WO2016088843A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016088843A1
WO2016088843A1 PCT/JP2015/084037 JP2015084037W WO2016088843A1 WO 2016088843 A1 WO2016088843 A1 WO 2016088843A1 JP 2015084037 W JP2015084037 W JP 2015084037W WO 2016088843 A1 WO2016088843 A1 WO 2016088843A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
pneumatic tire
circumferential direction
land portion
recess
Prior art date
Application number
PCT/JP2015/084037
Other languages
English (en)
French (fr)
Inventor
浩史 古澤
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201580062268.0A priority Critical patent/CN107107664A/zh
Priority to US15/527,696 priority patent/US20190084351A1/en
Priority to EP15865803.9A priority patent/EP3228479A4/en
Priority to RU2017122584A priority patent/RU2017122584A/ru
Publication of WO2016088843A1 publication Critical patent/WO2016088843A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/036Narrow grooves, i.e. having a width of less than 3 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0362Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1254Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern with closed sipe, i.e. not extending to a groove

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire capable of improving the braking performance on ice of the tire.
  • An object of the present invention is to provide a pneumatic tire that can improve the braking performance of the tire on ice.
  • a pneumatic tire according to the present invention is a pneumatic tire provided with a land portion that is a rib or a block row on a tread surface, wherein the land portion includes a plurality of narrow grooves and the shallow grooves. And a plurality of concave portions communicating with each other, and the concave portions are arranged across a plurality of adjacent shallow grooves separated from each other.
  • the recesses are disposed across a plurality of adjacent narrow grooves that are separated from each other, the volume of the shallow grooves is partially enlarged. Then, when the tire is in contact with the tire, the concave portion becomes a pool of water, and the water film on the ice road surface is efficiently absorbed. Thereby, there exists an advantage which the braking performance on ice of a tire improves further.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 2.
  • FIG. 4 is an enlarged view showing a main part of the block shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line AA of the ground contact surface of the block illustrated in FIG.
  • FIG. 6 is an explanatory diagram showing a land portion of the pneumatic tire depicted in FIG. 2.
  • FIG. 7 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 2.
  • FIG. 8 is an explanatory view showing a modification of the pneumatic tire shown in FIG.
  • FIG. 9 is an explanatory diagram showing a modified example of the pneumatic tire depicted in FIG. 4.
  • FIG. 10 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 4.
  • FIG. 11 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 12 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 4.
  • FIG. 13 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 14 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 15 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 4.
  • FIG. 16 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 17 is an explanatory diagram showing a modification of the pneumatic tire depicted in FIG.
  • FIG. 18 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • the same figure has shown sectional drawing of the one-side area
  • the figure shows a radial tire for a passenger car as an example of a pneumatic tire.
  • the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown).
  • Reference sign CL denotes a tire equator plane, which is a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis.
  • the tire width direction means a direction parallel to the tire rotation axis
  • the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 are disposed on the outer circumference in the tire radial direction of the pair of bead cores 11 and 11 to constitute a bead portion.
  • the carcass layer 13 has a single layer structure composed of a single carcass ply or a multilayer structure formed by laminating a plurality of carcass plies, and is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Constitute. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass ply of the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber and rolling it, and has an absolute value of 80 It has a carcass angle (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction) of [deg] or more and 95 [deg] or less.
  • an organic fiber material for example, aramid, nylon, polyester, rayon, etc.
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 20 [deg] or more and 55 [deg] or less.
  • the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure).
  • the belt cover 143 is formed by rolling a plurality of cords made of steel or organic fiber material covered with a coat rubber, and has a belt angle of 0 [deg] or more and 10 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pair of rim cushion rubbers 17, 17 are respectively disposed on the inner side in the tire radial direction of the wound portions of the left and right bead cores 11, 11 and the carcass layer 13, and constitute the contact surfaces of the left and right bead portions with respect to the rim flange.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • the figure shows a tread pattern of a studless tire.
  • the tire circumferential direction refers to the direction around the tire rotation axis.
  • Reference symbol T denotes a tire ground contact end.
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 to 22 partitioned by the circumferential main grooves 21 and 22. 33 and a plurality of lug grooves 41 to 43 arranged in the land portions 31 to 33 are provided in the tread portion.
  • the circumferential main groove is a circumferential groove having a wear indicator indicating the end of wear, and generally has a groove width of 5.0 [mm] or more and a groove depth of 7.5 [mm] or more.
  • the lug groove means a lateral groove having a groove width of 2.0 [mm] or more and a groove depth of 3.0 [mm] or more.
  • the groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the groove width is based on the intersection of the tread surface and the extension line of the groove wall in a cross-sectional view in which the groove length direction is a normal direction. Measured.
  • the groove width is measured with reference to the center line of the amplitude of the groove wall.
  • the groove depth is measured as the maximum value of the distance from the tread surface to the groove bottom in an unloaded state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a groove
  • Specified rim means “Applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the specified internal pressure means “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONLPRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load means the “maximum load capacity” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” prescribed by TRA, or “LOAD CAPACITY” prescribed by ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the four circumferential main grooves 21 and 22 having a straight shape are arranged symmetrically about the tire equatorial plane CL.
  • five rows of land portions 31 to 33 are defined by the four circumferential main grooves 21 and 22.
  • the land portion 31 is disposed on the tire equator plane CL.
  • the land portions 31 to 33 include a plurality of lug grooves 41 to 43 that are arranged at predetermined intervals in the tire circumferential direction and penetrate the land portions 31 to 33 in the tire width direction.
  • the second land portion 32 includes a circumferential narrow groove 23 that extends while being bent in the tire circumferential direction.
  • the land portions 31 to 33 are partitioned into circumferential main grooves 21 and 22, circumferential narrow grooves 23, and lug grooves 41 to 43 to form a block row.
  • the circumferential main grooves 21 and 22 have a straight shape as described above.
  • the present invention is not limited to this, and the circumferential main grooves 21 and 22 may have a zigzag shape or a wavy shape extending while being bent or curved in the tire circumferential direction (not shown).
  • the land portions 31 to 33 are divided in the tire circumferential direction by the lug grooves 41 to 43 to form a block row.
  • the present invention is not limited to this.
  • the land portions 31 to 33 may be ribs continuous in the tire circumferential direction. Good (not shown).
  • the pneumatic tire 1 has a tread pattern that is symmetrical with respect to the left and right.
  • the present invention is not limited to this, and the pneumatic tire 1 may have, for example, a tread pattern that is symmetrical to the left and right lines, a tread pattern that is asymmetric to the left and right, and a tread pattern that has directionality in the tire rotation direction (not shown).
  • the pneumatic tire 1 includes circumferential main grooves 21 and 22 extending in the tire circumferential direction.
  • the pneumatic tire 1 may include a plurality of inclined main grooves that extend while being inclined at a predetermined angle with respect to the tire circumferential direction, instead of the circumferential main grooves 21 and 22.
  • the pneumatic tire 1 has a V-shape that is convex in the tire circumferential direction, and extends in the tire width direction and opens to the left and right tread ends, and adjacent V-shaped slopes. You may provide the several lug groove which connects a main groove, and the several land part divided by these V-shaped inclination main grooves and lug grooves (illustration omitted).
  • FIG. 3 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 2. The figure shows a plan view of one block 5 constituting the shoulder land portion 33.
  • the blocks 5 of all the land portions 31 to 33 have a plurality of sipes 6, respectively.
  • sipes 6 the edge components of the land portions 31 to 33 are increased, and the performance of the tire on ice and snow is improved.
  • a sipe is an incision formed in a land portion, and generally has a sipe width of less than 1.0 [mm] and a sipe depth of 2.0 [mm] or more, so that the sipe is closed at the time of tire contact.
  • the upper limit of the sipe depth is not particularly limited, but is generally shallower than the groove depth of the main groove.
  • the sipe width is measured as the maximum value of the sipe opening width on the ground contact surface in the land portion in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the sipe 6 has a closed structure that terminates inside the block 5 at both ends, and is semi-closed that opens to the edge of the block 5 at one end and terminates inside the block 5 at the other end. You may have either a structure and the open structure opened to the edge part of the block 5 in both ends. Further, the length, the number, and the arrangement structure of the sipes 6 in the land portions 31 to 33 can be appropriately selected within the range obvious to those skilled in the art. Further, the sipe 6 can extend in any direction of the tire width direction, the tire circumferential direction, and the direction inclined to these.
  • the shoulder land portion 33 includes a plurality of blocks 5 that are partitioned into an outermost circumferential main groove 22 and a plurality of lug grooves 43 (see FIG. 2).
  • One block 5 includes a plurality of sipes 6. These sipes 6 have a zigzag shape extending in the tire width direction, and are arranged in parallel at a predetermined interval in the tire circumferential direction. Further, the sipe 6 on the outermost side in the tire circumferential direction has a closed structure that terminates inside the block 5 at both ends. Thereby, the rigidity of the edge part of the step-on side and kick-out side of the block 5 at the time of tire rolling is ensured.
  • the sipe 6 at the center in the tire circumferential direction has a semi-closed structure that opens into the circumferential main groove 22 at one end and terminates inside the block 5 at the other end. . Thereby, the rigidity of the center part of the block 5 is reduced, and the rigidity distribution in the tire circumferential direction of the block is made uniform.
  • FIG. 4 is an enlarged view showing a main part of the block shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line AA of the ground contact surface of the block illustrated in FIG.
  • FIG. 4 shows the positional relationship between the sipe 6, the thin shallow groove 7 and the concave portion 8
  • FIG. 5 shows a sectional view of the thin shallow groove 7 and the concave portion 8 in the depth direction.
  • the land portions 31 to 33 are provided with a plurality of narrow grooves 7 on the ground contact surface (see FIG. 3).
  • the on-ice braking performance of the tire is improved by the thin shallow grooves 7 sucking and removing the water film interposed between the ice road surface and the tread surface when the tire is in contact with the tire.
  • the thin shallow groove 7 has a groove width of 0.2 [mm] or more and 0.7 [mm] or less and a groove depth Hg (see FIG. 5) of 0.2 [mm] or more and 0.7 [mm] or less. . For this reason, the narrow shallow groove 7 is shallower than the sipe 6.
  • a plurality of shallow grooves 7 are arranged on the entire surface of the land portions 31 to 33.
