WO2016088687A1 - 放熱基板及び該放熱基板の製造方法 - Google Patents

放熱基板及び該放熱基板の製造方法 Download PDF

Info

Publication number
WO2016088687A1
WO2016088687A1 PCT/JP2015/083480 JP2015083480W WO2016088687A1 WO 2016088687 A1 WO2016088687 A1 WO 2016088687A1 JP 2015083480 W JP2015083480 W JP 2015083480W WO 2016088687 A1 WO2016088687 A1 WO 2016088687A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
alloy composite
dissipation substrate
rolling
thermal conductivity
Prior art date
Application number
PCT/JP2015/083480
Other languages
English (en)
French (fr)
Inventor
福井 彰
Original Assignee
株式会社半導体熱研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54602149&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016088687(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社半導体熱研究所 filed Critical 株式会社半導体熱研究所
Priority to CN201580065996.7A priority Critical patent/CN107004654A/zh
Priority to EP15865455.8A priority patent/EP3229268A4/en
Priority to US15/531,400 priority patent/US20170317009A1/en
Priority to JP2016520126A priority patent/JP6083634B2/ja
Publication of WO2016088687A1 publication Critical patent/WO2016088687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is mounted on a semiconductor package of a high-performance semiconductor module (hereinafter abbreviated as a package, sometimes abbreviated as PKG), and (1) a linear expansion coefficient suitable for the semiconductor module and (2) a large heat.
  • the present invention relates to (3) a CuMo or CuW heat dissipation substrate having conductivity and a metal layer with few defects on the surface, and a method for manufacturing the same.
  • Semiconductor modules have applications such as LSIs, IGBT power semiconductors, semiconductors for radio waves and optical communications, lasers, LEDs, sensors, etc., and the structures vary depending on the performance required for these.
  • the semiconductor module is a highly sophisticated precision device composed of materials with different coefficients of linear expansion and different thermal conductivity, and many heat dissipation substrates used in the PKG are proposed in various composite materials and shapes. Has been.
  • the heat dissipation substrate of the semiconductor module must have a linear expansion coefficient suitable for the semiconductor module in order to ensure performance and life in the manufacture of PKG and soldering of the semiconductor device. Also for the thermal conductivity, a high value is necessary to cool the heat of the semiconductor device and ensure the performance and life. In addition, in order to join various members and semiconductor devices, it is also very important that good plating is easily performed.
  • CuW-based heat dissipation substrates that can change and adjust the linear expansion coefficient and that can support the linear expansion coefficient of high-performance semiconductor modules have been developed. Also, CuMo-based heat dissipation is aimed at reducing costs and high thermal conductivity. A substrate was developed. Furthermore, AlSiC was developed as a response to the need for weight reduction without silver brazing for PKG production. However, any of these composite materials has a problem that the thermal conductivity is significantly smaller than that of Cu when an attempt is made to obtain a linear expansion coefficient suitable for a semiconductor module.
  • CuW heat dissipation substrate has a maximum linear expansion coefficient of 10 ppm / K or less at a room temperature of 25 ° C. (hereinafter abbreviated as RT) and 800 ° C. or less, and is suitable for semiconductor modules. Therefore, when manufacturing PKG, it was possible to perform silver brazing with various members having different linear expansion coefficients at a high temperature of 800 ° C. Also, when used for semiconductor devices, there is no problem with soldering at temperatures of 200 ° C to 400 ° C, and the junction temperature of Si and GaAs devices used in conventional semiconductor modules I was able to respond. For this reason, CuW is used in a wide range of semiconductor modules such as ICs, LSIs, power semiconductors, communication semiconductors, optical devices, lasers and sensors.
  • CuW has a problem that the thermal conductivity at RT is 200 W / m ⁇ K or less, which is significantly lower than that of Cu, and the improvement of thermal conductivity has been promoted.
  • CuMo has the advantage that Mo has a specific gravity smaller than W and the unit price of powder is lower, but because of its poor wettability with Cu, relative density (raw powder is completely densified) when manufactured by infiltration or sintering. The ratio of the actual density to the theoretical density assuming the state) is reduced, and there is a problem that a material satisfying the characteristics and quality required for the heat dissipation substrate cannot be obtained. For this reason, a technology for producing a heat dissipation substrate with a relative density of 99% or more and a thermal conductivity of 200 W / m ⁇ K or more by forging, hot pressing (HP), rolling, etc. has been developed (Table 1) and put into practical use. It was done. However, even in the case of CuMo, there was a problem that the coefficient of linear expansion exceeded 10 ppm / K when the temperature increased in the high thermal conductivity material (Table 1) of 50 wt% Cu or more in which the ratio of Cu was increased.
