscosity 9000 to 11000 mP ⁇ s / 25 ° C.) manufactured by DIC Corporation
  • EPICLON 850 (epoxy equivalent 183 to 193 g / eq, viscosity 11000 to 15000 mP ⁇ s / 25 ° C.)
  • EPICLON 830 (epoxy equivalent 165 to 177 g / eq, viscosity 3000 to 4000 mP ⁇ s / 25 ° C.)
  • jER827 (epoxy equivalent 180 to 190 g / eq, viscosity 9000 to 11000 mP ⁇ s / 25 ° C.), jER 828 (Epoxy equivalent 184 to 194 g / eq, viscosity 12000 to 15000 mP ⁇ s / 25 ° C.), jER806 (e
  • Acid anhydride As the acid anhydride, it is preferable to use an acid anhydride that is liquid at room temperature. Examples thereof include HN-2000 (acid anhydride equivalent 166 g / eq, viscosity 30 to 50 mPa ⁇ s / 25 ° C.), HN-5500 (acid anhydride equivalent 168 g / eq, viscosity 50 to 50%, manufactured by Hitachi Chemical Co., Ltd.
  • maleic anhydride is solid at room temperature, but in this range, it can be dissolved in a liquid acid anhydride and a monofunctional vinyl monomer, and can be handled in the same manner as a liquid acid anhydride.
  • Maleic anhydride is preferable as a component of the epoxy-vinyl copolymerization type insulating material because it has high copolymerizability with a monofunctional vinyl monomer.
  • Monofunctional vinyl monomer As the monofunctional vinyl monomer, a compound having an unsaturated double bond such as an acrylate group, a methacrylate group, a styrene group, or an allyl group in the molecule can be used.
  • a compound that is liquid at normal temperature is preferable. Examples include styrene (viscosity 0.7 mPa ⁇ s / 25 ° C), vinyltoluene (viscosity 0.8 mPa ⁇ s / 25 ° C), isoamyl acrylate (viscosity 4 to 5 mPa ⁇ s / 25 ° C), stearyl acrylate (viscosity).
  • These monofunctional vinyl monomers, maleic anhydride, and phenylmaleimide are preferably used in the range of 10 parts by weight or more and 100 parts by weight or less, more preferably 100 parts by weight of epoxy resin, with respect to 100 parts by weight of epoxy resin. It is preferable from the viewpoint of improving crack resistance that the total amount of maleic anhydride, phenylmaleimide and the above monofunctional vinyl monomer is 10 parts by weight or more and 50 parts by weight or less based on parts by weight.
  • Epoxy resin curing catalyst examples include tertiary amines such as trimethylamine, triethylamine, tetramethylbutanediamine, and triethylenediamine.
  • Amines such as dimethylaminoethanol, dimethylaminopentanol, tris (dimethylaminomethyl) phenol, N-methylmorpholine, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, cetyltrimethylammonium iodide, dodecyltrimethylammonium bromide, Dodecyltrimethylammonium chloride, dodecyltrimethylammonium iodide, benzyldimethyltetradecylammonium chloride, benzyldimethyl Quaternary ammonium salts such as rutetradecylammonium bromide, allyldodecyltrimethylammonium bromide, benzyldimethylstearylammonium bromide, stearyltrimethylammonium chloride, benzyldimethyltetradecylammonium acetylate, 2-methylimidazole, 2-ethylim
  • the addition amount of the epoxy curing catalyst is preferably in the range of 0.1 part by weight or more and 1.0 part by weight or less with respect to 100 parts by weight of the epoxy resin, and particularly suppresses the thickening of the varnish during the casting operation. In order to achieve this, it is preferable that the addition amount of the curing catalyst is 0.1 parts by weight or more and 0.5 parts by weight or less.
  • Radical polymerization initiator examples include benzoin compounds such as benzoin and benzoin methyl, acetophenones such as acetophenone and 2,2-dimethoxy-2-phenylacetophenone Compounds, thioxanthone compounds such as thioxanthone, 2,4-diethylthioxanthone, 4,4′-diazidochalcone, 2,6-bis (4′-azidobenzal) cyclohexanone, such as 4,4′-diazidobenzophenone Azo compounds such as bisazide compounds, azobisisobutyronitrile, 2,2-azobispropane, m, m′-azoxystyrene, hydrazone, 2,5-dimethyl-2,5-di (t-butyl) Peroxy) hexane
  • benzoin compounds such as benzoin and benzoin methyl
  • acetophenones such as acetophenone and 2,2-d
  • the addition amount of the radical polymerization catalyst may be in the range of 0.1 parts by weight or more and 1.0 part by weight or less with respect to 100 parts by weight of the total amount of maleic anhydride, phenylmaleimide, and monofunctional vinyl monomer. From the viewpoint of adjusting the gelation time, it is preferable. In particular, when the purpose is to suppress the thickening of the varnish during the casting operation, the addition amount of the curing catalyst is preferably 0.1 parts by weight or more and 0.5 parts by weight or less. (6) Crushed crystalline silica
  • the epoxy resin composition of the present invention contains crushed crystalline silica having an average particle size of 5 ⁇ m or more and 50 ⁇ m or less.
  • Crushed crystalline silica is preferable as a main component of the composite fine particles because it has low thermal expansion and high thermal conductivity and is inexpensive.
  • the average particle size is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably has a wide particle size distribution of about 0.1 ⁇ m to 100 ⁇ m.
  • Examples of such silica include Hayashi Kasei Co., Ltd. SQ-H22, SQ-H18, and Tatsumori CRYSTALITE series.
  • Scale-like filler contributes to the improvement of crack resistance and heat resistance through the combined action with rubber particle components described later, in addition to the suppression of curing shrinkage and the enhancement of the cured product.
  • the scale-like filler preferably has an average particle size of 5 ⁇ m or more and 200 ⁇ m or less in order to suppress an increase in varnish viscosity. Glass flakes, talc, mica, etc. can be used as the scale-like filler. In view of economy, pulverized mica is preferable, and examples thereof include Yamaguchi Mica Co., Ltd., SJ-005 (average particle size 5 ⁇ m), YM-21S (average particle size 23 ⁇ m), SB-061R (average particle size 130 ⁇ m). , B-82 (average particle size 180 ⁇ m) and the like.
  • Core-shell rubber particles Core-shell rubber particles suppress the development of cracks to a minimum. In addition, the core-shell rubber particles have excellent dispersibility with respect to the epoxy resin.
