WO2016101904A1 - 一种含氮杂环六肽前体的组合物及其制备方法和用途 - Google Patents

一种含氮杂环六肽前体的组合物及其制备方法和用途 Download PDF

Info

Publication number
WO2016101904A1
WO2016101904A1 PCT/CN2015/098740 CN2015098740W WO2016101904A1 WO 2016101904 A1 WO2016101904 A1 WO 2016101904A1 CN 2015098740 W CN2015098740 W CN 2015098740W WO 2016101904 A1 WO2016101904 A1 WO 2016101904A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
composition
content
water
Prior art date
Application number
PCT/CN2015/098740
Other languages
English (en)
French (fr)
Inventor
刘石东
王修胜
季晓铭
Original Assignee
上海天伟生物制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天伟生物制药有限公司 filed Critical 上海天伟生物制药有限公司
Priority to US15/538,905 priority Critical patent/US20170349627A1/en
Priority to KR1020177020760A priority patent/KR102011855B1/ko
Priority to EP15871972.4A priority patent/EP3239165B1/en
Publication of WO2016101904A1 publication Critical patent/WO2016101904A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid

Definitions

  • the invention belongs to the field of pharmaceutical preparation and pharmaceutical analysis, and relates to a composition of a caspofungin precursor compound neomoconazole B0 and a structural analog thereof, a preparation method thereof, and a method for preparing caspofungin by using the composition.
  • Numocondine B0 is a secondary metabolite produced by microbial fermentation and has a cyclic hexapeptide structure and is generally used as a raw material for the synthesis of caspofungin (formula III).
  • the method is disclosed in several documents, such as U.S. Patent Nos. 5,194,377, 5,202,309 and 6,610,822.
  • neomoconazole A0, C0 and a serine analog (structure shown in formula II) are correspondingly produced.
  • Neumoconazole A0 and C0 are separated and purified by extraction, precipitation, macroporous adsorption resin chromatography, preparative normal phase chromatography, etc. The separation and purification methods are described in WO2004042350A2, WO0220618A1, WO 2005066323A1 and the like.
  • the compound of the formula II can be removed to some extent by the existing separation and purification method, for example, by preparative normal phase chromatography, but the effect is not satisfactory, and the content of the compound of the formula II in the finally obtained product is still high ( ⁇ 2.5%). Moreover, this method has a large amount of organic solvent, serious environmental pollution, high production cost, low production efficiency, and it is difficult to achieve industrialized mass production.
  • the compound of formula II contained in the neomocondine B0 can be converted to the caspofungin serine analog (shown in Formula IV) by, for example, the following reaction:
  • CN102076707A describes the separation and purification of caspofungin acetate containing a compound of formula IV using a medium to high pressure reverse phase preparative chromatography column, wherein the preparation of a compound of formula IV (serine analog acetate) using RP C18 as a filler and acetonitrile/acetic acid solution as a mobile phase is described.
  • Caspofungin a low content of caspofungin. This process uses a large amount of toxic and harmful acetonitrile, which is expensive to produce and cannot be used in large-scale industrial production.
  • Impurity refers to an ingredient that is not required in any active pharmaceutical ingredient (also known as a drug substance, API) and, in extreme cases, may even be harmful to a patient being treated with a dosage form containing the API.
  • active pharmaceutical ingredient also known as a drug substance, API
  • the purity of the final API produced is the key to its commercialization.
  • the US Food and Drug Administration (FDA) explicitly requires that API production process impurities must be controlled below specified limits.
  • FDA Food and Drug Administration
  • the FDA specifies the quality of raw materials that can be used, as well as acceptable process conditions such as temperature, pressure, time, and stoichiometry, including purification steps such as crystallization, distillation, and liquid-liquid extraction.
  • ICH Good Manufacturing Practice Guide for Active Pharmaceutial Ingredients, Q7A See ICH Good Manufacturing Practice Guide for Active Pharmaceutial Ingredients, Q7A).
  • the product of the chemical reaction is rarely a single compound of sufficient purity to meet pharmaceutical standards, and by-products and by-products of the reaction as well as adjuvants for the reaction will also be present in the product in most cases.
  • API Quality Management Practices for Active Pharmaceutical Ingredients, Q7A).
  • the inventors eagerly hope to obtain a neokangidine B0 having a very low content of the compound of the formula II by using a specific purification means in the phase B0 of the neomoconazole.
  • the inventors accidentally discovered during the process of arranging a large number of crystallization experiments.
  • the solution will be turbid after the addition of the organic solvent, and solid particles are obviously precipitated, but unlike the crystallization, the solid particles do not precipitate, but are suspended in the mixture.
  • the inventors separated the solid particles from the mixed solution. After further analysis, it was surprisingly found that the solid particles were amorphous compounds of the formula I, and the content of the impurity compound II was very low, and the above results were repeatedly confirmed by repeated experiments. From this, it is concluded that by obtaining the above suspension state system, the impurity compound of the formula II can be effectively removed.
  • the inventors made it clear that the above suspension is actually a suspension of a compound of formula I with water and a solvent to form a crude dispersion system (refer to "Colloid and Interface Chemistry” book, Higher Education Press), ie, The compound I forms a special state with water and solvent, and the particle diameter is greater than 0.1 um. In this state, the compound of the formula I is neither dissolved in the solvent to form a solution nor precipitated in the form of precipitate or crystal, but is The state of the particles is suspended in a solvent.
  • the inventors conducted a large number of experimental studies, and finally found that when controlling the water content of the solvent system in the range of 8% to 30% by volume, a suspension of the crude dispersion system can be obtained. .
  • the moisture content is more than 30%, since the moisture content is too high, when the non-polar anti-solvent is added, the anti-solvent usage is usually too large or the whole system is phase-separated, and finally the crude dispersion system cannot be obtained. suspension.
  • the content of the compound of the impurity formula II can be reduced by 40% to 60% for each of the above operations, and the loss of the compound of the formula I is only 2% or less.
  • the content of the compound of the impurity formula II in the compound of the formula I is reduced to 2.0%, preferably 0.49% or less; more preferably 0.2% or less; most preferably 0.1% or less.
  • the caspofungin intermediate or the caspofungin acetate is synthesized by using the compound of the formula I having an extremely low content of the compound of the formula II as a raw material for the preparation of caspofungin.
  • the obtained caspofungin ( Formula III
  • the caspofungin serine analog impurity (compound of formula IV) in the product can be controlled at 0.1%.
  • the process pressure of the stage of purification of caspofungin can be greatly reduced.
  • the present invention provides a method of preparing a composition comprising a compound of Formula I and Formula II, the method comprising the steps of:
  • composition A containing a compound of formula I and formula II is obtained by centrifugation or filtration.
  • the volume percentage of water in the step (a) is 8% to 30%, preferably 10% to 25%, more preferably 12% to 22%. Most preferably, it is 16%-22%. .
  • the organic solvent (i) is selected from one or more of methanol, ethanol, n-propanol, isopropanol, isobutanol, n-butanol, and acetone.
  • the organic solvent (i) is selected from one or more of methanol, ethanol, n-propanol, isopropanol, isobutanol, n-butanol, and acetone.
  • the organic solvent (ii) is selected from one or more of C 3--7 ester, hexane, n-heptane, n-pentane, dichloromethane. a mixture; preferably from a mixture of one or more of ethyl acetate, isopropyl acetate, and n-hexane.
  • steps (a) - (c) may be repeated one or more times.
  • the present invention also provides a suspension comprising the compound of the formula I obtained by the above-mentioned preparation method, wherein the suspension has a solid particle diameter of 0.1 um or more.
  • the solid particles in the suspension have a diameter of 0.2 um or more.
  • the solid particles in the suspension have a diameter of 0.3 um or more.
  • the solid particle diameter in the suspension i.e., "particle size distribution” is analyzed using a Malvern particle sizer 2600C to determine the solid particle diameter in the suspension.
  • the diameter of the solid particles in the suspension is determined, preferably by laser diffraction.
  • the present invention also provides a composition A comprising the compound of the formula I and the formula II obtained by the above preparation method, the composition further comprising 1% to 40% of an organic solvent (mass percentage) and 1% to 15% water (mass percentage).
  • the composition further contains 5% to 35% of an organic solvent (mass percentage) and 2% to 12% of water (mass percentage).
  • the composition further contains 10-30% organic solvent (mass percent) and 3%-10% water (mass percent).
