WO2016088853A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016088853A1
WO2016088853A1 PCT/JP2015/084057 JP2015084057W WO2016088853A1 WO 2016088853 A1 WO2016088853 A1 WO 2016088853A1 JP 2015084057 W JP2015084057 W JP 2015084057W WO 2016088853 A1 WO2016088853 A1 WO 2016088853A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
region
recess
width direction
opening area
Prior art date
Application number
PCT/JP2015/084057
Other languages
English (en)
French (fr)
Inventor
浩史 古澤
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015175611A external-priority patent/JP6834119B2/ja
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP15865834.4A priority Critical patent/EP3228480A4/en
Priority to RU2017122527A priority patent/RU2017122527A/ru
Priority to US15/527,000 priority patent/US20170368884A1/en
Priority to CN201580063045.6A priority patent/CN107000488A/zh
Publication of WO2016088853A1 publication Critical patent/WO2016088853A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve the performance of the tire on snow.
  • the present invention has been made in view of the above, and an object thereof is to provide a pneumatic tire that can improve the performance of the tire on snow.
  • a pneumatic tire according to the present invention is a pneumatic tire provided with a land portion having ribs or a plurality of blocks on a tread surface, wherein the land portion includes a plurality of shallow grooves and a plurality of recesses.
  • a region of the center 50 [%] in the tire width direction of the continuous contact surface in the land portion is defined as a center region, and the left and right end portions 25 [%] in the tire width direction Is defined as an end region, the opening area ratio Sc of the recess in the central region in the tire width direction of one of the continuous contact surfaces, and the recess in the end region in the tire width direction
  • the opening area ratio Se has a relationship of Se ⁇ Sc.
  • the pneumatic tire according to the present invention is a pneumatic tire provided with a land portion having a plurality of blocks on a tread surface, the land portion including a plurality of shallow grooves and a plurality of concave portions on a ground contact surface, Further, when the region of the central portion 50 [%] in the tire circumferential direction of the continuous contact surface is defined as the central region, and the region of the end portion 25 [%] in the tire circumferential direction is defined as the end region.
  • An opening area ratio Sc ′ of the recess in the central region in the tire circumferential direction of one continuous ground contact surface and an opening area ratio Se ′ in the recess in the end region in the tire circumferential direction are Se ′. ⁇ Sc ′ relationship.
  • the opening area ratio of the recess is set large in the center region in the tire width direction or the tire circumferential direction, the contact area in the center region decreases, the contact pressure increases, The snow column shearing force due to the recess increases.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 2.
  • FIG. 4 is an enlarged view showing a main part of the block shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line AA of the ground contact surface of the block illustrated in FIG.
  • FIG. 6 is an explanatory diagram showing a land portion of the pneumatic tire depicted in FIG. 2.
  • FIG. 7 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 2.
  • FIG. 8 is an explanatory view showing a modification of the pneumatic tire shown in FIG.
  • FIG. 9 is an explanatory diagram showing a modified example of the pneumatic tire depicted in FIG. 4.
  • FIG. 10 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 4.
  • FIG. 11 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 12 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 4.
  • FIG. 13 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 14 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 15 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 4.
  • FIG. 16 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 17 is an explanatory diagram showing a modification of the pneumatic tire depicted in FIG.
  • FIG. 18 is an explanatory view showing a modified example of the pneumatic tire depicted in FIG. 4.
  • FIG. 19 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 20 is an explanatory diagram illustrating a modification of the pneumatic tire depicted in FIG. 4.
  • FIG. 21 is an explanatory view showing a modified example of the pneumatic tire depicted in FIG. 4.
  • FIG. 22 is an explanatory view showing a modified example of the pneumatic tire depicted in FIG. 2.
  • FIG. 23 is an explanatory diagram showing a modified example of the pneumatic tire depicted in FIG. 2.
  • FIG. 24 is an explanatory view showing a modified example of the pneumatic tire depicted in FIG. 2.
  • FIG. 25 is an explanatory view showing a modified example of the pneumatic tire depicted in FIG. 2.
  • FIG. 26 is an explanatory diagram showing a land portion of the pneumatic tire depicted in FIG. 25.
  • FIG. 27 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 25.
  • FIG. 28 is an explanatory diagram showing a land portion of the pneumatic tire depicted in FIG. 25.
  • FIG. 29 is an explanatory view showing a modified example of the pneumatic tire depicted in FIG. 25.
  • FIG. 30 is an explanatory diagram showing a modification of the pneumatic tire depicted in FIG.
  • FIG. 31 is an explanatory diagram showing a modified example of the pneumatic tire depicted in FIG. 25.
  • FIG. 32 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 33 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows a cross-sectional view of one side region in the tire radial direction. The figure shows a radial tire for a passenger car as an example of a pneumatic tire.
  • the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown).
  • Reference sign CL denotes a tire equator plane, which is a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis.
  • the tire width direction means a direction parallel to the tire rotation axis
  • the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 are disposed on the outer circumference in the tire radial direction of the pair of bead cores 11 and 11 to constitute a bead portion.
  • the carcass layer 13 has a single layer structure composed of a single carcass ply or a multilayer structure formed by laminating a plurality of carcass plies, and is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Constitute. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass ply of the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber and rolling it, and has an absolute value of 80 It has a carcass angle (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction) of [deg] or more and 95 [deg] or less.
  • an organic fiber material for example, aramid, nylon, polyester, rayon, etc.
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 20 [deg] or more and 55 [deg] or less.
  • the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure).
  • the belt cover 143 is formed by rolling a plurality of cords made of steel or organic fiber material covered with a coat rubber, and has a belt angle of 0 [deg] or more and 10 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pair of rim cushion rubbers 17, 17 are respectively disposed on the inner side in the tire radial direction of the wound portions of the left and right bead cores 11, 11 and the carcass layer 13, and constitute the contact surfaces of the left and right bead portions with respect to the rim flange.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • the figure shows a tread pattern of a studless tire.
  • the tire circumferential direction refers to the direction around the tire rotation axis.
  • Reference symbol T denotes a tire ground contact end.
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 to 22 partitioned by the circumferential main grooves 21 and 22. 33 and a plurality of lug grooves 41 to 43 arranged in the land portions 31 to 33 are provided in the tread portion.
  • the circumferential main groove is a circumferential groove having a wear indicator indicating the end of wear, and generally has a groove width of 5.0 [mm] or more and a groove depth of 7.5 [mm] or more.
  • the lug groove means a lateral groove having a groove width of 2.0 [mm] or more and a groove depth of 3.0 [mm] or more.
  • the groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the groove width is based on the intersection of the tread surface and the extension line of the groove wall in a cross-sectional view in which the groove length direction is a normal direction. Measured.
  • the groove width is measured with reference to the center line of the amplitude of the groove wall.
  • the groove depth is measured as the maximum value of the distance from the tread surface to the groove bottom in an unloaded state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a groove
  • Specified rim means “Applicable rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load is the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the four circumferential main grooves 21 and 22 having a straight shape are arranged symmetrically about the tire equatorial plane CL.
  • five rows of land portions 31 to 33 are defined by the four circumferential main grooves 21 and 22.
  • the land portion 31 is disposed on the tire equator plane CL.
  • the land portions 31 to 33 include a plurality of lug grooves 41 to 43 that are arranged at predetermined intervals in the tire circumferential direction and penetrate the land portions 31 to 33 in the tire width direction.
  • the second land portion 32 includes a circumferential narrow groove 23 that extends while being bent in the tire circumferential direction.
  • the land portions 31 to 33 are partitioned into circumferential main grooves 21 and 22, circumferential narrow grooves 23, and lug grooves 41 to 43 to form a block row.
  • the circumferential main grooves 21 and 22 have a straight shape as described above.
  • the present invention is not limited to this, and the circumferential main grooves 21 and 22 may have a zigzag shape or a wavy shape extending while being bent or curved in the tire circumferential direction (not shown).
  • the land portions 31 to 33 are divided in the tire circumferential direction by the lug grooves 41 to 43 to form a block row.
  • the present invention is not limited to this.
  • the land portions 31 to 33 may be ribs continuous in the tire circumferential direction. Good (not shown).
  • the pneumatic tire 1 has a tread pattern that is symmetrical with respect to the left and right.
  • the present invention is not limited to this, and the pneumatic tire 1 may have, for example, a tread pattern that is symmetrical to the left and right lines, a tread pattern that is asymmetrical to the left and right, and a tread pattern that has directionality in the tire rotation direction (not shown).
  • the pneumatic tire 1 includes circumferential main grooves 21 and 22 extending in the tire circumferential direction.
  • the pneumatic tire 1 may include a plurality of inclined main grooves that extend while being inclined at a predetermined angle with respect to the tire circumferential direction, instead of the circumferential main grooves 21 and 22.
  • the pneumatic tire 1 has a V-shape that is convex in the tire circumferential direction, and extends in the tire width direction and opens to the left and right tread ends, and adjacent V-shaped slopes. You may provide the several lug groove which connects a main groove, and the several land part divided by these V-shaped inclination main grooves and lug grooves (illustration omitted).
  • FIG. 3 is an explanatory diagram illustrating a land portion of the pneumatic tire illustrated in FIG. 2. The figure shows a plan view of one block 5 constituting the shoulder land portion 33.
  • the blocks 5 of all the land portions 31 to 33 have a plurality of sipes 6, respectively.
  • sipes 6 the edge components of the land portions 31 to 33 are increased, and the performance of the tire on ice and snow is improved.
  • a sipe is an incision formed in a land portion, and generally has a sipe width of less than 1.0 [mm] and a sipe depth of 2.0 [mm] or more, so that the sipe is closed at the time of tire contact.
  • the upper limit of the sipe depth is not particularly limited, but is generally shallower than the groove depth of the main groove.
  • the sipe width is measured as the maximum value of the sipe opening width on the ground contact surface in the land portion in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the sipe 6 has a closed structure that terminates in the land portions 31 to 33 at both ends, opens to the edge of the block 5 at one end, and terminates in the block 5 at the other end. It may have either a semi-closed structure or an open structure that opens to the edge portion of the block 5 at both ends. Further, the length, the number, and the arrangement structure of the sipes 6 in the land portions 31 to 33 can be appropriately selected within the range obvious to those skilled in the art. Further, the sipe 6 can extend in any direction of the tire width direction, the tire circumferential direction, and the direction inclined to these.
  • the shoulder land portion 33 includes a plurality of blocks 5 that are partitioned into an outermost circumferential main groove 22 and a plurality of lug grooves 43 (see FIG. 2).
  • One block 5 includes a plurality of sipes 6. These sipes 6 have a zigzag shape extending in the tire width direction, and are arranged in parallel at a predetermined interval in the tire circumferential direction. Further, the sipe 6 on the outermost side in the tire circumferential direction has a closed structure that terminates inside the block 5 at both ends. Thereby, the rigidity of the edge part of the step-on side and kick-out side of the block 5 at the time of tire rolling is ensured.
  • the sipe 6 at the center in the tire circumferential direction has a semi-closed structure that opens into the circumferential main groove 22 at one end and terminates inside the block 5 at the other end. . Thereby, the rigidity of the center part of the block 5 is reduced, and the rigidity distribution in the tire circumferential direction of the block 5 is made uniform.
  • FIG. 4 is an enlarged view showing a main part of the block shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line AA of the ground contact surface of the block illustrated in FIG.
  • FIG. 4 shows the positional relationship between the sipe 6, the thin shallow groove 7 and the concave portion 8
  • FIG. 5 shows a sectional view of the thin shallow groove 7 and the concave portion 8 in the depth direction.
  • the land portions 31 to 33 are provided with a plurality of narrow grooves 7 on the ground contact surface (see FIG. 3).
  • the on-ice braking performance of the tire is improved by the thin shallow grooves 7 sucking and removing the water film interposed between the ice road surface and the tread surface when the tire is in contact with the tire.
  • the thin shallow groove 7 has a groove width of 0.2 [mm] or more and 0.7 [mm] or less and a groove depth Hg (see FIG. 5) of 0.2 [mm] or more and 0.7 [mm] or less. . For this reason, the narrow shallow groove 7 is shallower than the sipe 6.
  • a plurality of shallow grooves 7 are arranged on the entire surface of the land portions 31 to 33.
  • a plurality of narrow grooves 7 are arranged over the entire ground contact surface of the shoulder land portion 33.
  • the thin shallow groove 7 has a linear shape, and is disposed at a predetermined inclination angle ⁇ (see FIG. 4) with respect to the tire circumferential direction.
  • a plurality of shallow grooves 7 are arranged in parallel with a predetermined interval P (see FIG. 4) between each other.
  • the thin shallow groove 7 intersects with the sipe 6 and is divided by the sipe 6 in the longitudinal direction.
  • the inclination angle ⁇ of the shallow grooves 7 is 20 [deg. ] ⁇ ⁇ ⁇ 80 [deg], preferably 40 [deg] ⁇ ⁇ ⁇ 60 [deg].
  • the arrangement interval P (see FIG. 4) of the thin shallow grooves 7 is preferably in the range of 0.5 [mm] ⁇ P ⁇ 1.5 [mm], and 0.7 [mm] ⁇ P ⁇ 1. More preferably, it is in the range of 2 [mm].
  • the arrangement density of the narrow shallow grooves 7 is not particularly limited, but is limited by the arrangement interval P described above.
  • the arrangement interval P of the thin shallow grooves 7 is defined as the distance between the groove center lines of the adjacent thin shallow grooves 7 and 7.
  • the concave portion 8 is a closed depression formed on the ground contact surfaces of the land portions 31 to 33 (a recess not opened at the boundary of the ground contact surface, so-called dimple), and has an arbitrary geometric shape on the ground contact surfaces of the land portions 31 to 33.
  • the concave portion 8 may have a polygonal shape such as a circular shape, an elliptical shape, a rectangular shape, or a hexagonal shape.
  • the circular or oval concave portion 8 is preferable in that the uneven wear of the ground contact surfaces of the land portions 31 to 33 is small, and the polygonal concave portion 8 is preferable in that the edge component is large and the braking performance on ice and the performance on snow can be improved.
  • the opening area of the recess 8 is in the range of 2.5 [mm ⁇ 2] or more and 10 [mm ⁇ 2] or less.
  • the diameter of the circular recess 8 is in the range of about 1.8 [mm] to 3.6 [mm].
  • the opening area of the recessed portion 8 is the opening area of the recessed portion 8 on the ground contact surfaces of the land portions 31 to 33, and is measured in a state where a tire is mounted on a specified rim to apply a specified internal pressure and no load is applied.
  • the depth Hd of the recess 8 (see FIG. 5) and the groove depth Hg of the thin shallow groove 7 preferably have a relationship of 0.5 ⁇ Hd / Hg ⁇ 1.5, and 0.8 ⁇ It is more preferable to have a relationship of Hd / Hg ⁇ 1.2. That is, the depth Hd of the recess 8 and the groove depth Hg of the thin shallow groove 7 are substantially the same. Thereby, the water absorption effect of the ground contact surfaces of the land portions 31 to 33 is improved. Further, since the concave portion 8 is shallower than a sipe (for example, a linear sipe 6 or a circular sipe (not shown)), the rigidity of the land portions 31 to 33 is appropriately ensured. As a result, the braking performance on ice and the performance on snow of the tire are ensured.
  • a sipe for example, a linear sipe 6 or a circular sipe (not shown)
  • the wall angle ⁇ (see FIG. 5) of the recess 8 is preferably in the range of ⁇ 85 [deg] ⁇ ⁇ ⁇ 95 [deg]. That is, it is preferable that the inner wall of the recess 8 is substantially perpendicular to the ground contact surfaces of the land portions 31 to 33. Thereby, the edge component of the recessed part 8 increases.
  • the wall angle ⁇ of the concave portion 8 is measured as an angle formed by the ground contact surfaces of the land portions 31 to 33 and the inner wall of the concave portion 8 in a sectional view of the concave portion 8 in the depth direction.
  • the recess 8 is arranged away from the sipe 6. That is, the concave portion 8 and the sipe 6 are arranged at different positions on the ground contact surfaces of the land portions 31 to 33 and do not intersect with each other.
  • the distance g between the recess 8 and the sipe 6 is preferably in the range of 0.2 [mm] ⁇ g, and more preferably in the range of 0.3 [mm] ⁇ g. Thereby, the rigidity of the land portions 31 to 33 is ensured appropriately.
  • the concave portion 8 is arranged so as to intersect the thin shallow groove 7 and communicate with the thin shallow groove 7. Moreover, the recessed part 8 is arrange
  • the plurality of shallow grooves 7 separated from each other means a plurality of shallow grooves 7 extending without intersecting each other in an arrangement pattern of only the shallow grooves 7 excluding the sipes 6 and the recesses 8. Accordingly, an arrangement pattern in which the plurality of thin shallow grooves 7 intersect each other is excluded.
  • a plurality of shallow grooves 7 having a linear shape are arranged on the entire surface of the land portion 33 at a predetermined interval P while being inclined at a predetermined angle with respect to the tire circumferential direction.
  • the adjacent thin shallow grooves 7 and 7 are arranged in parallel with each other and run in one direction.
  • the recessed part 8 is arrange
  • the two thin shallow grooves 7 and 7 that run side by side pass through one recess 8 in one direction.
  • three or more shallow grooves 7 may penetrate one recess 8 (not shown).
  • the number of the concave portions 8 arranged across the plurality of adjacent thin shallow grooves 7 on the grounding surface of one block 5 is based on the total number of the concave portions 8 on the grounding surface. It is preferably 70% or more, more preferably 80% or more. Thereby, the function as a water pool of the above-mentioned recessed part 8 is exhibited effectively.
  • all the recesses 8 are disposed across two adjacent thin shallow grooves 7, 7.
  • the present invention is not limited to this, and some of the recesses 8 may intersect with the single narrow groove 7 or between the adjacent shallow grooves 7 and 7 without intersecting the shallow groove 7. (Not shown).
  • the land portion 33 includes a plurality of sipes 6 that define the narrow shallow grooves 7 on the ground surface. Further, a portion of one narrow shallow groove 7 defined by the sipe 6 extends without penetrating the plurality of recesses 8. That is, the plurality of recesses 8 are distributed and arranged so as not to be overlapped with respect to the portion of the single shallow groove 7 partitioned by the sipe 6. For this reason, only one concave portion 8 is arranged at the maximum in one narrow groove 7 portion.
  • the recesses 8 are arranged sparsely as compared with the thin shallow grooves 7.
  • the arrangement density Da of the recesses 8 in the entire area of the ground contact surface of one rib or block is in the range of 0.8 [pieces / cm ⁇ 2] ⁇ Da ⁇ 4.0 [pieces / cm ⁇ 2]. It is preferable to be in the range of 1.0 [pieces / cm ⁇ 2] ⁇ Da ⁇ 3.0 [pieces / cm ⁇ 2]. Thereby, the area of the ground contact surface of the land portions 31 to 33 is secured.
  • the arrangement density Da of the concave portions 8 is defined as the total number of the concave portions 8 with respect to the area of the ground contact surface of one rib or block.
  • the land portion is a rib that is continuous in the tire circumferential direction (not shown)
  • the total number of the recesses 8 with respect to the ground contact area of the entire one rib is set to the arrangement density Da.
  • the land portion is a block (see FIGS. 2 and 3)
  • the total number of the recesses 8 with respect to the ground contact area of one block 5 is set to the arrangement density Da.
  • the contact area of the land is determined by the tire and the flat plate when the tire is mounted on the specified rim and applied with the specified internal pressure, and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. Measured at the contact surface.
  • the opening area ratio Sc of the recess 8 in the center region CR in the tire width direction defined by the continuous contact surface, and the opening area ratio Se of the recess 8 in the end region in the tire width direction Have a relationship of Se ⁇ Sc. That is, the opening area ratio Sc of the recess 8 in the central region CR (see FIG. 3) in the tire width direction is larger than that in the end region. Further, the ratio Sc / Se of the opening area ratios of the recesses 8 preferably has a relationship of 1.50 ⁇ Sc / Se, and more preferably has a relationship of 3.00 ⁇ Sc / Se.