  • Heat radiating board manufacturers have Cu / CuMo / Cu, Cu / Mo / Cu, multi-layers to have a thermal conductivity of 250 W / m ⁇ K or higher at RT or 100 ° C and to improve the final Ni-based plating properties. Clad materials such as Cu / Mo / Cu were developed.
  • FIG. 1 shows a graph of the relationship between the temperature of a typical heat dissipation substrate of CuW and CuMo and the coefficient of linear expansion.
  • Table 1 shows the relationship between the thermal expansion coefficient at RT and the linear thermal expansion coefficient at RT of the existing heat dissipation substrate, the maximum linear expansion coefficient in the range of RT to 800 ° C. From this investigation result, it was found that there is a problem in PKG manufacturing and semiconductor module performance when the thermal expansion substrate has a maximum coefficient of linear expansion of 10 ppm / K or more in the range of RT to 800 ° C.
  • the heat conductivity of the heat dissipation substrate needs to have a high value at the temperature of the heat dissipation substrate when the semiconductor device reaches the junction temperature.
  • any heat dissipation substrate material of existing CuW, CuMo, and AlSiC has a lower thermal conductivity at higher temperatures than RT, so the maximum linear expansion coefficient in the range of RT to 800 ° C is 10 ppm / K or less.
  • there is no existing heat dissipation substrate material that is 250 W / m ⁇ K or more in the range of 100 ° C. to 200 ° C.
  • GaN and SiC devices with junction temperatures as high as 200 to 225 ° C have been used in earnest. Since the heat dissipation substrate used for these has high thermal conductivity and a large size, the temperature of the heat dissipation substrate is lower than the temperature of the semiconductor device. When the junction temperature is 225 ° C., the temperature of the heat dissipation substrate is about 200 ° C., and it has been found that a heat dissipation substrate material having high thermal conductivity at 200 ° C. is required. Further, in order to ensure the performance of the semiconductor module, a heat dissipation substrate having a linear expansion coefficient at 200 ° C. of 10 ppm / K or less has been strongly desired.
  • a semiconductor module has been developed in which the design of the semiconductor module is devised to make the PKG using a large heat dissipation substrate so as not to reach the limit temperature of the resin, but there is a problem that it is large and expensive and is not economical. For this reason, a PKG obtained by silver brazing a member having high heat resistance such as ceramic is required.
  • CuW and CuMo have the same heat resistance as silver brazing, but have the problem of lower thermal conductivity than Cu.
  • the thermal conductivity at 200 ° C is 250 W / m ⁇ K or more while maintaining the requirement that the maximum linear expansion coefficient at RT and above 800 ° C is 10 ppm / K or less, which is an appropriate linear expansion coefficient.
  • a heat dissipation substrate is desired. However, currently there are no corresponding CuW or CuMo heat dissipation substrate materials.
  • AlSiC cannot be brazed with silver due to its insufficient heat resistance, and as the temperature rises, the thermal conductivity of SiC, the main component, is greatly reduced, causing a problem as a heat dissipation substrate for high-performance semiconductor modules.
  • metal diamond-based heat dissipation board materials that meet the required characteristics, but it is difficult to ensure the quality of Ni-based plating, and the price is too high to be suitable for practical use.
  • the heat dissipation substrate of the high-performance module has a problem that when the semiconductor device is soldered, if there are many voids, the cooling is hindered and the semiconductor device is destroyed or peeled off due to heat.
  • the exposed surface of Mo and W is not good in adhesion to the final Ni-based plating, so it is problematic to apply multiple layers of heat treatment for each plating to improve the adhesion. We are trying to solve it. In this way, since a good final Ni-based plating is performed on the surface layer of the heat dissipation substrate, the existing CuW and CuMo are subjected to several plating treatments and heat treatments, so that there is a problem that the plating is expensive.
  • Patent Document 1 discloses an LSI semiconductor module in which a 10 wt% Cu CuW heat dissipation substrate is subjected to Ni-P plating and silver brazed to ceramic.