  • the organic solvent is selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, isobutanol, n-butanol, acetone, ethyl acetate, isopropyl acetate, n-hexane, dichloromethane. .
  • the compound of the formula I has a dry content of more than 95%; the compound of the formula II has a dry content of 0.0001% to 2.0%; preferably 0.0001% to 0.49. %; more preferably 0.0001% - 0.2%; optimally 0.0001% - 0.1%.
  • the post-dried content of each component is determined by HPLC.
  • the HPLC assay method is:
  • Injection temperature 5 ° C;
  • composition A containing a compound of formula I and formula II is further dried to obtain dried composition B.
  • the composition B has a moisture content of 5% or less.
  • Composition B containing a compound of formula I and formula II
  • the present invention provides a composition B comprising a compound of formula I and formula II.
  • the compound of formula I is dried to a level greater than 95%.
  • the compound of formula II is present in an amount of from 0.0001% to 2.0% after drying.
  • the compound of formula II is present in an amount of from 0.0001% to 0.49% after drying.
  • the compound of formula II is present in an amount of from 0.0001% to 0.2% after drying.
  • the compound of formula II is present in an amount of from 0.0001% to 0.1% after drying.
  • the amount of each component in the composition after drying is determined by HPLC.
  • the HPLC assay method is:
  • Injection temperature 5 ° C;
  • composition B containing a compound of Formula I and Formula II
  • the invention also provides the use of a composition B comprising a compound of formula I and formula II for the preparation of a compound of formula X.
  • compositions comprising a compound of formula X and formula XI.
  • the amount of the compound of formula X in the composition is greater than 95%.
  • the HPLC content of the compound of formula XI in the composition is from 0.0001% to 2.0%.
  • the HPLC content of the compound of formula XI in the composition is from 0.0001% to 0.49%.
  • the HPLC content of the compound of formula XI in the composition is from 0.0001% to 0.2%.
  • the HPLC content of the compound of formula XI in the composition is from 0.0001% to 0.1%.
  • composition containing the compound of the formula X and the formula XI obtained by the present invention can be used for the preparation of the compound of the formula III.
  • crude of the compound of formula I As used herein, “crude of the compound of formula I", “crude of neomoconazole B0” refers to a starting material containing a compound of formula I, which can be obtained using methods conventional in the art, such as, but not limited to, US Patent No. 5,194,377, US 5,202,309, US 6,610,822 and WO 2000.
  • the preparation of the disclosed compound I of /008197 is obtained; it is also commercially available, such as, but not limited to, such as Merck.
  • a compound of formula III As used herein, "a compound of formula III", “a compound of formula III” or “caspofungin” is used interchangeably and refers to a compound having the chemical structure of formula III, the acetate of which is used as An antifungal drug for the treatment of invasive aspergillosis, esophageal candidiasis, intra-abdominal abscess caused by Candida, pleurisy, abdominal infection, and unidentified pathogens in patients with neutropenia Fever and so on.
  • compound of formula X As used herein, “compound of formula X”, “compounds of formula X” are used interchangeably and refer to a compound having the chemical structure of formula X; “compound of formula XI”, “as shown in formula XI "Compound” is used interchangeably and refers to a compound of the formula XI; X is O or 2H.
  • the compound of formula X is prepared from a compound of formula I as a starting material and can be obtained by methods conventional in the art such as, but not limited to, the preparation methods disclosed in J. Org. Chem. 2007, 72, 2335-2343, and the like.
  • the compound of formula X can be further prepared by methods conventional in the art to obtain a compound of formula III, such as, but not limited to, the preparation method disclosed in J. Org. Chem. 2007, 72, 2335-2343, and the like.
  • Figure 1 shows an HPLC chromatogram of the crude compound of formula I obtained in Example 1.
  • Figure 3 shows the HPLC chromatogram of the compound of formula X2a obtained in Example 10.
  • Figure 4 shows an HPLC chromatogram of the compound of formula III (caspofen) obtained in Example 18.
  • Injection temperature 5 ° C;
  • Mobile phase A 0.1% perchloric acid and 0.075% sodium chloride aqueous solution
  • a crude product containing a compound of formula I is obtained by a fermentation process of Glarea Lozoyensis (Zalerion arboricla).
  • the crude chromatographic purification of the compound of formula I obtained above was subdivided and purified by reference to WO2005026323 to give about 267 g of the compound of formula I.
  • the compound of formula II was determined to have a content of 3.1%.
  • the reference "Pneumocandin B0Production by Fermentation of the Fungus Glarea lozoyensis: Physiological and Engineering Factors Affecting Titer and Structural Analogue Formation” provides a crude product containing a compound of formula I by adding serine during the fermentation culture.
  • threonine is added during the fermentation culture to obtain a crude product containing the compound of formula I.
  • the crude chromatographic purification of the compound of formula I obtained above is subdivided to give about 22 g of the compound of formula I.
  • the compound of formula II was determined to have a content of 0.5%.
  • composition A1 obtained by the above filtration (the content of the compound of the formula II was 0.95%) was divided into two portions. One of them was vacuum dried to obtain 17.6 g of the composition B1, and the water content was determined to be 4%, and the content of the compound of the formula II was 0.95%.
  • composition A1 Another portion of the composition A1 was dissolved in an isobutanol solution having a moisture content of 12% in a volume of 240 ml. 460 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was measured to be 0.5 ⁇ m or more by using a Malvern particle size analyzer 2600 C, and the solid-liquid separation was carried out to obtain a composition A2, a liquid. The loss of the compound of formula I was 1.6%. The content of the compound of formula II was determined by HPLC to be 0.38%.
  • composition A2 obtained by the above filtration (in which the content of the compound of the formula II was 0.38%) was dissolved in an isobutanol solution having a water content of 20% in a volume of 246 ml. 460 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was determined to be 0.2 um or more by using a Malvern particle size analyzer 2600 C. The solid-liquid separation was carried out to obtain a composition A3, a liquid. The loss of the compound of formula I is 1.2%. The content of the compound of the formula II was determined by HPLC to be 0.16%.
  • composition A3 obtained by the above filtration (in which the content of the compound of the formula II is 0.16%) is dissolved in the moisture content
  • the volume was 206 ml in a 15% isobutanol solution.
  • 410 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was determined to be 0.4 ⁇ m or more by using a Malvern particle size analyzer 2600 C.
  • the solid-liquid separation was carried out to obtain a composition A4, a liquid.
  • the loss of the compound of formula I is 1.0%.
  • the content of the compound of formula II was determined by HPLC to be 0.09%.
  • composition A4 was vacuum dried to obtain 17 g of the composition B2, and the water content was determined to be 2.4%, and the content of the compound of the formula II was 0.09%.
  • composition A5 (the compound of the formula II was 3.1%) obtained by the above filtration was dissolved in an isobutanol solution having a water content of 12% in a volume of 120 ml. 230 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was determined to be 0.3 um or more by using a Malvern particle size analyzer 2600 C. The solid-liquid separation was carried out to obtain a composition A6, a liquid. The loss of the compound of formula I was 1.6%. The content of the compound of formula II was determined by HPLC to be 1.4%.
  • composition A6 obtained by the above filtration (in which the content of the compound of the formula II was 1.4%) was dissolved in a solution of isobutanol having a water content of 20% in a volume of 123 ml. 230 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was determined to be 0.4 um or more by using a Malvern particle size analyzer 2600 C. The solid-liquid separation was carried out to obtain a composition A7, a liquid. The loss of the compound of formula I is 1.2%. The content of the compound of the formula II was determined by HPLC to be 0.6%.
  • composition A7 obtained by the above filtration (in which the content of the compound of the formula II was 0.6%) was dissolved in an isobutanol solution having a water content of 15% in a volume of 103 ml.
  • 205 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was measured to be 0.6 um or more using a Malvern particle size analyzer 2600 C.
  • the solid-liquid separation was carried out to obtain a composition A8, a liquid.
  • the loss of the compound of formula I is 1.0%.
  • the content of the compound of formula II was determined by HPLC to be 0.2%.
  • composition A8 obtained by the above filtration (in which the content of the compound of the formula II was 0.2%) was dissolved in an isobutanol solution having a water content of 15% in a volume of 80 ml.
  • 190 ml of isopropyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was measured to be 0.1 ⁇ m or more by using a Malvern particle size analyzer 2600 C, and the solid-liquid separation was carried out to obtain a composition A9, a liquid.