  • the upper limit of the ratio Sc / Se is not particularly limited, but is limited by the relationship between the arrangement density of the recesses 8 and the opening area.
  • Se 0 and the condition of Se ⁇ Sc is satisfied.
  • the contact surface is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim to apply the specified internal pressure and when the load corresponding to the specified load is applied in a stationary state perpendicular to the flat plate. Defined.
  • a continuous ground plane is defined as a ground plane partitioned by grooves having a groove width of 2.0 [mm] or more and a groove depth of 3.0 [mm] or more.
  • the ground contact surface of one rib or one block defined by the circumferential groove and the lug groove having the groove width and the groove depth corresponds to the continuous ground contact surface.
  • a closed structure lug groove that terminates in the land part, a partial notch formed in the land part (for example, a notch part 311 in FIG. 7 described later), a sipe or kerf that closes when the tire touches, It does not correspond to the above groove because it does not divide the ground contact surface.
  • the central region in the tire width direction is defined as the region of the central portion 50 [%] in the tire width direction of the continuous contact surface (see FIG. 3).
  • the end region in the tire width direction is defined as the region of the left and right end portions 25 [%] in the tire width direction of the continuous contact surface.
  • the land portion is a rib that is continuous in the tire circumferential direction (not shown)
  • a center region and an end region in the tire width direction are defined for the ground contact surface of one entire rib.
  • the land portion is a block row (see FIG. 2)
  • a center region and an end region are respectively defined for the ground contact surfaces of the blocks constituting the block row.
  • the broken line of FIG. 3 has shown the boundary line of a center part area
  • the opening area ratio of the recess is defined as a ratio between the sum of the opening areas of the recesses arranged in the predetermined region and the ground contact area of the region.
  • the opening area of the recess and the contact area of the area are determined when the tire is mounted on the specified rim and applied with the specified internal pressure, and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. It is measured at the contact surface between the tire and the flat plate.
  • the land portion is composed of a plurality of blocks arranged in the tire circumferential direction (see FIG. 2), 70 [%] or more, preferably 80 [%] or more blocks 5 constituting one block row are included. It is preferable to satisfy the condition Se ⁇ Sc of the opening area ratio of the recess 8 described above. On the other hand, in the entire tread, it is sufficient that at least one row of land portions satisfies the condition of the block row.
  • the opening area ratio of the recesses 8 in the central region and the end region can be adjusted by the arrangement density of the recesses 8 in each region. That is, the recesses 8 are densely arranged in the central region in the tire width direction and sparsely arranged in the end region in the tire width direction, so that the opening area ratio Sc of the concave portion 8 in the central region is set large.
  • the arrangement number Nc of the recesses 8 in the central region CR in the tire width direction of one block 5 and the arrangement of the recesses 8 in the end region in the tire width direction (reference numerals omitted in the drawing). Since the number Ne has a relationship of Ne ⁇ Nc, the condition Se ⁇ Sc of the opening area ratio of the recess 8 is satisfied. That is, the plurality of recesses 8 are connected to one rib or one block so that the arrangement density of the recesses 8 in one rib or one block is different between the center region CR and the end region in the tire width direction. It is unevenly distributed in the ground.
  • the ratio Nc / Ne of the number of the recessed portions 8 is preferably 1.50 ⁇ Nc / Ne, and more preferably 3.00 ⁇ Nc / Ne.
  • the number of recesses arranged is counted as the number of center points of recesses in a predetermined area. Therefore, even if a part of the recess protrudes from the region, if the center point of the recess is within the region, it can be said that the recess is disposed in the region.
  • the land portion is composed of a plurality of blocks arranged in the tire circumferential direction (see FIG. 2), 70 [%] or more, preferably 80 [%] or more blocks 5 constituting one block row are included. It is preferable to satisfy the conditions Se ⁇ Sc and Ne ⁇ Nc of the recess 8 described above. On the other hand, in the entire tread, it is sufficient that at least one row of land portions satisfies the condition of the block row.
  • the central area of the block 5 is defined as the area of the central portion 50 [%] of the ground plane of the block 5, in one block 5, the ground area and the end area of the central area The ground contact area is substantially equal if notches and narrow grooves are excluded. For this reason, in the configuration in which the recesses 8 of the block 5 have the same opening area, the sum of the opening areas of the recesses 8 in the end region is the recess in the central region according to the condition Ne ⁇ Nc of the number of the recesses 8 arranged. It becomes larger than the sum total of the opening area of 8.
  • the concave portions 8 are densely arranged in the central region CR of the block 5 where the ground pressure is low. Then, the contact area of the central region CR decreases, the contact pressure increases, and the snow column shearing force (so-called digging force) by the recess 8 increases. Thereby, the traction performance of the tire is improved, and the performance on snow of the tire is improved. Further, since the recesses 8 are sparsely arranged in the end region, the ground contact area of the end region of the block 5 is ensured. Thereby, the adhesion action (adhesion with respect to an ice road surface) of an edge part area
  • the shoulder land portion 33 (defined as a land portion on the outer side in the tire width direction defined in the outermost circumferential main groove) has a great influence on the braking performance of the tire. Therefore, as shown in FIG. 3, the block 5 of the shoulder land portion 33 has the concave portion 8 densely in the central region CR in the tire width direction, so that the effect of improving the braking performance on snow by the concave portion 8 is significantly obtained.
  • one block 5 of the shoulder land portion 33 has a total of 11 recesses 8 in the ground contact surface, and 7 blocks in the center region CR in the tire width direction of the ground contact surface.
  • a recess 8 is provided, and a total of four recesses 8 are provided in the left and right end regions.
  • each recessed part 8 has the same opening shape and the same opening area.
  • the recesses 5 of all the blocks 5 satisfy the condition of the number Nc (see FIG. 2).
  • the block 5 of the shoulder land portion 33 has a rectangular grounding surface.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the block 5 into a plurality of sections in the tire circumferential direction. All sections have at least one recess 8.
  • the recesses 8 are concentrated in the central region CR of the block 5 in the tire width direction, and are arranged in the end region on the outermost circumferential main groove 22 side. Not placed.
  • the concave portions 8 are respectively disposed at corner portions of the block 5 on the circumferential main groove 22 side.
  • the recesses 8 are arranged only at the corners and are not arranged in the central region CR in the tire width direction.
  • the corners of the land portions 31 to 33 are defined as 5 [mm] square areas including the corner portions of the land contact surface.
  • the corner portion of the land portion includes not only the land portion defined by the main groove and the lug groove but also the land portion defined by the notch formed in the land portion. Moreover, if the center of the recessed part 8 exists in said corner
  • any three sections adjacent in the tire circumferential direction include a section having a recess 8 in the end region in the tire width direction and a section having a recess 8 in the center region CR in the tire width direction. And each.
  • the recesses 8 are distributed and arranged in the end region and the center region CR of the land portions 31 to 33.
  • the section of the both ends of the block 5 in the tire circumferential direction refers to a pair of sections located at both ends in the tire circumferential direction among the plurality of sections of the block 5 partitioned in the tire circumferential direction by the plurality of sipes 6. Moreover, the section of the center part of the tire circumferential direction of the block 5 means the area except the section of the both ends of the said tire circumferential direction.
  • the sipe 6 is arranged parallel to the lug groove 43 or slightly inclined, and is arranged only in the inner region in the tire width direction from the tire ground contact end T. Further, the narrow shallow groove 7 extends beyond the tire ground contact end T to a region outside the land portion 33 in the tire width direction. Further, the concave portion 8 is disposed only in a region on the inner side in the tire width direction from the tire ground contact end T.
  • the tire ground contact edge T is the contact between the tire and the flat plate when a load corresponding to the predetermined load is applied by attaching the tire to the specified rim and applying the specified internal pressure and placing the tire perpendicularly to the flat plate in a stationary state.
  • FIG. 6 and 7 are explanatory views showing the land portion of the pneumatic tire shown in FIG.
  • FIG. 6 shows a plan view of one block 5 constituting the second land portion 32.
  • FIG. 7 shows a plan view of one block 5 constituting the center land portion 31.
  • the second land portion 32 is divided in the tire width direction by one circumferential narrow groove 23, and further divided in the tire circumferential direction by a plurality of lug grooves 42, thereby dividing the plurality of blocks 5. ing. Further, a block 5 that is long in the tire circumferential direction is formed in a region on the inner side in the tire width direction of the second land portion 32, and a short block 5 is formed in a region on the outer side in the tire width direction.
  • the second land portion 32 is defined as a land portion on the inner side in the tire width direction that is partitioned by the outermost circumferential main groove 22.
  • one block 5 on the outer side in the tire width direction of the second land portion 32 has a rectangular contact surface.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the block 5 into a plurality of sections. All sections have at least one recess 8.
  • the recessed part 8 is arrange
  • the recessed part 8 is each arrange
  • one block 5 has a total of ten concave portions 8 in the ground contact surface, and has a total of eight concave portions 8 in the left and right end regions in the tire width direction, and a central portion in the tire width direction.
  • the region CR has two recesses 8.
  • each recessed part 8 has the same opening shape and the same opening area.
  • the recesses 8 of all the blocks 5 of the second land portion 32 satisfy the above-described condition Ne ⁇ Nc.
  • the block 5 has the recesses 8 in all the sections of the block 5 partitioned by the sipe 6, so that the water film on the ice road surface is efficiently absorbed and the braking performance of the tire on ice is ensured. Is done.
  • the second land portion 32 has a great influence on the braking / driving performance of the tire. Therefore, as shown in FIG. 6, the block 5 of the second land portion 32 has the recesses 8 sparsely in the end region in the tire width direction, so that the contact area of the end region in the tire width direction of the block 5 is secured. . Thereby, the adhesion action of the end region is ensured, and the performance on ice of the tire is ensured.
  • the center land portion 31 is divided in the tire circumferential direction by a plurality of lug grooves 41, and a plurality of blocks 5 are partitioned. Further, the block 5 has a notch 311 on the extension line of the lug groove 42 of the second land portion 32. The block 5 has a rectangular grounding surface.
  • the center land portion is defined as a land portion 31 (see FIG. 2) on the tire equator plane CL or a land portion (not shown) adjacent to the tire equator plane CL.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the block 5 into a plurality of sections.
  • the block 5 has a section that does not have the recess 8.
  • any three adjacent sections include a section having no recess 8.
  • sections having recesses 8 only at both ends in the tire width direction of the block 5 and sections having no recesses 8 are alternately arranged in the tire circumferential direction.
  • the recesses 8 are disposed at the four corners of the block 5, respectively.
  • the recessed part 8 is arrange
  • the section including the notch 311 has a recess 8 in the vicinity of the notch 311.
  • the concave portion 8 is not disposed except for the vicinity of the corner portion and the notch portion 311 described above.
  • one block 5 has a total of 17 recesses 8 in the contact surface, and the number Nc of the recesses 8 arranged in the center region CR in the tire width direction of the block 5 is 9, and the tire width The number Ne of the recessed portions 8 in the end region in the direction is eight.
  • each recessed part 8 has the same opening shape and the same opening area.
  • the recessed parts 8 of all the blocks 5 satisfy
  • the center land portion 31 has high rigidity in order to ensure the steering stability performance of the tire. Therefore, as shown in FIG. 7, the block 5 of the center land portion 31 partially has a section that does not have the recess 8, whereby the rigidity of the block 5 is ensured and the steering stability performance of the tire is ensured.
  • the center land portion 31 has a great influence on the tire driving performance. Therefore, as shown in FIG. 7, when the block 5 of the center land portion 31 has the concave portion 8 densely in the center region CR in the tire width direction, the contact area of the center region CR decreases and the contact pressure increases. Thus, the snow column shearing force by the recess 8 increases. Thereby, the traction performance of the tire is improved, and the improvement effect of the tire driving performance is remarkably obtained.
  • the tire molding die has a plurality of vent devices (not shown) on the die surface for molding the ground contact surfaces of the land portions 31 to 33. Also, a certain type of vent device forms a vent hole (small depression) on the ground contact surface of the land portions 31 to 33 after vulcanization molding. Therefore, by using this vent hole as the concave portion 8, the vent hole is effectively used, and unnecessary depressions in the ground contact surfaces of the land portions 31 to 33 are reduced to reduce the ground contact area of the land portions 31 to 33. Properly secured.
  • [Modification 1] 8 to 14 are explanatory views showing modifications of the pneumatic tire shown in FIG. These drawings show the positional relationship between the sipe 6, the thin shallow groove 7, and the recess 8.
  • the narrow shallow grooves 7 are arranged to be inclined at a predetermined angle ⁇ with respect to the tire circumferential direction.
  • Such a configuration is preferable in that the inclined thin shallow grooves 7 cause edge components in both the tire circumferential direction and the tire width direction.
  • the present invention is not limited to this, and the shallow groove 7 may extend in parallel to the tire circumferential direction (see FIG. 8) or may extend in parallel to the tire width direction (see FIG. 9).
  • the thin shallow groove 7 has a linear shape. Such a configuration is preferable in that the thin shallow groove 7 can be easily formed.
  • the present invention is not limited to this, and the thin shallow groove 7 may have a zigzag shape (see FIG. 10) or a wavy shape (see FIG. 11).
  • the plurality of thin shallow grooves 7 may be arranged with the phases aligned with each other, or may be arranged with the phases shifted from each other as shown in FIG.
  • the thin shallow groove 7 may have a short structure that is bent or curved.
  • the short thin shallow grooves 7 may be arranged while being offset from each other (see FIG. 13), or may be arranged in a matrix (not shown).
  • the thin shallow groove 7 may have an arc shape (see FIG. 14), or may have a curved shape such as an S shape (not shown).
  • the shallow groove 7 may be inclined at a predetermined angle ⁇ with respect to the tire circumferential direction, or the tire circumferential direction May extend parallel to the tire width or may extend parallel to the tire width direction.
  • the inclination angle ⁇ of the thin shallow groove 7 is measured with reference to the center of the amplitude of the zigzag shape or the wavy shape.
  • 15 and 16 are explanatory views showing a modification of the pneumatic tire shown in FIG. These drawings show the positional relationship between the sipe 6, the thin shallow groove 7, and the recess 8.
  • the thin shallow groove 7 has a linear structure extending in a predetermined direction. Such a configuration is preferable in that the thin shallow groove 7 can extend continuously over the entire area of the ground contact surface of the block 5.
  • the thin shallow grooves 7 may have an annular structure and be arranged at a predetermined interval from each other.
  • the thin shallow groove 7 may have a polygonal shape (not shown) such as a circular shape (FIG. 15), an elliptical shape (not shown), a rectangular shape (FIG. 16), a triangular shape, a hexagonal shape, or the like.
  • the concave portion 8 is disposed across a plurality of adjacent thin shallow grooves 7 and 7 separated from each other.
  • FIG. 17 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. This figure shows a cross-sectional view in the depth direction of the narrow shallow grooves 7a and 7b and the recess 8.
  • the groove depth of some of the thin shallow grooves 7b is set to be shallower than the groove depth Hg of the reference thin shallow groove 7a.
  • the thin shallow groove 7b having the shallow groove depth disappears first and the thin shallow groove 7a having the deep groove depth Hg disappears after the tire wear progresses. Thereby, the property change of the block 5 by all the thin shallow grooves 7 disappearing simultaneously can be suppressed.
  • FIG. 18 to 21 are explanatory views showing modifications of the pneumatic tire shown in FIG. These drawings show the positional relationship between the sipe 6, the thin shallow groove 7, and the recess 8.
  • the present invention is not limited to this, and as shown in FIGS. 18 to 21, the thin shallow grooves 7 may be arranged so as to intersect or communicate with each other.
  • a plurality of narrow grooves 7 may be arranged in a mesh shape.
  • the thin shallow grooves 7 may be arranged to be inclined with respect to the tire circumferential direction and the tire width direction (FIG. 18), or may be arranged in parallel to the tire circumferential direction and the tire width direction. (FIG. 19).
  • some of the shallow grooves 7 may be arranged curved, for example, in an arc shape or a wave shape (FIG. 20).
  • the narrow shallow grooves 7 may have an annular structure and be arranged in communication with each other (FIG. 21).
  • the thin shallow grooves 7 are arranged in a honeycomb shape.
  • the recessed part 8 is arrange
  • FIG. 22 shows a plan view of one block 5 constituting the shoulder land portion 33
  • FIG. 23 shows a plan view of one block 5 constituting the second land portion 32
  • FIG. The top view of the one block 5 which comprises the center land part 31 is shown.
  • the opening area ratio Sc of the recess 8 in the central region CR in the tire width direction defined for the continuous ground contact surface is the opening area ratio of the recess 8 in the end region in the tire width direction.
  • a plurality of recesses 8 are unevenly arranged in the ground plane of one block 5 so as to be larger than Se (Se ⁇ Sc).
  • the number Ne of the recessed portions 8 in the end region in the direction has a relationship Ne ⁇ Nc.
  • the opening area ratio Sc ′ of the recess 8 in the central region CR ′ in the tire circumferential direction defined by the continuous contact surface and the end in the tire circumferential direction has a relationship of Se ′ ⁇ Sc ′.
  • the ratio Sc ′ / Se ′ of the opening area ratio of the recess 8 preferably has a relationship of 1.50 ⁇ Sc ′ / Se ′, and more preferably has a relationship of 3.00 ⁇ Sc ′ / Se ′. preferable.
  • the central region CR ′ in the tire circumferential direction is defined as the region of the central portion 50 [%] in the tire circumferential direction of the continuous contact surface (see FIG. 22).
  • the end region in the tire circumferential direction is defined as the region of the end portion 25 [%] of the continuous contact surface on the front and rear sides in the tire circumferential direction.
  • These central region and end region are defined excluding partial cutouts formed in the land portions 31 to 33.
  • a center area and an end area are defined for the ground plane of each block 5 constituting the block row.
  • the broken line of FIG. 22 has shown the boundary line of a center part area
  • the arrangement number Nc ′ of the recesses 8 in the central region CR ′ in the tire circumferential direction of one block 5 and the arrangement number Ne of the recesses 8 in the end region in the tire circumferential direction are shown. Since “and Ne” ⁇ Nc ′, the condition Se ′ ⁇ Sc ′ of the opening area ratio of the recess 8 is satisfied. Further, the ratio Nc ′ / Ne ′ of the number of the recessed portions 8 is preferably 1.50 ⁇ c ′ / Ne ′, more preferably 3.00 ⁇ Nc ′ / Ne ′. .
  • the land portion is composed of a plurality of blocks arranged in the tire circumferential direction (see FIG. 2), 70 [%] or more, preferably 80 [%] or more blocks 5 constituting one block row are included. It is preferable to satisfy the conditions Ne ′ ⁇ Nc ′ and Se ′ ⁇ Sc ′ of the recess 8 described above. On the other hand, in the entire tread, it is sufficient that at least one row of land portions satisfies the condition of the block row.
  • the concave portions 8 are densely arranged in the central region CR of the block 5 where the ground pressure is low. Then, the contact area of the central region CR decreases, the contact pressure increases, and the snow column shearing force (so-called digging force) by the recess 8 increases. Thereby, the traction performance of the tire is improved, and the performance on snow of the tire is improved. Further, since the recesses 8 are sparsely arranged in the end region, the ground contact area of the end region of the block 5 is ensured. Thereby, the adhesion action of the end region is ensured, and the performance on ice of the tire is ensured.
  • one block 5 of the shoulder land portion 33 has a total of 11 recesses 8 in the ground contact surface, and 7 recesses 8 in the central region CR ′ in the tire circumferential direction. And a total of four recesses 8 in the front and rear end regions (reference numerals omitted in the figure) in the tire circumferential direction.
  • each recessed part 8 has the same opening shape and the same opening area.
  • the concave portions 8 of all the blocks 5 satisfy the above-described condition Nc ' ⁇ Ne'.
  • the shoulder land portion 33 has a great influence on the braking performance of the tire. Therefore, the block 5 of the shoulder land portion 33 has the concave portion 8 densely in the central region CR ′ in the tire circumferential direction, whereby the effect of improving the braking performance on snow by the concave portion 8 can be obtained remarkably.