  • the core-shell rubber particles examples include those manufactured by Rohm & Haas, trade name Paraloid EXL2655 (average particle size 200 nm), manufactured by Ganz Kasei Co., Ltd., trade name Staphyloid AC3355 (average particle size 0.1 to 0.5 ⁇ m), and Zefiac F351. (Average particle size 0.3 ⁇ m).
  • the average particle diameter of the core-shell rubber particles is 100 nm or more and 500 nm or less.
  • the compounding amount of the organic / inorganic filler composed of crystalline silica and core-shell rubber particles is preferably used in the range of 30 to 76 wt% with respect to the total amount of the epoxy resin composition. If it is 30 wt% or less, characteristics such as thermal conductivity, toughness, cold shock resistance, low thermal expansion, and heat resistance, which are effects of the organic / inorganic filler, are deteriorated. On the other hand, when the blending amount exceeds 76 wt%, the varnish viscosity is remarkably increased.
  • the component composition in the organic / inorganic filler is in the range of 50 wt% to 96 wt% of crystalline silica and 4 to 50 wt% of core-shell rubber particles.
  • the blending amount of the scaly filler is preferably in the range of 1 to 35 wt%.
  • the core-shell rubber particles are in the range of 3 to 15 wt%.
  • silane coupling agents include epoxy silanes such as KBM-402, KBM-403, KBM-502, and KBM-504 manufactured by Shin-Etsu Chemical Co., Ltd., and vinyl silane. As mentioned.
  • titanate coupling agents examples include S-151, S-152, and S-181 manufactured by Nippon Soda Co., Ltd. (10) Dispersant As the dispersant, various nonionic surfactants are preferable, and examples thereof include BYK-W903, BYK-W980, BYK-W996, BYK-W9010 and the like manufactured by Big Chemie Japan Co., Ltd. I can do it.
  • the blending amount of the coupling agent and the dispersing agent is used in the range of 0.2 to 1 wt%, more preferably 0.4 to 0.8 wt%, based on the total amount of the organic and inorganic fillers. It is preferable to use in the range.
  • the material composition ratio in Table 1 is a weight ratio.
  • Test sample jER828 Mitsubishi Chemical Corporation bisphenol A type epoxy resin, epoxy equivalent of about 190 g / eq.
  • HN-5500 Hitachi Chemical Co., Ltd. 3- or 4-methyl-hexahydrophthalic anhydride, acid anhydride equivalent 168 g / eq, acid anhydride having no unsaturated double bond in the structure.
  • Maleic anhydride manufactured by Wako Pure Chemical Industries, Ltd., acid anhydride equivalent 98 g / eq.
  • Styrene Monofunctional vinyl monomer manufactured by Tokyo Chemical Industry.
  • Isobornyl acrylate monofunctional vinyl monomer manufactured by Tokyo Chemical Industry.
  • Phenylmaleimide Tokyo Chemical Industries 2E4MZ-CN: Shikoku Kasei Kogyo Co., Ltd. 1-cyanoethyl-2-ethyl-4-methylimidazole, epoxy curing catalyst.
  • AIBN a radical polymerization catalyst manufactured by Tokyo Chemical Industry.
  • 25B 1,2,5-dimethyl-2,5-di (t-butylperoxy) hexyne manufactured by NOF Corporation, radical polymerization catalyst.
  • XJ-7 Tatsumori Co., Ltd. crystalline crushed silica, particle size of about 6.3 ⁇ m, crushed crystalline silica.
  • KBM-503 Shin-Etsu Chemical Co., Ltd. 3-methacryloxypropyltrimethoxysilane, coupling agent.
  • KBM-403 3-glycidoxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., coupling agent.
  • Comparative Example 1 The composition and evaluation results of Comparative Example 1 are shown in Table 1.
  • Comparative Example 1 is an example of an epoxy resin composition containing no monofunctional vinyl manomer, phenylmaleimide, and maleic anhydride. Moreover, it is an example which does not contain an organic / inorganic filler.
  • This varnish has a varnish viscosity at 25 ° C. of 0.5 Pa ⁇ s, a glass transition temperature as an index of heat resistance of 152 ° C., and a fracture toughness value (K IC ) as an index of crack resistance of 0. A value of 7 MPa ⁇ m 0.5 was obtained. The subject of this varnish was further lowering the viscosity and improving crack resistance.
  • Example 1 is an example in which the varnish of Comparative Example 1 is blended with styrene, which is a monofunctional vinyl monomer, phenylmaleimide, and maleic anhydride. Compared with Comparative Example 1, the varnish viscosity at 25 ° C. decreased to 0.2 Pa ⁇ s. Thereby, it was confirmed that the blending of the monofunctional vinyl monomer, phenylmaleimide and maleic anhydride is effective in reducing the varnish viscosity.
  • the glass transition temperature, which is an index of heat resistance is slightly improved to 156 ° C.
  • the fracture toughness value (K IC ) which is an index of crack resistance, is greatly improved to 1.5 MPa ⁇ m 0.5 .
  • Comparative Example 2 is an example of an epoxy resin composition containing no monofunctional vinyl manomer, phenylmaleimide, and maleic anhydride. However, in this example, an organic / inorganic filler is included.
  • This varnish has a varnish viscosity at 80 ° C. of 2.0 Pa ⁇ s, a glass transition temperature which is an index of heat resistance is 152 ° C., and a fracture toughness value (K IC ) which is an index of crack resistance is 4. A value of 1 MPa ⁇ m 0.5 was obtained. The subject of this varnish was further lowering the viscosity and improving crack resistance.
  • Example 2 is an example in which the monofunctional vinyl monomer styrene, phenylmaleimide, and maleic anhydride were blended with the varnish of Comparative Example 2. Compared with Comparative Example 2, the varnish viscosity at 80 ° C. decreased to 1.2 Pa ⁇ s. Thereby, it was confirmed that the blending of the monofunctional vinyl monomer, phenylmaleimide and maleic anhydride is effective in reducing the varnish viscosity.
  • the glass transition temperature, which is an index of heat resistance is substantially maintained at 154 ° C.
  • the fracture toughness value (K IC ) which is an index of crack resistance
  • the varnish of this configuration can achieve both the reduction of the varnish viscosity and the heat resistance and crack resistance of the cured product.