  • the loss of the compound of formula I is 1.0%.
  • the content of the compound of formula II was determined by HPLC to be 0.08%.
  • composition A9 was vacuum dried to obtain 5.3 g of the composition B3, and the water content was determined to be 4.9%, and the content of the compound of the formula II was 0.08%.
  • composition A10 (the compound of the formula II was 0.2%) obtained by the above filtration was dissolved in an ethanol solution having a water content of 12% in a volume of 120 ml. 230 ml of dichloromethane was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was determined to be 0.2 um or more by using a Malvern particle size analyzer 2600 C. The solid-liquid separation was carried out to obtain a composition A11, liquid Chinese formula. The loss of the compound I was 1.6%. The content of the compound of the formula II was determined by HPLC to be 0.12%.
  • composition A11 obtained by the above filtration (in which the content of the compound of the formula II was 0.12%) was dissolved in an isopropyl alcohol solution having a water content of 30% in a volume of 95 ml. 230 ml of n-hexane was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was measured to be 0.1 ⁇ m or more by using a Malvern particle size analyzer 2600C, and the mixture was solid-liquid separated to obtain a composition A12. The loss of the compound was 0.8%.
  • the content of the compound of formula II was determined by HPLC to be 0.06%.
  • composition A12 obtained by the above filtration (in which the content of the compound of the formula II was 0.06%) was dissolved in a n-butanol solution having a water content of 15% in a volume of 103 ml.
  • 205 ml of methyl acetate was slowly added and stirred to obtain a suspension containing the compound of the formula I, and the solid particle diameter of the compound of the formula I in the suspension was determined to be 0.2 ⁇ m or more by using a Malvern particle size analyzer 2600C, and the solid-liquid separation was carried out to obtain a composition A13.
  • the loss of the compound I was 1.0%.
  • the content of the compound of the formula II was determined by HPLC to be 0.01%.
  • composition A13 was vacuum dried to obtain 8.6 g of the composition B4, and the water content was determined to be 1.5%, and the content of the compound of the formula II was 0.01%.
  • Example 2 The crude product of the compound of the formula I obtained in Example 1 having a compound content of 3.1% of 2.6 g was dissolved in a methanol solution containing 7% water in a volume of 22 ml. 100 ml of isopropyl acetate was slowly added, and solids were precipitated, filtered, and the content of the compound of the formula II was determined by HPLC analysis to be 3.1% without any removal effect. X-ray powder diffraction (XRPD) analysis showed the above precipitated solid to be in crystalline form.
  • XRPD X-ray powder diffraction
  • Example 1 The crude compound of the formula I obtained in Example 1 and having a compound content of 3.1% of 2.6 g of the compound of Example I was dissolved in a solution of 3% water in n-propanol in a volume of 100 ml. 200 ml of ethyl acetate was slowly added, a solid precipitated, and the content of the compound of the formula II was determined by HPLC analysis to be 3.1% without any removal effect.
  • X-ray powder diffraction (XRPD) analysis showed the above precipitated solid to be in crystalline form.
  • Example 7 (Composition B to prepare a compound of formula X1a, R is a phenylthio group)
  • Example 8 (Composition B to prepare a compound of formula X5a, R is methoxyphenylthio)
  • composition B1 (1.0g, wherein the compound content of formula II is 0.95%), phenylboronic acid (0.20g) and methoxy thiophenol (0.38g) were stirred evenly and cooled to - At 20-15 ° C, trifluoromethanesulfonic acid (0.25 ml) was added dropwise, and the reaction was carried out at -20 to -15 ° C for about 2.5 h. TLC showed the reaction was complete, quenched, and slowly added NaOAc aqueous solution (0.23 g NaOAc). Dissolved in 5 ml of water), after the addition, the temperature was raised to 20 ° C and stirred for 2 h.
  • Example 9 (Composition B to prepare a compound of formula X2a, R is m-hydroxyphenylthio)
  • acetonitrile (30ml), composition B4 (1.0g, wherein the compound content of formula II is 0.01%), phenylboronic acid (0.2g) and hydroxythiophenol (0.36g) were stirred evenly and cooled to -20 ⁇ At -15 ° C, trifluoromethanesulfonic acid (0.25 ml) was added dropwise, and the reaction was carried out at -20 to -15 ° C for about 2.5 h. TLC showed the reaction was complete, the reaction was quenched, and NaOAc aqueous solution was slowly added (0.23 g of NaOAc was dissolved). 0.5 ml of water), after the addition, the temperature was raised to 20 ° C and stirred for 2 h.
  • Example 10 (Composition B to prepare a compound of formula X2a, R is m-hydroxyphenylthio)
  • Example 11 (Composition B to prepare a compound of formula X2a, R is m-hydroxyphenylthio)
  • Example 12 (Composition B to prepare a compound of formula X9a, R is )
  • composition B3 (1.0g, wherein the compound content of formula II is 0.08%), phenylboronic acid (0.20g) and tetrazolium (0.27g) were stirred evenly and cooled to -20 ⁇ - At 15 ° C, trifluoromethanesulfonic acid (0.25 ml) was added dropwise, and the reaction was carried out at -20 to -15 ° C for about 2.5 h. TLC showed the reaction was complete, the reaction was quenched, and NaOAc aqueous solution was slowly added (0.23 g of NaOAc dissolved in 5 ml). In water), after the addition, the temperature was raised to 20 ° C and stirred for 2 h.
  • Example 13 (Composition B to prepare a compound of formula X10, R is )
  • composition B3 (1.0g, wherein the compound content of formula II is 0.08%), phenylboronic acid (0.20g) and pyridine (0.32g) were stirred evenly and cooled to -20 ⁇ -15°C.
  • Trifluoromethanesulfonic acid (0.25 ml) was added dropwise, and the reaction was carried out at -20 to -15 ° C for 2.5 h.
  • TLC showed the reaction was complete, quenched, and slowly added NaOAc aqueous solution (0.23 g NaOAc dissolved in 5 ml water). After the addition, the temperature was raised to 20 ° C and stirred for 2 h.
  • Example 14 (Composition B to prepare a compound of formula X11a, R is )
  • the compound of the formula X1a (2.0 g), phenylboronic acid (0.28 g), and anhydrous tetrahydrofuran (80 ml) were heated under reflux for 30 min, then cooled to room temperature, and BSTFA (2.1 ml) was added at room temperature. After stirring for 1 h, it was cooled to -10 to -5 ° C, and borane dimethyl sulfide complex (0.8 ml, 0.94%) was added dropwise, and the mixture was heated at 10 to 15 ° C for 3.5 h. The conversion was 82% by HPLC.
  • Example 15 Under nitrogen, the X1b compound (1.0 g) obtained in Example 15 was dissolved in methanol (4.2 ml), cooled to -20 to -15 ° C, and ethylenediamine (4.2 ml) was added dropwise. The reaction was carried out at room temperature for 48 h, and the reaction conversion rate by HPLC was 99%. It was added dropwise to a solution of glacial acetic acid (8.3 ml) in water (18.5 ml), which was then diluted twice with water, applied to a preparative column and washed with 22% acetonitrile/water (0.15% acetic acid).
  • the product-rich collection solution was combined, diluted twice with water, still applied to the preparation column, and eluted with 90% acetonitrile/water (0.15% acetic acid) to collect the product fraction, which was concentrated under reduced pressure.
  • the purity by HPLC was 99.82%, and the content of the compound of formula IV was 0.072%.
  • the compound of the formula X2a (2.0 g), phenylboronic acid (0.28 g), anhydrous tetrahydrofuran (80 ml) was heated under reflux for 30 min, then cooled to room temperature, and BSTFA (2.1 ml) was added at room temperature. After stirring for 1 h, it was cooled to -10 to -5 ° C, and borane dimethyl sulfide complex (0.8 ml, 0.94%) was added dropwise, and the mixture was heated at 10 to 15 ° C for 3.5 h. The conversion was 82% by HPLC.
  • the X2b compound (1.0 g) obtained in Example 17 was dissolved in methanol (4.2 ml), cooled to -10 to -5 ° C, and ethylenediamine (4.2 ml) was added dropwise.
  • the reaction was carried out at room temperature for 48 h, and the reaction conversion rate by HPLC was 99%. It was added dropwise to a solution of glacial acetic acid (8.3 ml) in water (18.5 ml), and then used. The water was diluted twice, loaded onto a preparative column, eluted with 22% acetonitrile/water (0.15% acetic acid), and the product-rich collection was combined, diluted twice with water, and still applied to the preparation.
  • the preparation of the compound of formula IV was less than 0.05% caspofungin acetate according to the method of the example of CN102070707A.
  • the results showed that about 1 g of caspofungin acetate was prepared by using preparative HPLC (filled with RP C-18 resin), acetic acid and The acetonitrile buffer was purified using an organic solvent of about 6 L of acetonitrile, and the production equipment and resin filler used were very expensive.
  • the solvent used in the preparation of 1 g of the compound of the formula I having an impurity content of 0.1% or less is about 0.3 L, whereby the compound of the formula IV can be directly prepared to be less than 0.05% of caspofyl acetate. Net, no further purification using preparative HPLC.
  • the caspofungin acetate intermediate of the low serine analog caspofungin intermediate was prepared according to the method of the example of CN102947327A, and the acetic acid containing less than 0.1% of the serine analog caspofungin intermediate impurity was prepared according to the method described in CN102947327A.
  • the caspofungin intermediate has a preparation yield of only 20% to 40%, and the industrial production value is very small.