  • one block 5 (see FIG. 2) on the outer side in the tire width direction of the second land portion 32 has a total of nine recesses 8 in the ground contact surface, and also in the tire circumferential direction.
  • the central region CR ′ has five recesses 8 and the front and rear end regions (reference numerals omitted in the figure) have four recesses 8 in the tire circumferential direction.
  • each recessed part 8 has the same opening shape and the same opening area.
  • the concave portions 8 of all the blocks 5 satisfy the above-described condition Ne ' ⁇ Nc'.
  • the second land portion 32 (defined as the land portion on the inner side in the tire width direction defined by the outermost circumferential main groove 22) has a great influence on the braking / driving performance of the tire. Therefore, as shown in FIG. 6, the block 5 of the second land portion 32 has the recesses 8 sparsely in the end region in the tire width direction, so that the contact area of the end region in the tire width direction of the block 5 is secured. . Thereby, the adhesion action of the end region is ensured, and the performance on ice of the tire is ensured.
  • the center land 31 has a great influence on the driving performance of the tire. Therefore, the block 5 of the center land portion 31 has the concave portion 8 densely in the central region CR ′ in the tire circumferential direction, so that the ground contact area of the central region CR ′ decreases, the ground pressure increases, and the concave portion 8 Increases the shear force due to snow column. Thereby, the traction performance of a tire improves and the improvement effect of the tire drive performance by the recessed part 8 is acquired notably.
  • FIG. 25 to 28 are explanatory views showing modifications of the pneumatic tire shown in FIG.
  • FIG. 25 shows a plan view of the tread surface of the pneumatic tire 1.
  • 26 shows a plan view of one block 5 constituting the shoulder land portion 33
  • FIG. 27 shows a plan view of one block 5 constituting the second land portion 32
  • FIG. The top view of the one block 5 which comprises the part 31 is shown.
  • the plurality of recesses 8 are unevenly distributed in the ground contact surface of one block 5, whereby the recesses 8 in the central region CR in the tire width direction of one block 5.
  • the recesses 8 are densely arranged in the central region CR of the block 5 in the tire width direction.
  • the concave portions 8 of the land portions 31 to 33 have the same opening shape and the same opening area.
  • the present invention is not limited to this, and the opening area ratio of the recesses 8 in the central region in the tire width direction of one rib or block by changing the opening area of the plurality of recesses 8 within the ground contact surface of one rib or block.
  • Sc may be set larger than the opening area ratio Se of the recess 8 in the end region in the tire width direction (Se ⁇ Sc). That is, the recess 8 having a relatively large opening area is disposed in the center region CR in the tire width direction.
  • the average value Ac of the opening area of the recess 8 in the center region CR in the tire width direction and the recess 8 in the end region in the tire width direction (reference numerals omitted in the drawings). Since the average value Ae of the opening area has a relationship of Ae ⁇ Ac, the condition Se ⁇ Sc of the opening area ratio of the recess 8 is satisfied.
  • the ratio Ac / Ae of the average values Ac and Ae of the opening areas of the recesses 8 preferably has a relationship of 1.5 ⁇ Ac / Ae ⁇ 4.0, and 2.0 ⁇ Ac / Ae ⁇ 3.0 It is more preferable to have this relationship.
  • Ae 0, and the conditions of Ae ⁇ Ac and Se ⁇ Sc are satisfied.
  • the average values Ac and Ae of the opening areas are calculated as a ratio between the sum of the opening areas of the recesses in the predetermined region and the total number of recesses in the region.
  • the land portion is composed of a plurality of blocks arranged in the tire circumferential direction (see FIG. 2), 70 [%] or more, preferably 80 [%] or more blocks 5 constituting one block row are included. It is preferable that the above-described conditions for the opening area of the recess 8 Ac ⁇ Ae and Sc ⁇ Se are satisfied. On the other hand, in the entire tread, it is sufficient that at least one row of land portions satisfies the conditions Ac ⁇ Ae and Sc ⁇ Se of the opening area of the concave portion 8 described above.
  • the recess 8 having a relatively large opening area is disposed in the central region CR of the block 5 where the ground pressure is low. Then, the contact area of the central region CR decreases, the contact pressure increases, and the snow column shearing force (so-called digging force) by the recess 8 increases. Thereby, the traction performance of the tire is improved, and the performance on snow of the tire is improved. Moreover, since the recessed part 8 which has a comparatively small opening area is arrange
  • one block 5 of the shoulder land portion 33 has a total of 16 recesses 8 in the ground contact surface, and also has a center region CR and an end region (in the drawing) in the tire width direction. Each of which has eight recesses 8. Moreover, each recessed part 8 has the same opening shape. In addition, the concave portion 8 having a relatively large opening area is disposed in the central region CR, and conversely, the concave portion 8 having a relatively small opening area is disposed in the end region. Accordingly, the condition Ae ⁇ Ac of the opening area of the recess 8 and the condition Se ⁇ Sc of the opening area ratio are simultaneously satisfied in each region. In the shoulder land portion 33, the concave portions 8 of all the blocks 5 satisfy the above conditions Ae ⁇ Ac and Se ⁇ Sc (see FIG. 25).
  • one block 5 (see FIG. 25) on the outer side in the tire width direction of the second land portion 32 has a total of 16 recesses 8 in the ground contact surface, and also in the tire width direction.
  • the left and right central region CR and the end region each have eight concave portions 8.
  • each recessed part 8 has the same opening shape.
  • the concave portion 8 having a relatively large opening area is disposed in the central region CR, and conversely, the concave portion 8 having a relatively small opening area is disposed in the end region.
  • the condition Ae ⁇ Ac of the opening area of the recess 8 and the condition Se ⁇ Sc of the opening area ratio are simultaneously satisfied in each region.
  • the concave portions 8 of all the blocks 5 satisfy the above conditions Ae ⁇ Ac and Se ⁇ Sc (see FIG. 25).
  • one block 5 of the center land portion 31 has a total of 35 recesses 8 in the ground contact surface, and 17 recesses 8 in the center region CR in the tire width direction. And has a total of 18 recesses 8 in the end region in the tire width direction (reference numerals omitted in the figure).
  • each recessed part 8 has the same opening shape.
  • the concave portion 8 having a relatively large opening area is disposed in the central region CR, and conversely, the concave portion 8 having a relatively small opening area is disposed in the end region.
  • the condition Ae ⁇ Ac of the opening area of the recess 8 and the condition Se ⁇ Sc of the opening area ratio are simultaneously satisfied in each region.
  • the recessed part 8 of all the blocks 5 satisfy
  • 70 [%] or more, preferably 80 [%] or more of the recesses 8 arranged in the central region CR in the tire width direction is the average opening area of the recesses 8 arranged in the block 5. It is preferable to have an opening area larger than the value. That is, most of the large concave portion 8 is disposed in the central region CR. As a result, the effect of increasing the snow column shear force by the recess 8 can be obtained efficiently during traveling on a snowy road surface.
  • one block 5 includes two types of recesses 8 having different opening areas, and all the recesses 8 having a large opening area are arranged in the central region CR. Yes.
  • region has the recessed part 8 of a mutually different magnitude
  • the present invention is not limited to this, and some small concave portions may be arranged in the central region CR (not shown).
  • the concave portion 8 having an opening area smaller than the average value is disposed on the outermost side in the tire width direction on the continuous contact surface.
  • the ground contact area of the end region of the block 5 is secured, and the adhesion of the end region to the ice road surface is secured. Thereby, the performance on ice of a tire is ensured.
  • the small concave portion 8 is arranged along the edge portion of the block 5 on the circumferential groove 21 to 23 side. Thereby, the ground contact area of the end region is ensured.
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and the plurality of sipes 6 are arranged in parallel in the tire circumferential direction and divide the land portions 31 to 33 into a plurality of sections. And a plurality of types of recesses 8 having different opening areas.
  • the recess 8 having an opening area larger than the average value is disposed in at least one of any three sections adjacent in the tire circumferential direction. That is, any three adjacent sections defined by the sipe 6 have at least one large recess 8.
  • the big recessed part 8 is disperse
  • all the sections defined by the sipe 6 have the large recesses 8.
  • the recessed part 8 is disperse
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and the recesses 8 having an opening area smaller than the average value are preferably arranged at the corners of the blocks 5. .
  • the ground contact area of the corner is ensured, and the adhesion of the corner to the ice road surface is ensured. Thereby, the performance on ice of a tire is ensured.
  • small concave portions 8 are arranged at the corners of all the blocks 5 formed at the intersecting positions of the circumferential grooves 21 to 23 and the lug grooves 41 to 43 (see FIG. 25).
  • small concave portions 8 are also arranged at the corners of the cutout portions 311 formed in the center land portion 33 (see FIG. 28). Thereby, the ground contact area of the corner is ensured.
  • the arrangement number Nc of the concave portions 8 in the central region CR of each block 5 and the arrangement number Ne of the concave portions 8 in the end region are substantially the same, and the number of the concave portions 8 in each region is the same.
  • the arrangement density is set to be substantially the same.
  • the present invention is not limited to this, and in addition to the above condition Ae ⁇ Ac, more preferably 1 so that the ratio Nc / Ne of the number of the recessed portions 8 in each region has a relationship of 1.20 ⁇ Nc / Ne. .50 ⁇ Nc / Ne may be set. That is, in the central region CR in the tire width direction, the recesses 8 are densely arranged with a relatively large opening area. This makes it possible to efficiently adjust the condition Se ⁇ Sc of the opening area ratio of the recess 8 in each region while reducing the ratio Ac / Ae of the opening area of the recess 8 in each region.
  • FIGS. 29 to 31 are explanatory views showing modifications of the pneumatic tire shown in FIG.
  • FIG. 29 shows a plan view of one block 5 constituting the shoulder land portion 33
  • FIG. 30 shows a plan view of one block 5 constituting the second land portion 32
  • FIG. The top view of the one block 5 which comprises the center land part 31 is shown.
  • the opening area ratio Sc of the recess 8 in the central region in the tire width direction of one rib or block is equal to the recess 8 in the end region in the tire width direction.
  • the plurality of recesses 8 change the opening area within the ground contact surface of one rib or block so as to be larger than the opening area ratio Se of (Se ⁇ Sc).
  • the present invention is not limited to this, and the opening area ratio Sc ′ of the recess 8 in the center region CR ′ in the tire circumferential direction of one rib or block is larger than the opening area ratio Se ′ of the recess 8 in the end region in the tire circumferential direction.
  • the plurality of recesses 8 may change the opening area within the ground contact surface of one rib or block so as to be large (Se ′ ⁇ Sc ′). That is, the recess 8 having a relatively large opening area is disposed in the central region CR ′ in the tire circumferential direction.
  • the average value Ac ′ of the opening area of the recess 8 in the central region CR ′ in the tire circumferential direction and the recess in the end region in the tire circumferential direction (reference numerals omitted in the drawings). Since the average value Ae ′ of the opening area of 8 has a relationship of Ae ′ ⁇ Ac ′, the condition Se ′ ⁇ Sc ′ of the opening area ratio of the recess 8 is satisfied.
  • the ratio Ac ′ / Ae ′ of the average values Ac ′ and Ae ′ of the opening area of the recess 8 preferably has a relationship of 1.5 ⁇ Ac ′ / Ae ′ ⁇ 4.0, and 2.0 ⁇ Ac It is more preferable to have a relationship of “/Ae” ⁇ 3.0.
  • Ae ′ 0, and the conditions of Ae ′ ⁇ Ac ′ and Se ′ ⁇ Sc ′ are satisfied.
  • the land portion is composed of a plurality of blocks arranged in the tire circumferential direction (see FIG. 2), 70 [%] or more, preferably 80 [%] or more blocks 5 constituting one block row are included. It is preferable that the above-described conditions Ae ′ ⁇ Ac ′ and Se ′ ⁇ Sc ′ for the opening area of the recess 8 are satisfied. On the other hand, in the entire tread, it is sufficient that at least one row of land portions satisfies the condition of the block row.
  • the recess 8 having a relatively large opening area is disposed in the central region CR of the block 5 where the ground pressure is low. Then, the contact area of the central region CR decreases, the contact pressure increases, and the snow column shearing force (so-called digging force) by the recess 8 increases. Thereby, the traction performance of the tire is improved, and the performance on snow of the tire is improved. Moreover, since the recessed part 8 which has a comparatively small opening area is arrange
  • one block 5 of the shoulder land portion 33 has a total of 16 recesses 8 in the ground contact surface, and also has a central region CR ′ and an end region (in the drawing) in the tire circumferential direction. Each of which has eight recesses 8. Moreover, each recessed part 8 has the same opening shape. Further, the concave portion 8 having a relatively large opening area is disposed in the central region CR ′, and conversely, the concave portion 8 having a relatively small opening area is disposed in the end region. Accordingly, the condition Ae ′ ⁇ Ac ′ for the opening area of the recess 8 and the condition Se ′ ⁇ Sc ′ for the opening area ratio are simultaneously satisfied in each region. Further, in the entire shoulder land portion 33, the concave portions 8 of all the blocks 5 satisfy the above-described conditions Ae ' ⁇ Ac' and Se ' ⁇ Sc'.
  • one block 5 located on the outer side in the tire circumferential direction of the second land portion 32 has a total of 16 recesses 8 in the ground contact surface.
  • the left and right central region CR ′ and the end region each have eight concave portions 8.
  • each recessed part 8 has the same opening shape.
  • the concave portion 8 having a relatively large opening area is disposed in the central region CR ′, and conversely, the concave portion 8 having a relatively small opening area is disposed in the end region.
  • condition Ae ′ ⁇ Ac ′ for the opening area of the recess 8 and the condition Se ′ ⁇ Sc ′ for the opening area ratio are simultaneously satisfied in each region. Further, in the entire second land portion 32, the concave portions 8 of all the blocks 5 satisfy the above conditions Ae ' ⁇ Ac' and Se ' ⁇ Sc'.
  • one block 5 of the center land portion 31 has a total of 36 recesses 8 in the ground plane, and also has a central region CR ′ in the tire circumferential direction and left and right end regions. (Reference numerals omitted in the figure) each have 18 recesses 8. Moreover, each recessed part 8 has the same opening shape. Further, the concave portion 8 having a relatively large opening area is disposed in the central region CR ′, and conversely, the concave portion 8 having a relatively small opening area is disposed in the end region.
  • condition Ae ′ ⁇ Ac ′ for the opening area of the recess 8 and the condition Se ′ ⁇ Sc ′ for the opening area ratio are simultaneously satisfied in each region. Further, in the entire center land portion 31, the concave portions 8 of all the blocks 5 satisfy the above-described conditions Ae ' ⁇ Ac' and Se ' ⁇ Sc'.
  • the recessed part 8 of 70 [%] or more, preferably 80 [%] or more arranged in the central region CR ′ in the tire circumferential direction has an opening area larger than the average value. . That is, most of the large concave portion 8 is disposed in the central region CR ′.
  • one block 5 includes two types of recesses 8 having different opening areas, and all the recesses 8 having a large opening area are arranged in the central region CR ′. ing.
  • region has the recessed part 8 of a mutually different magnitude
  • the present invention is not limited to this, and some small concave portions may be disposed in the central region CR ′.
  • the concave portion 8 having an opening area smaller than the average value is disposed on the outermost side in the tire circumferential direction on the continuous contact surface.
  • region of the block 5 is ensured, and the adhesion effect
  • the small concave portion 8 is disposed along the edge portion of the block 5 on the lug groove 41, 42 side. Thereby, the ground contact area of the end region is ensured.
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and the recesses 8 having an opening area smaller than the average value are preferably arranged at the corners of the blocks 5. .
  • the contact area of the corner is ensured, and the adhesion of the corner is ensured. Thereby, the performance on ice of a tire is ensured.
  • small concave portions 8 are arranged at the corners of all the blocks 5 formed at the intersection positions of the circumferential grooves 21 to 23 and the lug grooves 41 to 43 (see FIG. 25). Has been. Thereby, the ground contact area of the corner is ensured.
  • the arrangement number Nc ′ of the recesses 8 in the central region CR ′ of each block 5 and the arrangement number Ne ′ of the recesses 8 in the end region are substantially the same.
  • the arrangement density of the recesses 8 is set to be substantially the same.
  • the present invention is not limited to this, and in addition to the above condition Ae ′ ⁇ Ac ′, the ratio Nc ′ / Ne ′ of the number of recesses 8 in each region has a relationship of 1.20 ⁇ Nc ′ / Ne ′. More preferably, it may be set to have a relationship of 1.50 ⁇ Nc ′ / Ne ′. That is, in the central region CR ′ in the tire circumferential direction, the recesses 8 are densely arranged with a relatively large opening area. Accordingly, the condition Se ′ ⁇ Sc ′ of the opening area ratio of the recess 8 in each region can be efficiently adjusted while reducing the ratio Ac ′ / Ae ′ of the opening area of the recess 8 in each region.
  • the pneumatic tire 1 includes land portions 31 to 33 having ribs or a plurality of blocks on the tread surface (see FIGS. 2 and 25).
  • the land portions 31 to 33 include a plurality of narrow grooves 7 and a plurality of recesses 8 on the ground contact surface (see FIGS. 3 and 4).
  • the region of the center part 50 [%] in the tire width direction of the continuous contact surface in the land portions 31 to 33 is defined as the center region
  • the region of the left and right end portions 25 [%] in the tire width direction is defined as the end portion.
  • the opening area ratio Sc of the recess 8 in the central region CR in the tire width direction of one continuous ground contact surface and the opening area ratio Se of the recess 8 in the end region in the tire width direction are: It has a relationship of Se ⁇ Sc.
  • the opening area ratio of the recess 8 is set to be small in the end region in the tire width direction, a ground contact area in the end region of the block 5 is ensured.
  • the concave portion 8 is shallower than a sipe (for example, a linear sipe 6 or a circular sipe (not shown)), the rigidity of the land portions 31 to 33 is appropriately ensured.
  • the opening area ratio Sc of the recess 8 in the center region CR in the tire width direction and the opening area ratio Se of the recess 8 in the end region in the tire width direction are 1.50 ⁇ Sc. / Se relationship.
  • the ratio Sc / Se of the opening area ratio of the recess 8 in each region is ensured, and there is an advantage that the action due to the uneven opening area of the recess 8 can be obtained appropriately.
  • the number Nc of the recessed portions 8 in the central region CR in the tire width direction and the number Ne of the recessed portions 8 in the end region in the tire width direction have a relationship Ne ⁇ Nc. (See FIGS. 3, 6 and 7).
  • the recesses 8 are densely arranged in the center region CR in the tire width direction, the contact area of the center region CR is reduced, the contact pressure is increased, and a snow column shear force (so-called so-called) Increases digging power.
  • the recesses 8 are sparsely arranged in the end region, the ground contact area of the end region of the block 5 is ensured. As a result, there is an advantage that the adhesion action of the end region to the ice road surface is ensured, and the performance of the tire on ice is ensured.
  • the number Nc of the recessed portions 8 in the central region CR in the tire width direction and the number Ne of the recessed portions 8 in the end region in the tire width direction are 1.50 ⁇ Nc / Ne. (See FIGS. 3, 6 and 7).
  • the arrangement density Da of the recesses 8 in the entire area of the one continuous contact surface is 0.8 [pieces / cm ⁇ 2] ⁇ Da ⁇ 4.0 [pieces / cm ⁇ 2]. It is in the range.
  • the arrangement density of the recessed part 8 is optimized. That is, when 0.8 [pieces / cm ⁇ 2] ⁇ Da, the number of the recessed portions 8 is ensured, and the water film removing action is appropriately secured in the recessed portions 8. Further, since Da ⁇ 4.0 [pieces / cm 2], the ground contact areas of the land portions 31 to 33 are appropriately secured.
  • the land portions 31 to 33 are provided with a plurality of sipes 6 on the ground contact surface, and the recesses 8 are arranged apart from the sipes 6 (see, for example, FIG. 3).