  • Patent Document 2 discloses a semiconductor module in which a ceramic is bonded to CuW of 5 to 22 wt% Cu having a relative density of 100% manufactured by an infiltration method. It is also described that a problem arises in the manufacture and performance of a semiconductor module even if Cu is small or large.
  • Patent Document 3 discloses a heat dissipation substrate in which the amount of Cu is increased, a skeleton is formed using coarse W powder, and the thermal conductivity is improved in CuW infiltrated with Cu.
  • a material having a high thermal conductivity has a Cu content of 30 wt% or more (FIG. 1).
  • FOG. 1 A material having a high thermal conductivity has a Cu content of 30 wt% or more (FIG. 1).
  • Patent Document 4 discloses a heat dissipation substrate produced by rolling CuMo having a relative density of 90 to 98% and 10 to 70 wt% Cu manufactured by a sintering method.
  • CuMo has poor thermal conductivity when the coefficient of linear expansion is the same as that of CuW, and 50 wt% Cu or less in order to achieve an appropriate linear expansion coefficient (linear expansion coefficient suitable for semiconductor modules) of 10 ppm / K or less.
  • linear expansion coefficient suitable for semiconductor modules 10 ppm / K or less.
  • Patent Document 5 discloses a method of manufacturing Cu / Mo / Cu and Cu / W / Cu heat dissipation substrates in multiple stages by hot pressing (hereinafter abbreviated as HP).
  • Patent Document 6 discloses a heat dissipation substrate of Cu / CuW / Cu or Cu / CuMo / Cu and a semiconductor module using the same.
  • Patent Document 7 a composite material having a relative density of 90% or more is manufactured by sintering using 0.5 to 8 ⁇ m Mo powder and 50 ⁇ m Cu powder, and rolled at a single axis and multiple axes at 650 ° C. or higher.
  • a manufacturing method of a heat dissipation substrate that is high (has few cracks and breaks) is disclosed.
  • rolling at 650 ° C. or higher causes oxidation of Cu and Mo in the surface layer and the inside, and cracks are formed, so that the rollability is not always good.
  • the thermal conductivity becomes very unstable, there is a problem as a heat dissipation substrate.
  • Patent Document 8 CuMo produced by a sintering method is forged to increase the relative density and rolled to produce a linear expansion coefficient of 12 ppm / K or less and a thermal conductivity at 200 ° C.
  • a heat dissipation board having 230 W / m ⁇ K or more and a semiconductor module using the same are disclosed.
  • a CuMo composite material having a low relative density breaks when cold forged.
  • Cu and Mo in the surface layer and inside are easily oxidized and cracks are easily formed, and the rollability is not necessarily good.
  • the thermal conductivity becomes very unstable, there is a problem as a heat dissipation substrate.
  • a skeleton is manufactured using Mo powder of 2 to 6 ⁇ m, and CuMo of 20 to 60 wt% Cu prepared by an infiltration method in which Cu is impregnated into the skeleton is rolled cold or warm.
  • a heat radiating substrate manufactured by performing punching and 3D shape processing, having a linear expansion coefficient of 7 to 12 ppm / K and a thermal conductivity of 170 to 280 W / m ⁇ K is disclosed.
  • Mo powder outside the range of 2 to 6 ⁇ m, for example, Mo powder of 1 ⁇ m or less or Mo particles exceeding 6 ⁇ m, and the range that can be manufactured is narrow.
  • a heat dissipation board with a maximum coefficient of linear expansion of 10 ppm / K or less at RT to 800 ° C and a thermal conductivity of 250 W / m ⁇ K or more at a temperature of 200 ° C which is an appropriate linear expansion coefficient in this manufacturing method. Is not obtained.
  • Patent Document 10 discloses a clad heat dissipation substrate in which Cu / Mo / Cu / Mo / Cu... And Cu and Mo are laminated.
  • a large thermal conductivity can be obtained with a small coefficient of linear expansion, and because the surface layer is Cu, it is excellent in plating ability.
  • the linear expansion coefficient at high temperatures is small, but there is a peak of linear expansion coefficient in the vicinity of 100 to 200 ° C, which exceeds the appropriate linear expansion coefficient of 10 ppm / K.
  • the thermal conductivity in the thickness direction is smaller than the planar direction.
  • warping occurs due to the bimetallic effect structurally when the temperature is raised, causing problems in performance and life.