Abstract

本发明公开了一种含氮杂环六肽前体的组合物的制备方法,以及由此方法获得的含有式I和式II化合物的含氮杂环六肽前体组合物A和B,以及所述组合物用于制备式III化合物的用途。

Description

一种含氮杂环六肽前体的组合物及其制备方法和用途 技术领域
本发明属于医药制备和药物分析领域,涉及一种卡泊芬净前体化合物纽莫康定B0与结构类似物的组合物及其制备方法,以及利用该组合物制备卡泊芬净的方法。
背景技术
纽莫康定B0,如式Ⅰ所示,是由微生物发酵产生的次级代谢产物,具有环状的六肽结构,一般用于作为合成卡泊芬净(式Ⅲ所示)的原料,其制备方法公开于若干文献中,如美国专利US5194377、US5202309和US6610822。
Figure PCTCN2015098740-appb-000001
按照纽莫康定结构中脯氨酸上取代基的不同,主要分为三类:A0、B0、和C0。B0苏氨酸上取代基的不同,又会形成与其结构极为相似的丝氨酸类似物,式II化合物。
Figure PCTCN2015098740-appb-000002
在发酵制备式Ⅰ化合物过程中,相应会产生纽莫康定A0、C0和丝氨酸类似物(结构如式Ⅱ所示)等一些杂质。纽莫康定A0、C0通过萃取、沉淀、大孔吸附树脂层析、制备型正相色谱等方法进行分离纯化,其专利WO2004042350A2,WO0220618A1,WO 2005066323A1等对分离纯化方法进行了描述。
WO0008197A1和美国专利US5378804对式Ⅱ化合物及其分离方法进行了描述。
式II化合物通过现有的分离纯化方法能够得到一定程度的去除,例如利用制备型正相色谱,但是效果并不很理想,最终获得的产物中式II化合物的含量依然很高(≥2.5%)。而且此方法有机溶剂使用量大,对环境污染严重,生产成本高,生产效率低,很难实现工业化大规模生产。
工业微生物和生物技术期刊(Journal of Industrial Microbiology and Biotechnology)第26期第216-211页(2001)描述了纽莫康定B0中含有的丝氨酸类似物式II杂质在后续的制备过程中会转化为卡泊芬净丝氨酸类似物杂质,从而导致终产物卡泊芬净的纯度降低。
在合成式III化合物的过程中,纽莫康定B0中所含的式II化合物可以通过例如下面反应转化为卡泊芬净丝氨酸类似物(式IV所示):
Figure PCTCN2015098740-appb-000003
J.Org.Chem.2007,72,2335-2343233中也有相关描述。
Figure PCTCN2015098740-appb-000004
CN102076707A中描述了利用中高压反相制备层析柱分离纯化含有式IV化合物的醋酸卡泊芬净,其中描述使用RP C18为填料,乙腈/醋酸溶液为流动相制备式IV化合物(丝氨酸类似物醋酸卡泊芬净)含量低的醋酸卡泊芬净。此工艺使用大量有毒有害的乙腈,生产成本昂贵,无法用于规模化工业生产。
CN102947327A中记载了在卡泊芬净中间体阶段利用正相硅胶制备层析柱分离去除中间体中含有的丝氨酸类似物。此纯化工艺需要使用大量溶剂、生产成本高,基本上不具备工业化生产价值。
杂质是指在任何活性药物成分(也称原料药,API)中不需要的,并且在极端情况下,甚至可能对正在接收含API的剂型治疗的患者有害的成分。
最终生产的API的纯度是其能否实现商品化的关键。美国食品药品监督管理局(FDA)明确要求API生产过程杂质必须控制在规定界限以下。在ICH Q7A指南中,FDA指定了可使用的原材料的质量,以及可接受的工艺条件例如温度、压力、时间和化学计量比,包括纯化步骤例如结晶、蒸馏和液-液萃取。(参见ICH关于活性药物成分的药品生产质量管理规范ICH Good Manufacturing Practice Guide for Active Pharmaceutial Ingredients,Q7A)。化学反应的产物很少为具有足够纯度而符合药品标准的单一化合物,反应的副产物和副产品以及用于反应的辅助剂在大多数情况下也将存在于产物中。在加工API期间的某些阶段中,必须分析其纯度,通常通过高效液相色谱法或薄层色谱法,以确定其是否适于继续加工,并最终用于药物产品中。FDA要求API尽可能无杂质,使得其在临床应用时尽可能地安全。例如,FDA推荐某些杂质的量限制在少于0.1个百分比,(参见ICH关于活性药物成分的药品生产质量管理规范,Q7A)。
根据上述对于API中杂质限量的严格要求,如何尽可能的提高API的纯度,降低杂质的含量成为工艺开发的关键。如果最终药物产品的纯化难度太高,通常可以考虑通过提高其药物中间体的纯度来提高其纯度。因此,在式III化合物的制备工艺中,作为中间体的式I化合物纯度越高,经化学修饰得到的式Ⅲ化合物纯度也会越高。如 果经化学修饰得到的式Ⅲ化合物纯度高,那么就可以极大程度地减轻式Ⅲ化合物纯化步骤的工艺压力,利用简便的纯化工艺得到高纯度的最终药物产品。因此,就要求式II化合物的含量尽可能低。
因此发明人急切的希望在纽莫康定B0阶段,利用特定的纯化手段,获得式II化合物含量极低的纽莫康定B0。
发明内容
最初,发明人试图采用常规的结晶方法,即希望通过获得式I化合物的晶体将式II化合物杂质去除。然而在经过大量实验后发现采用常规的结晶手段,加入反溶剂通过过饱和度的方式使式Ⅰ化合物析出,获得式Ⅰ化合物晶体中,式II化合物的含量并没有降低,换言之,常规的结晶析出过程对式II化合物没有任何去除效果。
发明人在整理大量结晶实验过程时却意外发现,在一些实验中,加入有机溶剂后溶液会发生浑浊,明显有固体颗粒析出,但与结晶不同,固体颗粒并不沉淀下来,而是悬浮在混合液中。发明人将固体颗粒从混合液中分离出来,进一步分析后,惊喜地发现,固体颗粒为非结晶态的式I化合物,而且杂质式II化合物的含量非常低,经过多次实验反复证实了上述结果,由此得出结论,通过得到上述悬浮状态的体系,可以有效去除杂质式II化合物。发明人在进一步研究上述体系后明确:上述悬浮液实际是式I化合物与水、溶剂形成了一种粗分散体系的悬浮液(参考《胶体与界面化学》书籍,高等教育出版社),即式Ⅰ化合物与水、溶剂形成一种特殊的状态,粒子直径大于0.1um,在此状态下,式I化合物既没有溶于溶剂中形成溶液,也没有以沉淀或晶体的形式析出,而是以一种颗粒的状态悬浮于溶剂中。而式II化合物却大量溶解于溶剂中,通过过滤或离心分离的方式,将固体颗粒和溶剂分离,就获得了纯度更高的式I化合物,而大量的式II化合物却留在了溶剂里,因此可以非常有效地去除式I化合物中的杂质式II化合物。
为了确定获得上述粗分散体系的悬浮液的方法,发明人又开展了大量实验研究,最终发现:当控制溶剂体系中水分含量在8%-30%体积百分比时,可以获得粗分散体系的悬浮液。当水分含量大于30%时,由于水分含量过高,在加入非极性的反溶剂时,通常会使反溶剂使用量过大或者使得整个体系分相,最终无法获得所述的粗分散体系的悬浮液。
此外,根据实验数据统计,每进行一遍上述操作,杂质式II化合物的含量可以降低40%至60%,而式I化合物的损失仅2%以下。通过重复上述方法,可以确保将式I化合物中杂质式II化合物的含量降到2.0%,优选0.49%以下;更优为0.2%以下;最优为0.1%以下。
进一步地,通过将杂质式II化合物含量极低的式I化合物作为制备卡泊芬净的原料合成卡泊芬净中间体或醋酸卡泊芬净,通常情况下,所获得的卡泊芬净(式III化 合物)产品中卡泊芬净丝氨酸类似物杂质(式IV化合物)可以控制在0.1%下。可以大大减轻卡泊芬净产品纯化阶段的工艺压力。
制备含有式I和式II所示化合物的组合物的方法及用该方法制备获得的组合物A和B
本发明提供了一种制备含有式I和式II所示化合物的组合物的方法,所述的方法包括步骤:
(a)将式I化合物粗品溶解在有机溶剂(ⅰ)的水性溶液中;
(b)通过降温和/或添加有机溶剂(ⅱ),使固体从溶解液中析出,得到含式I化合物的悬浮液;
(c)通过离心或过滤,得到含有式I和式II所示化合物的组合物A。
Figure PCTCN2015098740-appb-000005
在另一优选例中,步骤(a)中,所述有机溶剂(ⅰ)的水性溶液中,水的体积百分比为8%-30%,优选10%-25%,更优选12%-22%,最优选16%-22%。。
在另一优选例中,步骤(a)中,所述有机溶剂(ⅰ)选自:甲醇、乙醇、正丙醇、异丙醇、异丁醇、正丁醇、丙酮中的一种或多种的混合物。
在另一优选例中,步骤(b)中,所述有机溶剂(ⅱ)选自:C 3--7酯、己烷、正庚烷、正戊烷、二氯甲烷中的一种或多种的混合物;优选自:乙酸乙酯、乙酸异丙脂、正己烷中的一种或多种的混合物。
在另一优选例中,所述步骤(a)-(c)可以重复一次或一次以上。
本发明还提供了一种由上述的制备方法所获得的含有式I化合物的悬浮液,所述悬浮液中固体颗粒直径大于等于0.1um。
在一优选例中所述悬浮液中固体颗粒直径大于等于0.2um。
在另一优选例中所述悬浮液中固体颗粒直径大于等于0.3um。
在一优选例中,所述悬浮液中固体颗粒直径,即“颗粒尺寸分布”使用Malvern颗粒尺寸仪2600C来分析确定悬浮液中固体颗粒直径。确定悬浮液中固体颗粒直径,优选方法是激光衍射。
本发明还提供了一种由上述的制备方法所获得的含有式I和式II所示化合物的组合物A,所述组合物中还含有1%至40%有机溶剂(质量百分含量)和1%至15%的水(质量百分含量)。
在一优选例中所述组合物中还含有5%-35%有机溶剂(质量百分含量)和2%-12%的水(质量百分含量)。
在另一优选例中所述组合物还含有10-30%有机溶剂(质量百分含量)和3%-10%的水(质量百分含量)。
在另一优选例中所述有机溶剂选自:甲醇、乙醇、正丙醇、异丙醇、异丁醇、正丁醇、丙酮、乙酸乙酯、乙酸异丙脂、正己烷、二氯甲烷。
在另一优选例中所述的组合物A中,式I所示化合物的折干后含量大于95%;式II所示化合物的折干后含量为0.0001%-2.0%;优选0.0001%-0.49%;更优为0.0001%-0.2%;最优为0.0001%-0.1%。
在另一优选例中所述的组合物A中,各组分的折干后含量用HPLC测定。
在另一优选例中所述HPLC测定方法为:
色谱柱:Symmtry C18 3.5um 2.1×150mm;
流动相:乙腈/水=39/61;
流速:0.4ml/min;
柱温:30℃;
样品稀释剂:乙腈/水=39/61;
进样温度:5℃;
检测波长:205nm。
在另一优选例中将含有式I和式II化合物的组合物A进一步干燥,获得干燥的组合物B。
在另一优选例中,组合物B的水分含量小于等于5%。
含有式I和式II所示化合物的组合物B
本发明提供了一种含有式I和式II所示化合物的组合物B。
Figure PCTCN2015098740-appb-000006
在另一优选例中,式I所示化合物折干后的含量大于95%。
在另一优选例中,式II所示化合物折干后的含量为0.0001%-2.0%。
在另一优选例中,式II所示化合物折干后的含量为0.0001%-0.49%。
在另一优选例中,式II所示化合物折干后的含量为0.0001%-0.2%。
在另一优选例中,式II所示化合物折干后的含量为0.0001%-0.1%。
在另一优选例中,所述组合物中各组分折干后的含量用HPLC测定。
在另一优选例中,所述HPLC测定方法为:
色谱柱:Symmtry C18 3.5um 2.1×150mm;
流动相:乙腈/水=39/61;
流速:0.4ml/min;
柱温:30℃;
样品稀释剂:乙腈/水=39/61;
进样温度:5℃;
检测波长:205nm。
含有式I和式II所示化合物的组合物B的用途
本发明还提供了含有式I和式II所示化合物组合物B的用途,用于制备结构如式X所示化合物。
Figure PCTCN2015098740-appb-000007
Figure PCTCN2015098740-appb-000008
Figure PCTCN2015098740-appb-000009
含有式X和式XI所示化合物的组合物