  • the concave portion 8 and the sipe 6 are arranged separately from each other, there is an advantage that the braking performance on ice and the performance on snow of the tire are improved.
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the land portions 31 to 33 into a plurality of sections.
  • at least one of any pair of adjacent sections has a recess 8 in the central region CR in the tire width direction (see FIGS. 3 and 7).
  • the recessed part 8 is arrange
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the land portions 31 to 33 into a plurality of sections.
  • the three adjacent sections include the section having the recess 8 in the center region CR in the tire width direction and the section having the recess 8 in the end region in the tire width direction (for example, FIG. 3). And FIG. 6).
  • a plurality of sipes 6 are arranged in parallel in the tire circumferential direction to partition the land portions 31 to 33 into a plurality of sections.
  • any three of the sections adjacent in the tire circumferential direction include a section having a recess 8 and the section having no recess 8 (see FIG. 7).
  • the recesses 8 are dispersedly arranged by arranging the sections not having the recesses 8.
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and have recesses 8 at the corners of the blocks 5 (see FIGS. 3, 6 and 7).
  • the concave portion 8 is disposed at the corner of the block 5 where the ground pressure is high and a water film is likely to be generated. Accordingly, there is an advantage that the water film on the tread is efficiently absorbed on the icy road surface and the braking performance on ice of the tire is improved.
  • the ground contact pressure at the corners is further increased by the recesses 8 on the snow road surface, and there is an advantage that the on-snow performance of the tire is improved by increasing the shear force in the snow.
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and the recesses 8 are provided in the end portions of the blocks 5 in the tire circumferential direction and in the central region CR in the tire width direction. Not provided (see FIGS. 3, 6 and 7). Accordingly, there is an advantage that the contact area and rigidity of the end portions on the stepping-in side and the kicking-out side of the block are ensured, and the braking performance on ice and the performance on snow are improved.
  • the opening area of the recess 8 is in the range of 2.5 [mm ⁇ 2] to 10 [mm ⁇ 2].
  • the opening area of the recessed part 8 is optimized. That is, when the opening area of the recess 8 is 2.5 [mm ⁇ 2] or more, the edge action and water absorption of the recess 8 are ensured. Further, since the opening area of the recess 8 is 10 [mm ⁇ 2] or less, the ground contact area and the rigidity of the land portions 31 to 33 are ensured.
  • the recess 8 has a circular shape (see FIG. 4) or an elliptical shape (not shown) on the ground contact surfaces of the land portions 31 to 33. Accordingly, there is an advantage that uneven wear of the ground contact surfaces of the land portions 31 to 33 can be suppressed as compared with the configuration in which the concave portion 8 has a polygonal shape (not shown).
  • the wall angle ⁇ of the recess 8 is in the range of ⁇ 85 [deg] ⁇ ⁇ ⁇ 95 [deg] (see FIG. 5).
  • the depth Hd of the recess 8 and the groove depth Hg of the thin shallow groove 7 have a relationship of 0.5 ⁇ Hd / Hg ⁇ 1.5 (see FIG. 5).
  • the depth Hd of the recessed part 8 is optimized. That is, when 0.5 ⁇ Hd / Hg, the water absorbing action of the recess 8 is ensured.
  • Hd / Hg ⁇ 1.5 it is possible to suppress a decrease in rigidity of the land portions 31 to 33 due to the recess 8 being too deep with respect to the thin shallow groove 7.
  • the recesses 8 is arranged at a position corresponding to a vent hole (not shown) of the tire molding die.
  • the average value Ac of the opening area of the recess 8 in the central region CR in the tire width direction and the average value Ae of the opening area of the recess 8 in the end region in the tire width direction are Ae. ⁇ Ac relationship (see FIGS. 25 to 28).
  • the concave portion 8 having a relatively large opening area is disposed in the central region CR, the ground contact area of the central region CR decreases, the ground pressure increases, and the snow column shear force ( The so-called digging force increases. Thereby, the traction performance of the tire is improved, and the performance on snow of the tire is improved.
  • the recessed part 8 which has a comparatively small opening area is arrange
  • the average value Ac of the opening area of the recess 8 in the central region CR in the tire width direction and the average value Ae of the opening area of the recess 8 in the end region in the tire width direction are 1 .5 ⁇ Ac / Ae ⁇ 4.0.
  • the land portions 31 to 33 are provided with a plurality of types of recesses 8 having different opening areas, and 70% or more disposed in the central region CR in the tire width direction.
  • the recess 8 has an opening area larger than the average value of the opening areas of the recesses 8 disposed on the continuous ground plane (see FIGS. 26 to 28).
  • the land portions 31 to 33 have a plurality of types of recesses 8 having different opening areas, and the average value of the opening areas of the recesses 8 arranged on the continuous ground contact surface.
  • the concave portion 8 having a small opening area is arranged on the outermost side in the tire width direction on the continuous contact surface (see FIGS. 26 to 28).
  • the land portions 31 to 33 have mutually different opening areas with the plurality of sipes 6 that are arranged in parallel in the tire circumferential direction and divide the land portions 31 to 33 into a plurality of sections.
  • a plurality of types of recesses 8 are provided (see FIGS. 26 to 28).
  • the recessed part 8 which has an opening area larger than the average value of the opening area of the recessed part 8 arrange
  • the land portions 31 to 33 are block rows having a plurality of blocks 5, and are provided with a plurality of types of recesses 8 having mutually different opening areas (see FIGS. 26 to 28). . Further, the recesses 8 having an opening area smaller than the average value of the opening areas of the recesses 8 arranged on the continuous ground surface are arranged at the corners of the block 5. Thereby, the ground contact area of the edge part area
  • the pneumatic tire 1 includes land portions 31 to 33 having a plurality of blocks 5 on the tread surface (see FIG. 2).
  • the land portions 31 to 33 include a plurality of shallow grooves 7 and a plurality of recesses 8 on the ground contact surface (see FIG. 4). Further, when the region of the central portion 50 [%] in the tire circumferential direction of the continuous ground contact surface is defined as the central region, and the region of the end portion 25 [%] in the tire circumferential direction is defined as the end region.
  • the opening area ratio Sc ′ of the recess 8 in the central region CR ′ in the tire circumferential direction of one continuous ground contact surface and the opening area ratio Se ′ of the recess 8 in the end region in the tire circumferential direction are represented by Se ′ ⁇ It has a relationship of Sc ′ (see FIGS. 22 to 24).
  • the opening area ratio of the recess 8 is set to be small in the central region CR in the tire circumferential direction, the ground contact area in the central region of the land portions 31 to 33 is ensured, and the braking performance of the tire on ice is improved. There is an advantage to improve. Further, (4) since the concave portion 8 is shallower than a sipe (for example, a linear sipe 6 or a circular sipe (not shown)), the rigidity of the land portions 31 to 33 is appropriately ensured. Thereby, there exists an advantage by which the braking performance on ice of a tire is ensured.
  • the number Nc ′ of the recessed portions 8 in the central region CR ′ in the tire circumferential direction and the number Ne ′ of the recessed portions 8 in the end region in the tire circumferential direction are Ne ′ ⁇ Nc. '(See FIGS. 22 to 24).
  • the recesses 8 are densely arranged in the center region CR ′ in the tire circumferential direction, the contact area of the center region CR ′ decreases, the contact pressure increases, and the snow column shear force by the recess 8 increases. (So-called digging force) increases.
  • the recesses 8 are sparsely arranged in the end region, the ground contact area of the end region of the block 5 is ensured. As a result, there is an advantage that the adhesion of the end region to the ice road surface is ensured and the performance on ice of the tire is ensured.
  • the average value Ac ′ of the opening area of the recess 8 in the central region CR ′ in the tire circumferential direction and the average value Ae ′ of the opening area of the recess 8 in the end region in the tire circumferential direction However, Ae ′ ⁇ Ac ′ (see FIGS. 22 to 24).
  • the recess 8 having a relatively large opening area is disposed in the central region CR ′ of the block 5 having a low ground pressure. Then, the contact area of the central region CR ′ decreases, the contact pressure increases, and the snow column shearing force (so-called digging force) by the recess 8 increases.
  • FIG. 32 is a chart showing a result 1 of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 33 is a chart showing Result 2 of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • test tire having a tire size of 195 / 65R15 is assembled to an applicable rim defined by JATMA, and an air pressure of 230 [kPa] and a maximum load defined by JATMA are applied to the test tire. Further, the test tire is mounted on a sedan having a displacement of 1600 [cc] and an FF (Front engine Front drive) system, which is a test vehicle.
  • FF Front engine Front drive
  • the test vehicle travels on the snow road surface of the snow road test site, and the driving performance and the braking distance from the traveling speed of 40 [km / h] are measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation is preferable as the numerical value increases.
  • the test tires of Examples 1 to 10 have the configurations of FIGS. 1 and 2, and the blocks 5 of the land portions 31 to 33 have sipes 6, thin shallow grooves 7 and recesses 8, respectively. Further, as shown in FIG. 4, linear thin shallow grooves 7 are arranged in parallel while being inclined in the tire circumferential direction and penetrate the block 5. Further, the groove width and the groove depth of the thin shallow groove 7 are 0.3 [mm]. Moreover, all the recessed parts 8 in a tread surface have the same shape and a fixed opening area. In all the blocks 5, the number Nc of the recessed portions 8 in the central region CR in the tire width direction and the number Ne of the recessed portions 8 in the end region in the tire width direction have a relationship Ne ⁇ Nc. .
  • the arrangement density Da and the arrangement number ratio Ne ⁇ Nc of the recesses 8 are average values of all the blocks 5 on the tread surface. Further, the opening area ratio ratio Sc / Se of the recesses 8 is substantially equal to the ratio Nc / Ne of the number of the recesses 8 arranged in each region.