  • a plurality of narrow grooves 7 are arranged over the entire ground contact surface of the shoulder land portion 33.
  • the thin shallow groove 7 has a linear shape, and is disposed at a predetermined inclination angle ⁇ (see FIG. 4) with respect to the tire circumferential direction.
  • a plurality of shallow grooves 7 are arranged in parallel with a predetermined interval P (see FIG. 4) between each other.
  • the thin shallow groove 7 intersects with the sipe 6 and is divided by the sipe 6 in the longitudinal direction.
  • the inclination angle ⁇ of the shallow grooves 7 is 20 [deg. ] ⁇ ⁇ ⁇ 80 [deg], preferably 40 [deg] ⁇ ⁇ ⁇ 60 [deg].
  • the arrangement interval P (see FIG. 4) of the thin shallow grooves 7 is preferably in the range of 0.5 [mm] ⁇ P ⁇ 1.5 [mm], and 0.7 [mm] ⁇ P ⁇ 1. More preferably, it is in the range of 2 [mm].
  • the arrangement density of the narrow shallow grooves 7 is not particularly limited, but is limited by the arrangement interval P described above.
  • the arrangement interval P of the thin shallow grooves 7 is defined as the distance between the groove center lines of the adjacent thin shallow grooves 7 and 7.
  • the concave portion 8 is a closed depression formed on the ground contact surfaces of the land portions 31 to 33 (a recess not opened at the boundary of the ground contact surface, so-called dimple), and has an arbitrary geometric shape on the ground contact surfaces of the land portions 31 to 33.
  • the concave portion 8 may have a polygonal shape such as a circular shape, an elliptical shape, a rectangular shape, or a hexagonal shape.
  • the circular or elliptical recessed portion 8 is preferable in that the uneven wear of the ground contact surfaces of the land portions 31 to 33 is small, and the polygonal recessed portion 8 is preferable in that the edge component is large and the braking performance on ice can be improved.
  • the opening area of the recess 8 is in the range of 2.5 [mm ⁇ 2] or more and 10 [mm ⁇ 2] or less.
  • the diameter of the circular recess 8 is in the range of about 1.8 [mm] to 3.6 [mm].
  • the opening area of the recessed portion 8 is the opening area of the recessed portion 8 on the ground contact surfaces of the land portions 31 to 33, and is measured in a state where a tire is mounted on a specified rim to apply a specified internal pressure and no load is applied.
  • the depth Hd of the recess 8 (see FIG. 5) and the groove depth Hg of the thin shallow groove 7 preferably have a relationship of 0.5 ⁇ Hd / Hg ⁇ 1.5, and 0.8 ⁇ It is more preferable to have a relationship of Hd / Hg ⁇ 1.2. That is, the depth Hd of the recess 8 and the groove depth Hg of the thin shallow groove 7 are substantially the same. Thereby, the water absorption effect of the ground contact surfaces of the land portions 31 to 33 is improved. Further, since the concave portion 8 is shallower than a sipe (for example, a linear sipe 6 or a circular sipe (not shown)), the rigidity of the land portions 31 to 33 is appropriately ensured. Thereby, the braking performance on ice of the tire is ensured.
  • a sipe for example, a linear sipe 6 or a circular sipe (not shown)
  • the wall angle ⁇ (see FIG. 5) of the recess 8 is preferably in the range of ⁇ 85 [deg] ⁇ ⁇ ⁇ 95 [deg]. That is, it is preferable that the inner wall of the recess 8 is substantially perpendicular to the ground contact surfaces of the land portions 31 to 33. Thereby, the edge component of the recessed part 8 increases.
  • the wall angle ⁇ of the concave portion 8 is measured as an angle formed by the ground contact surfaces of the land portions 31 to 33 and the inner wall of the concave portion 8 in a sectional view of the concave portion 8 in the depth direction.
  • the recess 8 is arranged away from the sipe 6. That is, the concave portion 8 and the sipe 6 are arranged at different positions on the ground contact surfaces of the land portions 31 to 33 and do not intersect with each other.
  • the distance g between the recess 8 and the sipe 6 is preferably in the range of 0.2 [mm] ⁇ g, and more preferably in the range of 0.3 [mm] ⁇ g. Thereby, the rigidity of the land portions 31 to 33 is ensured appropriately.
  • the concave portion 8 is arranged so as to intersect the thin shallow groove 7 and communicate with the thin shallow groove 7. Moreover, the recessed part 8 is arrange
  • the plurality of shallow grooves 7 separated from each other means a plurality of shallow grooves 7 extending without intersecting each other in an arrangement pattern of only the shallow grooves 7 excluding the sipes 6 and the recesses 8. Accordingly, an arrangement pattern in which the plurality of thin shallow grooves 7 intersect each other is excluded.
  • a plurality of shallow grooves 7 having a linear shape are arranged on the entire surface of the land portion 33 at predetermined intervals while being inclined at a predetermined angle with respect to the tire circumferential direction.
  • the adjacent thin shallow grooves 7 and 7 are arranged in parallel with each other and run in one direction.
  • the recessed part 8 is arrange
  • the two thin shallow grooves 7 and 7 that run side by side pass through one recess 8 in one direction.
  • three or more shallow grooves 7 may penetrate one recess 8 (not shown).
  • the land portion 33 includes a plurality of sipes 6 that define the narrow shallow grooves 7 on the ground surface. Further, a portion of one narrow shallow groove 7 defined by the sipe 6 extends without penetrating the plurality of recesses 8. That is, the plurality of recesses 8 are distributed and arranged so as not to be overlapped with respect to the portion of the single shallow groove 7 partitioned by the sipe 6. For this reason, only one concave portion 8 is arranged at the maximum in one narrow groove 7 portion.
  • the recesses 8 are arranged sparsely as compared with the thin shallow grooves 7.
  • the arrangement density Da of the concave portions 8 in the entire area of the continuous ground contact surface of the land portions 31 to 33 is 0.8 [piece / cm ⁇ 2] ⁇ Da ⁇ 4.0 [piece / cm ⁇ 2]. It is preferably in the range, more preferably in the range of 1.0 [pieces / cm ⁇ 2] ⁇ Da ⁇ 3.0 [pieces / cm ⁇ 2]. Thereby, the area of the ground contact surface of the land portions 31 to 33 is secured.
  • the arrangement density Da of the concave portions 8 is defined as the total number of the concave portions 8 with respect to the area of the continuous ground contact surface of the land portions 31 to 33.
  • the land portion is a rib that is continuous in the tire circumferential direction (not shown)
  • the total number of recesses 8 with respect to the contact area of the entire one rib is the arrangement density Da.
  • the land portion is a block (see FIGS. 2 and 3)
  • the total number of the recesses 8 with respect to the ground contact area of one block 5 is the arrangement density Da.
  • the contact area of the land is determined by the tire and the flat plate when the tire is mounted on the specified rim and applied with the specified internal pressure, and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. Measured at the contact surface.
  • the block 5 of the shoulder land portion 33 has a rectangular grounding surface. Further, a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the block 5 into a plurality of regions in the tire circumferential direction. All regions have at least one recess 8. Further, in the central portion of the block 5 in the tire circumferential direction, a region having the recess 8 at the end on the circumferential main groove 22 side of the block 5 and a region having no recess 8 at the end are in the tire circumferential direction. Are alternately arranged.
  • the concave portions 8 are respectively disposed at corner portions of the block 5 on the circumferential main groove 22 side.
  • the recessed part 8 is not arrange
  • the central region of the land portions 31 to 33 is defined as the region of the central region 50 [%] in the tire width direction of the continuous contact surface of the land portions 31 to 33.
  • the end regions of the land portions 31 to 33 are defined as the respective regions of the left and right end portions 25 [%] in the tire width direction of the continuous contact surface of the land portions 31 to 33.
  • a central region and an end region are defined excluding a partial cutout portion 311 (see FIG. 7 described later) formed in the land portions 31 to 33.
  • the land portion is a rib that is continuous in the tire circumferential direction (not shown)
  • the center region and the end region are defined for the ground contact surface of one entire rib.
  • the land portion is a block (see FIGS.
  • a center region and an end region are defined for the ground plane of one block 5. Moreover, if the center of the recessed part 8 exists in said center area
  • the corners of the land portions 31 to 33 are defined as 5 [mm] square areas including the corner portions of the land contact surface.
  • the corner portion of the land portion includes not only the land portion defined by the main groove and the lug groove but also the land portion defined by the notch formed in the land portion. Moreover, if the center of the recessed part 8 exists in said corner
  • the contact surface between the tire and the flat plate is applied when a load corresponding to the specified load is applied by placing the tire on a specified rim and applying a specified internal pressure while placing the tire in a stationary state perpendicular to the flat plate. Defined in terms of surfaces.
  • any three sections adjacent in the tire circumferential direction include a section having a recess 8 in an end region in the tire width direction and a section having a recess 8 in a central region in the tire width direction. Includes each.
  • the recesses 8 are distributed and arranged in the end region and the central region of the land portions 31 to 33.
  • the section of the both ends of the block 5 in the tire circumferential direction refers to a pair of sections located at both ends in the tire circumferential direction among the plurality of sections of the block 5 partitioned in the tire circumferential direction by the plurality of sipes 6. Moreover, the section of the center part of the tire circumferential direction of the block 5 means the area except the section of the both ends of the said tire circumferential direction.
  • the concave portions 8 are arranged at the end portions and the corner portions of the block 5, so that the water film on the ice road surface is efficiently absorbed, and the braking performance on ice of the tire is improved.
  • the sipe 6 is arranged parallel to the lug groove 43 or slightly inclined, and is arranged only in the inner region in the tire width direction from the tire ground contact end T. Further, the narrow shallow groove 7 extends beyond the tire ground contact end T to a region outside the land portion 33 in the tire width direction. Further, the concave portion 8 is disposed only in a region on the inner side in the tire width direction from the tire ground contact end T.
  • the tire ground contact edge T is the contact between the tire and the flat plate when a load corresponding to the predetermined load is applied by attaching the tire to the specified rim and applying the specified internal pressure and placing the tire perpendicularly to the flat plate in a stationary state.
  • the tire molding die has a plurality of vent devices (not shown) on the die surface for molding the ground contact surfaces of the land portions 31 to 33. Also, a certain type of vent device forms a vent hole (small depression) on the ground contact surface of the land portions 31 to 33 after vulcanization molding. Therefore, by using this vent hole as the concave portion 8, the vent hole is effectively used, and unnecessary depressions in the ground contact surfaces of the land portions 31 to 33 are reduced to reduce the ground contact area of the land portions 31 to 33. Properly secured.
  • FIG. 6 and 7 are explanatory views showing the land portion of the pneumatic tire shown in FIG.
  • FIG. 6 shows a plan view of one block 5 constituting the second land portion 32.
  • FIG. 7 shows a plan view of one block 5 constituting the center land portion 31.
  • the second land portion 32 is divided in the tire width direction by one circumferential narrow groove 23, and further divided in the tire circumferential direction by a plurality of lug grooves 42, thereby dividing the plurality of blocks 5. ing. Further, a block 5 that is long in the tire circumferential direction is formed in a region on the inner side in the tire width direction of the second land portion 32, and a short block 5 is formed in a region on the outer side in the tire width direction.
  • the block 5 on the outer side in the tire width direction of the second land portion 32 has a rectangular contact surface.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the block 5 into a plurality of sections. All sections have at least one recess 8.
  • a section having the recess 8 only in the end region in the tire width direction of the block 5 and a section having the recess 8 only in the central region in the tire width direction are the tire circumference. Alternatingly arranged in the direction.
  • the recesses 8 are disposed at the four corners of the block 5, respectively.
  • the recessed part 8 is not arrange
  • the block 5 has the recesses 8 in all the sections of the block 5 partitioned by the sipe 6, so that the water film on the ice road surface is efficiently absorbed and the braking performance of the tire on ice is ensured. Is done.