  • Example 3 is an example in which the varnish of Comparative Example 2 was blended with styrene as a monofunctional vinyl monomer, phenylmaleimide, and maleic anhydride. However, compared with Example 2, maleic anhydride is blended approximately twice as much. Compared with Comparative Example 2, the varnish viscosity at 80 ° C. decreased to 1.0 Pa ⁇ s. Thereby, it was confirmed that the blending of the monofunctional vinyl monomer, phenylmaleimide and maleic anhydride is effective in reducing the varnish viscosity. In particular, it became clear that blending of maleic anhydride is useful for lowering the viscosity.
  • the glass transition temperature which is an index of heat resistance
  • the fracture toughness value (K IC ) which is an index of crack resistance
  • the varnish of this configuration can achieve both the reduction of the varnish viscosity and the heat resistance and crack resistance of the cured product.
  • Example 4 is an example in which the varnish of Comparative Example 2 was blended with styrene derivative vinyltoluene as a monofunctional vinyl monomer, phenylmaleimide, and maleic anhydride. Compared with Comparative Example 2, the varnish viscosity at 80 ° C. decreased to 1.0 Pa ⁇ s. Thereby, it was confirmed that the blending of the monofunctional vinyl monomer, phenylmaleimide and maleic anhydride is effective in reducing the varnish viscosity.
  • the glass transition temperature which is an index of heat resistance
  • K IC fracture toughness value
  • the varnish of this configuration can achieve both the reduction of the varnish viscosity and the heat resistance and crack resistance of the cured product.
  • Example 5 is an example in which the varnish of Comparative Example 2 was blended with isobornyl acrylate, which is a monofunctional vinyl monomer, phenylmaleimide, and maleic anhydride. Compared with Comparative Example 2, the varnish viscosity at 80 ° C. decreased to 1.1 Pa ⁇ s. Thereby, it was confirmed that the blending of the monofunctional vinyl monomer, phenylmaleimide and maleic anhydride is effective in reducing the varnish viscosity. Also in this example, it became clear that the blending of maleic anhydride is useful for lowering the viscosity.
  • the glass transition temperature which is an index of heat resistance
  • K IC fracture toughness value
  • the varnish of this configuration can achieve both the reduction of the varnish viscosity and the heat resistance and crack resistance of the cured product.
  • Example 3 25 kg of the liquid resin composition described in Example 3 was prepared.
  • the liquid resin composition was heated to 90 ° C. and degassed at 1 torr for about 20 minutes.
  • the varnish viscosity at 80 ° C. was 1.0 Pa ⁇ s.
  • the mold of the model vacuum circuit breaker was heated to 90 ° C., 25 kg of the degassed liquid resin composition was poured, and vacuum degassed again at 1 torr for 20 minutes. Then, it hardened
  • Fig. 1 shows a schematic cross-sectional view of a vacuum circuit breaker.
  • the vacuum circuit breaker includes an insulating resin layer 1, a fixed electrode 2, a movable electrode 3, a fixed side end plate 4, a movable side end plate 5, a bellows 6, and a vacuum insulating container 7. Since this vacuum circuit breaker has a well-known configuration other than the configuration using the resin composition of the present invention for the insulating resin layer 1, detailed description thereof is omitted.