  • the test tires of Examples 11 to 21 have the configurations of FIGS. 1 and 25, and the blocks 5 of the land portions 31 to 33 each have a sipe 6, a thin shallow groove 7, and a recess 8. Further, as shown in FIG. 4, linear thin shallow grooves 7 are arranged in parallel while being inclined in the tire circumferential direction and penetrate the block 5. Further, the groove width and the groove depth of the thin shallow groove 7 are 0.3 [mm]. Further, all the blocks 5 on the tread surface are provided with two types and a plurality of concave portions 8 having different opening areas. Moreover, all the recessed parts 8 have the same shape. Further, the recess 8 having a large opening area Ac is disposed in the central region CR (FIGS.
  • the recess 8 having a small opening area Ae is disposed in the end region of the block 5.
  • the number Nc of the recessed portions 8 in the central region CR and the number Ne of the recessed portions 8 in the end region are substantially the same.
  • the opening area ratio ratio Sc / Se of the recesses is substantially equal to the ratio Ac / Ae of the opening areas of the large and small recesses 8.
  • the arrangement density Da of the recesses 8 is an average value of all the blocks 5 on the tread surface.
  • the block 5 has only the sipe 6 and the thin shallow groove 7 and does not have the concave portion 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りタイヤ(1)は、リブあるいは複数のブロックを有する陸部(31~33)をトレッド面に備える。また、陸部(31~33)が、複数の細浅溝(7)と、複数の凹部(8)とを接地面に備える。また、陸部(31~33)における連続した接地面のタイヤ幅方向の中央部50[%]の領域を中央部領域(CR)として定義し、タイヤ幅方向の左右の端部25[%]の領域を端部領域として定義するときに、1つの連続した接地面のタイヤ幅方向の中央部領域(CR)における凹部(8)の開口面積率Scと、タイヤ幅方向の端部領域における凹部(8)の開口面積率Seとが、Se<Scの関係を有する。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤの雪上性能を向上できる空気入りタイヤに関する。
 一般的な新品タイヤでは、薬品がトレッド表面に付着しているため、摩耗初期におけるブロックの吸水作用およびエッジ作用が小さく、氷上制動性能が低いという課題がある。このため、近年のスタッドレスタイヤでは、浅く微細な複数の細浅溝をブロックの表面に備える構成が採用されている。かかる構成では、摩耗初期にて、細浅溝が氷路面とトレッド面との間に介在する水膜を除去することにより、タイヤの氷上制動性能が向上する。かかる構成を採用する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。
特許第3702958号公報
 一方で、空気入りタイヤでは、タイヤの雪上性能を向上させるべき課題もある。
 そこで、この発明は、上記に鑑みてなされたものであって、タイヤの雪上性能を向上できる空気入りタイヤを提供することを目的とする。
 上記目的を達成するため、この発明にかかる空気入りタイヤは、リブあるいは複数のブロックを有する陸部をトレッド面に備える空気入りタイヤにおいて、前記陸部が、複数の細浅溝と、複数の凹部とを接地面に備え、且つ、前記陸部における連続した接地面のタイヤ幅方向の中央部50[%]の領域を中央部領域として定義し、タイヤ幅方向の左右の端部25[%]の領域を端部領域として定義するときに、1つの前記連続した接地面の前記タイヤ幅方向の中央部領域における前記凹部の開口面積率Scと、前記タイヤ幅方向の端部領域における前記凹部の開口面積率Seとが、Se<Scの関係を有することを特徴とする。
 また、この発明にかかる空気入りタイヤは、複数のブロックを有する陸部をトレッド面に備える空気入りタイヤにおいて、前記陸部が、複数の細浅溝と、複数の凹部とを接地面に備え、且つ、連続した接地面のタイヤ周方向の中央部50[%]の領域を中央部領域として定義し、タイヤ周方向の前後の端部25[%]の領域を端部領域として定義するときに、1つの前記連続した接地面の前記タイヤ周方向の中央部領域における前記凹部の開口面積率Sc’と、前記タイヤ周方向の端部領域における前記凹部の開口面積率Se’とが、Se’<Sc’の関係を有することを特徴とする。
 この発明にかかる空気入りタイヤでは、凹部の開口面積率がタイヤ幅方向あるいはタイヤ周方向の中央部領域で大きく設定されるので、中央部領域の接地面積が減少し、接地圧が上昇して、凹部による雪柱剪断力が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する利点がある。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。 図3は、図2に記載した空気入りタイヤの陸部を示す説明図である。 図4は、図3に記載したブロックの要部を示す拡大図である。 図5は、図4に記載したブロックの接地面のA-A視断面図である。 図6は、図2に記載した空気入りタイヤの陸部を示す説明図である。 図7は、図2に記載した空気入りタイヤの陸部を示す説明図である。 図8は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図9は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図10は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図11は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図12は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図13は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図14は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図15は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図16は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図17は、図5に記載した空気入りタイヤの変形例を示す説明図である。 図18は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図19は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図20は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図21は、図4に記載した空気入りタイヤの変形例を示す説明図である。 図22は、図2に記載した空気入りタイヤの変形例を示す説明図である。 図23は、図2に記載した空気入りタイヤの変形例を示す説明図である。 図24は、図2に記載した空気入りタイヤの変形例を示す説明図である。 図25は、図2に記載した空気入りタイヤの変形例を示す説明図である。 図26は、図25に記載した空気入りタイヤの陸部を示す説明図である。 図27は、図25に記載した空気入りタイヤの陸部を示す説明図である。 図28は、図25に記載した空気入りタイヤの陸部を示す説明図である。 図29は、図25に記載した空気入りタイヤの変形例を示す説明図である。 図30は、図25に記載した空気入りタイヤの変形例を示す説明図である。 図31は、図25に記載した空気入りタイヤの変形例を示す説明図である。 図32は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。 図33は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、空気入りタイヤの一例として、乗用車用ラジアルタイヤを示している。
 同図において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
 この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。
 一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を構成する。
 カーカス層13は、1枚のカーカスプライから成る単層構造あるいは複数のカーカスプライを積層して成る多層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13のカーカスプライは、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上55[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ベルトカバー143は、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のコードを圧延加工して構成され、絶対値で0[deg]以上10[deg]以下のベルト角度を有する。また、ベルトカバー143は、交差ベルト141、142のタイヤ径方向外側に積層されて配置される。
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側にそれぞれ配置されて、リムフランジに対する左右のビード部の接触面を構成する。
[トレッドパターン]
 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。同図は、スタッドレスタイヤのトレッドパターンを示している。同図において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
 図2に示すように、空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画された複数の陸部31~33と、これらの陸部31~33に配置された複数のラグ溝41~43とをトレッド部に備える。
 周方向主溝とは、摩耗末期を示すウェアインジケータを有する周方向溝であり、一般に、5.0[mm]以上の溝幅および7.5[mm]以上の溝深さを有する。また、ラグ溝とは、2.0[mm]以上の溝幅および3.0[mm]以上の溝深さを有する横溝をいう。
 溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における左右の溝壁の距離の最大値として測定される。陸部が切欠部や面取部をエッジ部に有する構成では、溝長さ方向を法線方向とする断面視にて、トレッド踏面と溝壁の延長線との交点を基準として、溝幅が測定される。また、溝がタイヤ周方向にジグザグ状あるいは波状に延在する構成では、溝壁の振幅の中心線を基準として、溝幅が測定される。
 溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離の最大値として測定される。また、溝が部分的な凹凸部やサイプを溝底に有する構成では、これらを除外して溝深さが測定される。
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
 例えば、図2の構成では、ストレート形状を有する4本の周方向主溝21、22がタイヤ赤道面CLを中心として左右対称に配置されている。また、4本の周方向主溝21、22により、5列の陸部31~33が区画されている。また、陸部31が、タイヤ赤道面CL上に配置されている。また、各陸部31~33が、タイヤ周方向に所定間隔で配置されて陸部31~33をタイヤ幅方向に貫通する複数のラグ溝41~43を備えている。また、セカンド陸部32が、タイヤ周方向に屈曲しつつ延在する周方向細溝23を備えている。そして、各陸部31~33が、周方向主溝21、22、周方向細溝23およびラグ溝41~43に区画されてブロック列となっている。
 なお、図2の構成では、上記のように、周方向主溝21、22が、ストレート形状を有している。しかし、これに限らず、周方向主溝21、22が、タイヤ周方向に屈曲あるいは湾曲しつつ延在するジグザグ形状あるいは波状形状を有しても良い(図示省略)。
 また、図2の構成では、上記のように、各陸部31~33が、ラグ溝41~43によりタイヤ周方向に分断されてブロック列となっている。しかし、これに限らず、例えば、ラグ溝41~43が陸部31~33の内部で終端するセミクローズド構造を有することにより、陸部31~33がタイヤ周方向に連続するリブであっても良い(図示省略)。
 また、図2の構成では、空気入りタイヤ1が、左右点対称なトレッドパターンを有している。しかし、これに限らず、空気入りタイヤ1が、例えば、左右線対称なトレッドパターン、左右非対称なトレッドパターン、タイヤ回転方向に方向性を有するトレッドパターンを有しても良い(図示省略)。
 また、図2の構成では、空気入りタイヤ1が、タイヤ周方向に延在する周方向主溝21、22を備えている。しかし、これに限らず、空気入りタイヤ1が、周方向主溝21、22に代えて、タイヤ周方向に対して所定角度で傾斜しつつ延在する複数の傾斜主溝を備えても良い。例えば、空気入りタイヤ1が、タイヤ周方向に凸となるV字形状を有すると共にタイヤ幅方向に延在して左右のトレッド端に開口する複数のV字傾斜主溝と、隣り合うV字傾斜主溝を接続する複数のラグ溝と、これらのV字傾斜主溝およびラグ溝に区画された複数の陸部とを備えても良い(図示省略)。
[ブロックのサイプ]
 図3は、図2に記載した空気入りタイヤの陸部を示す説明図である。同図は、ショルダー陸部33を構成する1つのブロック5の平面図を示している。
 図2および図3に示すように、この空気入りタイヤ1では、すべての陸部31~33のブロック5が複数のサイプ6をそれぞれ有する。これらのサイプ6により、陸部31~33のエッジ成分が増加して、タイヤの氷雪上性能が向上する。
 サイプは、陸部に形成された切り込みであり、一般に1.0[mm]未満のサイプ幅および2.0[mm]以上のサイプ深さを有することにより、タイヤ接地時に閉塞する。なお、サイプ深さの上限は、特に限定がないが、一般に主溝の溝深さよりも浅い。
 サイプ幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、陸部の接地面におけるサイプの開口幅の最大値として測定される。
 なお、サイプ6は、両端部にて陸部31~33の内部で終端するクローズド構造、一方の端部にてブロック5のエッジ部に開口して他方の端部にてブロック5の内部で終端するセミクローズド構造、および、両端部にてブロック5のエッジ部に開口するオープン構造のいずれを有しても良い。また、陸部31~33におけるサイプ6の長さ、枚数および配置構造は、当業者自明の範囲内にて適宜選択できる。また、サイプ6は、タイヤ幅方向、タイヤ周方向、およびこれらに傾斜する方向の任意の方向に延在できる。
 例えば、図3の構成では、ショルダー陸部33が、最外周方向主溝22および複数のラグ溝43(図2参照)に区画されて成る複数のブロック5を備えている。また、1つのブロック5が複数のサイプ6を備えている。また、これらのサイプ6が、タイヤ幅方向に延在するジグザグ形状を有し、また、タイヤ周方向に所定間隔をあけて並列に配置されている。また、タイヤ周方向の最も外側にあるサイプ6が、両端部にてブロック5の内部で終端するクローズド構造を有している。これにより、タイヤ転動時におけるブロック5の踏み込み側および蹴り出し側のエッジ部の剛性が確保されている。また、タイヤ周方向の中央部にあるサイプ6が、一方の端部にて周方向主溝22に開口し、他方の端部にてブロック5の内部で終端するセミクローズド構造を有している。これにより、ブロック5の中央部の剛性が低減されて、ブロック5のタイヤ周方向の剛性分布が均一化されている。
[ブロックの細浅溝]
 図4は、図3に記載したブロックの要部を示す拡大図である。図5は、図4に記載したブロックの接地面のA-A視断面図である。これらの図において、図4は、サイプ6、細浅溝7および凹部8の位置関係を示し、図5は、細浅溝7および凹部8の深さ方向の断面図を示している。
 この空気入りタイヤ1では、陸部31~33が、複数の細浅溝7を接地面に備える(図3参照)。かかる構成では、タイヤ接地時にて、細浅溝7が氷路面とトレッド面との間に介在する水膜を吸い取って除去することにより、タイヤの氷上制動性能が向上する。
 細浅溝7は、0.2[mm]以上0.7[mm]以下の溝幅および0.2[mm]以上0.7[mm]以下の溝深さHg(図5参照)を有する。このため、細浅溝7は、サイプ6よりも浅い。また、複数の細浅溝7が、陸部31~33の全面に配置されている。
 例えば、図3の構成では、複数の細浅溝7が、ショルダー陸部33の接地面の全域に渡って配置されている。また、細浅溝7が、直線形状を有し、タイヤ周方向に対して所定の傾斜角θ(図4参照)にて傾斜して配置されている。また、複数の細浅溝7が、相互に所定間隔P(図4参照)をあけつつ並列に配置されている。また、図4に示すように、細浅溝7が、サイプ6と交差しており、サイプ6により長手方向に分断されている。
 なお、図3のように、複数の細浅溝7が長尺形状を有して相互に並列に配置される構成では、細浅溝7の傾斜角θ(図4参照)が、20[deg]≦θ≦80[deg]の範囲にあることが好ましく、40[deg]≦θ≦60[deg]の範囲にあることがより好ましい。また、細浅溝7の配置間隔P(図4参照)が、0.5[mm]≦P≦1.5[mm]の範囲にあることが好ましく、0.7[mm]≦P≦1.2[mm]の範囲にあることがより好ましい。これにより、細浅溝7による水膜除去作用が適正に確保され、また、陸部31~33の接地面積が確保される。なお、細浅溝7の配置密度は、特に限定がないが、上記の配置間隔Pにより制約を受ける。
 細浅溝7の配置間隔Pは、隣り合う細浅溝7、7の溝中心線の距離として定義される。
[ブロックの凹部]
 図2および図3に示すように、この空気入りタイヤ1では、すべての陸部31~33が、複数の凹部8を接地面に備える。かかる構成では、タイヤ接地時にて、凹部8が氷路面とトレッド面との間に生ずる水膜を吸い取り、また、凹部8により陸部31~33のエッジ成分が増加して、タイヤの氷上制動性能が向上する。
 凹部8は、陸部31~33の接地面に形成されたクローズドな窪み(接地面の境界に開口していない窪み。いわゆるディンプル)であり、陸部31~33の接地面にて任意の幾何学的形状を有する。例えば、凹部8が、円形、楕円形、四角形、六角形などの多角形を有し得る。円形あるいは楕円形の凹部8は、陸部31~33の接地面の偏摩耗が小さい点で好ましく、多角形の凹部8は、エッジ成分が大きく氷上制動性能および雪上性能を向上できる点で好ましい。
 また、凹部8の開口面積が、2.5[mm^2]以上10[mm^2]以下の範囲にあることが好ましい。例えば、円形の凹部8であれば、その直径が約1.8[mm]~3.6[mm]の範囲にある。これにより、凹部8の水膜除去性能が確保される。
 凹部8の開口面積は、陸部31~33の接地面における凹部8の開口面積であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
 また、凹部8の深さHd(図5参照)と、細浅溝7の溝深さHgとが、0.5≦Hd/Hg≦1.5の関係を有することが好ましく、0.8≦Hd/Hg≦1.2の関係を有することがより好ましい。すなわち、凹部8の深さHdと細浅溝7の溝深さHgとが略同一である。これにより、陸部31~33の接地面の吸水作用が向上する。また、凹部8が、サイプ(例えば、線状サイプ6や円形サイプ(図示省略))と比較して浅いので、陸部31~33の剛性が適正に確保される。これにより、タイヤの氷上制動性能および雪上性能が確保される。
 また、凹部8の壁角度α(図5参照)が、-85[deg]≦α≦95[deg]の範囲にあることが好ましい。すなわち、凹部8の内壁が陸部31~33の接地面に対して略垂直であることが好ましい。これにより、凹部8のエッジ成分が増加する。
 凹部8の壁角度αは、凹部8の深さ方向の断面視にて、陸部31~33の接地面と凹部8の内壁とのなす角として測定される。
 また、図4に示すように、凹部8は、サイプ6から離間して配置される。すなわち、凹部8とサイプ6とは、陸部31~33の接地面にて相互に異なる位置に配置されて、交差しない。また、凹部8とサイプ6との距離gは、0.2[mm]≦gの範囲にあることが好ましく、0.3[mm]≦gの範囲にあることがより好ましい。これにより、陸部31~33の剛性が適正に確保される。
 また、図4に示すように、凹部8は、細浅溝7に交差して配置されて、細浅溝7に連通する。また、凹部8が、相互に分離した隣り合う複数の細浅溝7、7に跨って配置される。言い換えると、相互に分離した隣り合う複数の細浅溝7、7が、1つの凹部8を貫通して配置される。これにより、隣り合う複数の細浅溝7、7が、凹部8を介して接続されて相互に連通する。また、凹部8が、隣り合う複数の細浅溝7、7の間に介在して、細浅溝7の容積を部分的に拡大する。すると、タイヤ接地時にて、凹部8が水の溜まり場となり、氷路面の水膜が効率的に吸収される。これにより、タイヤの氷上制動性能が向上する。
 相互に分離した複数の細浅溝7とは、サイプ6および凹部8を除外した細浅溝7のみの配置パターンにて、相互に交差することなく延在する複数の細浅溝7をいう。したがって、複数の細浅溝7が相互に交差する配置パターンは、除外される。
 例えば、図3の構成では、直線形状を有する複数の細浅溝7が、タイヤ周方向に対して所定角度で傾斜しつつ所定間隔Pで陸部33の全面に配置されている。このため、図4に示すように、隣り合う細浅溝7、7が、相互に平行に配置されて一方向に併走している。また、凹部8が、隣り合う2本の細浅溝7、7に跨って配置されて、これらの細浅溝7、7を接続している。言い換えると、併走する2本の細浅溝7、7が、1つの凹部8を一方向に貫通している。なお、上記に限らず、3本以上の細浅溝7が、1つの凹部8を貫通しても良い(図示省略)。
 また、上記の構成では、1つのブロック5の接地面にて、隣り合う複数の細浅溝7、7に跨って配置された凹部8の数が、この接地面における凹部8の総数に対して70[%]以上あることが好ましく、80[%]以上あることがより好ましい。これにより、上記した凹部8の水の溜まり場としての機能が効果的に発揮される。例えば、図3の構成では、すべての凹部8が、隣り合う2本の細浅溝7、7に跨って配置されている。しかし、これに限らず、一部の凹部8が、単一の細浅溝7に交差しても良いし、あるいは、細浅溝7に交差することなく隣り合う細浅溝7、7の間に配置されても良い(図示省略)。
 また、図3の構成では、陸部33が、細浅溝7を区画する複数のサイプ6を接地面に備えている。また、サイプ6により区画された1つの細浅溝7の部分が、複数の凹部8を貫通することなく延在している。すなわち、複数の凹部8が、サイプ6により区画された1つの細浅溝7の部分に対して重複して配置されないように、分散して配置されている。このため、1つの細浅溝7の部分には、最大1つの凹部8のみが配置される。
 また、図3に示すように、凹部8は、細浅溝7と比較して、疎に配置される。具体的には、1つのリブあるいはブロックの接地面の全域における凹部8の配置密度Daが、0.8[個/cm^2]≦Da≦4.0[個/cm^2]の範囲にあることが好ましく、1.0[個/cm^2]≦Da≦3.0[個/cm^2]の範囲にあることがより好ましい。これにより、陸部31~33の接地面の面積が確保される。
 凹部8の配置密度Daは、1つのリブあるいはブロックの接地面の面積に対する凹部8の総数として定義される。例えば、陸部がタイヤ周方向に連続するリブである場合(図示省略)には、1つのリブ全体の接地面積に対する凹部8の総数が、上記の配置密度Daに設定される。また、陸部がブロックである場合(図2および図3参照)には、1つのブロック5の接地面積に対する凹部8の総数が、上記の配置密度Daに設定される。