  • the center land portion 31 is divided in the tire circumferential direction by a plurality of lug grooves 41, and a plurality of blocks 5 are partitioned.
  • the block 5 has a notch 311 on the extension line of the lug groove 42 of the second land portion 32.
  • the block 5 has a rectangular grounding surface.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the block 5 into a plurality of sections.
  • the block 5 has a section that does not have the recess 8.
  • any three adjacent sections include a section having no recess 8.
  • sections having recesses 8 only at both ends in the tire width direction of the block 5 and sections having no recesses 8 are alternately arranged in the tire circumferential direction.
  • the recesses 8 are disposed at the four corners of the block 5, respectively.
  • the recessed part 8 is not arrange
  • a section adjacent to the notch 311 has a recess 8.
  • the land portion 31 (see FIG. 2) on the tire equator plane CL or the land portion (not shown) adjacent to the tire equator plane CL is called a center land portion.
  • the center land portion 31 preferably has high rigidity in order to ensure the steering stability performance of the tire. Therefore, as shown in FIG. 7, the block 5 of the center land portion 31 partially has a section that does not have the recess 8, whereby the rigidity of the block 5 is ensured and the steering stability performance of the tire is ensured.
  • [Modification] 8 to 14 are explanatory views showing modifications of the pneumatic tire shown in FIG. These drawings show the positional relationship between the sipe 6, the thin shallow groove 7, and the recess 8.
  • the narrow shallow grooves 7 are arranged to be inclined at a predetermined angle ⁇ with respect to the tire circumferential direction.
  • Such a configuration is preferable in that the inclined thin shallow grooves 7 cause edge components in both the tire circumferential direction and the tire width direction.
  • the present invention is not limited to this, and the shallow groove 7 may extend in parallel to the tire circumferential direction (see FIG. 8) or may extend in parallel to the tire width direction (see FIG. 9).
  • the thin shallow groove 7 has a linear shape. Such a configuration is preferable in that the thin shallow groove 7 can be easily formed.
  • the present invention is not limited to this, and the thin shallow groove 7 may have a zigzag shape (see FIG. 10) or a wavy shape (see FIG. 11).
  • the plurality of thin shallow grooves 7 may be arranged with the phases aligned with each other, or may be arranged with the phases shifted from each other as shown in FIG.
  • the thin shallow groove 7 may have a short structure that is bent or curved.
  • the short thin shallow grooves 7 may be arranged while being offset from each other (see FIG. 13), or may be arranged in a matrix (not shown).
  • the thin shallow groove 7 may have an arc shape (see FIG. 14), or may have a curved shape such as an S shape (not shown).
  • the shallow groove 7 may be inclined at a predetermined angle ⁇ with respect to the tire circumferential direction, or the tire circumferential direction May extend parallel to the tire width or may extend parallel to the tire width direction.
  • the inclination angle ⁇ of the thin shallow groove 7 is measured with reference to the center of the amplitude of the zigzag shape or the wavy shape.
  • 15 and 16 are explanatory views showing a modification of the pneumatic tire shown in FIG. These drawings show the positional relationship between the sipe 6, the thin shallow groove 7, and the recess 8.
  • the thin shallow groove 7 has a linear structure extending in a predetermined direction. Such a configuration is preferable in that the thin shallow groove 7 can extend continuously over the entire area of the ground contact surface of the block 5.
  • the thin shallow grooves 7 may have an annular structure and be arranged at a predetermined interval from each other.
  • the thin shallow groove 7 may have a polygonal shape (not shown) such as a circular shape (FIG. 15), an elliptical shape (not shown), a rectangular shape (FIG. 16), a triangular shape, a hexagonal shape, or the like.
  • the concave portion 8 is disposed across a plurality of adjacent thin shallow grooves 7 and 7 separated from each other.
  • FIG. 17 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. This figure shows a cross-sectional view in the depth direction of the narrow shallow grooves 7a and 7b and the recess 8.
  • the groove depth of some of the thin shallow grooves 7b is set to be shallower than the groove depth Hg of the reference thin shallow groove 7a.
  • the thin shallow groove 7b having the shallow groove depth disappears first and the thin shallow groove 7a having the deep groove depth Hg disappears after the tire wear progresses. Thereby, the property change of the block 5 by all the thin shallow grooves 7 disappearing simultaneously can be suppressed.
  • the pneumatic tire 1 includes land portions 31 to 33 that are ribs or block rows on the tread surface (see FIG. 2).
  • Each of the land portions 31 to 33 includes a plurality of narrow grooves 7 and a plurality of recesses 8 communicating with the narrow grooves 7 on the ground surface (see, for example, FIG. 3).
  • the recessed part 8 is arrange
  • the recess 8 is shallower than a sipe (for example, a linear sipe 6 or a circular sipe (not shown)), the rigidity of the land portions 31 to 33 is ensured appropriately. Thereby, there exists an advantage by which the braking performance on ice of a tire is ensured.
  • the arrangement density Da of the recesses 8 in the entire area of the continuous contact surface of the land portions 31 to 33 is 0.8 [piece / cm 2. ] ⁇ Da ⁇ 4.0 [pieces / cm ⁇ 2].
  • the arrangement density of the recessed part 8 is optimized. That is, when 0.8 [pieces / cm ⁇ 2] ⁇ Da, the number of the recessed portions 8 is ensured, and the water film removing action is appropriately secured in the recessed portions 8. Further, since Da ⁇ 4.0 [pieces / cm 2], the ground contact areas of the land portions 31 to 33 are appropriately secured.
  • the land portions 31 to 33 are provided with a plurality of sipes 6 on the ground contact surface, and the recesses 8 are arranged apart from the sipes 6 (see, for example, FIG. 3).
  • the concave portion 8 and the sipe 6 are arranged separately from each other, there is an advantage that the rigidity of the land portions 31 to 33 is ensured and the braking performance on ice of the tire is improved.
  • the land portions 31 to 33 each include a plurality of sipes 6 that define the thin shallow grooves 7 on the ground surface, and a portion of the single shallow groove 7 defined by the sipes 6 is provided. It extends without penetrating the plurality of recesses 8 (see FIG. 4). That is, a maximum of one concave portion 8 is disposed in one continuous thin shallow groove portion 7. Thereby, there exists an advantage which can suppress the deterioration of the braking performance on ice resulting from the recessed part 8 being excessively arrange
  • a plurality of sipes 6 are arranged in parallel to divide the land portion 32 into a plurality of sections in the tire circumferential direction (see, for example, FIG. 6). Further, the section having the recess 8 only in the center region in the tire width direction and the section having the recess 8 only in the end region in the tire width direction are alternately arranged in the tire circumferential direction.
  • the concave portions 8 are arranged in a dispersed manner, there is an advantage that the rigidity of the land portion can be ensured while enhancing the water film absorbing action by the concave portions 8.
  • each continuous section has a recess, the water film on the icy road surface is efficiently absorbed, and there is an advantage that the braking performance on ice of the tire is improved.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the land portions 31 to 33 into a plurality of sections.
  • at least one of any pair of adjacent sections has a recess 8 in an end region in the tire width direction (see FIGS. 3, 6 and 7).
  • the recess 8 is disposed in the end region in the tire width direction where the contact pressure is high and a water film is likely to be generated.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the land portions 31 to 33 into a plurality of sections.
  • any three of the sections adjacent in the tire circumferential direction include the section having the recess 8 in the end region in the tire width direction and the section having the recess 8 in the center region in the tire width direction ( (See FIG. 3 and FIG. 6).
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the land portions 31 to 33 into a plurality of sections.
  • any three of the sections adjacent in the tire circumferential direction include a section having a recess 8 and the section having no recess 8 (see FIG. 7).
  • the recesses 8 are dispersedly arranged by arranging the sections not having the recesses 8.
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and have recesses 8 at the corners of the blocks 5 (see FIGS. 3, 6 and 7).
  • the concave portion 8 is disposed at the corner of the block 5 where the ground pressure is high and a water film is likely to be generated.
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and the recesses 8 are provided at the ends of the blocks 5 in the tire circumferential direction and in the center region in the tire width direction. None (see FIGS. 3, 6 and 7). Thereby, there is an advantage that the ground contact area and the rigidity of the end portions on the step-in side and the kick-out side of the block are ensured, and the braking performance on ice of the tire is improved.
  • the opening area of the recess 8 is in the range of 2.5 [mm ⁇ 2] to 10 [mm ⁇ 2].
  • the opening area of the recessed part 8 is optimized. That is, when the opening area of the recess 8 is 2.5 [mm ⁇ 2] or more, the edge action and water absorption of the recess 8 are ensured. Further, since the opening area of the recess 8 is 10 [mm ⁇ 2] or less, the ground contact area and the rigidity of the land portions 31 to 33 are ensured.
  • the recess 8 has a circular shape (see FIG. 4) or an elliptical shape (not shown) on the ground contact surfaces of the land portions 31 to 33. Accordingly, there is an advantage that uneven wear of the ground contact surfaces of the land portions 31 to 33 can be suppressed as compared with the configuration in which the concave portion 8 has a polygonal shape (not shown).
  • the wall angle ⁇ of the recess 8 is in the range of ⁇ 85 [deg] ⁇ ⁇ ⁇ 95 [deg] (see FIG. 5).
  • the depth Hd of the recess 8 and the groove depth Hg of the thin shallow groove 7 have a relationship of 0.5 ⁇ Hd / Hg ⁇ 1.5 (see FIG. 5).
  • the depth Hd of the recessed part 8 is optimized. That is, when 0.5 ⁇ Hd / Hg, the water absorbing action of the recess 8 is ensured.
  • Hd / Hg ⁇ 1.5 it is possible to suppress a decrease in rigidity of the land portions 31 to 33 due to the recess 8 being too deep with respect to the thin shallow groove 7.
  • the recesses 8 is arranged at a position corresponding to a vent hole (not shown) of the tire molding die.
  • the plurality of shallow grooves 7 have a longitudinal shape and are arranged in parallel with each other (see FIGS. 4 and 8 to 14).
  • the thin shallow groove 7 has a longitudinal shape
  • the water film absorbed in the thin shallow groove 7 can be guided and discharged in the longitudinal direction of the thin shallow groove 7.
  • the concave portion 8 is disposed across the plurality of thin shallow grooves 7 having such a longitudinal shape, the concave portion 8 becomes a reservoir for the absorbed water film, and the water absorption of the land portions 31 to 33 is improved.
  • the braking performance on ice of the tire is improved.
  • the plurality of shallow grooves 7 have an annular shape and are arranged separately from each other (see FIGS. 15 and 16).
  • the rigidity of the land portions 31 to 33 is higher than the configuration in which the narrow shallow groove 7 penetrates the land portions 31 to 33.
  • FIG. 18 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • test tire having a tire size of 195 / 65R15 is assembled to an applicable rim defined by JATMA, and an air pressure of 230 [kPa] and a maximum load defined by JATMA are applied to the test tire. Further, the test tire is mounted on a sedan having a displacement of 1600 [cc] and a front-engine-front-drive (FF) system which is a test vehicle.
  • FF front-engine-front-drive
  • the test tires of Examples 1 to 8 have the configurations shown in FIGS. 1 and 2, and the blocks 5 of the land portions 31 to 33 each have a sipe 6, a thin shallow groove 7, and a recess 8. Further, as shown in FIG. 4, linear thin shallow grooves 7 are arranged in parallel while being inclined in the tire circumferential direction and penetrate the block 5. Further, in Examples 1 to 3, the recess 8 is disposed only in the end region in the tire width direction of the block 5 (see, for example, FIG. 7), and in Examples 4 to 8, the recess 8 is disposed in the entire area of the block 5. (See, for example, FIGS. 3 and 6). Further, the groove width and the groove depth of the thin shallow groove 7 are 0.3 [mm].
  • the block 5 has only the sipe 6 and the thin shallow groove 7 and does not have the concave portion 8.