  • the present invention is effective as a technique for achieving both heat resistance and crack resistance of an acid anhydride curable epoxy resin used in insulating materials and structural materials of various electronic and electrical equipment.
  • a low-viscosity monofunctional vinyl monomer is used, it is effective in reducing the varnish viscosity, and process ease is ensured.
  • the cured epoxy resin of the present invention is suitable as a technique for increasing the heat resistance of electric power equipment because the viscosity reduction and crack resistance improvement are well balanced while maintaining the heat resistance of the epoxy resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本発明の課題は、低粘性で靱性に優れた樹脂組成物を提供することである。本発明に係るエポキシ樹脂組成物は、常温で液状のエポキシ樹脂の当量が200g/eq以下であるエポキシ樹脂と、常温で液状の酸無水物と、常温で液状の単官能ビニルモノマーと、無水マレイン酸と、フェニルマレイミドと、前記エポキシ樹脂と前記酸無水物と前記無水マレイン酸の硬化反応を促進するエポキシ樹脂硬化触媒と、前記単官能ビニルモノマーと前記無水マレイン酸と前記フェニルマレイミドとの硬化反応を促進するラジカル重合開始剤を含有する。

Description

エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機
 本発明は、エポキシ樹脂組成物とそれを用いた成型品に関する。
 エポキシ樹脂の硬化物は、耐熱性、接着性、耐薬品性、機械的強度などに優れており、塗料、重電機器、半導体集積回路、プリント回路、各種電子部品・小型電気部品など幅広い製品分野に適用されている。しかしながら、エポキシ樹脂の硬化物は上記のように優れた特徴を有するものの固くて脆い性質があり、とくに、高電圧用モールド機器、屋外用モールド機器、回転機器など重電機器への適用にあたっては、耐クラック性に優れたエポキシ樹脂が求められてきた。
 高電圧用モールド機器の一つである真空遮断器へ適用する場合、セラミックス等からなる真空絶縁容器の外周にエポキシ樹脂をモールドさせた絶縁層を設け、外部絶縁を保持させている。この場合、エポキシ樹脂とセラミックスとの熱膨張係数が大きく異なることから、クラック発生の誘因となっている。
 従って、エポキシ樹脂の耐熱性や接着性を維持したまま、耐クラック性を向上させる方法が求められており、ゴムやエラストマー、エンジニアリングプラスチック、そして無機フィラーの添加などによる種々の改質方法が知られている。
 例えば、特許文献1には、エポキシ樹脂中にガラス繊維などの無機フィラーを分散させる手法により、耐クラック性の向上を図る技術が公開されている。また、特許文献2にも、エポキシ樹脂中に各種エラストマーと無機フィラーの分散させる手法により、耐クラック性の向上を図る技術が公開されている。
 特許文献3には、真空絶縁容器とエポキシ樹脂の接合部に導電性ゴムなどの応力緩和層を設ける手法により、耐クラック性の向上を図る技術が公開されている。また、特許文献4にも、真空絶縁容器とエポキシ樹脂の接合部に希釈剤の混入させたエポキシ樹脂から形成される応力緩和層を設ける手法により、耐クラック性の向上を図る技術が公開されている。
特開平10-316839号公報 特開2011-1424号公報 特開2001-167673号公報 特開2013-222496号公報
 特許文献1および特許文献2の事例では、耐クラック性を向上させるために無機フィラーなどを添加する方法が採用されている。このエラストマーや無機フィラーなどの添加によりエポキシ樹脂の粘度を増大するため、泡切れを悪くするなど、製造プロセス上の大きな課題となっている。また、このエラストマーなどの添加自体が材料コストの上昇につながり、コスト面からの課題にもなっている。
 特許文献3および特許文献4の事例では、耐クラック性を向上させるために応力緩和層を設ける方法が採用されている。この場合も、この応力緩和層の付設により、この付設に対応した製造装置が必要されるなど、製造プロセス上の大きな課題の一つとなっている。また、このエラストマーなどの添加自体が材料コストの上昇につながり、コスト面からの課題にもなっている。
 上記課題を解決するために、本発明に係るエポキシ樹脂組成物は、常温で液状のエポキシ樹脂の当量が200g/eq以下であるエポキシ樹脂と、常温で液状の酸無水物と、常温で液状の単官能ビニルモノマーと、無水マレイン酸と、フェニルマレイミドと、前記エポキシ樹脂と前記酸無水物と前記無水マレイン酸の硬化反応を促進するエポキシ樹脂硬化触媒と、前記単官能ビニルモノマーと前記無水マレイン酸と前記フェニルマレイミドとの硬化反応を促進するラジカル重合開始剤を含有する。
 本発明のエポキシ樹脂組成物は、従来のモールド用のエポキシ樹脂とは異なり、単官能ビニルモノマーと、無水マレイン酸と、フェニルマレイミドの添加により、エポキシ樹脂自体の粘度を低下させることがき、上記の課題を解決できる。また、この低粘性を維持したまま、耐クラック性を向上することもでき、真空絶縁容器とエポキシ樹脂層の間に設けられる応力緩和層を不要にできるなど、プロセス面およびコスト面の両面で利点がある。
本発明のエポキシ樹脂組成物を用いた真空遮断器の断面模式図である。
 以下、本発明を詳細に説明する。
 本発明では、常温で液状のエポキシ樹脂の当量が200g/eq以下であるエポキシ樹脂と、常温で液状の酸無水物と、常温で液状の単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸と、エポキシ樹脂と酸無水物と無水マレイン酸の硬化反応を促進するエポキシ樹脂硬化触媒と、単官能ビニルモノマーと無水マレイン酸とフェニルマレイミドとの硬化反応を促進するラジカル重合開始剤とから構成されることを特徴とするエポキシ樹脂組成物を提供する。さらに、コアシェルゴム粒子と、破砕状結晶質シリカと、鱗辺状フィラーと、分散剤、カップリング剤を追加しても良い。以下、本発明の構成材料について説明する。
(1)エポキシ樹脂
 本発明で用いられるエポキシ樹脂としては、好ましくは、ビスフェノールA型またはビスフェノールF型エポキシ樹脂である。より好ましいエポキシ樹脂としては、エポキシ当量が200g/eq以下のものが、ワニス粘度の低減の観点から好ましい。