本发明还提供了含有如式X和式XI所示化合物的组合物。
Figure PCTCN2015098740-appb-000010
Figure PCTCN2015098740-appb-000011
Figure PCTCN2015098740-appb-000012
在另一优选例中,组合物中式X所示化合物的含量大于95%。
在另一优选例中,组合物中式XI化合物的HPLC含量为0.0001%-2.0%。
在另一优选例中,组合物中式XI化合物的HPLC含量为0.0001%-0.49%。
在另一优选例中,组合物中式XI化合物的HPLC含量为0.0001%-0.2%。
在另一优选例中,组合物中式XI化合物的HPLC含量为0.0001%-0.1%。
含有式X和式XI所示化合物的组合物的用途
本发明获得的含有式X和式XI所示化合物的组合物可以用于制备式III所示化合物。
Figure PCTCN2015098740-appb-000013
相关术语
如本文所用,“式I化合物”,“如式I所示化合物”或“纽莫康定B0”可以互换使用,都是指一种化学结构如式I所示的化合物。
Figure PCTCN2015098740-appb-000014
如本文所用,“式I化合物粗品”,“纽莫康定B0粗品”是指含有式I化合物的原料,可以使用本领域常规的方法获得,例如但不限于,美国专利US5194377、US5202309,US6610822和WO2000/008197等公开的化合物I的制备方法获得;也可以通过商业渠道获得,例如但不限于,如Merck公司。根据上述几篇专利提供的不同的发酵工艺,我们进行发酵工艺对于杂质含量的研究实验证实,不同的发酵工艺所获得的式I化合物中式II化合物的含量在0.5%至8%之间。
如本文所用,“式II化合物”,“如式II所示化合物”,“丝氨酸类似物杂质”可以互换使用,都是指化学结构如式II所示的化合物,是式I化合物的结构类似物杂质。
Figure PCTCN2015098740-appb-000015
如本文所用,“式III化合物”,“如式III所示化合物”或“卡泊芬净”可以互换使用,都是指一种化学结构如式III所示的化合物,其醋酸盐作为一种抗真菌药物用于治疗侵袭性曲霉菌感染、食管念珠菌病、由念珠菌属引起的腹内脓肿病、胸膜炎、腹腔感染,以及嗜中性粒细胞减少症患者不明致病源引起的发热等。
Figure PCTCN2015098740-appb-000016
如本文所用,“式X化合物”,“如式X所示化合物”可以互换使用,都是指一种化学结构如式X所示的化合物;“式XI化合物”,“如式XI所示化合物”可以互换使用,都是指一种化学结构如式XI所示的化合物;X为O或2H。
Figure PCTCN2015098740-appb-000017
Figure PCTCN2015098740-appb-000018
Figure PCTCN2015098740-appb-000019
式X所示化合物由式I化合物为原料制备,可以使用本领域常规的方法获得,例如但不限于,J.Org.Chem.2007,72,2335-2343等公开的制备方法。由式X化合物可以使用本领域常规的方法进一步制备获得式III化合物,例如但不限于,J.Org.Chem.2007,72,2335-2343等公开的制备方法。
附图说明
图1显示实施例1获得的式I化合物粗品的HPLC图谱。
图2显示实施例6获得的组合物A10的HPLC图谱。
图3显示实施例10获得的式X2a化合物的HPLC图谱。
图4显示实施例18获得的式III化合物(卡泊芬净)的HPLC图谱。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
使用下列HPLC测定方法分析纽莫康定B0及丝氨酸类似物的含量:
色谱柱:Waters Symmtry C183.5um 2.1×150mm;
流动相:乙腈/水=39/61;
流速:0.4ml/min;
柱温:30℃;
样品稀释剂:乙腈/水=39/61;
进样温度:5℃;
检测波长:205nm。
使用下列HPLC测定方法分析卡泊芬净中间体及它的丝氨酸类似物的含量:
色谱柱:YMC-Pack ODS-A 250×4.6mm,5um;
流动相A:0.1%高氯酸及0.075%氯化钠水溶液;
流动相B:乙腈;
流速:约1.5ml/min;
柱温:30℃;
检测波长:220nm;
梯度程序表:
Figure PCTCN2015098740-appb-000020
实施例1(制备式I化合物粗品)
参照WO2000/008197,通过Glarea Lozoyensis(Zalerion arboricla)的发酵工艺得到含式I化合物的粗品。
参照WO2005026323,将上述得到的含式I化合物的粗品层析纯化细分收集,得到式I化合物约267g。测定式II化合物含量为3.1%。
实施例2(制备式I化合物粗品)
参考文献“Pneumocandin B0Production by Fermentation of the Fungus Glarea lozoyensis:Physiological and Engineering Factors Affecting Titer and Structural Analogue Formation”通过在发酵培养过程中添加丝氨酸,得到含式I化合物的粗品。
参照WO2005026323,将上述得到的含式I化合物的粗品层析纯化细分收集,得到式I化合物约36g。测定式II化合物含量为8.0%。
实施例3(制备式I化合物粗品)
参照文献WO2005026323,在发酵培养过程中添加苏氨酸,得到含式I化合物的粗品。将上述得到的含式I化合物的粗品层析纯化细分收集,得到式I化合物约22g。测定式II化合物含量为0.5%。
实施例4
将实施例1获得的式II化合物含量3.1%的式I化合物粗品36g,溶解在水分含量为18%的异丁醇溶液中,体积720ml。缓慢加入乙酸乙酯1440ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.3um以上,过滤固液分离得到组合物A,液体中式I化合物的损失为1.5%。HPLC测定组合物A1中式I化合物的含量为98.6%,式II化合物的含量为0.95%。
将上述过滤得到的组合物A1(式II化合物含量为0.95%)分成两份。取其中一份进行真空干燥,得到17.6g组合物B1,测定水分含量为4%,式II化合物的含量为0.95%。
取另一份组合物A1溶解在水分含量为12%的异丁醇溶液中,体积240ml。缓慢加入乙酸异丙酯460ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.5um以上,过滤固液分离得到组合物A2,液体中式I化合物的损失为1.6%。HPLC测定式II化合物的含量为0.38%。
将上述过滤得到的组合物A2(其中式II化合物含量为0.38%),溶解在水分含量为20%的异丁醇溶液中,体积246ml。缓慢加入乙酸异丙酯460ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.2um以上,过滤固液分离得到组合物A3,液体中式I化合物的损失为1.2%。HPLC测定式II化合物含量为0.16%。
将上述过滤得到的组合物A3(其中式II化合物含量为0.16%),溶解在水分含 量为15%的异丁醇溶液中,体积206ml。缓慢加入乙酸异丙酯410ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.4um以上,过滤固液分离得到组合物A4,液体中式I化合物的损失为1.0%。HPLC测定式II化合物含量为0.09%。
将上述组合物A4,真空干燥,得到17g组合物B2,测定水分含量为2.4%,式II化合物的含量为0.09%。
实施例5
将实施例2获得的式II化合物含量8%的式I化合物粗品6g,溶解在水分含量为8%的异丁醇溶液中,体积150ml。缓慢加入乙酸异丙酯250ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.2um以上,过滤固液分离得到组合物A5,液体中式I化合物的损失为1.9%。测定组合物A5中式I化合物的含量为96.4%,式II化合物的含量为3.1%。
将上述过滤得到的组合物A5(式II化合物含量为3.1%),溶解在水分含量为12%的异丁醇溶液中,体积120ml。缓慢加入乙酸异丙酯230ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.3um以上,过滤固液分离得到组合物A6,液体中式I化合物的损失为1.6%。HPLC测定式II化合物的含量为1.4%。
将上述过滤得到的组合物A6(其中式II化合物含量为1.4%),溶解在水分含量为20%的异丁醇溶液中,体积123ml。缓慢加入乙酸异丙酯230ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.4um以上,过滤固液分离得到组合物A7,液体中式I化合物的损失为1.2%。HPLC测定式II化合物含量为0.6%。
将上述过滤得到的组合物A7(其中式II化合物含量为0.6%),溶解在水分含量为15%的异丁醇溶液中,体积103ml。缓慢加入乙酸异丙酯205ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.6um以上,过滤固液分离得到组合物A8,液体中式I化合物的损失为1.0%。HPLC测定式II化合物含量为0.2%。
将上述过滤得到的组合物A8(其中式II化合物含量为0.2%),溶解在水分含量为15%的异丁醇溶液中,体积80ml。缓慢加入乙酸异丙酯190ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.1um以上,过滤固液分离得到组合物A9,液体中式I化合物的损失为1.0%。HPLC测定式II化合物含量为0.08%。
将上述组合物A9,真空干燥,得到5.3g组合物B3,测定水分含量为4.9%,式II化合物的含量为0.08%。
实施例6
将实施例3获得的式II化合物含量0.5%的式I化合物粗品9g,溶解在水分含量为28%的甲醇、异丁醇溶液中(其中甲醇:异丁醇=2:8体积比),体积120ml。缓慢加入乙酸乙酯380ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.4um以上,过滤固液分离得到组合物A10,液体中式I化合物的损失为1.9%。测定组合物A10中式I化合物的含量为98.8%,式II化合物的含量为0.2%。
将上述过滤得到的组合物A10(式II化合物含量为0.2%),溶解在水分含量为12%的乙醇溶液中,体积120ml。缓慢加入二氯甲烷230ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.2um以上,过滤固液分离得到组合物A11,液体中式I化合物的损失为1.6%。HPLC测定式II化合物的含量为0.12%。
将上述过滤得到的组合物A11(其中式II化合物含量为0.12%),溶解在水分含量为30%的异丙醇溶液中,体积95ml。缓慢加入正己烷230ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.1um以上,过滤固液分离得到组合物A12,液体中式I化合物的损失为0.8%。HPLC测定式II化合物含量为0.06%。
将上述过滤得到的组合物A12(其中式II化合物含量为0.06%),溶解在水分含量为15%的正丁醇溶液中,体积103ml。缓慢加入乙酸甲酯205ml,搅拌,得到含有式I化合物的悬浮液,使用Malvern颗粒尺寸仪2600C测得悬浮液中式I化合物固体颗粒直径为0.2um以上,过滤固液分离得到组合物A13,液体中式I化合物的损失为1.0%。HPLC测定式II化合物含量为0.01%。