 陸部の接地面積は、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面にて、測定される。
[凹部の開口面積率]
 この空気入りタイヤ1では、連続した接地面にて定義されるタイヤ幅方向の中央部領域CRにおける凹部8の開口面積率Scと、タイヤ幅方向の端部領域における凹部8の開口面積率Seとが、Se<Scの関係を有する。すなわち、タイヤ幅方向の中央部領域CR(図3参照)における凹部8の開口面積率Scが、端部領域よりも大きい。また、凹部8の開口面積率の比Sc/Seが、1.50≦Sc/Seの関係を有することが好ましく、3.00≦Sc/Seの関係を有することがより好ましい。比Sc/Seの上限は、特に限定がないが、凹部8の配置密度や開口面積との関係により制約を受ける。また、すべての凹部8が中央部領域CRに配置された場合(例えば、後述する図7参照)には、Se=0となり、Se<Scの条件が満たされる。
 接地面は、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を加えたときのタイヤと平板との接触面にて定義される。
 連続した接地面は、2.0[mm]以上の溝幅および3.0[mm]以上の溝深さを有する溝により区画された接地面として定義される。具体的には、上記の溝幅および溝深さを有する周方向溝およびラグ溝により区画された1つのリブあるいは1つのブロックの接地面が、上記連続した接地面に該当する。また、例えば、陸部内で終端するクローズド構造のラグ溝、陸部に形成された部分的な切り欠き(例えば、後述する図7の切欠部311)、タイヤ接地時に閉塞するサイプやカーフなどは、陸部の接地面を分断しないため、上記の溝に該当しない。
 タイヤ幅方向の中央部領域は、連続した接地面のタイヤ幅方向の中央部50[%]の領域として定義される(図3参照)。タイヤ幅方向の端部領域は、連続した接地面のタイヤ幅方向の左右の端部25[%]の領域として定義される。例えば、陸部がタイヤ周方向に連続するリブである場合(図示省略)には、1つのリブ全体の接地面についてタイヤ幅方向の中央部領域および端部領域が定義される。また、陸部がブロック列である場合(図2参照)には、ブロック列を構成する各ブロックの接地面について中央部領域および端部領域がそれぞれ定義される。なお、図3の破線は、中央部領域と端部領域との境界線を示している。
 凹部の開口面積率は、所定領域に配置された凹部の開口面積の総和と当該領域の接地面積との比として定義される。凹部と領域の境界線とが交差する場合には、凹部の中心点が領域内にあれば当該凹部が当該領域内に配置されているといえる。
 凹部の開口面積および領域の接地面積は、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面にて、測定される。
 また、陸部がタイヤ周方向に配列された複数のブロックから成る場合(図2参照)には、1つのブロック列を構成する70[%]以上、好ましくは80[%]以上のブロック5が、上記した凹部8の開口面積率の条件Se<Scを満たすことが好ましい。一方で、トレッド全体では、少なくとも1列の陸部が当該ブロック列の条件を満たせば足りる。
 中央部領域および端部領域における凹部8の開口面積率は、各領域における凹部8の配置密度により調整できる。すなわち、凹部8が、タイヤ幅方向の中央部領域で密に配置され、タイヤ幅方向の端部領域で疎に配置されることにより、中央部領域における凹部8の開口面積率Scが大きく設定される。
 具体的には、図3において、1つのブロック5のタイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域(図中の符号省略)における凹部8の配置数Neとが、Ne<Ncの関係を有することにより、凹部8の開口面積率の条件Se<Scが満たされる。すなわち、1つのリブあるいは1つのブロックにおける凹部8の配置密度がタイヤ幅方向の中央部領域CRと端部領域とで相異するように、複数の凹部8が1つのリブあるいは1つのブロックの接地面内で偏在して配置される。また、凹部8の配置数の比Nc/Neが、1.50≦Nc/Neの関係を有することが好ましく、3.00≦Nc/Neの関係を有することがより好ましい。比Nc/Neの上限は、特に限定がないが、凹部8の配置密度との関係により制約を受ける。また、すべての凹部8が中央部領域CRに配置された場合(例えば、後述する図7参照)には、Ne=0となり、Se<ScかつNe<Ncの条件が満たされる。
 凹部の配置数は、所定の領域にある凹部の中心点の数としてカウントされる。したがって、凹部の一部が領域からはみ出している場合であっても、凹部の中心点が領域内にあれば、凹部が当該領域に配置されているといえる。
 また、陸部がタイヤ周方向に配列された複数のブロックから成る場合(図2参照)には、1つのブロック列を構成する70[%]以上、好ましくは80[%]以上のブロック5が、上記した凹部8の条件Se<ScかつNe<Ncを満たすことが好ましい。一方で、トレッド全体では、少なくとも1列の陸部が当該ブロック列の条件を満たせば足りる。
 なお、上記のように、ブロック5の中央部領域がブロック5の接地面の中央部50[%]の領域として定義されるため、1つのブロック5では、中央部領域の接地面積と端部領域の接地面積とが、切欠部や細溝などを除外すれば実質的に等しい。このため、ブロック5の各凹部8が同一の開口面積を有する構成では、上記した凹部8の配置数の条件Ne<Ncにより、端部領域における凹部8の開口面積の総和が中央部領域における凹部8の開口面積の総和よりも大きくなる。
 上記の構成では、凹部8が、接地圧が低いブロック5の中央部領域CRに密に配置される。すると、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する。また、凹部8が端部領域で疎に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、端部領域の凝着作用(氷路面に対する密着性)が確保されて、タイヤの氷上性能が確保される。
 特に、ショルダー陸部33(最外周方向主溝に区画されたタイヤ幅方向外側の陸部として定義される)は、タイヤの制動性能に対する影響が大きい。そこで、図3のように、ショルダー陸部33のブロック5が凹部8をタイヤ幅方向の中央部領域CRに密に有することにより、凹部8による雪上制動性能の向上作用が顕著に得られる。
 例えば、図3の構成では、ショルダー陸部33の1つのブロック5が、接地面内に合計11個の凹部8を有し、また、接地面のタイヤ幅方向の中央部領域CRに7個の凹部8を有し、左右の端部領域に合計4個の凹部8を有している。また、各凹部8が、同一の開口形状および同一の開口面積を有している。また、タイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域における凹部8の配置数Neとが、Nc/Ne=7/4=1.75の関係を有している。また、ショルダー陸部33の全体において、すべてのブロック5の凹部5が、上記の配置数Ncの条件を満たしている(図2参照)。
 また、図3の構成では、ショルダー陸部33のブロック5が、矩形状の接地面を有している。また、複数のサイプ6が、タイヤ周方向に並列に配置されてブロック5をタイヤ周方向に複数の区間に区画している。また、すべての区間が、少なくとも1つの凹部8を有している。また、ブロック5のタイヤ周方向の中央部の区間では、凹部8が、ブロック5のタイヤ幅方向の中央部領域CRに集中して配置され、最外周方向主溝22側の端部領域には配置されていない。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、ブロック5の周方向主溝22側の角部にそれぞれ配置されている。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、角部のみに配置されて、タイヤ幅方向の中央部領域CRに配置されていない。
 陸部31~33の角部は、陸部の接地面の角部を含む5[mm]四方の領域として定義される。陸部の角部は、主溝およびラグ溝により区画された陸部の部分のみならず、陸部に形成された切欠部により区画された陸部の部分を含む。また、凹部8の中心が上記の角部にあれば、凹部8が上記の角部に配置されているといえる。
 また、図3の構成では、タイヤ周方向に隣り合う任意の3つの区間が、タイヤ幅方向の端部領域に凹部8を有する区間と、タイヤ幅方向の中央部領域CRに凹部8を有する区間とをそれぞれ含んでいる。これにより、凹部8が陸部31~33の端部領域および中央部領域CRに分散して配置されている。
 ブロック5のタイヤ周方向の両端部の区間とは、複数のサイプ6によりタイヤ周方向に区画されたブロック5の複数の区間のうち、タイヤ周方向の両端部に位置する一対の区間をいう。また、ブロック5のタイヤ周方向の中央部の区間とは、前記タイヤ周方向の両端部の区間を除いた区間をいう。
 ブロック5の角部では、タイヤ接地時にてブロック5の中央部よりも大きな接地圧が作用する。このため、氷路面の走行時にて接地圧により路面の氷が溶け易く、水膜が発生し易い。したがって、凹部8がブロック5の角部に配置されることにより、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する。
 また、図3の構成では、サイプ6が、ラグ溝43に平行ないしは若干傾斜して配置され、また、タイヤ接地端Tからタイヤ幅方向内側の領域にのみ配置されている。また、細浅溝7が、タイヤ接地端Tを越えて陸部33のタイヤ幅方向外側の領域まで延在している。また、凹部8が、タイヤ接地端Tからタイヤ幅方向内側の領域にのみ配置されている。
 タイヤ接地端Tとは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を加えたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置をいう。
 図6および図7は、図2に記載した空気入りタイヤの陸部を示す説明図である。これらの図において、図6は、セカンド陸部32を構成する1つのブロック5の平面図を示している。また、図7は、センター陸部31を構成する1つのブロック5の平面図を示している。
 図2の構成では、セカンド陸部32が、1本の周方向細溝23によりタイヤ幅方向に分断され、さらに複数のラグ溝42によりタイヤ周方向に分断されて、複数のブロック5が区画されている。また、セカンド陸部32のタイヤ幅方向内側の領域には、タイヤ周方向に長尺なブロック5が形成され、タイヤ幅方向外側の領域には、短尺なブロック5が形成されている。なお、セカンド陸部32は、最外周方向主溝22に区画されたタイヤ幅方向内側の陸部として定義される。
 また、図6に示すように、セカンド陸部32のタイヤ幅方向外側にある1つのブロック5が、矩形状の接地面を有している。また、複数のサイプ6が、タイヤ周方向に並列に配置されてブロック5を複数の区間に区画している。また、すべての区間が、少なくとも1つの凹部8を有している。また、ブロック5のタイヤ周方向の中央部の区間では、凹部8が、タイヤ幅方向の中央部領域CRにのみ配置され、タイヤ幅方向の端部領域には配置されていない。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、ブロック5の4つの角部にそれぞれ配置されて、また、タイヤ幅方向の中央部領域CRに配置されていない。
 また、1つのブロック5が、接地面内に合計10個の凹部8を有し、また、タイヤ幅方向の左右の端部領域に合計8個の凹部8を有し、タイヤ幅方向の中央部領域CRに2個の凹部8を有している。また、各凹部8が、同一の開口形状および同一の開口面積を有している。また、ブロック5のタイヤ幅方向の端部領域(図中の符号省略)における凹部8の配置数Neと、タイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncとが、Nc/Ne=8/2=4.00の関係を有している。また、図2において、セカンド陸部32のすべてのブロック5の凹部8が、上記した条件Ne<Ncを満たしている。
 一般に、短尺なブロック5を有する陸部32では、ブロック5の剛性が低いため、車両制動時にて、ブロック5の倒れ込み量が大きい。特に、ブロック5が複数のサイプ6を有する構成では、その傾向が顕著となり、タイヤの氷上制動性能が低下し易い。そこで、かかる構成では、ブロック5が、サイプ6で区画されたブロック5のすべての区間に凹部8を有することにより、氷路面の水膜が効率的に吸収されて、タイヤの氷上制動性能が確保される。
 特に、セカンド陸部32は、タイヤの制駆動性能に対する影響が大きい。そこで、図6のように、セカンド陸部32のブロック5が凹部8をタイヤ幅方向の端部領域に疎に有することにより、ブロック5のタイヤ幅方向の端部領域の接地面積が確保される。これにより、端部領域の凝着作用が確保されて、タイヤの氷上性能が確保される。
 また、図2の構成では、センター陸部31が、複数のラグ溝41によりタイヤ周方向に分断されて、複数のブロック5が区画されている。また、ブロック5が、セカンド陸部32のラグ溝42の延長線上に、切欠部311を有している。また、ブロック5が、矩形状の接地面を有している。なお、センター陸部は、タイヤ赤道面CL上にある陸部31(図2参照)、あるいは、タイヤ赤道面CLを挟んで隣り合う陸部(図示省略)として定義される。
 また、図7に示すように、複数のサイプ6が、タイヤ周方向に並列に配置されてブロック5を複数の区間に区画している。また、ブロック5が、凹部8を有さない区間を有している。また、任意の隣り合う3つの区間が、凹部8を有さない区間を含んでいる。例えば、図7の構成では、ブロック5のタイヤ幅方向の両端部にのみ凹部8を有する区間と、凹部8を有さない区間とが、タイヤ周方向に交互に配置されている。また、凹部8が、ブロック5の4つの角部にそれぞれ配置されている。また、ブロック5のタイヤ周方向の両端部の区間では、凹部8が、ブロック5の角部にのみ配置されて、タイヤ幅方向の中央部領域CRに配置されていない。また、切欠部311を含む区間が、切欠部311の近傍に凹部8を有している。また、ブロック5のタイヤ幅方向の端部領域には、上記した角部および切欠部311の近傍を除いて、凹部8が配置されていない。
 また、1つのブロック5が、接地面内に合計17個の凹部8を有し、また、ブロック5のタイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncが9個であり、タイヤ幅方向の端部領域における凹部8の配置数Neが8個である。また、各凹部8が、同一の開口形状および同一の開口面積を有している。また、ブロック5のタイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域(図中の符号省略)における凹部8の配置数Neとが、Nc/Ne=9/8=1.13の関係を有している。また、センター陸部31では、すべてのブロック5の凹部8が、上記した条件Ne<Ncを満たしている(図2参照)。
 一般に、センター陸部31は、タイヤの操縦安定性能を確保するために、高い剛性を有することが好ましい。そこで、図7のように、センター陸部31のブロック5が凹部8を有さない区間を部分的に有することにより、ブロック5の剛性が確保されて、タイヤの操縦安定性能が確保される。
 また、センター陸部31は、タイヤの駆動性能に対する影響が大きい。そこで、図7のように、センター陸部31のブロック5が凹部8をタイヤ幅方向の中央部領域CRに密に有することにより、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの駆動性能の向上効果が顕著に得られる。
 なお、上記の構成では、少なくとも一部の凹部8が、タイヤ成形金型(図示省略)のベント孔に対応する位置に配置されることが好ましい。すなわち、タイヤ加硫成形工程では、グリーンタイヤをタイヤ成形金型に押圧するために、タイヤ成形金型内の空気を外部に排出する必要がある。このため、タイヤ成形金型が、陸部31~33の接地面を成形する金型面に、複数のベント装置(図示省略)を有している。また、ある種のベント装置は、加硫成形後の陸部31~33の接地面に、ベント穴(小さな窪み)を形成する。そこで、このベント穴を上記の凹部8として用いることにより、ベント穴を有効に利用し、また、陸部31~33の接地面における無用な窪みを低減して陸部31~33の接地面積を適正に確保できる。
[変形例1]
 図8~図14は、図4に記載した空気入りタイヤの変形例を示す説明図である。これらの図は、サイプ6、細浅溝7および凹部8の位置関係を示している。
 図4の構成では、細浅溝7が、タイヤ周方向に対して所定角度θで傾斜して配置されている。かかる構成では、傾斜した細浅溝7により、タイヤ周方向およびタイヤ幅方向の双方へのエッジ成分が生じる点で好ましい。
 しかし、これに限らず、細浅溝7が、タイヤ周方向に平行に延在しても良いし(図8参照)、タイヤ幅方向に平行に延在しても良い(図9参照)。
 また、図4の構成では、細浅溝7が、直線形状を有している。かかる構成では、細浅溝7の形成が容易な点で好ましい。
 しかし、これに限らず、細浅溝7が、ジグザグ形状を有しても良いし(図10参照)、波状形状を有しても良い(図11参照)。このとき、図10および図11のように、複数の細浅溝7が相互に位相を揃えて配置されても良いし、図12のように、相互に位相をずらして配置されても良い。また、図13に示すように、細浅溝7が、屈曲あるいは湾曲した短尺構造を有しても良い。このとき、短尺な細浅溝7が、相互にオフセットしつつ連なって配列されても良いし(図13参照)、マトリクス状に整列して配置されても良い(図示省略)。また、細浅溝7が、円弧形状を有しても良いし(図14参照)、S字形状などの湾曲形状を有しても良い(図示省略)。
 また、図10~図14においても、図4、図8および図9の構成と同様に、細浅溝7が、タイヤ周方向に対して所定角度θで傾斜しても良いし、タイヤ周方向に平行に延在しても良いし、タイヤ幅方向に平行に延在しても良い。なお、細浅溝7がジグザグ形状あるいは波状形状を有する場合には、細浅溝7の傾斜角θがジグザグ形状あるいは波状形状の振幅の中心を基準として測定される。
 図15および図16は、図4に記載した空気入りタイヤの変形例を示す説明図である。これらの図は、サイプ6、細浅溝7および凹部8の位置関係を示している。
 図4の構成では、細浅溝7が、所定方向に延在する線状構造を有している。かかる構成では、細浅溝7が、ブロック5の接地面の全域に渡って連続的に延在できる点で好ましい。
 しかし、これに限らず、図15および図16に示すように、細浅溝7が、環状構造を有し、相互に所定間隔をあけて配置されても良い。例えば、細浅溝7が、円形状(図15)あるいは楕円形状(図示省略)、矩形状(図16)、三角形状、六角形状などの多角形状(図示省略)を有し得る。また、かかる構成においても、凹部8が、相互に分離した隣り合う複数の細浅溝7、7に跨って配置される。
 図17は、図5に記載した空気入りタイヤの変形例を示す説明図である。同図は、細浅溝7a、7bおよび凹部8の深さ方向の断面図を示している。
 図5の構成では、すべての細浅溝7が、同一の溝深さHgを有している。
 これに対して、図17の構成では、一部の細浅溝7bの溝深さが、基準となる細浅溝7aの溝深さHgよりも浅く設定される。かかる構成では、タイヤの摩耗進行により、浅い溝深さを有する細浅溝7bが先に消滅し、その後に深い溝深さHgを有する細浅溝7aが消滅する。これにより、すべての細浅溝7が同時に消滅することによるブロック5の性状変化を抑制できる。
 図18~図21は、図4に記載した空気入りタイヤの変形例を示す説明図である。これらの図は、サイプ6、細浅溝7および凹部8の位置関係を示している。
 図4の構成では、すべての細浅溝7が相互に平行に配置されている。このため、細浅溝7が相互に交差することなく、縞状に配置されている。
 しかし、これに限らず、図18~図21に示すように、細浅溝7が相互に交差あるいは連通して配置されても良い。例えば、図18~図19のように、複数の細浅溝7が網目状に配置されても良い。このとき、細浅溝7が、タイヤ周方向およびタイヤ幅方向に対して傾斜して配置されても良いし(図18)、タイヤ周方向およびタイヤ幅方向に対して平行に配置されても良い(図19)。また、一部の細浅溝7が、例えば、円弧状、波状など湾曲して配置されても良い(図20)。また、細浅溝7が、環状構造を有して相互に連通して配置されても良い(図21)。例えば、図21の構成では、細浅溝7がハニカム状に配置されている。また、これらの構成においても、凹部8が、相互に交差しない2本以上の細浅溝7に交差して配置される。
[変形例2]
 図22~図24は、図2に記載した空気入りタイヤの変形例を示す説明図である。これらの図において、図22は、ショルダー陸部33を構成する1つのブロック5の平面図を示し、図23は、セカンド陸部32を構成する1つのブロック5の平面図を示し、図24は、センター陸部31を構成する1つのブロック5の平面図を示している。
 図2の構成では、上記のように、連続した接地面について定義されるタイヤ幅方向の中央部領域CRにおける凹部8の開口面積率Scがタイヤ幅方向の端部領域における凹部8の開口面積率Seよりも大きく(Se<Sc)なるように、複数の凹部8が1つのブロック5の接地面内で偏在して配置されている。具体的には、図3、図6および図7に示すように、すべての陸部31~33のブロック5にて、タイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域における凹部8の配置数Neとが、Ne<Ncの関係を有している。
 これに対して、図22~図24の変形例では、連続した接地面にて定義されるタイヤ周方向の中央部領域CR’における凹部8の開口面積率Sc’と、タイヤ周方向の端部領域における凹部8の開口面積率Se’とが、Se’<Sc’の関係を有する。また、凹部8の開口面積率の比Sc’/Se’が、1.50≦Sc’/Se’の関係を有することが好ましく、3.00≦Sc’/Se’の関係を有することがより好ましい。比Sc’/Se’の上限は、特に限定がないが、凹部8の配置密度および開口面積との関係により制約を受ける。また、すべての凹部8が中央部領域CRに配置された場合には、Se’=0となり、Se’<Sc’の条件が満たされる。
 タイヤ周方向の中央部領域CR’は、連続した接地面のタイヤ周方向の中央部50[%]の領域として定義される(図22参照)。タイヤ周方向の端部領域は、連続した接地面のタイヤ周方向の前後の端部25[%]の領域として定義される。これらの中央部領域および端部領域は、陸部31~33に形成された部分的な切欠部を除外して定義される。また、ブロック列を構成する各ブロック5の接地面について中央部領域および端部領域がそれぞれ定義される。なお、図22の破線は、中央部領域と端部領域との境界線を示している。
 具体的には、図22~図24において、1つのブロック5のタイヤ周方向の中央部領域CR’における凹部8の配置数Nc’と、タイヤ周方向の端部領域における凹部8の配置数Ne’とが、Ne’<Nc’の関係を有することにより、凹部8の開口面積率の条件Se’<Sc’が満たされる。また、凹部8の配置数の比Nc’/Ne’が、1.50≦c’/Ne’の関係を有することが好ましく、3.00≦Nc’/Ne’の関係を有することがより好ましい。比Nc’/Ne’の上限は、特に限定がないが、凹部8の配置密度との関係により制約を受ける。また、すべての凹部8が中央部領域CR’に配置された場合には、Ne’=0となり、Ne’<Nc’かつSe’<Sc’の条件が満たされる。
 また、陸部がタイヤ周方向に配列された複数のブロックから成る場合(図2参照)には、1つのブロック列を構成する70[%]以上、好ましくは80[%]以上のブロック5が、上記した凹部8の条件Ne’<Nc’かつSe’<Sc’を満たすことが好ましい。一方で、トレッド全体では、少なくとも1列の陸部が当該ブロック列の条件を満たせば足りる。
 上記の構成では、凹部8が、接地圧が低いブロック5の中央部領域CRに密に配置される。すると、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する。また、凹部8が端部領域で疎に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、端部領域の凝着作用が確保されて、タイヤの氷上性能が確保される。
 例えば、図22の構成では、ショルダー陸部33の1つのブロック5が、接地面内に合計11個の凹部8を有し、また、タイヤ周方向の中央部領域CR’に7個の凹部8を有し、タイヤ周方向の前後の端部領域(図中の符号省略)に合計4個の凹部8を有している。また、各凹部8が、同一の開口形状および同一の開口面積を有している。また、タイヤ周方向の中央部領域CR’における凹部8の配置数Nc’と、タイヤ周方向の端部領域における凹部8の配置数Ne’とが、Nc’/Ne’=7/4=1.75の関係を有している。また、1つのショルダー陸部33において、すべてのブロック5の凹部8が、上記した条件Nc’<Ne’を満たしている。
 特に、ショルダー陸部33は、タイヤの制動性能に対する影響が大きい。そこで、ショルダー陸部33のブロック5が凹部8をタイヤ周方向の中央部領域CR’に密に有することにより、凹部8による雪上制動性能の向上作用が顕著に得られる。
 また、図23の構成では、セカンド陸部32のタイヤ幅方向外側にある1つのブロック5(図2参照)が、接地面内に合計9個の凹部8を有し、また、タイヤ周方向の中央部領域CR’に5個の凹部8を有し、タイヤ周方向の前後の端部領域(図中の符号省略)に4個の凹部8を有している。また、各凹部8が、同一の開口形状および同一の開口面積を有している。また、ブロック5のタイヤ周方向の中央部領域CR’における凹部8の配置数Ncと、タイヤ周方向の端部領域における凹部8の配置数Ne’とが、Nc’/Ne’=5/4=1.25の関係を有している。また、1つのセカンド陸部32において、すべてのブロック5の凹部8が、上記した条件Ne’<Nc’を満たしている。