 具体的には、DIC(株)製EPICLON840(エポキシ当量180~190g/eq、粘度9000~11000mP・s/25℃)、EPICLON850(エポキシ当量183~193g/eq、粘度11000~15000mP・s/25℃)、EPICLON830(エポキシ当量165~177g/eq、粘度3000~4000mP・s/25℃)三菱化学(株)製jER827(エポキシ当量180~190g/eq、粘度9000~11000mP・s/25℃)、jER828(エポキシ当量184~194g/eq、粘度12000~15000mP・s/25℃)、jER806(エポキシ当量160~170g/eq、粘度1500~2500mP・s/25℃)、jER807(エポキシ当量160~175g/eq、粘度3000~4500mP・s/25℃)等が挙げられる。耐熱性の観点からはビスフェノールA型エポキシ樹脂を用いることが好ましく、低粘度化の観点からはビスフェノールF型エポキシ樹脂の使用が好ましい。また、両特性バランスをとるため、これらのエポキシ樹脂はブレンドして用いることもできる。
(2)酸無水物
 酸無水物としては、常温で液状である酸無水物を用いる事が好ましい。その例としては、日立化成工業(株)製HN-2000(酸無水物当量166g/eq、粘度30~50mPa・s/25℃)、HN-5500(酸無水物当量168g/eq、粘度50~80mPa・s/25℃)、MHAC-P(酸無水物当量178g/eq、粘度150~300mPa・s/25℃)、DIC(株)製EPICLON B-570H(酸無水物当量166g/eq、粘度40mPa・s/25℃)を挙げることができる。
 酸無水物全体の1~33mol%を無水マレイン酸とすることが好ましい。無水マレイン酸は常温で固体であるが、本範囲においては液状の酸無水物及び単官能ビニルモノマーに溶解させることができ、液状酸無水物と同様にして取り扱うことができる。無水マレイン酸は、単官能ビニルモノマーとの共重合性が高いのでエポキシ-ビニル共重合型絶縁材料の構成成分として好ましい。
(3)単官能ビニルモノマー
 単官能ビニルモノマーとしては、分子内にアクリレート基、メタクリレート基、スチレン基、アリル基等の不飽和二重結合を有する化合物を用いることができる。これはエポキシ樹脂組成物の低粘度化に寄与する成分である。中でも常温で液体である化合物の適用が好ましい。その例としては、スチレン(粘度0.7mPa・s/25℃)、ビニルトルエン(粘度0.8mPa・s/25℃)、イソアミルアクリレート(粘度4~5mPa・s/25℃)、ステアリルアクリレート(粘度8~10mPa・s/25℃))、イソボルニルアクリレート(粘度5~10mPa・s/25℃)、エトキシ-トリエチレングリコールアクリレート(粘度5~6mPa・s/25℃)、ラウリルアクリレート(粘度4~5mPa・s/25℃)、フェノキシジエチレングリコールアクリレート(粘度10~12mPa・s/25℃)、イソボルニルメタクリレート(粘度5~6mPa・s/25℃)、シクロヘキシルメタクリレート(粘度2~4mPa・s/25℃)、ステアリルメタクリレート(粘度7~10mPa・s/25℃)、を挙げることができる。
 これら単官能ビニルモノマーと、無水マレイン酸と、フェニルマレイミドとは、エポキシ樹脂100重量部に対して、10重量部以上、100重量部以下の範囲で用いることが好ましく、更に好ましくは、エポキシ樹脂100重量部に対して無水マレイン酸と、フェニルマレイミドと、上記の単官能ビニルモノマーの総量が10重量部以上、50重量部以下の範囲で用いることが耐クラック性改善の観点から好ましい。
(4)エポキシ樹脂硬化触媒
 本発明のエポキシ樹脂と酸無水物との硬化反応を促進するエポキシ樹脂硬化触媒の例としては、トリメチルアミン,トリエチルアミン,テトラメチルブタンジアミン,トリエチレンジアミン等の3級アミン類,ジメチルアミノエタノール,ジメチルアミノペンタノール,トリス(ジメチルアミノメチル)フェノール、N-メチルモルフォリン等のアミン類、又、セチルトリメチルアンモニウムブロマイド,セチルトリメチルアンモニウムクロライド,セチルトリメチルアンモニウムアイオダイド,ドデシルトリメチルアンモニウムブロマイド,ドデシルトリメチルアンモニウムクロライド,ドデシルトリメチルアンモニウムアイオダイド,ベンジルジメチルテトラデシルアンモニウムクロライド,ベンジルジメチルテトラデシルアンモニウムブロマイド,アリルドデシルトリメチルアンモニウムブロマイド,ベンジルジメチルステアリルアンモニウムブロマイド,ステアリルトリメチルアンモニウムクロライド,ベンジルジメチルテトラデシルアンモニウムアセチレート等の第4級アンモニウム塩、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチル-4-エチルイミダゾール、1-ブチルイミダゾール、1-プロピル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-アジン-2-メチルイミダゾール、1-アジン-2-ウンデシル等のイミダゾール類、アミンとオクタン酸亜鉛やコバルト等との金属塩、1,8-ジアザ-ビシクロ(5,4,0)-ウンデセン-7、N-メチル-ピペラジン,テトラメチルブチルグアニジン,トリエチルアンモニウムテトラフェニルボレート、2-エチル-4-メチルテトラフェニルボレート、1,8-ジアザ-ビシクロ(5,4,0)-ウンデセン-7-テトラフェニルボレート等のアミンテトラフェニルボレート,トリフェニルホスフィン,トリフェニルホスホニウムテトラフェニルボレート,アルミニウムトリアルキルアセトアセテート,アルミニウムトリスアセチルアセトアセテート,アルミニウムアルコラート,アルミニウムアシレート,ソジウムアルコラートなどが挙げられる。
 エポキシ硬化触媒の添加量は、エポキシ樹脂100重量部に対して0.1重量部以上、1.0重量部以下の範囲とすることが好ましく、特に注型作業時のワニスの増粘を抑制することを目的とする場合には、硬化触媒の添加量を0.1重量部以上、0.5重量部以下とすることが好ましい。
(5)ラジカル重合開始剤(触媒)
 単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸のラジカル重合触媒の例としては、ベンゾイン、ベンゾインメチルのようなベンゾイン系化合物、アセトフェノン、2、2-ジメトキシ-2-フェニルアセトフェノンのようなアセトフェノン系化合物、チオキサントン、2、4-ジエチルチオキサントンのようなチオキサンソン系化合物、4、4'-ジアジドカルコン、2、6-ビス(4'-アジドベンザル)シクロヘキサノン、4、4'-ジアジドベンゾフェノンのようなビスアジド化合物、アゾビスイソブチロニトリル、2、2-アゾビスプロパン、m、m'-アゾキシスチレン、ヒドラゾン、のようなアゾ化合物、2、5-ジメチル-2、5-ジ(t-ブチルパーオキシ)ヘキサン、2、5-ジメチル-2、5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジクミルパーオキシド、t-ブチルパーオキシマレイン酸、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレラート、2、5-ジメチル-2、5-ジ(t-ブチルパーオキシ)ヘキシン、ジクミルパーオキシサイドのような有機過酸化物等が挙げられる。
 ラジカル重合触媒の添加量は、無水マレイン酸と、フェニルマレイミドと、単官能ビニルモノマーの総量100重量部に対して、0.1重量部以上、1.0重量部以下、の範囲とすることが、ゲル化時間の調整の観点から好ましい。特に注型作業時のワニスの増粘を抑制することを目的とする場合、硬化触媒の添加量を0.1重量部以上、0.5重量部以下とすることが好ましい。
(6)破砕状結晶質シリカ
 本発明のエポキシ樹脂組成物には平均粒径が5μm以上、50μm以下の破砕状結晶質シリカを含むことを特徴とする。
 破砕状結晶質シリカは、低熱膨張性、高熱伝導性を有し、価格も安価であることから複合微粒子の主成分として好ましい。その好ましい平均粒径は5μm以上、50μm以下であり、更に好ましくは0.1μm~100μm程度の広い粒度分布を持つことが好ましい。その結果、破砕状結晶質シリカを高充填した場合においてもワニス粘度の上昇を抑制できる。そのようなシリカの例としては、林化成(株)製SQ-H22、SQ-H18、(株)龍森製CRYSTALITEシリーズ等がある。