Abstract

この空気入りタイヤ(1)は、複数のブロック(5)を有する陸部(33)をトレッド面に備える。また、ブロック(5)が、複数の細浅溝(7)と、細浅溝(7)に連通する複数の凹部(8)とを接地面に備える。また、凹部(8)が、相互に分離した隣り合う複数の細浅溝(7、7)に跨って配置される。また、細浅溝(7)が、0.2[mm]以上0.7[mm]以下の溝幅および0.2[mm]以上0.7[mm]以下の溝深さを有する。また、凹部(8)が、細浅溝(7)と同等の深さを有する。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤの氷上制動性能を向上できる空気入りタイヤに関する。
 一般的な新品タイヤでは、薬品がトレッド表面に付着しているため、摩耗初期におけるブロックの吸水作用およびエッジ作用が小さく、氷上制動性能が低いという課題がある。このため、近年のスタッドレスタイヤでは、浅く微細な複数の細浅溝をブロックの表面に備える構成が採用されている。かかる構成では、摩耗初期にて、細浅溝が氷路面とトレッド面との間に介在する水膜を除去することにより、タイヤの氷上制動性能が向上する。かかる構成を採用する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。
特許第3702958号公報
 この発明は、タイヤの氷上制動性能を向上できる空気入りタイヤを提供することを目的とする。
 上記目的を達成するため、この発明にかかる空気入りタイヤは、リブあるいはブロック列である陸部をトレッド面に備える空気入りタイヤにおいて、前記陸部が、複数の細浅溝と、前記細浅溝に連通する複数の凹部とを接地面に備え、前記凹部が、相互に分離した隣り合う複数の前記細浅溝に跨って配置されることを特徴とする。
 この発明にかかる空気入りタイヤでは、凹部が相互に分離した隣り合う複数の細浅溝に跨って配置されるので、細浅溝の容積が部分的に拡大される。すると、タイヤ接地時にて、凹部が水の溜まり場となり、氷路面の水膜が効率的に吸収される。これにより、タイヤの氷上制動性能がさらに向上する利点がある。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。 図3は、図2に記載した空気入りタイヤの陸部を示す説明図である。 図4は、図3に記載したブロックの要部を示す拡大図である。 図5は、図4に記載したブロックの接地面のA-A視断面図である。 図6は、図2に記載した空気入りタイヤの陸部を示す説明図である。 図7は、図2に記載した空気入りタイヤの陸部を示す説明図である。 図8は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図9は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図10は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図11は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図12は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図13は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図14は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図15は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図16は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図17は、図5に記載した空気入りタイヤの変形例を示す説明図である。 図18は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、空気入りタイヤの一例として、乗用車用ラジアルタイヤを示している。
 同図において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
 この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。
 一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を構成する。
 カーカス層13は、1枚のカーカスプライから成る単層構造あるいは複数のカーカスプライを積層して成る多層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13のカーカスプライは、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上55[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ベルトカバー143は、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のコードを圧延加工して構成され、絶対値で0[deg]以上10[deg]以下のベルト角度を有する。また、ベルトカバー143は、交差ベルト141、142のタイヤ径方向外側に積層されて配置される。
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側にそれぞれ配置されて、リムフランジに対する左右のビード部の接触面を構成する。
[トレッドパターン]
 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。同図は、スタッドレスタイヤのトレッドパターンを示している。同図において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
 図2に示すように、空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画された複数の陸部31~33と、これらの陸部31~33に配置された複数のラグ溝41~43とをトレッド部に備える。
 周方向主溝とは、摩耗末期を示すウェアインジケータを有する周方向溝であり、一般に、5.0[mm]以上の溝幅および7.5[mm]以上の溝深さを有する。また、ラグ溝とは、2.0[mm]以上の溝幅および3.0[mm]以上の溝深さを有する横溝をいう。
 溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における左右の溝壁の距離の最大値として測定される。陸部が切欠部や面取部をエッジ部に有する構成では、溝長さ方向を法線方向とする断面視にて、トレッド踏面と溝壁の延長線との交点を基準として、溝幅が測定される。また、溝がタイヤ周方向にジグザグ状あるいは波状に延在する構成では、溝壁の振幅の中心線を基準として、溝幅が測定される。
 溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離の最大値として測定される。また、溝が部分的な凹凸部やサイプを溝底に有する構成では、これらを除外して溝深さが測定される。
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
 例えば、図2の構成では、ストレート形状を有する4本の周方向主溝21、22がタイヤ赤道面CLを中心として左右対称に配置されている。また、4本の周方向主溝21、22により、5列の陸部31~33が区画されている。また、陸部31が、タイヤ赤道面CL上に配置されている。また、各陸部31~33が、タイヤ周方向に所定間隔で配置されて陸部31~33をタイヤ幅方向に貫通する複数のラグ溝41~43を備えている。また、セカンド陸部32が、タイヤ周方向に屈曲しつつ延在する周方向細溝23を備えている。そして、各陸部31~33が、周方向主溝21、22、周方向細溝23およびラグ溝41~43に区画されてブロック列となっている。
 なお、図2の構成では、上記のように、周方向主溝21、22が、ストレート形状を有している。しかし、これに限らず、周方向主溝21、22が、タイヤ周方向に屈曲あるいは湾曲しつつ延在するジグザグ形状あるいは波状形状を有しても良い(図示省略)。
 また、図2の構成では、上記のように、各陸部31~33が、ラグ溝41~43によりタイヤ周方向に分断されてブロック列となっている。しかし、これに限らず、例えば、ラグ溝41~43が陸部31~33の内部で終端するセミクローズド構造を有することにより、陸部31~33がタイヤ周方向に連続するリブであっても良い(図示省略)。
 また、図2の構成では、空気入りタイヤ1が、左右点対称なトレッドパターンを有している。しかし、これに限らず、空気入りタイヤ1が、例えば、左右線対称なトレッドパターン、左右非対称なトレッドパターン、タイヤ回転方向に方向性を有するトレッドパターンを有しても良い(図示省略)。
 また、図2の構成では、空気入りタイヤ1が、タイヤ周方向に延在する周方向主溝21、22を備えている。しかし、これに限らず、空気入りタイヤ1が、周方向主溝21、22に代えて、タイヤ周方向に対して所定角度で傾斜しつつ延在する複数の傾斜主溝を備えても良い。例えば、空気入りタイヤ1が、タイヤ周方向に凸となるV字形状を有すると共にタイヤ幅方向に延在して左右のトレッド端に開口する複数のV字傾斜主溝と、隣り合うV字傾斜主溝を接続する複数のラグ溝と、これらのV字傾斜主溝およびラグ溝に区画された複数の陸部とを備えても良い(図示省略)。
[ブロックのサイプ]
 図3は、図2に記載した空気入りタイヤの陸部を示す説明図である。同図は、ショルダー陸部33を構成する1つのブロック5の平面図を示している。
 図2および図3に示すように、この空気入りタイヤ1では、すべての陸部31~33のブロック5が複数のサイプ6をそれぞれ有する。これらのサイプ6により、陸部31~33のエッジ成分が増加して、タイヤの氷雪上性能が向上する。
 サイプは、陸部に形成された切り込みであり、一般に1.0[mm]未満のサイプ幅および2.0[mm]以上のサイプ深さを有することにより、タイヤ接地時に閉塞する。なお、サイプ深さの上限は、特に限定がないが、一般に主溝の溝深さよりも浅い。