将上述组合物A13,真空干燥,得到8.6g组合物B4,测定水分含量为1.5%,式II化合物的含量为0.01%。
比较例1(水分含量控制8%以内,式I化合物为晶体状态,无除杂效果)
将实施例1获得的式II化合物含量3.1%的式I化合物粗品2.6g,溶解到含有7%水的甲醇溶液中,溶液体积22ml。缓慢加入乙酸异丙酯100ml,有固体析出,过滤,HPLC分析测定式II化合物含量为3.1%,没有任何去除效果。X-射线粉末衍射(XRPD)分析显示上述析出固体为晶体形式。
比较例2(水分含量控制8%以内,式I化合物为晶体状态,无除杂效果)
将实施例1获得的式II化合物含量3.1%的式I化合物粗品2.6g,溶解到含有3%水的正丙醇溶液中,溶液体积100ml。缓慢加入乙酸乙酯200ml,有固体析出,过滤,HPLC分析测定式II化合物的含量为3.1%,没有任何去除效果。X-射线粉末衍射(XRPD)分析显示上述析出固体为晶体形式。
实施例7(组合物B制备式X1a化合物,R为苯硫基)
氮气保护下,将乙腈(300ml)、组合物B2(10.0g,其中式II化合物含量0.09%)、苯硼酸(2.0g)和苯硫酚(3.6g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(2.5ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(2.3g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)125ml洗涤,洗涤三次,真空干燥5h,得到含式X1a化合物的样品9.0g,HPLC测定式XI1a含量为0.088%。
实施例8(组合物B制备式X5a化合物,R为甲氧基苯硫基)
氮气保护下,将乙腈(30ml)、组合物B1(1.0g,其中式II化合物含量0.95%)、苯硼酸(0.20g)和甲氧基苯硫酚(0.38g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(0.25ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(0.23g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)12.5ml洗涤,洗涤三次,真空干燥5h,得到含式X5a化合物的样品0.94g,HPLC测定式XI5a含量为0.93%。
实施例9(组合物B制备式X2a化合物,R为间羟基苯硫基)
氮气保护下,将乙腈(30ml)、组合物B4(1.0g,其中式II化合物含量0.01%)、苯硼酸(0.2g)和羟基苯硫酚(0.36g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(0.25ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(0.23g NaOAc溶于0.5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)1.25ml洗涤,洗涤三次,真空干燥5h,得到含式X2a化合物的样品0.93g,HPLC测定式XI2a含量为0.009%。
实施例10(组合物B制备式X2a化合物,R为间羟基苯硫基)
氮气保护下,将乙腈(300ml)、组合物B1(10g,其中式II化合物含量0.95%)、苯硼酸(2.0g)和间羟基苯硫酚(3.6g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(2.5ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(2.3g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)12.5ml洗涤,洗涤三次,真空干燥5h,得到含式X2a化合物的样品9.3g,HPLC测定式XI2a含量为0.87%。
实施例11(组合物B制备式X2a化合物,R为间羟基苯硫基)
氮气保护下,将乙腈(300ml)、组合物B2(10g,其中式II化合物含量0.09%)、苯硼酸(2.0g)和间羟基苯硫酚(3.6g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(2.5ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(2.3g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)12.5ml洗涤,洗涤三次,真空干燥5h,得到含式X2a化合物的样品9.2g,HPLC测定式XI2a含量为0.09%。
实施例12(组合物B制备式X9a化合物,R为
Figure PCTCN2015098740-appb-000021
)
氮气保护下,将乙腈(30ml)、组合物B3(1.0g,其中式II化合物含量0.08%)、苯硼酸(0.20g)和四氮唑(0.27g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(0.25ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(0.23g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)12.5ml洗涤,洗涤三次,真空干燥5h,得到含式X9化合物的样品0.91g,HPLC测定XI9a含量为0.079%。
实施例13(组合物B制备式X10化合物,R为
Figure PCTCN2015098740-appb-000022
)
氮气保护下,将乙腈(30ml)、组合物B3(1.0g,其中式II化合物含量0.08%)、苯硼酸(0.20g)和吡啶(0.32g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(0.25ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(0.23g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)12.5ml洗涤,洗涤三次,真空干燥5h,得到含式X10化合物样品0.90g,HPLC测定式XI10a含量为0.079%。
实施例14(组合物B制备式X11a化合物,R为
Figure PCTCN2015098740-appb-000023
)
氮气保护下,将乙腈(30ml)、组合物B4(1.0g,其中式II化合物含量0.01%)、苯硼酸(0.20g)和巯基苯并噻唑(0.45g),搅拌均匀,降温至-20~-15℃,滴加三氟甲磺酸(0.25ml),滴毕,于-20~-15℃反应2.5h左右,TLC显示反应完全,淬灭反应,缓慢加入NaOAc水溶液(0.23g NaOAc溶于5ml水中),加毕,将温度升至20℃搅拌2h。有大量固体析出,再降温至0℃以下,过滤,滤饼用乙腈/水=9:1(V/V)12.5ml洗涤,洗涤三次,真空干燥5h,得到含式X11化合物样品0.98g,HPLC测定式XI11a含量为0.009%。
实施例15(式X1a化合物还原反应)
氮气保护下,将实施例7得到的式X1a化合物(2.0g),苯硼酸(0.28g),无水四氢呋喃(80ml),加热回流30min后,冷却至室温,加入BSTFA(2.1ml),于室温搅拌1h,冷却到-10~-5℃,滴加硼烷二甲硫醚络合物(0.8ml,0.94%),滴毕,升温10~15℃反应3.5h。用HPLC监测,转化率为82%。然后滴加2N盐酸(4.8ml),并加入水(160ml),减压浓缩除去溶剂,然后室温搅拌24h,将其上样于制备柱上,用22%的乙腈/水(0.15%的乙酸)洗脱,合并富含产物的收集液,将其用水稀释一倍,仍旧上样于制备柱中,用90%的乙腈/水(0.15%的乙酸)洗脱,收集产品馏分,将其冷冻冻干,得到含X1b化合物的样品1.6g,HPLC测定式XI1b含量为0.082%。
实施例16(由式X1b化合物制备式III化合物)
氮气保护下,将按照实施例15得到的X1b化合物(1.0g)溶于甲醇(4.2ml)中,冷却至-20~-15℃,滴加乙二胺(4.2ml),滴毕后升温至室温反应48h,HPLC监测反应转化率为99%。将其滴入冰乙酸(8.3ml)的水(18.5ml)溶液,然后并将其用水稀释一倍,将其上样于制备柱上,用22%的乙腈/水(0.15%的乙酸)洗脱,合并富含产物的收集液,将其用水稀释一倍,仍旧上样于制备柱中,用90%的乙腈/水(0.15%的乙酸)洗脱,收集产品馏分,将其减压浓缩到干,用溶解液(乙醇/水/醋酸=210.0/19.7/1.0,v/v/v,10ml)将上述浓缩物溶解,于5~20℃条件下,滴加乙酸乙酯(14ml)进行析晶,过滤得到白色结晶固体即卡泊芬净醋酸盐(0.71g),HPLC检测纯度为99.82%,其中式IV化合物的含量为0.072%。
实施例17(式X2a化合物还原反应)
氮气保护下,将实施例11得到的式X2a化合物(2.0g),苯硼酸(0.28g),无水四氢呋喃(80ml),加热回流30min后,冷却至室温,加入BSTFA(2.1ml),于室温搅拌1h,冷却到-10~-5℃,滴加硼烷二甲硫醚络合物(0.8ml,0.94%),滴毕,升温10~15℃反应3.5h。用HPLC监测,转化率为82%。然后滴加2N盐酸(4.8ml),并加入水(160ml),减压浓缩除去溶剂,然后室温搅拌24h,将其上样于制备柱上,用22%的乙腈/水(0.15%的乙酸)洗脱,合并富含产物的收集液,将其用水稀释一倍,仍旧上样于制备柱中,用90%的乙腈/水(0.15%的乙酸)洗脱,收集产品馏分,将其冷冻冻干,得到含X2b化合物的样品1.42g,HPLC测定式XI2b含量为0.09%。
实施例18(由式XI2b化合物制备式III化合物)
氮气保护下,将按照实施例17得到的X2b化合物(1.0g)溶于甲醇(4.2ml)中,冷却至-10~-5℃,滴加乙二胺(4.2ml),滴毕后升温至室温反应48h,HPLC监测反应转化率为99%。将其滴入冰乙酸(8.3ml)的水(18.5ml)溶液,然后并将其用 水稀释一倍,将其上样于制备柱上,用22%的乙腈/水(0.15%的乙酸)洗脱,合并富含产物的收集液,将其用水稀释一倍,仍旧上样于制备柱中,用90%的乙腈/水(0.15%的乙酸)洗脱,收集产品馏分,将其减压浓缩到干,用溶解液(乙醇/水/醋酸=210.0/19.7/1.0,v/v/v,10ml)将上述浓缩物溶解,于5~20℃条件下,滴加乙酸乙酯(14ml)进行析晶,过滤得到白色结晶固体即卡泊芬净醋酸盐(0.72g),HPLC检测纯度为99.76%,其中式IV化合物的含量为0.06%。
比较例3(按照CN102070707A的方法制备无式IV化合物的醋酸卡泊芬净)
按照CN102070707A实施例的方法制备式IV化合物小于0.05%的醋酸卡泊芬净,结果显示制备约1g的醋酸卡泊芬净,在用制备型HPLC(装有RP C-18树脂填料),乙酸和乙腈缓冲液纯化,所使用的有机溶剂乙腈约为6L,所使用的生产设备和树脂填料非常昂贵。
而通过实施例4、5、6可知,制备1g式II杂质含量在0.1%以下的式I化合物所使用的溶剂约为0.3L,由此直接可以制备式IV化合物小于0.05%的醋酸卡泊芬净,无需再使用制备型HPLC进行纯化。
比较例4(按照专利CN102947327A的方法制备无式IV化合物的醋酸卡泊芬净中间体)
按照CN102947327A实施例的方法制备低丝氨酸类似物卡泊芬净中间体的醋酸卡泊芬净中间体,按照CN102947327A中描述的方法制备含有低于0.1%丝氨酸类似物卡泊芬净中间体杂质的醋酸卡泊芬净中间体,其制备收率只有20%到40%,工业化生产价值非常小。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