(7)鱗片状フィラー
 鱗片状フィラーは、硬化収縮の抑制、硬化物の高強度化のほか、後述するゴム粒子成分との複合作用により、耐クラック性、耐熱性の改善に寄与する。鱗片状フィラーのサイズは平均粒径5μm以上、200μm以下であることがワニス粘度の上昇を抑制するために好ましい。鱗片状フィラーとしては、ガラスフレーク、タルク、マイカ等を用いることができる。経済性の点から粉砕マイカが好ましく、その例としては(株)ヤマグチマイカ製、SJ-005(平均粒径5μm)、YM-21S(平均粒径23μm)、SB-061R(平均粒径130μm)、B-82(平均粒径180μm)等がある。
(8)コアシェルゴム粒子
 コアシェルゴム粒子はクラックの進展を最小限に抑制するものである。また、コアシェルゴム粒子はエポキシ樹脂に対して分散性が優れていることも選択の基準になっている。
 コアシェルゴム粒子の例としては、Rohm&Haas社製、商品名パラロイドEXL2655(平均粒径200nm)、ガンツ化成(株)製、商品名スタフィロイドAC3355(平均粒径0.1~0.5μm)、ゼフィアックF351(平均粒径0.3μm)等が挙げられる。このように、コアシェルゴム粒子の平均粒径を100nm以上、500nm以下とすることが好ましい。
 結晶質シリカ、コアシェルゴム粒子で構成する有機・無機フィラーの配合量は、エポキシ樹脂組成物の総量に対して30~76wt%の範囲で用いることが好ましい。30wt%以下では有機・無機フィラーの効果である熱伝導性、靭性、冷熱衝撃性、低熱膨張性、耐熱性等の特性が低下する。一方、その配合量が76wt%を超えるとワニス粘度の著しい増大を招く。有機・無機フィラー中の成分構成は、結晶質シリカが50wt%~96wt%、コアシェルゴム粒子が4~50wt%の範囲である。なお、鱗片状フィラーを有機・無機フィラーに含めても良い。その場合、鱗片状フィラーの配合量は1~35wt%の範囲とするのが好ましい。この場合、コアシェルゴム粒子が3~15wt%の範囲である。
(9)カップリング剤
 カップリング剤としては、各種のシラン系、チタネート系カップリング剤が使用できる。そのようなカップリング剤の例としては、シラン系カップリング剤としては、信越化学工業(株)製KBM-402、KBM-403、KBM-502、KBM-504等のエポキシシラン、ビニルシランが好ましい例として挙げられる。チタネート系カップリング剤としては、日本曹達(株)製S-151、S-152、S-181等を挙げる事が出来る。
(10)分散剤
 分散剤としては、各種のノニオン系界面活性剤が好ましく、その例としてはビックケミージャパン(株)製、BYK-W903、BYK-W980、BYK-W996、BYK-W9010等を挙げる事が出来る。
 これらのカップリング剤、分散剤は、有機・無機フィラーの表面に化学結合または吸着してその表面を改質することによってワニス粘度の低減に寄与する。従って過剰に配合しても、有機・無機フィラーの表面に化学結合または吸着できず、更なる低粘度効果は期待できない。また、過剰な配合は樹脂硬化物のガラス転移温度、熱分解開始温度を低下させることから好ましくない。以上のことからカップリング剤、分散剤の配合量は、有機・無機フィラー総量に対して、それぞれ0.2~1wt%の範囲で用いることが好ましく、更に好ましくは0.4~0.8wt%の範囲で用いることが好ましい。
 以下に、実施例および比較例を示して本発明を具体的に説明する。なお、以下の実施例は本発明の具体的な説明のためのものであって、本発明の範囲がこれに限定されるものではなく、特許請求の範囲の発明思想の範囲内において自由に変更可能である。
 なお、表1における材料組成比は重量比である。
 試薬および評価方法を以下に示す。
(1)供試試料
 jER828:三菱化学(株)製ビスフェノールA型エポキシ樹脂、エポキシ等量約190g/eq。
 HN-5500:日立化成(株)3-又は4-メチル-ヘキサヒドロ無水フタル酸、酸無水物当量168g/eq、構造中に不飽和二重結合がない酸無水物。
 無水マレイン酸:和光純薬(株)製、酸無水物当量98g/eq。
 スチレン:東京化成製、単官能ビニルモノマー。
 イソボルニルアクリレート:東京化成製、単官能ビニルモノマー。
 フェニルマレイミド:東京化成製
 2E4MZ-CN:四国化成工業(株)製1-シアノエチル-2-エチル-4-メチルイミダゾール、エポキシ硬化触媒。
 AIBN:東京化成製、ラジカル重合触媒。
 25B:日油(株)製1、2、5-ジメチル-2、5-ジ(t-ブチルパーオキシ)ヘキシン、ラジカル重合触媒。
 XJ-7:(株)龍森製結晶性破砕状シリカ、粒径約6.3μm、破砕状結晶質シリカ。
 KBM-503:信越化学工業(株)製3-メタクリロキシプロピルトリメトキシシラン、カップリング剤。
 KBM-403:信越化学工業(株)製3-グリシドキシプロピルトリメトキシシラン、カップリング剤。
 コアシェルゴム粒子:ガンツ化成(株)製スタフィロイドAC3355平均粒径0.1~0.5μm
 分散剤:ビックケミージャパン(株)製BYK-W9010
(2)ワニスの調整
 所定の配合比で各成分を配合し、(株)シンキー製AR-100型自転・公転式ミキサーで3分間攪拌してワニスを作製した。
(3)ワニス粘度の測定
 ワニスの粘度は、E型粘度計を用いて、25℃および80℃における値を観測した。
(4)破壊靱性試験片の作製と評価
 ワニスを破壊靱性試験用の金型(サンプルサイズ:長さ100mm、幅60mm、厚さ6mm)に注ぎ、大気中で100℃/5時間、170℃/7時間の2段階加熱によりエポキシ樹脂硬化物の試験片を作製した。この試験片を用いて、ASTM E399に準拠して、引張り試験により試験片が破壊されるまで荷重をかけることによって破壊靱性値(KIC)を測定し、耐クラック性の指標とした。
(5)熱分析測定
 パーキン・エルマー社製の示差走査熱分析装置(DSC)を用い、(4)で作製した試験片から一部を切り出し熱分析用サンプルとした。熱分析を大気中、昇温速度5℃で測定を実施し、ガラス転移温度を求め、耐熱性の指標とした。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 比較例1の組成と評価結果を表1に示した。比較例1は単官能ビニルマノマーと、フェニルマレイミドと、無水マレイン酸を含まないエポキシ樹脂組成物の例である。また、有機・無機フィラーも含まない例である。本ワニスは、25℃におけるワニス粘度が0.5Pa・sで、耐熱性の指標であるガラス転移温度は152℃であり、耐クラック性の指標である破壊靱性値(KIC)として、0.7MPa・m0.5の値が得られた。本ワニスの課題は、更なる低粘度化と耐クラック性の向上であった。
 実施例1の組成と評価結果を表1に記載した。実施例1は、比較例1のワニスに単官能ビニルモノマーであるスチレンと、フェニルマレイミドと、無水マレイン酸を配合した例である。比較例1と比較して、25℃におけるワニス粘度は低下し、0.2Pa・sとなった。これにより単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸の配合がワニス粘度の低減に効果的であることが確認された。また、耐熱性の指標であるガラス転移温度は156℃と若干の向上し、耐クラック性の指標である破壊靱性値(KIC)として、1.5MPa・m0.5と大幅に向上している。
 以上により、本構成のワニスによってワニス粘度の低減と、その硬化物の耐熱性、耐クラック性が両立できることが明らかとなった。
(比較例2)