 特に、セカンド陸部32(最外周方向主溝22に区画されたタイヤ幅方向内側の陸部として定義される)は、タイヤの制駆動性能に対する影響が大きい。そこで、図6のように、セカンド陸部32のブロック5が凹部8をタイヤ幅方向の端部領域に疎に有することにより、ブロック5のタイヤ幅方向の端部領域の接地面積が確保される。これにより、端部領域の凝着作用が確保されて、タイヤの氷上性能が確保される。
 また、図24の構成では、センター陸部31の1つのブロック5が、接地面内に合計19個の凹部8を有し、また、タイヤ周方向の中央部領域CR’に11個の凹部8を有し、タイヤ周方向の前後の端部領域(図中の符号省略)に8個の凹部8を有している。また、各凹部8が、同一の開口形状および同一の開口面積を有している。また、タイヤ周方向の中央部領域CR’における凹部8の配置数Nc’と、タイヤ周方向の端部領域における凹部8の配置数Ne’とが、Nc’/Ne’=11/8=1.38の関係を有している。また、1つのセンター陸部31において、すべてのブロック5の凹部8が、上記した条件Ne’<Nc’を満たしている。
 特に、センター陸部31は、タイヤの駆動性能に対する影響が大きい。そこで、センター陸部31のブロック5が凹部8をタイヤ周方向の中央部領域CR’に密に有することにより、中央部領域CR’の接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力が増加する。これにより、タイヤのトラクション性能が向上して、凹部8によるタイヤの駆動性能の向上効果が顕著に得られる。
[変形例3]
 図25~図28は、図2に記載した空気入りタイヤの変形例を示す説明図である。これらの図において、図25は、空気入りタイヤ1のトレッド面の平面図を示している。また、図26は、ショルダー陸部33を構成する1つのブロック5の平面図を示し、図27は、セカンド陸部32を構成する1つのブロック5の平面図を示し、図28は、センター陸部31を構成する1つのブロック5の平面図を示している。
 図2の構成では、上記のように、複数の凹部8が1つのブロック5の接地面内で偏在して配置されることにより、1つのブロック5のタイヤ幅方向の中央部領域CRにおける凹部8の開口面積率Scがタイヤ幅方向の端部領域(図中の符号省略)における凹部8の開口面積率Seよりも大きく(Se<Sc)設定されている。具体的には、図3、図6および図7に示すように、凹部8がブロック5のタイヤ幅方向の中央部領域CRに密に配置されている。また、各陸部31~33の凹部8が、同一の開口形状および同一の開口面積を有している。
 しかし、これに限らず、複数の凹部8が1つのリブあるいはブロックの接地面内で開口面積を変化させることにより、1つのリブあるいはブロックのタイヤ幅方向の中央部領域における凹部8の開口面積率Scがタイヤ幅方向の端部領域における凹部8の開口面積率Seよりも大きく(Se<Sc)設定されてもても良い。すなわち、比較的大きな開口面積を有する凹部8が、タイヤ幅方向の中央部領域CRに配置される。
 具体的には、図26~図28において、タイヤ幅方向の中央部領域CRにおける凹部8の開口面積の平均値Acと、タイヤ幅方向の端部領域(図中の符号省略)における凹部8の開口面積の平均値Aeとが、Ae<Acの関係を有することにより、凹部8の開口面積率の条件Se<Scが満たされる。また、凹部8の開口面積の平均値Ac、Aeの比Ac/Aeが、1.5≦Ac/Ae≦4.0の関係を有することが好ましく、2.0≦Ac/Ae≦3.0の関係を有することがより好ましい。また、すべての凹部8が中央部領域CRに配置された場合には、Ae=0となり、Ae<AcかつSe<Scの条件が満たされる。
 開口面積の平均値Ac、Aeは、所定領域における凹部の開口面積の総和と当該領域における凹部の総数との比として算出される。
 また、陸部がタイヤ周方向に配列された複数のブロックから成る場合(図2参照)には、1つのブロック列を構成する70[%]以上、好ましくは80[%]以上のブロック5が、上記した凹部8の開口面積の条件Ac<AeかつSc<Seを満たすことが好ましい。一方で、トレッド全体では、少なくとも1列の陸部が上記した凹部8の開口面積の条件Ac<AeかつSc<Seを満たせば足りる。
 上記の構成では、比較的大きな開口面積を有する凹部8が、接地圧が低いブロック5の中央部領域CRに配置される。すると、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する。また、比較的小さな開口面積を有する凹部8が端部領域に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、端部領域の凝着作用が確保されて、タイヤの氷上性能が確保される。
 例えば、図26の構成では、ショルダー陸部33の1つのブロック5が接地面内に合計16個の凹部8を有し、また、タイヤ幅方向の中央部領域CRと端部領域(図中の符号省略)とが8個の凹部8をそれぞれ有している。また、各凹部8が、同一の開口形状を有している。また、中央部領域CRには、比較的大きな開口面積の凹部8が配置され、逆に、端部領域には、比較的小さな開口面積の凹部8が配置されている。これにより、各領域における凹部8の開口面積の条件Ae<Acおよび開口面積率の条件Se<Scが同時に満たされている。また、ショルダー陸部33では、すべてのブロック5の凹部8が、上記の条件Ae<Ac、Se<Scを満たしている(図25参照)。
 また、図27の構成では、セカンド陸部32のタイヤ幅方向外側にある1つのブロック5(図25参照)が、接地面内に合計16個の凹部8を有し、また、タイヤ幅方向の左右の中央部領域CRと端部領域(図中の符号省略)とが8個の凹部8をそれぞれ有している。また、各凹部8が、同一の開口形状を有している。また、中央部領域CRには、比較的大きな開口面積の凹部8が配置され、逆に、端部領域には、比較的小さな開口面積の凹部8が配置されている。これにより、各領域における凹部8の開口面積の条件Ae<Acおよび開口面積率の条件Se<Scが同時に満たされている。また、セカンド陸部32では、すべてのブロック5の凹部8が、上記の条件Ae<Ac、Se<Scを満たしている(図25参照)。
 また、図28の構成では、センター陸部31の1つのブロック5が、接地面内に合計35個の凹部8を有し、また、タイヤ幅方向の中央部領域CRに17個の凹部8を有し、タイヤ幅方向の端部領域(図中の符号省略)に合計18個の凹部8を有している。また、各凹部8が、同一の開口形状を有している。また、中央部領域CRには、比較的大きな開口面積の凹部8が配置され、逆に、端部領域には、比較的小さな開口面積の凹部8が配置されている。また、各領域における凹部8の開口面積の条件Ae<Acおよび開口面積率の条件Se<Scが同時に満たされている。また、センター陸部31では、すべてのブロック5の凹部8が、上記の条件Ae<Ac、Se<Scを満たしている(図25参照)。
 また、上記の構成では、タイヤ幅方向の中央部領域CRに配置された70[%]以上、好ましくは80[%]以上の凹部8が、ブロック5に配置された凹部8の開口面積の平均値よりも大きな開口面積を有することが好ましい。すなわち、大きな凹部8の大半が中央部領域CRに配置される。これにより、雪路面の走行時にて、凹部8による雪柱剪断力の増加作用が効率的に得られる。例えば、図25~図28の構成では、1つのブロック5が、相互に異なる開口面積をもつ2種類の凹部8を備え、大きい開口面積をもつすべての凹部8が中央部領域CRに配置されている。また、中央部領域CRには、大きい凹部8のみが配置され、端部領域には、小さい凹部8のみが配置されている。このため、各領域が相互に異なる大きさの凹部8を有している。これにより、特徴的な凹部8の配列パターンが形成されている。
 しかし、これに限らず、一部の小さい凹部が、中央部領域CRに配置されても良い(図示省略)。
 また、上記の構成では、平均値よりも小さい開口面積をもつ凹部8が、連続した接地面にてタイヤ幅方向の最も外側に配置されることが好ましい。かかる構成では、ブロック5の端部領域の接地面積が確保されて、氷路面に対する端部領域の凝着作用が確保される。これにより、タイヤの氷上性能が確保される。例えば、図25~図28の構成では、小さい凹部8が、ブロック5の周方向溝21~23側のエッジ部に沿って配置されている。これにより、端部領域の接地面積が確保されている。
 また、上記の構成では、陸部31~33が、複数のブロック5を有するブロック列であり、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する複数のサイプ6と、相互に異なる開口面積をもつ複数種類の凹部8とを備える。そして、中央部領域CRでは、平均値よりも大きな開口面積をもつ凹部8が、タイヤ周方向に隣り合う任意の3つの区間の少なくとも1つに配置されることが好ましい。すなわち、サイプ6により区画された隣り合う任意の3つの区間が、少なくとも1つの大きな凹部8を有する。これにより、大きな凹部8が中央部領域CRにてタイヤ周方向に分散して配置されるので、雪路面の走行時にて、凹部8による雪柱剪断力の向上作用が効率的に得られる。例えば、図25~図28の構成では、サイプ6により区画されたすべての区間が、大きな凹部8を有している。これにより、凹部8が中央部領域CRの各区間に分散して配置されている。
 また、上記の構成では、陸部31~33が複数のブロック5を有するブロック列であり、且つ、平均値よりも小さい開口面積をもつ凹部8がブロック5の角部に配置されることが好ましい。かかる構成では、角部の接地面積が確保されて、氷路面に対する角部の凝着作用が確保される。これにより、タイヤの氷上性能が確保される。例えば、図25~図28の構成では、周方向溝21~23とラグ溝41~43との交差位置(図25参照)に形成されたすべてのブロック5の角部に、小さな凹部8が配置されている。さらに、センター陸部33に形成された切欠部311の角部にも、小さな凹部8が配置されている(図28参照)。これにより、角部の接地面積が確保されている。
 なお、図25~図28の構成では、各ブロック5の中央部領域CRにおける凹部8の配置数Ncと端部領域における凹部8の配置数Neとが略同一であり、各領域における凹部8の配置密度が略同一に設定されている。また、各領域における凹部8の配置数Nc、Neが、0.90≦Nc/Ne≦1.10の関係を有することが好ましい。これにより、凹部8がブロック5内に均一の配置密度で配置される。
 しかし、これに限らず、上記の条件Ae<Acに加えて、各領域における凹部8の配置数の比Nc/Neが、1.20≦Nc/Neの関係を有するように、より好ましくは1.50≦Nc/Neの関係を有するように設定されても良い。すなわち、タイヤ幅方向の中央部領域CRにて、凹部8が、比較的大きな開口面積を有しつつ密に配置される。これにより、各領域における凹部8の開口面積の比Ac/Aeを小さくしつつ、各領域における凹部8の開口面積率の条件Se<Scを効率的に調整できる。
[変形例4]
 図29~図31は、図25に記載した空気入りタイヤの変形例を示す説明図である。これらの図において、図29は、ショルダー陸部33を構成する1つのブロック5の平面図を示し、図30は、セカンド陸部32を構成する1つのブロック5の平面図を示し、図31は、センター陸部31を構成する1つのブロック5の平面図を示している。
 図25の構成では、上記した図26~図28に示すように、1つのリブあるいはブロックのタイヤ幅方向の中央部領域における凹部8の開口面積率Scがタイヤ幅方向の端部領域における凹部8の開口面積率Seよりも大きく(Se<Sc)なるように、複数の凹部8が1つのリブあるいはブロックの接地面内で開口面積を変化させている。
 しかし、これに限らず、1つのリブあるいはブロックのタイヤ周方向の中央部領域CR’における凹部8の開口面積率Sc’がタイヤ周方向の端部領域における凹部8の開口面積率Se’よりも大きく(Se’<Sc’)なるように、複数の凹部8が1つのリブあるいはブロックの接地面内で開口面積を変化させても良い。すなわち、比較的大きな開口面積を有する凹部8が、タイヤ周方向の中央部領域CR’に配置される。
 具体的には、図29~図31において、タイヤ周方向の中央部領域CR’における凹部8の開口面積の平均値Ac’と、タイヤ周方向の端部領域(図中の符号省略)における凹部8の開口面積の平均値Ae’とが、Ae’<Ac’の関係を有することにより、凹部8の開口面積率の条件Se’<Sc’が満たされる。また、凹部8の開口面積の平均値Ac’、Ae’の比Ac’/Ae’が、1.5≦Ac’/Ae’≦4.0の関係を有することが好ましく、2.0≦Ac’/Ae’≦3.0の関係を有することがより好ましい。また、すべての凹部8が中央部領域CR’に配置された場合には、Ae’=0となり、Ae’<Ac’かつSe’<Sc’の条件が満たされる。
 また、陸部がタイヤ周方向に配列された複数のブロックから成る場合(図2参照)には、1つのブロック列を構成する70[%]以上、好ましくは80[%]以上のブロック5が、上記した凹部8の開口面積の条件Ae’<Ac’かつSe’<Sc’を満たすことが好ましい。一方で、トレッド全体では、少なくとも1列の陸部が当該ブロック列の条件を満たせば足りる。
 上記の構成では、比較的大きな開口面積を有する凹部8が、接地圧が低いブロック5の中央部領域CRに配置される。すると、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する。また、比較的小さな開口面積を有する凹部8が端部領域に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、端部領域の凝着作用が確保されて、タイヤの氷上性能が確保される。
 例えば、図29の構成では、ショルダー陸部33の1つのブロック5が接地面内に合計16個の凹部8を有し、また、タイヤ周方向の中央部領域CR’と端部領域(図中の符号省略)とが8個の凹部8をそれぞれ有している。また、各凹部8が、同一の開口形状を有している。また、中央部領域CR’には、比較的大きな開口面積の凹部8が配置され、逆に、端部領域には、比較的小さな開口面積の凹部8が配置されている。これにより、各領域における凹部8の開口面積の条件Ae’<Ac’および開口面積率の条件Se’<Sc’が同時に満たされている。また、ショルダー陸部33の全体では、すべてのブロック5の凹部8が、上記の条件Ae’<Ac’、Se’<Sc’を満たしている。
 また、図30の構成では、セカンド陸部32のタイヤ周方向外側にある1つのブロック5(図25参照)が、接地面内に合計16個の凹部8を有し、また、タイヤ周方向の左右の中央部領域CR’と端部領域(図中の符号省略)とが8個の凹部8をそれぞれ有している。また、各凹部8が、同一の開口形状を有している。また、中央部領域CR’には、比較的大きな開口面積の凹部8が配置され、逆に、端部領域には、比較的小さな開口面積の凹部8が配置されている。これにより、各領域における凹部8の開口面積の条件Ae’<Ac’および開口面積率の条件Se’<Sc’が同時に満たされている。また、セカンド陸部32の全体では、すべてのブロック5の凹部8が、上記の条件Ae’<Ac’、Se’<Sc’を満たしている。
 また、図31の構成では、センター陸部31の1つのブロック5が、接地面内に合計36個の凹部8を有し、また、タイヤ周方向の中央部領域CR’と左右の端部領域(図中の符号省略)とが18個の凹部8をそれぞれ有している。また、各凹部8が、同一の開口形状を有している。また、中央部領域CR’には、比較的大きな開口面積の凹部8が配置され、逆に、端部領域には、比較的小さな開口面積の凹部8が配置されている。これにより、各領域における凹部8の開口面積の条件Ae’<Ac’および開口面積率の条件Se’<Sc’が同時に満たされている。また、センター陸部31の全体では、すべてのブロック5の凹部8が、上記の条件Ae’<Ac’、Se’<Sc’を満たしている。
 また、上記の構成では、タイヤ周方向の中央部領域CR’に配置された70[%]以上、好ましくは80[%]以上の凹部8が、平均値よりも大きな開口面積を有することが好ましい。すなわち、大きな凹部8の大半が中央部領域CR’に配置される。これにより、雪路面の走行時にて、凹部8による雪柱剪断力の増加作用が効率的に得られる。例えば、図29~図31の構成では、1つのブロック5が、相互に異なる開口面積をもつ2種類の凹部8を備え、大きい開口面積をもつすべての凹部8が中央部領域CR’に配置されている。また、中央部領域CR’には、大きい凹部8のみが配置され、端部領域には、小さい凹部8のみが配置されている。このため、各領域が相互に異なる大きさの凹部8を有している。これにより、特徴的な凹部8の配列パターンが形成されている。
 しかし、これに限らず、一部の小さい凹部が、中央部領域CR’に配置されても良い。
 また、上記の構成では、平均値よりも小さい開口面積をもつ凹部8が、連続した接地面にてタイヤ周方向の最も外側に配置されることが好ましい。これにより、ブロック5の端部領域の接地面積が確保されて、端部領域の凝着作用が確保される。例えば、図30および図31の構成では、小さい凹部8が、ブロック5のラグ溝41、42側のエッジ部に沿って配置されている。これにより、端部領域の接地面積が確保されている。
 また、上記の構成では、陸部31~33が複数のブロック5を有するブロック列であり、且つ、平均値よりも小さい開口面積をもつ凹部8がブロック5の角部に配置されることが好ましい。かかる構成では、角部の接地面積が確保されて、角部の凝着作用が確保される。これにより、タイヤの氷上性能が確保される。例えば、図29~図31の構成では、周方向溝21~23とラグ溝41~43との交差位置(図25参照)に形成されたすべてのブロック5の角部に、小さい凹部8が配置されている。これにより、角部の接地面積が確保されている。
 なお、図29~図31の構成では、各ブロック5の中央部領域CR’における凹部8の配置数Nc’と端部領域における凹部8の配置数Ne’とが略同一であり、各領域における凹部8の配置密度が略同一に設定されている。また、各領域における凹部8の配置数Nc’、Ne’が、0.90≦Nc’/Ne’≦1.10の関係を有することが好ましい。これにより、凹部8がブロック5内に均一の配置密度で配置される。
 しかし、これに限らず、上記の条件Ae’<Ac’に加えて、各領域における凹部8の配置数の比Nc’/Ne’が、1.20≦Nc’/Ne’の関係を有するように、より好ましくは1.50≦Nc’/Ne’の関係を有するように設定されても良い。すなわち、タイヤ周方向の中央部領域CR’にて、凹部8が、比較的大きな開口面積を有しつつ密に配置される。これにより、各領域における凹部8の開口面積の比Ac’/Ae’を小さくしつつ、各領域における凹部8の開口面積率の条件Se’<Sc’を効率的に調整できる。
[効果]
 以上説明したように、この空気入りタイヤ1は、リブあるいは複数のブロックを有する陸部31~33をトレッド面に備える(図2および図25参照)。また、陸部31~33が、複数の細浅溝7と、複数の凹部8とを接地面に備える(図3および図4参照)。また、陸部31~33における連続した接地面のタイヤ幅方向の中央部50[%]の領域を中央部領域として定義し、タイヤ幅方向の左右の端部25[%]の領域を端部領域として定義するときに、1つの連続した接地面のタイヤ幅方向の中央部領域CRにおける凹部8の開口面積率Scと、タイヤ幅方向の端部領域における凹部8の開口面積率Seとが、Se<Scの関係を有する。
 かかる構成では、(1)陸部31~33が凹部8を接地面に備えるので、陸部31~33のエッジ成分が増加して、タイヤの氷上制動性能が向上する利点がある。また、(2)凹部8の開口面積率がタイヤ幅方向の中央部領域CRで大きく設定されるので、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する利点がある。また、(3)凹部8の開口面積率がタイヤ幅方向の端部領域で小さく設定されるので、ブロック5の端部領域の接地面積が確保される。これにより、端部領域の氷路面に対する凝着作用が確保されて、タイヤの氷上性能が確保される利点がある。また、(4)凹部8が、サイプ(例えば、線状サイプ6や円形サイプ(図示省略))と比較して浅いので、陸部31~33の剛性が適正に確保される。これにより、タイヤの氷上制動性能が確保される利点がある。
 また、この空気入りタイヤ1では、タイヤ幅方向の中央部領域CRにおける凹部8の開口面積率Scと、タイヤ幅方向の端部領域における凹部8の開口面積率Seとが、1.50≦Sc/Seの関係を有する。これにより、各領域における凹部8の開口面積率の比Sc/Seが確保されて、凹部8の開口面積の偏りによる作用が適正に得られる利点がある。
 また、この空気入りタイヤ1では、タイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域における凹部8の配置数Neとが、Ne<Ncの関係を有する(図3、図6および図7参照)。かかる構成では、凹部8がタイヤ幅方向の中央部領域CRで密に配置されるので、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する利点がある。また、凹部8が端部領域で疎に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、端部領域の氷路面に対する凝着作用が確保されて、タイヤの氷上性能が確保される利点がある。
 また、この空気入りタイヤ1では、タイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域における凹部8の配置数Neとが、1.50≦Nc/Neの関係を有する(図3、図6および図7参照)。これにより、各領域における凹部8の疎密配置が適正化されて、タイヤの雪上性能の向上作用が適正に得られる利点がある。
 また、この空気入りタイヤ1では、1つの前記連続した接地面の全域における凹部8の配置密度Daが、0.8[個/cm^2]≦Da≦4.0[個/cm^2]の範囲にある。これにより、凹部8の配置密度が適正化される利点がある。すなわち、0.8[個/cm^2]≦Daであることにより、凹部8の配置数が確保されて、凹部8に水膜の除去作用が適正に確保される。また、Da≦4.0[個/cm^2]であることにより、陸部31~33の接地面積が適正に確保される。
 また、この空気入りタイヤ1では、陸部31~33が、複数のサイプ6を接地面に備え、且つ、凹部8が、サイプ6から離間して配置される(例えば、図3参照)。かかる構成では、凹部8とサイプ6とが相互に分離して配置されるので、タイヤの氷上制動性能および雪上性能が向上する利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する。また、隣り合う任意の一対の前記区間の少なくとも一方が、タイヤ幅方向の中央部領域CRに凹部8を有する(図3および図7参照)。これにより、凹部8がタイヤ幅方向の中央部領域CRで密に配置されて、水捌けが悪い中央部領域CRの排水性が向上する利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する。また、隣り合う3つの前記区間が、タイヤ幅方向の中央部領域CRに凹部8を有する前記区間と、タイヤ幅方向の端部領域に凹部8を有する前記区間とをそれぞれ含む(例えば、図3および図6参照)。これにより、凹部8が陸部31~33の中央部領域および端部領域に分散して配置される利点がある。
 また、この空気入りタイヤ1では、複数のサイプ6が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する。また、タイヤ周方向に隣り合う任意の3つの前記区間が、凹部8を有する区間と、凹部8を有さない前記区間とをそれぞれ含む(図7参照)。かかる構成では、凹部8を有さない区間が配置されることにより、凹部8が分散して配置される。これにより、陸部31~33の接地面積が確保されて、タイヤの氷上制動性能および雪上性能が向上する利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、複数のブロック5を有するブロック列であり、ブロック5の角部に凹部8を有する(図3、図6および図7参照)。かかる構成では、接地圧が高く水膜が発生し易いブロック5の角部に、凹部8が配置される。これにより、氷路面にて、踏面の水膜が効率的に吸収されて、タイヤの氷上制動性能が向上する利点がある。また、雪路面にて、凹部8により角部の接地圧がさらに増加し、雪中剪断力が増加して、タイヤの雪上性能が向上する利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、複数のブロック5を有するブロック列であり、ブロック5のタイヤ周方向の端部かつタイヤ幅方向の中央部領域CRには凹部8を有さない(図3、図6および図7参照)。これにより、ブロックの踏み込み側および蹴り出し側の端部の接地面積および剛性が確保されて、タイヤの氷上制動性能および雪上性能が向上する利点がある。
 また、この空気入りタイヤ1では、凹部8の開口面積が、2.5[mm^2]以上10[mm^2]以下の範囲にある。これにより、凹部8の開口面積が適正化される利点がある。すなわち、凹部8の開口面積が2.5[mm^2]以上であることにより、凹部8のエッジ作用および吸水性が確保される。また、凹部8の開口面積が10[mm^2]以下であることにより、陸部31~33の接地面積および剛性が確保される。
 また、この空気入りタイヤ1では、凹部8が、陸部31~33の接地面にて円形状(図4参照)あるいは楕円形状(図示省略)を有する。これにより、凹部8が多角形を有する構成(図示省略)と比較して、陸部31~33の接地面の偏摩耗を抑制できる利点がある。