Claims (22)

  1. 一种制备含有式I和式II所示化合物的组合物的方法,其特征在于,所述的方法包括步骤:
    (a)将式I化合物粗品溶解在有机溶剂(i)的水性溶液中;
    (b)通过降温和/或添加有机溶剂(ii),使固体从溶解液中析出,得到含式I化合物的悬浮液;
    (c)通过离心或过滤,得到含有式I和式II所示化合物的组合物A;
    Figure PCTCN2015098740-appb-100001
  2. 如权利要求1所述的制备方法,其特征在于,步骤(a)中,所述有机溶剂(ⅰ)的水性溶液中,水的体积百分含量为8%-30%,优选10%-25%,更优选12%-22%,最优选16%-22%。
  3. 如权利要求1所述的制备方法,其特征在于,步骤(a)中,所述有机溶剂(ⅰ)选自:甲醇、乙醇、正丙醇、异丙醇、异丁醇、正丁醇、丙酮中的一种或多种的混合物。
  4. 如权利要求1所述的制备方法,其特征在于,步骤(b)中,所述有机溶剂(ⅱ)选自:C3-7酯、己烷、正庚烷、正戊烷、二氯甲烷中的一种或多种的混合物;优 选自:乙酸乙酯、乙酸异丙脂、正己烷中的一种或多种的混合物。
  5. 如权利要求1所述的制备方法,其特征在于,所述步骤(a)-(c)可以重复一次或一次以上。
  6. 一种由如权利要求1-4任一所述的制备方法所获得的含有式I化合物的悬浮液,其特征在于,所述悬浮液中固体颗粒直径大于等于0.1um,优选直径大于等于0.2um,更优选大于等于0.3um。
  7. 一种由如权利要求1-5任一所述的制备方法所获得的含有式I和式II所示化合物的组合物A,其特征在于,所述组合物中含有1%至40%有机溶剂(质量百分含量),优选5%-35%,更优选10-30%;所述组合物还含有1%至15%的水(质量百分含量),优选2%-12%,更优选3%-10%;
    其中,所述有机溶剂选自:甲醇、乙醇、正丙醇、异丙醇、异丁醇、正丁醇、丙酮、乙酸乙酯、乙酸异丙脂、正己烷、二氯甲烷。
  8. 如权利要求7所述的组合物A,其特征在于,所述的组合物A中,式I所示化合物的折干后含量大于95%;式II所示化合物的折干后含量为0.0001%-2.0%;优选0.0001%-0.49%;更优为0.0001%-0.2%;最优为0.0001%-0.1%。
  9. 如权利要求8所述的组合物A,其特征在于,所述组合物中各组分的折干后含量用HPLC测定。
  10. 如权利要求9所述的组合物A,其特征在于,所述HPLC测定方法为:
    色谱柱:Symmtry C183.5um 2.1×150mm;
    流动相:乙腈/水=39/61;
    流速:0.4ml/min;
    柱温:30℃;
    样品稀释剂:乙腈/水=39/61;
    进样温度:5℃;
    检测波长:205nm。
  11. 如权利要求1所述的制备方法,其特征在于,所述步骤(c)之后还包含以下步骤:
    (d)将步骤(c)获得的组合物A进一步干燥,得到干燥的组合物B。
  12. 如权利要求11所述的制备方法,其特征在于,所述组合物B的水分含量小于等于5%。
  13. 如权利要求11所述的制备方法,其特征在于,所述干燥的组合物B中,式I所示化合物的折干后含量大于95%;式II所示化合物的折干后含量为0.0001%-2.0%;优选0.0001%-0.49%;更优为0.0001%-0.2%;最优为0.0001%-0.1%。
  14. 一种含有式I和式II所示化合物的组合物B;
    Figure PCTCN2015098740-appb-100002
    所述组合物中式I所示化合物的折干后含量大于95%;
    所述组合物中式II所示化合物的折干后含量为0.0001%-2.0%;优选0.0001%-0.49%;更优为0.0001%-0.2%;最优为0.0001%-0.1%。
  15. 如权利要求14所述的组合物B,其特征在于,所述组合物中各组分的折干后含量用HPLC测定。
  16. 如权利要求15所述的组合物B,其特征在于,所述HPLC测定方法为:
    色谱柱:Symmtry C183.5um 2.1×150mm;
    流动相:乙腈/水=39/61;
    流速:0.4ml/min;
    柱温:30℃;
    样品稀释剂:乙腈/水=39/61;
    进样温度:5℃;
    检测波长:205nm。
  17. 一种如权利要求14-16任一所述组合物B的用途,其特征在于,用于制备结构如式X所示的化合物;
    Figure PCTCN2015098740-appb-100003
    Figure PCTCN2015098740-appb-100004
  18. 一种含有结构如式X和式XI所示化合物的组合物;
    Figure PCTCN2015098740-appb-100005
    Figure PCTCN2015098740-appb-100006
  19. 如权利要求18所述的组合物,其特征在于,所述组合物中式X所示化合物的含量大于95%。
  20. 如权利要求18所述的组合物,其特征在于,所述组合物中式XI化合物的HPLC含量为0.0001%-2.0%,优选0.0001%-0.49%,更优选0.0001%-0.2%;最优选0.0001%-0.1%。
  21. 如权利要求18-20任一所述的组合物的用途,其特征在于,用所述的组合物制备式III所示化合物;
    Figure PCTCN2015098740-appb-100007
  22. 一种式III所示化合物,其特征在于,所述式III化合物由权利要求1所述的方法制备得到的组合物A或权利要求11所述的方法制备得到的组合物B作为原料制备得到;
    Figure PCTCN2015098740-appb-100008
PCT/CN2015/098740 2014-12-24 2015-12-24 一种含氮杂环六肽前体的组合物及其制备方法和用途 WO2016101904A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/538,905 US20170349627A1 (en) 2014-12-24 2015-12-24 Composition containing nitrogen heterocyclic hexapeptide precursor and preparation method and application thereof
KR1020177020760A KR102011855B1 (ko) 2014-12-24 2015-12-24 질소 헤테로 고리 헥사펩타이드 전구체를 함유한 조성물 및 이의 제조 방법과 용도
EP15871972.4A EP3239165B1 (en) 2014-12-24 2015-12-24 Composition containing nitrogen heterocyclic hexapeptide precursor and preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410840367.4 2014-12-24
CN201410840367 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016101904A1 true WO2016101904A1 (zh) 2016-06-30