 比較例2の組成と評価結果を表1に示した。比較例2は単官能ビニルマノマーと、フェニルマレイミドと、無水マレイン酸を含まないエポキシ樹脂組成物の例である。ただし、本例では、有機・無機フィラーは含まれる。本ワニスは、80℃におけるワニス粘度が2.0Pa・sで、耐熱性の指標であるガラス転移温度は152℃であり、耐クラック性の指標である破壊靱性値(KIC)として、4.1MPa・m0.5の値が得られた。本ワニスの課題は、更なる低粘度化と耐クラック性の向上であった。
 実施例2の組成と評価結果を表1に記載した。実施例2は、比較例2のワニスに単官能ビニルモノマーであるスチレンと、フェニルマレイミドと、無水マレイン酸を配合した例である。比較例2と比較して、80℃におけるワニス粘度は低下し、1.2Pa・sとなった。これにより単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸の配合がワニス粘度の低減に効果的であることが確認された。また、耐熱性の指標であるガラス転移温度は154℃とほぼ維持され、耐クラック性の指標である破壊靱性値(KIC)として、5.3MPa・m0.5と大幅に向上している。
 以上により、本構成のワニスによってワニス粘度の低減と、その硬化物の耐熱性、耐クラック性が両立できることが明らかとなった。
 実施例3の組成と評価結果を表1に記載した。実施例3は、比較例2のワニスに単官能ビニルモノマーであるスチレンと、フェニルマレイミドと、無水マレイン酸を配合した例である。ただし、実施例2と比較して、無水マレイン酸を約2倍の配合量にしている。比較例2と比較して、80℃におけるワニス粘度は低下し、1.0Pa・sとなった。これにより単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸の配合がワニス粘度の低減に効果的であることが確認された。とくに、無水マレイン酸の配合は低粘度化にも有用であることが明らかになった。また、耐熱性の指標であるガラス転移温度は156℃とほぼ維持され、耐クラック性の指標である破壊靱性値(KIC)として、5.5MPa・m0.5と大幅に向上している。この破壊靱性でも、無水マレイン酸の配合の効果が明らかになった。
 以上により、本構成のワニスによってワニス粘度の低減と、その硬化物の耐熱性、耐クラック性が両立できることが明らかとなった。
 実施例4の組成と評価結果を表1に記載した。実施例4は、比較例2のワニスに単官能ビニルモノマーであるスチレン誘導体のビニルトルエンと、フェニルマレイミドと、無水マレイン酸を配合した例である。比較例2と比較して、80℃におけるワニス粘度は低下し、1.0Pa・sとなった。これにより単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸の配合がワニス粘度の低減に効果的であることが確認された。また、耐熱性の指標であるガラス転移温度は156℃と維持され、耐クラック性の指標である破壊靱性値(KIC)として、5.5MPa・m0.5と大幅に向上している。これは実施例3のスチレンを使用した場合と同様の結果となった。ビニルトルエンはスチレンと比較して蒸気圧が小さく環境負荷の少ないモノマーであることから、スチレン誘導体は有用なモノマーと考えられる。
 以上により、本構成のワニスによってワニス粘度の低減と、その硬化物の耐熱性、耐クラック性が両立できることが明らかとなった。
 実施例5の組成と評価結果を表1に記載した。実施例5は、比較例2のワニスに単官能ビニルモノマーであるイソボルニルアクリレートと、フェニルマレイミドと、無水マレイン酸を配合した例である。比較例2と比較して、80℃におけるワニス粘度は低下し、1.1Pa・sとなった。これにより単官能ビニルモノマーと、フェニルマレイミドと、無水マレイン酸の配合がワニス粘度の低減に効果的であることが確認された。この例でも、無水マレイン酸の配合は低粘度化にも有用であることが明らかになった。また、耐熱性の指標であるガラス転移温度は150℃とほぼ維持され、耐クラック性の指標である破壊靱性値(KIC)として、5.4MPa・m0.5と大幅に向上している。この破壊靱性でも、無水マレイン酸の配合の効果が明らかになった。
 以上により、本構成のワニスによってワニス粘度の低減と、その硬化物の耐熱性、耐クラック性が両立できることが明らかとなった。
 実施例3に記載の液状樹脂組成物を25kg準備した。本液状樹脂組成物を90℃に加熱して、1torrで約20分間脱気した。80℃におけるワニス粘度は、1.0Pa・sであった。モデル真空遮断器の型を90℃に加熱し、脱気後の液状樹脂組成物25kgを流し込み、再度1torrで20分間、真空脱気した。その後、大気中で100℃/5時間、170℃/7時間の条件で硬化した。次いで、8時間かけて50℃に冷却し、型を外して図1に示すモデル真空遮断器を作製した。
 図1に真空遮断器の断面模式図を示す。真空遮断器は、絶縁樹脂層1、固定電極2、可動電極3、固定側エンドプレート4、可動側エンドプレート5、ベローズ6、真空絶縁容器7で構成する。この真空遮断器は絶縁樹脂層1に本発明の樹脂組成物を用いた構成の他は周知な構成なので、詳細な説明は省略する。
 真空遮断器の外観、断面観察の結果、エポキシ樹脂硬化物内部にクラックやボイドは認められず、耐熱性、耐クラック性、絶縁信頼性が優れていると思われる結果を得た。
 本発明は、各種電子、電機機器の絶縁材、構造材に用いられている酸無水物硬化型エポキシ樹脂の耐熱性と耐クラック性を両立する手法として有効である。特に低粘度の単官能ビニルモノマーを使用しているため、ワニス粘度の低減にも有効であり、プロセス容易性も確保される。
 以上、本発明のエポキシ樹脂硬化物は、エポキシ樹脂の耐熱性を維持しつつ、低粘度化および耐クラック性の改善がバランス良くなされるため、電力機器の高耐熱化手法として好適である。
 1…絶縁樹脂層、2…固定電極、3…可動電極、4…固定側エンドプレート、
 5…可動側エンドプレート、6…ベローズ、7…真空絶縁容器

Claims (9)

  1.  常温で液状のエポキシ樹脂の当量が200g/eq以下であるエポキシ樹脂と、
     常温で液状の酸無水物と、
     常温で液状の単官能ビニルモノマーと、
     無水マレイン酸と、
     フェニルマレイミドと、
     前記エポキシ樹脂と前記酸無水物と前記無水マレイン酸の硬化反応を促進するエポキシ樹脂硬化触媒と、
     前記単官能ビニルモノマーと前記無水マレイン酸と前記フェニルマレイミドとの硬化反応を促進するラジカル重合開始剤を含有することを特徴とするエポキシ樹脂組成物。
  2.  請求項1に記載のエポキシ樹脂組成物であって、
     前記単官能ビニルモノマーがスチレン、ビニルトルエン、またはイソボルニルアクリレートであることを特徴とするエポキシ樹脂組成物。
  3.  請求項1または2に記載のエポキシ樹脂組成物であって、
     破砕状結晶質シリカと、
     コアシェルゴム粒子と、
     カップリング剤と、
     分散剤を有することを特徴とするエポキシ樹脂組成物。
  4.  請求項3に記載のエポキシ樹脂組成物であって、
     前記破砕状結晶質シリカの平均粒径が5μm以上、50μm以下であり、
     前記コアシェルゴム粒子の平均粒径が0.1μm以上、0.5μm以下であることを特徴とするエポキシ樹脂組成物。
  5.  請求項3または4に記載のエポキシ樹脂組成物であって、
     前記破砕状結晶質シリカおよびコアシェルゴム粒子で構成する有機・無機フィラーをエポキシ樹脂組成物の総量に対して30~76wt%含有し、
     前記有機・無機フィラー中の成分構成は、前記結晶質シリカが50wt%~96wt%、コアシェルゴム粒子が4~50wt%の範囲であることを特徴とするエポキシ樹脂組成物。
  6.  請求項5に記載のエポキシ樹脂組成物であって、