 サイプ幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、陸部の接地面におけるサイプの開口幅の最大値として測定される。
 なお、サイプ6は、両端部にてブロック5の内部で終端するクローズド構造、一方の端部にてブロック5のエッジ部に開口して他方の端部にてブロック5の内部で終端するセミクローズド構造、および、両端部にてブロック5のエッジ部に開口するオープン構造のいずれを有しても良い。また、陸部31~33におけるサイプ6の長さ、枚数および配置構造は、当業者自明の範囲内にて適宜選択できる。また、サイプ6は、タイヤ幅方向、タイヤ周方向、およびこれらに傾斜する方向の任意の方向に延在できる。
 例えば、図3の構成では、ショルダー陸部33が、最外周方向主溝22および複数のラグ溝43(図2参照)に区画されて成る複数のブロック5を備えている。また、1つのブロック5が複数のサイプ6を備えている。また、これらのサイプ6が、タイヤ幅方向に延在するジグザグ形状を有し、また、タイヤ周方向に所定間隔をあけて並列に配置されている。また、タイヤ周方向の最も外側にあるサイプ6が、両端部にてブロック5の内部で終端するクローズド構造を有している。これにより、タイヤ転動時におけるブロック5の踏み込み側および蹴り出し側のエッジ部の剛性が確保されている。また、タイヤ周方向の中央部にあるサイプ6が、一方の端部にて周方向主溝22に開口し、他方の端部にてブロック5の内部で終端するセミクローズド構造を有している。これにより、ブロック5の中央部の剛性が低減されて、ブロックのタイヤ周方向の剛性分布が均一化されている。
[ブロックの細浅溝]
 図4は、図3に記載したブロックの要部を示す拡大図である。図5は、図4に記載したブロックの接地面のA-A視断面図である。これらの図において、図4は、サイプ6、細浅溝7および凹部8の位置関係を示し、図5は、細浅溝7および凹部8の深さ方向の断面図を示している。
 この空気入りタイヤ1では、陸部31~33が、複数の細浅溝7を接地面に備える(図3参照)。かかる構成では、タイヤ接地時にて、細浅溝7が氷路面とトレッド面との間に介在する水膜を吸い取って除去することにより、タイヤの氷上制動性能が向上する。
 細浅溝7は、0.2[mm]以上0.7[mm]以下の溝幅および0.2[mm]以上0.7[mm]以下の溝深さHg(図5参照)を有する。このため、細浅溝7は、サイプ6よりも浅い。また、複数の細浅溝7が、陸部31~33の全面に配置されている。
 例えば、図3の構成では、複数の細浅溝7が、ショルダー陸部33の接地面の全域に渡って配置されている。また、細浅溝7が、直線形状を有し、タイヤ周方向に対して所定の傾斜角θ(図4参照)にて傾斜して配置されている。また、複数の細浅溝7が、相互に所定間隔P(図4参照)をあけつつ並列に配置されている。また、図4に示すように、細浅溝7が、サイプ6と交差しており、サイプ6により長手方向に分断されている。
 なお、図3のように、複数の細浅溝7が長尺形状を有して相互に並列に配置される構成では、細浅溝7の傾斜角θ(図4参照)が、20[deg]≦θ≦80[deg]の範囲にあることが好ましく、40[deg]≦θ≦60[deg]の範囲にあることがより好ましい。また、細浅溝7の配置間隔P(図4参照)が、0.5[mm]≦P≦1.5[mm]の範囲にあることが好ましく、0.7[mm]≦P≦1.2[mm]の範囲にあることがより好ましい。これにより、細浅溝7による水膜除去作用が適正に確保され、また、陸部31~33の接地面積が確保される。なお、細浅溝7の配置密度は、特に限定がないが、上記の配置間隔Pにより制約を受ける。
 細浅溝7の配置間隔Pは、隣り合う細浅溝7、7の溝中心線の距離として定義される。
[ブロックの凹部]
 図2および図3に示すように、この空気入りタイヤ1では、すべての陸部31~33が、複数の凹部8を接地面に備える。かかる構成では、タイヤ接地時にて、凹部8が氷路面とトレッド面との間に生ずる水膜を吸い取り、また、凹部8により陸部31~33のエッジ成分が増加して、タイヤの氷上制動性能が向上する。
 凹部8は、陸部31~33の接地面に形成されたクローズドな窪み(接地面の境界に開口していない窪み。いわゆるディンプル)であり、陸部31~33の接地面にて任意の幾何学的形状を有する。例えば、凹部8が、円形、楕円形、四角形、六角形などの多角形を有し得る。円形あるいは楕円形の凹部8は、陸部31~33の接地面の偏摩耗が小さい点で好ましく、多角形の凹部8は、エッジ成分が大きく氷上制動性能を向上できる点で好ましい。
 また、凹部8の開口面積が、2.5[mm^2]以上10[mm^2]以下の範囲にあることが好ましい。例えば、円形の凹部8であれば、その直径が約1.8[mm]~3.6[mm]の範囲にある。これにより、凹部8の水膜除去性能が確保される。
 凹部8の開口面積は、陸部31~33の接地面における凹部8の開口面積であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
 また、凹部8の深さHd(図5参照)と、細浅溝7の溝深さHgとが、0.5≦Hd/Hg≦1.5の関係を有することが好ましく、0.8≦Hd/Hg≦1.2の関係を有することがより好ましい。すなわち、凹部8の深さHdと細浅溝7の溝深さHgとが略同一である。これにより、陸部31~33の接地面の吸水作用が向上する。また、凹部8が、サイプ(例えば、線状サイプ6や円形サイプ(図示省略))と比較して浅いので、陸部31~33の剛性が適正に確保される。これにより、タイヤの氷上制動性能が確保される。
 また、凹部8の壁角度α(図5参照)が、-85[deg]≦α≦95[deg]の範囲にあることが好ましい。すなわち、凹部8の内壁が陸部31~33の接地面に対して略垂直であることが好ましい。これにより、凹部8のエッジ成分が増加する。
 凹部8の壁角度αは、凹部8の深さ方向の断面視にて、陸部31~33の接地面と凹部8の内壁とのなす角として測定される。
 また、図4に示すように、凹部8は、サイプ6から離間して配置される。すなわち、凹部8とサイプ6とは、陸部31~33の接地面にて相互に異なる位置に配置されて、交差しない。また、凹部8とサイプ6との距離gは、0.2[mm]≦gの範囲にあることが好ましく、0.3[mm]≦gの範囲にあることがより好ましい。これにより、陸部31~33の剛性が適正に確保される。
 また、図4に示すように、凹部8は、細浅溝7に交差して配置されて、細浅溝7に連通する。また、凹部8が、相互に分離した隣り合う複数の細浅溝7、7に跨って配置される。言い換えると、相互に分離した隣り合う複数の細浅溝7、7が、1つの凹部8を貫通して配置される。これにより、隣り合う複数の細浅溝7、7が、凹部8を介して接続されて相互に連通する。また、凹部8が、隣り合う複数の細浅溝7、7の間に介在して、細浅溝7の容積を部分的に拡大する。すると、タイヤ接地時にて、凹部8が水の溜まり場となり、氷路面の水膜が効率的に吸収される。これにより、タイヤの氷上制動性能が向上する。
 相互に分離した複数の細浅溝7とは、サイプ6および凹部8を除外した細浅溝7のみの配置パターンにて、相互に交差することなく延在する複数の細浅溝7をいう。したがって、複数の細浅溝7が相互に交差する配置パターンは、除外される。
 例えば、図3の構成では、直線形状を有する複数の細浅溝7が、タイヤ周方向に対して所定角度で傾斜しつつ所定間隔で陸部33の全面に配置されている。このため、図4に示すように、隣り合う細浅溝7、7が、相互に平行に配置されて一方向に併走している。また、凹部8が、隣り合う2本の細浅溝7、7に跨って配置されて、これらの細浅溝7、7を接続している。言い換えると、併走する2本の細浅溝7、7が、1つの凹部8を一方向に貫通している。なお、上記に限らず、3本以上の細浅溝7が、1つの凹部8を貫通しても良い(図示省略)。
 また、図3の構成では、陸部33が、細浅溝7を区画する複数のサイプ6を接地面に備えている。また、サイプ6により区画された1つの細浅溝7の部分が、複数の凹部8を貫通することなく延在している。すなわち、複数の凹部8が、サイプ6により区画された1つの細浅溝7の部分に対して重複して配置されないように、分散して配置されている。このため、1つの細浅溝7の部分には、最大1つの凹部8のみが配置される。
 また、図3に示すように、凹部8は、細浅溝7と比較して、疎に配置される。具体的には、陸部31~33の連続した接地面の全域における凹部8の配置密度Daが、0.8[個/cm^2]≦Da≦4.0[個/cm^2]の範囲にあることが好ましく、1.0[個/cm^2]≦Da≦3.0[個/cm^2]の範囲にあることがより好ましい。これにより、陸部31~33の接地面の面積が確保される。
 凹部8の配置密度Daは、陸部31~33の連続した接地面の面積に対する凹部8の総数として定義される。例えば、陸部がタイヤ周方向に連続するリブである場合(図示省略)には、1つのリブ全体の接地面積に対する凹部8の総数が、上記の配置密度Daとなる。また、陸部がブロックである場合(図2および図3参照)には、1つのブロック5の接地面積に対する凹部8の総数が、上記の配置密度Daとなる。
 陸部の接地面積は、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面にて、測定される。
 また、図3の構成では、ショルダー陸部33のブロック5が、矩形状の接地面を有している。また、複数のサイプ6が、タイヤ周方向に並列に配置されてブロック5をタイヤ周方向に複数の領域に区画している。また、すべての領域が、少なくとも1つの凹部8を有している。また、ブロック5のタイヤ周方向の中央部では、ブロック5の周方向主溝22側の端部に凹部8を有する領域と、前記端部に凹部8を有さない領域とが、タイヤ周方向に交互に配置されている。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、ブロック5の周方向主溝22側の角部にそれぞれ配置されている。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、タイヤ幅方向の中央領域に配置されていない(角部に配置されている)。