  • CuMo or CuW which has a proven track record as a heat dissipation board, has a maximum coefficient of linear expansion of 10ppm /
  • a heat dissipation substrate having a thermal conductivity at 200 ° C. of 250 W / m ⁇ K or higher is strongly desired.
  • Table 1 shows a graph of the relationship between the maximum linear expansion coefficient at RT and 800 ° C. and the thermal conductivity at RT. Materials that satisfy the requirement that the thermal conductivity is 250 W / m ⁇ K or higher are not allowed. In addition, when the temperature rises from RT to 100 ° C., the thermal conductivity becomes smaller. Furthermore, when it reaches 200 ° C., the thermal conductivity further decreases. For this reason, it has been thought that there is no possibility of a material satisfying a thermal conductivity of 250 W / m ⁇ K or more at 200 ° C.
  • the inventor of the present invention by densifying a coarse-grained Mo or W and an alloy composite of CuMo or CuW made of Cu, and then cross-rolling, allows any arbitrary in-plane parallel to the surface. It was found that a heat dissipation substrate having a maximum coefficient of linear expansion of 10 ppm / K or less in the direction from RT to 800 ° C. and a thermal conductivity at 200 ° C. of 250 W / m ⁇ K or more was obtained.
  • the heat dissipation board according to the present invention is Mainly an alloy composite mainly composed of Mo or W and Cu,
  • the maximum linear expansion coefficient at 25 ° C or more and 800 ° C or less in any direction parallel to the surface is 10ppm / K or less, and the thermal conductivity at 200 ° C is 250W / m ⁇ K or more. .
  • the manufacturing method of the heat dissipation board according to the present invention includes: An alloy composite mainly composed of mixed particles of Mo or W and Cu is prepared. Densifying the alloy composite, The alloy composite after the densification is cross-rolled.
  • the “alloy composite” means a certain self-supporting type such as a metal powder or particle mixture pressed or a molten metal poured into a metal powder group or particle group and solidified. It has the shape which made it.
  • the alloy composite according to the present invention can be produced, for example, by embossing and sintering the mixed particles.
  • an alloy composite can also be produced by other methods such as infiltration.
  • CuMo is lighter than CuW, and Mo powder is cheap.
  • Mo has poor wettability to Cu compared to W, and it is difficult to obtain an alloy composite that can be rolled by both the infiltration method and the sintering method with coarse Mo powder. For this reason, there is a problem that CuMo is more difficult to manufacture even when rolled.
  • CuMo has a lower raw material cost than CuW, is lighter as a heat dissipation board, and is the most used, so the maximum value of linear expansion coefficient in CuMo from RT to 800 ° C is 10ppm / K.
  • CuW is excellent in machinability, a heat dissipation substrate that can be used for 3D-shaped products is required.
  • the present inventor manufactured 40 wt% Cu CuMo using 60 ⁇ m Mo powder by infiltration method and sintering method, removed the surface layer part of those alloy composites, warmed under low pressure at 450 ° C. The cross rolling was repeated, and a measurement sample was cut out from a good portion of the obtained rolled material, and the linear expansion coefficient and the thermal conductivity were measured. As a result, it was confirmed that there was no significant difference in the measured values of the alloy composites obtained by the infiltration method and the sintering method.
  • the thermal conductivity was significantly lower than that of the existing 40 wt% Cu CuMo.
  • 5 ⁇ m Ni plating treatment, heat treatment, multilayer plating treatment by 3 ⁇ m Ni-B plating treatment Although the alloy composite was directly subjected to Ni-B plating treatment of 3 ⁇ m as a single layer plating, a large amount of bulges were generated when two types of plating were subjected to a bulge test that was held at 400 ° C for 30 minutes in the atmosphere. It was.
  • a coarse-grained Mo and W and a CuMo or CuW dense alloy composite made of Cu are subjected to cross-rolling after solid-phase sintering, and in any direction in a plane parallel to the surface.
  • a material satisfying the requirements that the maximum linear expansion coefficient at RT to 800 ° C. is 10 ppm / K or less and the thermal conductivity at 200 ° C. is 250 W / m ⁇ K or more is obtained.