     前記有機・無機フィラーの総量に対して、前記カップリング剤を0.2~1wt%、前記分散剤を0.2~1wt%含有することを特徴とするエポキシ樹脂組成物。
  7.  請求項1乃至6のいずれかに記載のエポキシ樹脂組成物を加熱、硬化して製造されたことを特徴とする樹脂硬化物。
  8.  請求項7に記載の樹脂硬化物を構造材または絶縁材に用いたことを特徴とする電力機器。
  9.  請求項7に記載の樹脂硬化物を構造材または絶縁材に用いたことを特徴とする真空遮断器。
PCT/JP2015/078430 2014-12-25 2015-10-07 エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機 WO2016103842A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014261541A JP2016121258A (ja) 2014-12-25 2014-12-25 エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機
JP2014-261541 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016103842A1 true WO2016103842A1 (ja) 2016-06-30

Family

ID=56149879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078430 WO2016103842A1 (ja) 2014-12-25 2015-10-07 エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機

Country Status (2)

Country Link
JP (1) JP2016121258A (ja)
WO (1) WO2016103842A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6591281B2 (ja) * 2015-12-17 2019-10-16 株式会社日立産機システム モールドワニス、樹脂硬化物、電力機器及び真空遮断器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259058A (ja) * 1988-04-08 1989-10-16 Toshiba Chem Corp 難燃性樹脂組成物
JPH06107770A (ja) * 1992-09-30 1994-04-19 Somar Corp 液状エポキシ樹脂組成物
WO2010109861A1 (ja) * 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法
JP2012097221A (ja) * 2010-11-04 2012-05-24 Dic Kako Kk 成形材料、成形品、床材及び成形品の製造方法
JP2013256637A (ja) * 2012-05-16 2013-12-26 Hitachi Industrial Equipment Systems Co Ltd エポキシ‐ビニル共重合型液状樹脂組成物、その硬化物、製造方法及び硬化物を用いた絶縁材料、電子・電気機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259058A (ja) * 1988-04-08 1989-10-16 Toshiba Chem Corp 難燃性樹脂組成物
JPH06107770A (ja) * 1992-09-30 1994-04-19 Somar Corp 液状エポキシ樹脂組成物
WO2010109861A1 (ja) * 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法
JP2012097221A (ja) * 2010-11-04 2012-05-24 Dic Kako Kk 成形材料、成形品、床材及び成形品の製造方法
JP2013256637A (ja) * 2012-05-16 2013-12-26 Hitachi Industrial Equipment Systems Co Ltd エポキシ‐ビニル共重合型液状樹脂組成物、その硬化物、製造方法及び硬化物を用いた絶縁材料、電子・電気機器

Also Published As

Publication number Publication date
JP2016121258A (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
US9493605B2 (en) Epoxy-vinyl copolymerization type liquid resin composition, cured product of the same, electronic/electric apparatus using the cured product, and method of producing the cured product
JP6405867B2 (ja) 樹脂ペースト組成物及び半導体装置
JP2010523747A (ja) 硬化性エポキシ樹脂組成物
WO2011158753A1 (ja) 樹脂ペースト組成物
JP6310730B2 (ja) エポキシ樹脂組成物およびそれを用いた電力機器
JP6596006B2 (ja) 注型用エポキシ樹脂組成物
JP7219123B2 (ja) モールド機器
JP6563823B2 (ja) 高電圧機器用モールド樹脂材料および高電圧機器の製造方法
JP5129612B2 (ja) 注形用エポキシ樹脂組成物および高熱伝導コイル
KR20100130966A (ko) 반도체 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 장치
WO2017104726A1 (ja) モールドワニス、樹脂硬化物、電力機器及び真空遮断器
WO2016103842A1 (ja) エポキシ樹脂組成物、およびそれを用いた硬化物、電力機器、真空遮断機
CN105623592A (zh) 一种基于改性环氧树脂的柔性绝缘灌封胶
JP6485008B2 (ja) 1液型のエポキシ樹脂組成物及びそれを用いて絶縁処理された電気電子部品
JP2016117869A (ja) 半導体接着用樹脂組成物及び半導体装置
JP4314112B2 (ja) 六フッ化硫黄ガス絶縁機器用繊維強化複合材料およびその製造方法
JP2017095604A (ja) エポキシ樹脂組成物、樹脂硬化物、電力機器及び真空遮断器
JP2018002901A (ja) 樹脂組成物及び樹脂硬化物並びに樹脂硬化物を含む高電圧機器
JP7330404B1 (ja) 熱伝導性樹脂組成物、熱伝導性シートおよびその製造方法、熱伝導性硬化物およびその製造方法、パワーモジュール、ならびに、モータのステータ
JP7409980B2 (ja) モールド電気機器
JP2017088718A (ja) 電子・電気部品の製造方法及びエポキシ樹脂組成物
JPH09278986A (ja) エポキシ樹脂組成物
JP2018002943A (ja) エポキシ樹脂組成物及び電気電子部品の製造法
JP2019006847A (ja) 電気絶縁用樹脂組成物およびこれを用いた高電圧機器
JP2023086762A (ja) 導電性ペースト、硬化物、シンタリング促進剤およびシンタリング促進方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872411

Country of ref document: EP

Kind code of ref document: A1