 陸部31~33の中央領域は、陸部31~33の連続した接地面のタイヤ幅方向の中央領域50[%]の領域として定義される。また、陸部31~33の端部領域は、陸部31~33の連続した接地面のタイヤ幅方向の左右の端部25[%]の各領域として定義される。また、陸部31~33に形成された部分的な切欠部311(後述する図7参照)を除外して、中央領域および端部領域が定義される。また、例えば、陸部がタイヤ周方向に連続するリブである場合(図示省略)には、1つのリブ全体の接地面について中央領域および端部領域が定義される。また、陸部がブロックである場合(図2および図3参照)には、1つのブロック5の接地面について中央領域および端部領域が定義される。また、凹部8の中心が上記の中央領域あるいは端部領域にあれば、凹部8が上記の中央領域あるいは端部領域に配置されているといえる。
 陸部31~33の角部は、陸部の接地面の角部を含む5[mm]四方の領域として定義される。陸部の角部は、主溝およびラグ溝により区画された陸部の部分のみならず、陸部に形成された切欠部により区画された陸部の部分を含む。また、凹部8の中心が上記の角部にあれば、凹部8が上記の角部に配置されているといえる。
 陸部の接地面は、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を加えたときのタイヤと平板との接触面にて定義される。
 また、図3の構成では、タイヤ周方向に隣り合う任意の3つの区間が、タイヤ幅方向の端部領域に凹部8を有する区間と、タイヤ幅方向の中央領域に凹部8を有する区間とをそれぞれ含んでいる。これにより、凹部8が陸部31~33の端部領域および中央領域に分散して配置されている。
 ブロック5のタイヤ周方向の両端部の区間とは、複数のサイプ6によりタイヤ周方向に区画されたブロック5の複数の区間のうち、タイヤ周方向の両端部に位置する一対の区間をいう。また、ブロック5のタイヤ周方向の中央部の区間とは、前記タイヤ周方向の両端部の区間を除いた区間をいう。
 ブロック5のタイヤ幅方向の端部領域、特に、周方向主溝22側の端部領域では、タイヤ接地時にてブロック5の中央部よりも大きな接地圧が作用する。このため、氷路面の走行時にて接地圧により路面の氷が溶け易く、水膜が発生し易い。したがって、凹部8がブロック5の端部および角部に配置されることにより、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する。
 また、図3の構成では、サイプ6が、ラグ溝43に平行ないしは若干傾斜して配置され、また、タイヤ接地端Tからタイヤ幅方向内側の領域にのみ配置されている。また、細浅溝7が、タイヤ接地端Tを越えて陸部33のタイヤ幅方向外側の領域まで延在している。また、凹部8が、タイヤ接地端Tからタイヤ幅方向内側の領域にのみ配置されている。
 タイヤ接地端Tとは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を加えたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置をいう。
 なお、上記の構成では、少なくとも一部の凹部8が、タイヤ成形金型(図示省略)のベント孔に対応する位置に配置されることが好ましい。すなわち、タイヤ加硫成形工程では、グリーンタイヤをタイヤ成形金型に押圧するために、タイヤ成形金型内の空気を外部に排出する必要がある。このため、タイヤ成形金型が、陸部31~33の接地面を成形する金型面に、複数のベント装置(図示省略)を有している。また、ある種のベント装置は、加硫成形後の陸部31~33の接地面に、ベント穴(小さな窪み)を形成する。そこで、このベント穴を上記の凹部8として用いることにより、ベント穴を有効に利用し、また、陸部31~33の接地面における無用な窪みを低減して陸部31~33の接地面積を適正に確保できる。
 図6および図7は、図2に記載した空気入りタイヤの陸部を示す説明図である。これらの図において、図6は、セカンド陸部32を構成する1つのブロック5の平面図を示している。また、図7は、センター陸部31を構成する1つのブロック5の平面図を示している。
 図2の構成では、セカンド陸部32が、1本の周方向細溝23によりタイヤ幅方向に分断され、さらに複数のラグ溝42によりタイヤ周方向に分断されて、複数のブロック5が区画されている。また、セカンド陸部32のタイヤ幅方向内側の領域には、タイヤ周方向に長尺なブロック5が形成され、タイヤ幅方向外側の領域には、短尺なブロック5が形成されている。
 また、図6に示すように、セカンド陸部32のタイヤ幅方向外側のブロック5が、矩形状の接地面を有している。また、複数のサイプ6が、タイヤ周方向に並列に配置されてブロック5を複数の区間に区画している。また、すべての区間が、少なくとも1つの凹部8を有している。また、ブロック5のタイヤ周方向の中央部では、ブロック5のタイヤ幅方向の端部領域にのみ凹部8を有する区間と、タイヤ幅方向の中央領域にのみ凹部8を有する区間とが、タイヤ周方向に交互に配置されている。また、凹部8が、ブロック5の4つの角部にそれぞれ配置されている。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、タイヤ幅方向の中央領域に配置されていない。
 一般に、短尺なブロック5を有する陸部32では、ブロック5の剛性が低いため、車両制動時にて、ブロック5の倒れ込み量が大きい。特に、ブロック5が複数のサイプ6を有する構成では、その傾向が顕著となり、タイヤの氷上制動性能が低下し易い。そこで、かかる構成では、ブロック5が、サイプ6で区画されたブロック5のすべての区間に凹部8を有することにより、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が確保される。
 また、図2の構成では、センター陸部31が、複数のラグ溝41によりタイヤ周方向に分断されて、複数のブロック5が区画されている。また、ブロック5が、セカンド陸部32のラグ溝42の延長線上に、切欠部311を有している。また、ブロック5が、矩形状の接地面を有している。
 また、図7に示すように、複数のサイプ6が、タイヤ周方向に並列に配置されてブロック5を複数の区間に区画している。また、ブロック5が、凹部8を有さない区間を有している。また、任意の隣り合う3つの区間が、凹部8を有さない区間を含んでいる。例えば、図7の構成では、ブロック5のタイヤ幅方向の両端部にのみ凹部8を有する区間と、凹部8を有さない区間とが、タイヤ周方向に交互に配置されている。また、凹部8が、ブロック5の4つの角部にそれぞれ配置されている。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、タイヤ幅方向の中央領域に配置されていない。また、切欠部311に隣接する区間が、凹部8を有している。
 一般に、タイヤ赤道面CL上にある陸部31(図2参照)、あるいは、タイヤ赤道面CLを挟んで隣り合う陸部(図示省略)は、センター陸部と呼ばれる。かかるセンター陸部31は、タイヤの操縦安定性能を確保するために、高い剛性を有することが好ましい。そこで、図7のように、センター陸部31のブロック5が凹部8を有さない区間を部分的に有することにより、ブロック5の剛性が確保されて、タイヤの操縦安定性能が確保される。
[変形例]
 図8~図14は、図4に記載した空気入りタイヤの変形例を示す説明図である。これらの図は、サイプ6、細浅溝7および凹部8の位置関係を示している。
 図4の構成では、細浅溝7が、タイヤ周方向に対して所定角度θで傾斜して配置されている。かかる構成では、傾斜した細浅溝7により、タイヤ周方向およびタイヤ幅方向の双方へのエッジ成分が生じる点で好ましい。
 しかし、これに限らず、細浅溝7が、タイヤ周方向に平行に延在しても良いし(図8参照)、タイヤ幅方向に平行に延在しても良い(図9参照)。
 また、図4の構成では、細浅溝7が、直線形状を有している。かかる構成では、細浅溝7の形成が容易な点で好ましい。
 しかし、これに限らず、細浅溝7が、ジグザグ形状を有しても良いし(図10参照)、波状形状を有しても良い(図11参照)。このとき、図10および図11のように、複数の細浅溝7が相互に位相を揃えて配置されても良いし、図12のように、相互に位相をずらして配置されても良い。また、図13に示すように、細浅溝7が、屈曲あるいは湾曲した短尺構造を有しても良い。このとき、短尺な細浅溝7が、相互にオフセットしつつ連なって配列されても良いし(図13参照)、マトリクス状に整列して配置されても良い(図示省略)。また、細浅溝7が、円弧形状を有しても良いし(図14参照)、S字形状などの湾曲形状を有しても良い(図示省略)。
 また、図10~図14においても、図4、図8および図9の構成と同様に、細浅溝7が、タイヤ周方向に対して所定角度θで傾斜しても良いし、タイヤ周方向に平行に延在しても良いし、タイヤ幅方向に平行に延在しても良い。なお、細浅溝7がジグザグ形状あるいは波状形状を有する場合には、細浅溝7の傾斜角θがジグザグ形状あるいは波状形状の振幅の中心を基準として測定される。
 図15および図16は、図4に記載した空気入りタイヤの変形例を示す説明図である。これらの図は、サイプ6、細浅溝7および凹部8の位置関係を示している。
 図4の構成では、細浅溝7が、所定方向に延在する線状構造を有している。かかる構成では、細浅溝7が、ブロック5の接地面の全域に渡って連続的に延在できる点で好ましい。
 しかし、これに限らず、図15および図16に示すように、細浅溝7が、環状構造を有し、相互に所定間隔をあけて配置されても良い。例えば、細浅溝7が、円形状(図15)あるいは楕円形状(図示省略)、矩形状(図16)、三角形状、六角形状などの多角形状(図示省略)を有し得る。また、かかる構成においても、凹部8が、相互に分離した隣り合う複数の細浅溝7、7に跨って配置される。
 図17は、図5に記載した空気入りタイヤの変形例を示す説明図である。同図は、細浅溝7a、7bおよび凹部8の深さ方向の断面図を示している。