 また、この空気入りタイヤ1では、凹部8の壁角度αが、-85[deg]≦α≦95[deg]の範囲にある(図5参照)。これにより、凹部8のエッジ作用が向上する利点がある。
 また、この空気入りタイヤ1では、凹部8の深さHdと、細浅溝7の溝深さHgとが、0.5≦Hd/Hg≦1.5の関係を有する(図5参照)。これにより、凹部8の深さHdが適正化される利点がある。すなわち、0.5≦Hd/Hgであることにより、凹部8の吸水作用が確保される。また、Hd/Hg≦1.5であることにより、凹部8が細浅溝7に対して深過ぎることに起因する陸部31~33の剛性低下を抑制できる。
 また、この空気入りタイヤ1では、少なくとも一部の凹部8が、タイヤ成形金型のベント穴(図示省略)に対応する位置に配置される。ベント穴を有効に利用し、また、陸部31~33の接地面における無用な窪みを低減して陸部31~33の接地面積を適正に確保できる利点がある。
 また、この空気入りタイヤ1では、タイヤ幅方向の中央部領域CRにおける凹部8の開口面積の平均値Acと、タイヤ幅方向の端部領域における凹部8の開口面積の平均値Aeとが、Ae<Acの関係を有する(図25~図28参照)。かかる構成では、比較的大きな開口面積を有する凹部8が中央部領域CRに配置されるので、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する。また、比較的小さな開口面積を有する凹部8が端部領域に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、氷路面に対するブロック5の凝着作用が確保されて、タイヤの氷上性能が確保される。
 また、この空気入りタイヤ1では、タイヤ幅方向の中央部領域CRにおける凹部8の開口面積の平均値Acと、タイヤ幅方向の端部領域における凹部8の開口面積の平均値Aeとが、1.5≦Ac/Ae≦4.0の関係を有する。これにより、各領域における凹部8の開口面積の比Ac/Aeが適正化される利点がある。すなわち、1.5≦Ac/Aeであることにより、各領域における凹部8の開口面積の比Ac/Aeが確保されて、凹部8によるタイヤの雪上性能の向上作用が適正に得られる。また、Ac/Ae≦4.0であることにより、開口面積の比Ae/Acが過大となる事態が回避されて、ブロック5の偏摩耗が抑制される。
 また、この空気入りタイヤ1では、陸部31~33が、相互に異なる開口面積をもつ複数種類の凹部8を備え、且つ、タイヤ幅方向の中央部領域CRに配置された70[%]以上の凹部8が、連続した接地面に配置された凹部8の開口面積の平均値よりも大きな開口面積を有する(図26~図28参照)。これにより、凹部8による雪柱剪断力の増加作用が適正に確保されて、タイヤの雪上性能が向上する利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、相互に異なる開口面積をもつ複数種類の凹部8を備え、且つ、連続した接地面に配置された凹部8の開口面積の平均値よりも小さな開口面積をもつ凹部8が、連続した接地面にてタイヤ幅方向の最も外側に配置される(図26~図28参照)。これにより、これにより、ブロック5の端部領域の接地面積が確保されて、タイヤの氷上性能が確保される利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、タイヤ周方向に並列に配置されて陸部31~33を複数の区間に区画する複数のサイプ6と、相互に異なる開口面積をもつ複数種類の凹部8とを備える(図26~図28参照)。また、連続した接地面に配置された凹部8の開口面積の平均値よりも大きな開口面積をもつ凹部8が、タイヤ周方向に隣り合う任意の3つの前記区間の少なくとも1つに配置される。これにより、大きな凹部8がタイヤ周方向に分散して配置されるので、凹部8による雪中剪断力の増加作用が適正に確保される利点がある。
 また、この空気入りタイヤ1では、陸部31~33が、複数のブロック5を有するブロック列であると共に、相互に異なる開口面積をもつ複数種類の凹部8を備える(図26~図28参照)。また、連続した接地面に配置された凹部8の開口面積の平均値よりも小さな開口面積をもつ凹部8が、ブロック5の角部に配置される。これにより、ブロック5の端部領域の接地面積が確保されて、タイヤの氷上性能が確保される利点がある。
 また、この空気入りタイヤ1は、複数のブロック5を有する陸部31~33をトレッド面に備える(図2参照)。また、陸部31~33が、複数の細浅溝7と、複数の凹部8とを接地面に備える(図4参照)。また、連続した接地面のタイヤ周方向の中央部50[%]の領域を中央部領域として定義し、タイヤ周方向の前後の端部25[%]の領域を端部領域として定義するときに、1つの連続した接地面のタイヤ周方向の中央部領域CR’における凹部8の開口面積率Sc’と、タイヤ周方向の端部領域における凹部8の開口面積率Se’とが、Se’<Sc’の関係を有する(図22~図24参照)。
 かかる構成では、(1)陸部31~33が凹部8を接地面に備えるので、陸部31~33のエッジ成分が増加して、タイヤの氷上制動性能が向上する利点がある。また、(2)凹部8の開口面積率がタイヤ周方向の中央部領域CRで大きく設定されるので、中央部領域CRの接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する利点がある。また、(3)凹部8の開口面積率がタイヤ周方向の中央部領域CRで小さく設定されるので、陸部31~33の中央部領域の接地面積が確保されて、タイヤの氷上制動性能が向上する利点がある。また、(4)凹部8が、サイプ(例えば、線状サイプ6や円形サイプ(図示省略))と比較して浅いので、陸部31~33の剛性が適正に確保される。これにより、タイヤの氷上制動性能が確保される利点がある。
 また、この空気入りタイヤ1では、タイヤ周方向の中央部領域CR’における凹部8の配置数Nc’と、タイヤ周方向の端部領域における凹部8の配置数Ne’とが、Ne’<Nc’の関係を有する(図22~図24参照)。かかる構成では、凹部8がタイヤ周方向の中央部領域CR’で密に配置されるので、中央部領域CR’の接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する利点がある。また、凹部8が端部領域で疎に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、氷路面に対する端部領域の凝着作用が確保されて、タイヤの氷上性能が確保される利点がある。
 また、この空気入りタイヤ1では、タイヤ周方向の中央部領域CR’における凹部8の開口面積の平均値Ac’と、タイヤ周方向の端部領域における凹部8の開口面積の平均値Ae’とが、Ae’<Ac’の関係を有する(図22~図24参照)。かかる構成では、比較的大きな開口面積を有する凹部8が、接地圧が低いブロック5の中央部領域CR’に配置される。すると、中央部領域CR’の接地面積が減少し、接地圧が上昇して、凹部8による雪柱剪断力(いわゆる掘り起こし力)が増加する。これにより、タイヤのトラクション性能が向上して、タイヤの雪上性能が向上する利点がある。また、比較的小さな開口面積を有する凹部8が端部領域に配置されるので、ブロック5の端部領域の接地面積が確保される。これにより、ブロック5の端部領域の接地面積が確保されて、タイヤの氷上性能が確保される利点がある。
 図32は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果1を示す図表である。図33は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果2を示す図表である。
 この性能試験では、複数種類の試験タイヤについて、雪上制動性能に関する評価が行われた。また、タイヤサイズ195/65R15の試験タイヤがJATMA規定の適用リムに組み付けられ、この試験タイヤに230[kPa]の空気圧およびJATMA規定の最大負荷が付与される。また、試験タイヤが、試験車両である排気量1600[cc]かつFF(Front engine Front drive)方式のセダンに装着される。
 雪上性能に関する評価では、試験車両が雪路試験場のスノー路面を走行し、駆動性能および走行速度40[km/h]からの制動距離が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。
 図32において、実施例1~10の試験タイヤは、図1および図2の構成を備え、陸部31~33のブロック5がサイプ6、細浅溝7および凹部8をそれぞれ有する。また、図4に示すように、直線状の細浅溝7がタイヤ周方向に傾斜しつつ平行に配置されてブロック5を貫通する。また、細浅溝7の溝幅および溝深さが、0.3[mm]である。また、トレッド面にあるすべての凹部8が、同一形状および一定の開口面積を有する。また、すべてのブロック5にて、タイヤ幅方向の中央部領域CRにおける凹部8の配置数Ncと、タイヤ幅方向の端部領域における凹部8の配置数Neとが、Ne<Ncの関係を有する。また、凹部8の配置密度Daおよび配置数比Ne<Ncは、トレッド面にあるすべてのブロック5の平均値である。また、凹部8の開口面積率比Sc/Seが、各領域における凹部8の配置数の比Nc/Neに略等しい。
 図33において、実施例11~21の試験タイヤは、図1および図25の構成を備え、陸部31~33のブロック5がサイプ6、細浅溝7および凹部8をそれぞれ有する。また、図4に示すように、直線状の細浅溝7がタイヤ周方向に傾斜しつつ平行に配置されてブロック5を貫通する。また、細浅溝7の溝幅および溝深さが、0.3[mm]である。また、トレッド面にあるすべてのブロック5が、異なる開口面積をもつ2種類かつ複数の凹部8を備える。また、すべての凹部8が、同一形状を有する。また、大きい開口面積Acを有する凹部8がブロック5の中央部領域CR(図26~図28)に配置され、小さい開口面積Aeを有する凹部8がブロック5の端部領域に配置される。また、1つのブロック5では、中央部領域CRにおける凹部8の配置数Ncと端部領域における凹部8の配置数Neとが略同一である。このため、凹部の開口面積率比Sc/Seが、大小の凹部8の開口面積の比Ac/Aeに略等しい。また、凹部8の配置密度Daは、トレッド面にあるすべてのブロック5の平均値である。
 従来例の試験タイヤでは、実施例2の構成において、ブロック5がサイプ6および細浅溝7のみを有し、凹部8を有していない。
 試験結果に示すように、実施例1~21の試験タイヤでは、タイヤの雪上性能が向上することが分かる。
 1:空気入りタイヤ、21、22:周方向主溝、23:周方向細溝、31~33:陸部、311:切欠部、41~43:ラグ溝、5:ブロック、6:サイプ、7:細浅溝、8:凹部、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142:交差ベルト、143:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム

Claims (25)

  1.  リブあるいは複数のブロックを有する陸部をトレッド面に備える空気入りタイヤにおいて、
     前記陸部が、複数の細浅溝と、複数の凹部とを接地面に備え、且つ、
     前記陸部における連続した接地面のタイヤ幅方向の中央部50[%]の領域を中央部領域として定義し、タイヤ幅方向の左右の端部25[%]の領域を端部領域として定義するときに、
     1つの前記連続した接地面の前記タイヤ幅方向の中央部領域における前記凹部の開口面積率Scと、前記タイヤ幅方向の端部領域における前記凹部の開口面積率Seとが、Se<Scの関係を有することを特徴とする空気入りタイヤ。
  2.  前記タイヤ幅方向の中央部領域における前記凹部の開口面積率Scと、前記タイヤ幅方向の端部領域における前記凹部の開口面積率Seとが、1.50≦Sc/Seの関係を有する請求項1に記載の空気入りタイヤ。
  3.  前記タイヤ幅方向の中央部領域における前記凹部の配置数Neと、前記タイヤ幅方向の端部領域における前記凹部の配置数Neとが、Ne<Ncの関係を有する請求項1または2に記載の空気入りタイヤ。
  4.  前記タイヤ幅方向の中央部領域における前記凹部の配置数Ncと、前記タイヤ幅方向の端部領域における前記凹部の配置数Neとが、1.50≦Nc/Neの関係を有する請求項3に記載の空気入りタイヤ。
  5.  1つの前記連続した接地面の全域における前記凹部の配置密度Daが、0.8[個/cm^2]≦Da≦4.0[個/cm^2]の範囲にある請求項1~4のいずれか一つに記載の空気入りタイヤ。
  6.  前記陸部が、複数のサイプを接地面に備え、且つ、前記凹部が、前記サイプから離間して配置される請求項1~5のいずれか一つに記載の空気入りタイヤ。
  7.  複数のサイプが、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画し、且つ、隣り合う任意の一対の前記区間の少なくとも一方が、前記タイヤ幅方向の中央部領域に前記凹部を有する請求項1~6のいずれか一つに記載の空気入りタイヤ。
  8.  複数のサイプが、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画し、且つ、タイヤ周方向に隣り合う任意の3つの前記区間が、前記タイヤ幅方向の中央部領域に前記凹部を有する前記区間と、前記タイヤ幅方向の端部領域に前記凹部を有する前記区間とをそれぞれ含む請求項1~7のいずれか一つに記載の空気入りタイヤ。
  9.  複数のサイプが、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画し、且つ、タイヤ周方向に隣り合う任意の3つの前記区間が、前記凹部を有する前記区間と、前記凹部を有さない前記区間とをそれぞれ含む請求項1~8のいずれか一つに記載の空気入りタイヤ。
  10.  前記陸部が、複数のブロックを有するブロック列であり、前記ブロックの角部に前記凹部を有する請求項1~9のいずれか一つに記載の空気入りタイヤ。
  11.  前記陸部が、複数のブロックを有するブロック列であり、前記ブロックのタイヤ周方向の端部かつ前記タイヤ幅方向の中央部領域には前記凹部を有さない請求項1~10のいずれか一つに記載の空気入りタイヤ。
  12.  前記凹部の開口面積が、2.5[mm^2]以上10[mm^2]以下の範囲にある請求項1~11のいずれか一つに記載の空気入りタイヤ。
  13.  前記凹部が、前記陸部の接地面にて円形状あるいは楕円形状を有する請求項1~12のいずれか一つに記載の空気入りタイヤ。
  14.  前記凹部の壁角度αが、-85[deg]≦α≦95[deg]の範囲にある請求項1~13のいずれか一つに記載の空気入りタイヤ。
  15.  前記凹部の深さHdと、前記細浅溝の溝深さHgとが、0.5≦Hd/Hg≦1.5の関係を有する請求項1~14のいずれか一つに記載の空気入りタイヤ。
  16.  少なくとも一部の前記凹部が、タイヤ成形金型のベント穴に対応する位置に配置される請求項1~15のいずれか一つに記載の空気入りタイヤ。
  17.  前記タイヤ幅方向の中央部領域における前記凹部の開口面積の平均値Acと、前記タイヤ幅方向の端部領域における前記凹部の開口面積の平均値Aeとが、Ae<Acの関係を有する請求項1または2に記載の空気入りタイヤ。
  18.  前記タイヤ幅方向の中央部領域における前記凹部の開口面積の平均値Acと、前記タイヤ幅方向の端部領域における前記凹部の開口面積の平均値Aeとが、1.5≦Ac/Ae≦4.0の関係を有する請求項17に記載の空気入りタイヤ。
  19.  前記陸部が、相互に異なる開口面積をもつ複数種類の前記凹部を備え、且つ、前記タイヤ幅方向の中央部領域に配置された70[%]以上の前記凹部が、前記連続した接地面に配置された前記凹部の開口面積の平均値よりも大きな開口面積を有する請求項17または18に記載の空気入りタイヤ。
  20.  前記陸部が、相互に異なる開口面積をもつ複数種類の前記凹部を備え、且つ、前記連続した接地面に配置された前記凹部の開口面積の平均値よりも小さな開口面積をもつ前記凹部が、前記連続した接地面にてタイヤ幅方向の最も外側に配置される請求項17~19のいずれか一つに記載の空気入りタイヤ。
  21.  前記陸部が、タイヤ周方向に並列に配置されて前記陸部を複数の区間に区画する複数のサイプと、相互に異なる開口面積をもつ複数種類の前記凹部とを備え、且つ、
     前記連続した接地面に配置された前記凹部の開口面積の平均値よりも大きな開口面積をもつ前記凹部が、タイヤ周方向に隣り合う任意の3つの前記区間の少なくとも1つに配置される請求項17~20のいずれか一つに記載の空気入りタイヤ。
  22.  前記陸部が、複数のブロックを有するブロック列であると共に、相互に異なる開口面積をもつ複数種類の前記凹部を備え、且つ、
     前記連続した接地面に配置された前記凹部の開口面積の平均値よりも小さな開口面積をもつ前記凹部が、前記ブロックの角部に配置される請求項17~21のいずれか一つに記載の空気入りタイヤ。
  23.  複数のブロックを有する陸部をトレッド面に備える空気入りタイヤにおいて、
     前記陸部が、複数の細浅溝と、複数の凹部とを接地面に備え、且つ、
     連続した接地面のタイヤ周方向の中央部50[%]の領域を中央部領域として定義し、タイヤ周方向の前後の端部25[%]の領域を端部領域として定義するときに、
     1つの前記連続した接地面の前記タイヤ周方向の中央部領域における前記凹部の開口面積率Sc’と、前記タイヤ周方向の端部領域における前記凹部の開口面積率Se’とが、Se’<Sc’の関係を有することを特徴とする空気入りタイヤ。
  24.  前記タイヤ周方向の中央部領域における前記凹部の配置数Nc’と、前記タイヤ周方向の端部領域における前記凹部の配置数Ne’とが、Ne’<Nc’の関係を有する請求項23に記載の空気入りタイヤ。
  25.  前記タイヤ周方向の中央部領域における前記凹部の開口面積の平均値Ac’と、前記タイヤ周方向の端部領域における前記凹部の開口面積の平均値Ae’とが、Ae’<Ac’の関係を有する請求項23または24に記載の空気入りタイヤ。
PCT/JP2015/084057 2014-12-03 2015-12-03 空気入りタイヤ WO2016088853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15865834.4A EP3228480A4 (en) 2014-12-03 2015-12-03 Pneumatic tire
RU2017122527A RU2017122527A (ru) 2014-12-03 2015-12-03 Пневматическая шина
US15/527,000 US20170368884A1 (en) 2014-12-03 2015-12-03 Pneumatic Tire
CN201580063045.6A CN107000488A (zh) 2014-12-03 2015-12-03 充气轮胎

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014245297 2014-12-03
JP2014-245297 2014-12-03
JP2015175611A JP6834119B2 (ja) 2014-12-03 2015-09-07 空気入りタイヤ
JP2015-175611 2015-09-07

Publications (1)

Publication Number Publication Date
WO2016088853A1 true WO2016088853A1 (ja) 2016-06-09

Family

ID=56091793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084057 WO2016088853A1 (ja) 2014-12-03 2015-12-03 空気入りタイヤ

Country Status (1)

Country Link
WO (1) WO2016088853A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208705A (ja) * 1990-01-09 1991-09-11 Yokohama Rubber Co Ltd:The スタッドレスタイヤ
JP2005186649A (ja) * 2003-12-24 2005-07-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006062469A (ja) * 2004-08-25 2006-03-09 Bridgestone Corp 空気入りタイヤ
JP2007015621A (ja) * 2005-07-08 2007-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びタイヤ用モールド
JP2007022277A (ja) * 2005-07-15 2007-02-01 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2007203863A (ja) * 2006-02-01 2007-08-16 Bridgestone Corp 空気入りタイヤ
JP2009274726A (ja) * 2009-08-26 2009-11-26 Bridgestone Corp 空気入りタイヤ
JP2012040894A (ja) * 2010-08-13 2012-03-01 Bridgestone Corp タイヤ及びトレッドゴムの位置ずれ判定方法
JP2014094631A (ja) * 2012-11-08 2014-05-22 Bridgestone Corp タイヤ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208705A (ja) * 1990-01-09 1991-09-11 Yokohama Rubber Co Ltd:The スタッドレスタイヤ
JP2005186649A (ja) * 2003-12-24 2005-07-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006062469A (ja) * 2004-08-25 2006-03-09 Bridgestone Corp 空気入りタイヤ
JP2007015621A (ja) * 2005-07-08 2007-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びタイヤ用モールド
JP2007022277A (ja) * 2005-07-15 2007-02-01 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2007203863A (ja) * 2006-02-01 2007-08-16 Bridgestone Corp 空気入りタイヤ
JP2009274726A (ja) * 2009-08-26 2009-11-26 Bridgestone Corp 空気入りタイヤ
JP2012040894A (ja) * 2010-08-13 2012-03-01 Bridgestone Corp タイヤ及びトレッドゴムの位置ずれ判定方法
JP2014094631A (ja) * 2012-11-08 2014-05-22 Bridgestone Corp タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228480A4 *

Similar Documents

Publication Publication Date Title
JP6075425B2 (ja) 空気入りタイヤ
JP6834119B2 (ja) 空気入りタイヤ
WO2016088854A1 (ja) 空気入りタイヤ
WO2016088856A1 (ja) 空気入りタイヤ
WO2016088843A1 (ja) 空気入りタイヤ
JP2018203183A (ja) 空気入りタイヤ
JP2016147655A (ja) 空気入りタイヤ
JP2017197145A (ja) 空気入りタイヤ
JP2016037083A (ja) 空気入りタイヤ
JP2015178337A (ja) 空気入りタイヤ
JP2017197149A (ja) 空気入りタイヤ
JP2017007635A (ja) 空気入りタイヤ
JP2017197120A (ja) 空気入りタイヤ
JP2017197111A (ja) 空気入りタイヤ
JP2016147656A (ja) 空気入りタイヤ
WO2016088853A1 (ja) 空気入りタイヤ
WO2016088855A1 (ja) 空気入りタイヤ
JP2019026015A (ja) 空気入りタイヤ
JP2019026016A (ja) 空気入りタイヤ
JP2017197148A (ja) 空気入りタイヤ
JP2017197110A (ja) 空気入りタイヤ
JP2016147654A (ja) 空気入りタイヤ
JP2016147653A (ja) 空気入りタイヤ
JP2017197112A (ja) 空気入りタイヤ
JP2017007634A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527000

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015865834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017122527

Country of ref document: RU

Kind code of ref document: A