Family

ID=55669263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098740 WO2016101904A1 (zh) 2014-12-24 2015-12-24 一种含氮杂环六肽前体的组合物及其制备方法和用途

Country Status (5)

Country Link
US (1) US20170349627A1 (zh)
EP (1) EP3239165B1 (zh)
KR (1) KR102011855B1 (zh)
CN (2) CN112110991A (zh)
WO (1) WO2016101904A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106589073A (zh) * 2017-01-20 2017-04-26 信泰制药(苏州)有限公司 提纯纽莫康定b0的方法
CN109721641B (zh) * 2017-10-31 2021-08-03 鲁南制药集团股份有限公司 一种卡泊芬净的合成方法
CN111808172B (zh) * 2019-04-12 2023-05-12 上海森辉医药有限公司 肺念菌素b0衍生物及其制备方法和用途
CN113286807B (zh) * 2019-10-20 2022-09-30 鲁南贝特制药有限公司 一种卡泊芬净的合成方法及其中间体
CN111233981A (zh) * 2020-03-17 2020-06-05 湖南欧亚药业有限公司 一种卡泊芬净的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295686A (zh) * 2011-09-09 2011-12-28 杭州华东医药集团生物工程研究所有限公司 一种纽莫康定b0的提取纯化方法
CN102947327A (zh) * 2010-03-29 2013-02-27 中化帝斯曼制药有限公司荷兰公司 卡泊芬净中间体的纯化

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336756A (en) * 1991-05-01 1994-08-09 Merck & Co., Inc. Process for crystalline cyclic lipopeptides
US5378804A (en) * 1993-03-16 1995-01-03 Merck & Co., Inc. Aza cyclohexapeptide compounds
EP1100947A4 (en) * 1998-08-07 2001-09-05 Merck & Co Inc PRODUCTION OF AN ANTIBIOTIC
JP2004521102A (ja) 2001-01-09 2004-07-15 メルク エンド カムパニー インコーポレーテッド 抗真菌化合物の活性代謝物
US20090291996A1 (en) * 2008-05-21 2009-11-26 Ferenc Korodi Caspofungin free of caspofungin Co
US8048853B2 (en) * 2008-06-13 2011-11-01 Xellia Pharmaceuticals Aps Process for preparing pharmaceutical compound and intermediates thereof
CN102076707A (zh) * 2008-06-25 2011-05-25 特瓦药厂私人有限公司 无卡泊芬净杂质a的卡泊芬净
WO2010108637A1 (en) * 2009-03-27 2010-09-30 Axellia Pharmaceuticals Aps Crystalline compound
US8996368B2 (en) * 2010-02-22 2015-03-31 Nuance Communications, Inc. Online maximum-likelihood mean and variance normalization for speech recognition
CN102336818B (zh) * 2010-07-20 2014-04-02 上海天伟生物制药有限公司 一种肽类物质的晶体及其制备方法和用途
CN102367268B (zh) * 2010-11-10 2013-11-06 上海天伟生物制药有限公司 一种卡泊芬净类似物及其用途
CN102219833A (zh) * 2011-04-18 2011-10-19 深圳市健元医药科技有限公司 一种更加安全的棘白菌类抗真菌药的制备方法
CN102627688B (zh) * 2012-03-30 2014-12-31 上海天伟生物制药有限公司 一种高纯度环肽化合物及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947327A (zh) * 2010-03-29 2013-02-27 中化帝斯曼制药有限公司荷兰公司 卡泊芬净中间体的纯化
CN102295686A (zh) * 2011-09-09 2011-12-28 杭州华东医药集团生物工程研究所有限公司 一种纽莫康定b0的提取纯化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAN, YI ET AL.: "STUDY ON PURIFICATION PROCESS OF PNEUMOCANDIN BO CHROMATOGRAPHY", BIOTECH WORLD, 31 July 2012 (2012-07-31), XP009503935, ISSN: 1674-2060 *
See also references of EP3239165A4 *

Also Published As

Publication number Publication date
CN105481952B (zh) 2020-12-29
KR102011855B1 (ko) 2019-08-19
CN105481952A (zh) 2016-04-13
EP3239165B1 (en) 2019-10-09
EP3239165A4 (en) 2018-07-11
CN112110991A (zh) 2020-12-22
KR20170120575A (ko) 2017-10-31
EP3239165A1 (en) 2017-11-01
US20170349627A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016101904A1 (zh) 一种含氮杂环六肽前体的组合物及其制备方法和用途
RU2603345C2 (ru) Циклопептидное соединение высокой чистоты, а также способ его получения и его применение
TW200826957A (en) Purification processes for echinocandin-type compounds
CN102659930B (zh) 一种高纯度环肽类物质的晶体及其制备方法和用途
AU2015342444B2 (en) Crystalline form of JAK kinase inhibitor bisulfate and a preparation method thereof
CN105985394B (zh) 一种索非布韦新晶型及其制备方法
WO2015180678A1 (zh) 环肽类化合物的晶体及其制备方法和用途
WO2015180682A1 (zh) 一种环肽类化合物的溶剂合物及其制备方法和用途
TWI740922B (zh) 一種奧貝膽酸的新結晶形式及其製備方法
KR101596554B1 (ko) 펩타이드계 물질의 결정체 및 그의 제조방법과 용도
JP2005053782A (ja) 環状リポペプチド化合物の新規結晶
CN102382007A (zh) 一种盐酸多西环素化合物及其制法
CN102351767B (zh) 一种前列地尔化合物及其制法
US20100197776A1 (en) Direct dissolution of docetaxel in a solvent in polysorbate 80
JP2022540275A (ja) テトラメチルピラジンニトロンの結晶形、製造方法及び使用
JP2016538330A (ja) シクロペプチド系化合物の結晶粉末およびその製造方法と使用
WO2017071375A1 (zh) 一种氘代咪唑酮化合物的晶型及其制备方法和用途
WO2023025271A1 (zh) 吡嗪类衍生物的晶型及其制备方法
CN106336363A (zh) 一种沙芬酰胺甲磺酸盐晶型c及其制备方法
US20220251111A1 (en) Process for the preparation of amorphous midostaurin with a low content of residual organic solvent
EP2610239A1 (en) Preparation Of Rasagiline Hemitartrate
EP3502124A1 (en) Crystal of sulfate of polymyxin b1, b2, or mixture thereof, and manufacturing method of same
AU2012227181A1 (en) Direct Dissolution Of Docetaxel In A Solvent In Polysorbate 80
WO2016024243A2 (en) Fidaxomicin polymorphs and processes for their preparation
EP2835378A1 (en) Ginsenoside c-k polymorphic compounds and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871972

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538905

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015871972

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020760

Country of ref document: KR

Kind code of ref document: A