 図5の構成では、すべての細浅溝7が、同一の溝深さHgを有している。
 これに対して、図17の構成では、一部の細浅溝7bの溝深さが、基準となる細浅溝7aの溝深さHgよりも浅く設定される。かかる構成では、タイヤの摩耗進行により、浅い溝深さを有する細浅溝7bが先に消滅し、その後に深い溝深さHgを有する細浅溝7aが消滅する。これにより、すべての細浅溝7が同時に消滅することによるブロック5の性状変化を抑制できる。
[効果]
 以上説明したように、この空気入りタイヤ1は、リブあるいはブロック列である陸部31~33をトレッド面に備える(図2参照)。また、陸部31~33が、複数の細浅溝7と、細浅溝7に連通する複数の凹部8とを接地面に備える(例えば、図3参照)。また、凹部8が、相互に分離した隣り合う複数の細浅溝7、7に跨って配置される(図4参照)。
 かかる構成では、(1)陸部31~33が凹部8を接地面に備えるので、陸部31~33のエッジ成分が増加して、タイヤの氷上制動性能が向上する利点がある。また、(2)凹部8が相互に分離した隣り合う複数の細浅溝7、7に跨って配置されるので、細浅溝7の容積が部分的に拡大される。これにより、タイヤ接地時にて、凹部8が水の溜まり場となり、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する利点がある。また、(3)凹部8が、サイプ(例えば、線状サイプ6や円形サイプ(図示省略))と比較して浅いので、陸部31~33の剛性が適正に確保される。これにより、タイヤの氷上制動性能が確保される利点がある。
 また、この空気入りタイヤ1では、陸部31~33の連続した接地面(図3では、ブロック5の接地面)の全域における凹部8の配置密度Daが、0.8[個/cm^2]≦Da≦4.0[個/cm^2]の範囲にある。これにより、凹部8の配置密度が適正化される利点がある。すなわち、0.8[個/cm^2]≦Daであることにより、凹部8の配置数が確保されて、凹部8に水膜の除去作用が適正に確保される。また、Da≦4.0[個/cm^2]であることにより、陸部31~33の接地面積が適正に確保される。
 また、この空気入りタイヤ1では、陸部31~33が、複数のサイプ6を接地面に備え、且つ、凹部8が、サイプ6から離間して配置される(例えば、図3参照)。かかる構成では、凹部8とサイプ6とが相互に分離して配置されるので、陸部31~33の剛性が確保されて、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、細浅溝7を区画する複数のサイプ6を接地面に備え、且つ、サイプ6により区画された1つの細浅溝7の部分が、複数の凹部8を貫通することなく延在する(図4参照)。すなわち、連続する1つの細浅溝7の部分には、最大で1つの凹部8が配置される。これにより、凹部8が過剰に配置されることに起因する氷上制動性能の悪化を抑制できる利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、並列に配置されて陸部32をタイヤ周方向に複数の区間に区画する(例えば、図6参照)。また、タイヤ幅方向の中央領域にのみ凹部8を有する前記区間と、タイヤ幅方向の端部領域にのみ凹部8を有する前記区間とが、タイヤ周方向に交互に配置される。かかる構成では、凹部8が分散して配置されるので、凹部8による水膜の吸収作用を高めつつ陸部の剛性を確保できる利点がある。また、連続する区間が凹部をそれぞれ有するので、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する。また、隣り合う任意の一対の前記区間の少なくとも一方が、タイヤ幅方向の端部領域に凹部8を有する(図3、図6および図7参照)。かかる構成では、接地圧が高く水膜が発生し易いタイヤ幅方向の端部領域に、凹部8が配置される。これにより、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する。また、タイヤ周方向に隣り合う任意の3つの前記区間が、タイヤ幅方向の端部領域に凹部8を有する前記区間と、タイヤ幅方向の中央領域に凹部8を有する前記区間とをそれぞれ含む(図3および図6参照)。これにより、凹部8が陸部31~33の端部領域および中央領域に分散して配置される利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する。また、タイヤ周方向に隣り合う任意の3つの前記区間が、凹部8を有する区間と、凹部8を有さない前記区間とをそれぞれ含む(図7参照)。かかる構成では、凹部8を有さない区間が配置されることにより、凹部8が分散して配置される。これにより、陸部31~33の接地面積が確保されて、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、複数のブロック5を有するブロック列であり、ブロック5の角部に凹部8を有する(図3、図6および図7参照)。かかる構成では、接地圧が高く水膜が発生し易いブロック5の角部に、凹部8が配置される。これにより、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、複数のブロック5を有するブロック列であり、ブロック5のタイヤ周方向の端部かつタイヤ幅方向の中央領域には凹部8を有さない(図3、図6および図7参照)。これにより、ブロックの踏み込み側および蹴り出し側の端部の接地面積および剛性が確保されて、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、凹部8の開口面積が、2.5[mm^2]以上10[mm^2]以下の範囲にある。これにより、凹部8の開口面積が適正化される利点がある。すなわち、凹部8の開口面積が2.5[mm^2]以上であることにより、凹部8のエッジ作用および吸水性が確保される。また、凹部8の開口面積が10[mm^2]以下であることにより、陸部31~33の接地面積および剛性が確保される。
 また、この空気入りタイヤ1では、凹部8が、陸部31~33の接地面にて円形状(図4参照)あるいは楕円形状(図示省略)を有する。これにより、凹部8が多角形を有する構成(図示省略)と比較して、陸部31~33の接地面の偏摩耗を抑制できる利点がある。
 また、この空気入りタイヤ1では、凹部8の壁角度αが、-85[deg]≦α≦95[deg]の範囲にある(図5参照)。これにより、凹部8のエッジ作用が向上する利点がある。
 また、この空気入りタイヤ1では、凹部8の深さHdと、細浅溝7の溝深さHgとが、0.5≦Hd/Hg≦1.5の関係を有する(図5参照)。これにより、凹部8の深さHdが適正化される利点がある。すなわち、0.5≦Hd/Hgであることにより、凹部8の吸水作用が確保される。また、Hd/Hg≦1.5であることにより、凹部8が細浅溝7に対して深過ぎることに起因する陸部31~33の剛性低下を抑制できる。
 また、この空気入りタイヤ1では、少なくとも一部の凹部8が、タイヤ成形金型のベント穴(図示省略)に対応する位置に配置される。ベント穴を有効に利用し、また、陸部31~33の接地面における無用な窪みを低減して陸部31~33の接地面積を適正に確保できる利点がある。
 また、この空気入りタイヤ1では、複数の細浅溝7が、長手形状を有すると共に相互に並列に配置される(図4、図8~図14参照)。かかる構成では、細浅溝7が長手形状を有することにより、細浅溝7に吸収された水膜を細浅溝7の長手方向にガイドして排出できる。また、凹部8がかかる長手形状を有する複数の細浅溝7に跨って配置されるので、凹部8が吸収された水膜の溜まり場となり、陸部31~33の吸水性が向上する。これらにより、タイヤの氷上制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、複数の細浅溝7が、環状形状を有すると共に相互に分離して配置される(図15および図16参照)。かかる構成では、細浅溝7が陸部31~33を貫通する構成と比較して、陸部31~33の剛性が高い。これにより、タイヤの氷上制動性能が向上する利点がある。
 図18は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
 この性能試験では、複数種類の試験タイヤについて、氷上制動性能に関する評価が行われた。また、タイヤサイズ195/65R15の試験タイヤがJATMA規定の適用リムに組み付けられ、この試験タイヤに230[kPa]の空気圧およびJATMA規定の最大負荷が付与される。また、試験タイヤが、試験車両である排気量1600[cc]かつFF(Front engine Front drive)方式のセダンに装着される。
 氷上制動性能に関する評価では、試験車両が所定の氷路面を走行し、走行速度40[km/h]からの制動距離が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。
 実施例1~8の試験タイヤは、図1および図2の構成を備え、陸部31~33のブロック5がサイプ6、細浅溝7および凹部8をそれぞれ有する。また、図4に示すように、直線状の細浅溝7がタイヤ周方向に傾斜しつつ平行に配置されてブロック5を貫通する。また、実施例1~3では、凹部8が、ブロック5のタイヤ幅方向の端部領域にのみ配置され(例えば、図7参照)、実施例4~8では、凹部8が、ブロック5の全域に配置される(例えば、図3および図6参照)。また、細浅溝7の溝幅および溝深さが、0.3[mm]である。
 従来例の試験タイヤでは、実施例2の構成において、ブロック5がサイプ6および細浅溝7のみを有し、凹部8を有していない。
 試験結果に示すように、実施例1~8の試験タイヤでは、タイヤの氷上制動性能が向上することが分かる。
 1:空気入りタイヤ、21、22:周方向主溝、23:周方向細溝、31~33:陸部、311:切欠部、41~43:ラグ溝、5:ブロック、6:サイプ、7:細浅溝、8:凹部、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142、:交差ベルト、143:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム

Claims (15)

  1.  リブあるいはブロック列である陸部をトレッド面に備える空気入りタイヤにおいて、
     前記陸部が、複数の細浅溝と、前記細浅溝に連通する複数の凹部とを接地面に備え、
     前記凹部が、相互に分離した隣り合う複数の前記細浅溝に跨って配置されることを特徴とする空気入りタイヤ。
  2.  前記陸部の連続した接地面の全域における前記凹部の配置密度Daが、0.8[個/cm^2]≦Da≦4.0[個/cm^2]の範囲にある請求項1に記載の空気入りタイヤ。
  3.  前記陸部が、複数のサイプを接地面に備え、且つ、前記凹部が、前記サイプから離間して配置される請求項1または2に記載の空気入りタイヤ。
  4.  前記陸部が、前記細浅溝を区画する複数のサイプを接地面に備え、且つ、前記サイプにより区画された1つの前記細浅溝の部分が、2以上の前記凹部を貫通することなく延在する請求項1~3のいずれか一つに記載の空気入りタイヤ。
  5.  前記複数のサイプが、並列に配置されて前記陸部をタイヤ周方向に複数の区間に区画し、且つ、タイヤ幅方向の中央領域にのみ前記凹部を有する前記区間と、タイヤ幅方向の端部領域にのみ前記凹部を有する前記区間とが、タイヤ周方向に交互に配置される請求項1~4のいずれか一つに記載の空気入りタイヤ。
  6.  前記複数のサイプが、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画し、且つ、隣り合う任意の一対の前記区間の少なくとも一方が、タイヤ幅方向の端部領域に前記凹部を有する請求項1~5のいずれか一つに記載の空気入りタイヤ。
  7.  前記複数のサイプが、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画し、且つ、タイヤ周方向に隣り合う任意の3つの前記区間が、タイヤ幅方向の端部領域に前記凹部を有する前記区間と、タイヤ幅方向の中央領域に前記凹部を有する前記区間とをそれぞれ含む請求項1~6のいずれか一つに記載の空気入りタイヤ。
  8.  前記複数のサイプが、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画し、且つ、タイヤ周方向に隣り合う任意の3つの前記区間が、前記凹部を有する前記区間と、前記凹部を有さない前記区間とをそれぞれ含む請求項1~7のいずれか一つに記載の空気入りタイヤ。
  9.  前記陸部が、複数のブロックを有するブロック列であり、前記ブロックの角部に前記凹部を有する請求項1~8のいずれか一つに記載の空気入りタイヤ。
  10.  前記陸部が、複数のブロックを有するブロック列であり、前記ブロックのタイヤ周方向の端部かつタイヤ幅方向の中央領域には前記凹部を有さない請求項1~9のいずれか一つに記載の空気入りタイヤ。
  11.  前記凹部の開口面積が、2.5[mm^2]以上10[mm^2]以下の範囲にある請求項1~10のいずれか一つに記載の空気入りタイヤ。
  12.  前記凹部が、前記陸部の接地面にて円形状あるいは楕円形状を有する請求項1~11のいずれか一つに記載の空気入りタイヤ。
  13.  前記凹部の壁角度αが、-85[deg]≦α≦95[deg]の範囲にある請求項1~12のいずれか一つに記載の空気入りタイヤ。
  14.  前記凹部の深さHdと、前記細浅溝の溝深さHgとが、0.5≦Hd/Hg≦1.5の関係を有する請求項1~13のいずれか一つに記載の空気入りタイヤ。
  15.  少なくとも一部の前記凹部が、タイヤ成形金型のベント穴に対応する位置に配置される請求項1~14のいずれか一つに記載の空気入りタイヤ。
PCT/JP2015/084037 2014-12-03 2015-12-03 空気入りタイヤ WO2016088843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580062268.0A CN107107664A (zh) 2014-12-03 2015-12-03 充气轮胎
US15/527,696 US20190084351A1 (en) 2014-12-03 2015-12-03 Pneumatic Tire
EP15865803.9A EP3228479A4 (en) 2014-12-03 2015-12-03 Pneumatic tire
RU2017122584A RU2017122584A (ru) 2014-12-03 2015-12-03 Пневматическая шина

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014245322A JP6631003B2 (ja) 2014-12-03 2014-12-03 空気入りタイヤ
JP2014-245322 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016088843A1 true WO2016088843A1 (ja) 2016-06-09

Family

ID=56091783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084037 WO2016088843A1 (ja) 2014-12-03 2015-12-03 空気入りタイヤ

Country Status (6)

Country Link
US (1) US20190084351A1 (ja)
EP (1) EP3228479A4 (ja)
JP (1) JP6631003B2 (ja)
CN (1) CN107107664A (ja)
RU (1) RU2017122584A (ja)
WO (1) WO2016088843A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109421436A (zh) * 2017-08-28 2019-03-05 东洋橡胶工业株式会社 充气轮胎
US11491822B2 (en) * 2016-09-02 2022-11-08 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224365A1 (de) * 2016-12-07 2018-06-07 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP7225490B2 (ja) * 2019-02-15 2023-02-21 Toyo Tire株式会社 空気入りタイヤ
JP7189800B2 (ja) 2019-02-20 2022-12-14 Toyo Tire株式会社 空気入りタイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186633A (ja) * 1993-11-22 1995-07-25 Bridgestone Corp 空気入りタイヤ
JP2005186649A (ja) * 2003-12-24 2005-07-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006151225A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 空気入りタイヤ
JP2009274726A (ja) * 2009-08-26 2009-11-26 Bridgestone Corp 空気入りタイヤ
JP2011088544A (ja) * 2009-10-22 2011-05-06 Bridgestone Corp タイヤ
JP2013256153A (ja) * 2012-06-11 2013-12-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法
JP2014094631A (ja) * 2012-11-08 2014-05-22 Bridgestone Corp タイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332810A (ja) * 1995-06-07 1996-12-17 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤ
EP2014486A2 (en) * 2002-07-05 2009-01-14 The Yokohama Rubber Co., Ltd. Pneumatic tire for ice-bound or snow-covered road
JP2007015621A (ja) * 2005-07-08 2007-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びタイヤ用モールド
JP4925798B2 (ja) * 2006-11-28 2012-05-09 株式会社ブリヂストン 空気入りタイヤ
JP5184116B2 (ja) * 2008-02-04 2013-04-17 株式会社ブリヂストン スタッドレスタイヤ
JP5375376B2 (ja) * 2009-07-03 2013-12-25 横浜ゴム株式会社 空気入りタイヤ
JP5509875B2 (ja) * 2010-01-25 2014-06-04 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186633A (ja) * 1993-11-22 1995-07-25 Bridgestone Corp 空気入りタイヤ
JP2005186649A (ja) * 2003-12-24 2005-07-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006151225A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 空気入りタイヤ
JP2009274726A (ja) * 2009-08-26 2009-11-26 Bridgestone Corp 空気入りタイヤ
JP2011088544A (ja) * 2009-10-22 2011-05-06 Bridgestone Corp タイヤ
JP2013256153A (ja) * 2012-06-11 2013-12-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法
JP2014094631A (ja) * 2012-11-08 2014-05-22 Bridgestone Corp タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228479A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491822B2 (en) * 2016-09-02 2022-11-08 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN109421436A (zh) * 2017-08-28 2019-03-05 东洋橡胶工业株式会社 充气轮胎

Also Published As

Publication number Publication date
CN107107664A (zh) 2017-08-29
US20190084351A1 (en) 2019-03-21
JP2016107726A (ja) 2016-06-20
RU2017122584A (ru) 2019-01-10
JP6631003B2 (ja) 2020-01-15
EP3228479A4 (en) 2018-06-13
EP3228479A1 (en) 2017-10-11
RU2017122584A3 (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6075425B2 (ja) 空気入りタイヤ
WO2016088854A1 (ja) 空気入りタイヤ
JP6834119B2 (ja) 空気入りタイヤ
WO2016088843A1 (ja) 空気入りタイヤ
WO2016088856A1 (ja) 空気入りタイヤ
WO2018225501A1 (ja) 空気入りタイヤ
JP2016147655A (ja) 空気入りタイヤ
US11142025B2 (en) Pneumatic tire
JP2016037083A (ja) 空気入りタイヤ
JP2015178337A (ja) 空気入りタイヤ
JP2017007635A (ja) 空気入りタイヤ
JP7059782B2 (ja) 空気入りタイヤ
JP2019026016A (ja) 空気入りタイヤ
JP2016147656A (ja) 空気入りタイヤ
JP2019026015A (ja) 空気入りタイヤ
JP2018203184A (ja) 空気入りタイヤ
WO2016088855A1 (ja) 空気入りタイヤ
WO2016088853A1 (ja) 空気入りタイヤ
JP2017197148A (ja) 空気入りタイヤ
JP2016147653A (ja) 空気入りタイヤ
JP2016147654A (ja) 空気入りタイヤ
JP2018203185A (ja) 空気入りタイヤ
JP2017197112A (ja) 空気入りタイヤ
JP2017007634A (ja) 空気入りタイヤ
JP2017197121A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865803

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015865803

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017122584

Country of ref document: RU

Kind code of ref document: A