  • the quality of the final Ni-based plating if there is a Cu layer on the surface, the final Ni-based plating process can be performed directly and economically as with the Cu heat dissipation substrate. From the manufacturing method according to the present invention, a heat dissipation substrate of CuMo and CuW having a high thermal conductivity, a small coefficient of linear expansion, and easy plating can be obtained.
  • the present invention is to obtain a heat dissipation substrate of CuMo or CuW having low thermal expansion and high thermal conductivity by cross-rolling CuMo or CuW using coarse Mo or W powder.
  • the heat dissipation substrate of CuMo and CuW according to the present invention has a linear expansion coefficient suitable for these and a large thermal conductivity, so a wide range of semiconductor module memories, ICs, LSIs, power semiconductors, communication semiconductors, optical It can be used for devices, lasers, LEDs, sensors, etc.
  • Table 2 shows the maximum coefficient of linear expansion from RT to 800 ° C. and the thermal conductivity at a temperature of 200 ° C. for each embodiment of the CuMo or CuW heat dissipation substrate according to the present invention. Moreover, the value of a comparative material is also shown collectively.
  • the graph which shows the relationship between the temperature of the typical heat sink of CuW, CuMo, and a linear expansion coefficient. Sectional view of the structure canned with a SUS case.
  • the particles having a size of 200 ⁇ m or more are contained in an amount of 10% or more, the effect of improving the thermal conductivity is small, and the price of the powder is greatly increased.
  • electrolytic copper powder of 5 ⁇ m or more and 10 ⁇ m or less is suitable.
  • composition For CuMo and CuW, the composition is not particularly specified as long as it satisfies (1) a linear expansion coefficient suitable for a semiconductor module and (2) a large thermal conductivity. Even if W and Mo are mixed, it is sufficient if the characteristics required for the linear expansion coefficient and the thermal conductivity are satisfied.
  • additive metals it has already been reported that the addition of appropriate metals improves infiltration and sinterability.
  • (1) Linear expansion coefficient suitable for semiconductor modules and (2) high thermal conductivity There is no particular designation regarding the element and amount of the additive metal as long as it has the requirements. However, since the thermal conductivity is lowered by the added metal, the addition of the metal is not so preferable. Therefore, in this embodiment, although the difficulty of manufacture of an alloy composite increases, high thermal conductivity is obtained without an additive metal.
  • the method of densifying the alloy composite by solid-phase sintering after heat rolling is an effective method because the subsequent manufacturing process is also rolling (cross rolling described later).
  • the alloy composite is accommodated (canned) in a SUS case, degassed, and rolled to be densified to a relative density of 99% or higher, and then cross-rolled.
  • An alloy composite suitable for is obtained. It should be noted that by optimizing the conditions through prior experiments, the process in which the relative density is 99% or more can be managed.
  • the alloy composite is solid-phase sintered in hydrogen at a temperature lower than the melting point of Cu, it is possible to repair the delamination of the particle surfaces of Mo and W and Cu and to reduce oxides generated by residual oxygen, It becomes an alloy composite suitable for.
  • As conditions for solid-phase sintering it is preferable to hold in hydrogen at a temperature of 800 ° C. or higher and lower than the melting point of Cu (less than the melting point of all metals that are the main components of the alloy composite) for 60 minutes. This solid-phase sintering enables good rolling, and a dense heat dissipation substrate that does not cause problems such as plating swelling of the alloy composite even at a high temperature of silver brazing at 800 ° C. can be obtained.
  • the thickness of the plating is preferably 10 ⁇ m or less, but if it is too thin as 3 ⁇ m or less, the effect may not be obtained.
  • the clad structure refers to a structure in which one or more metal layers are formed on the front and back surfaces of the alloy composite.
  • Cross rolling In cross rolling, an alloy composite heated to a temperature of 300 ° C. or higher in a non-oxidizing or reducing atmosphere is defined in the X-axis direction and the Y-axis direction (both X-axis and Y-axis are defined in a plane parallel to the surface). The thickness direction is defined as the Z axis).
  • the rolling is uniaxial only, the difference in the linear expansion coefficient between the direction of cross rolling (for example, the X-axis direction) and the Y-axis direction orthogonal thereto is large, which is not suitable as a heat dissipation substrate. It is desirable to perform cross rolling alternately in the X-axis direction and the Y-axis direction. By this cross rolling, the particles of Mo or W distributed inside the alloy composite become a flat shape spreading in a disk shape in a plane parallel to the surface of the heat dissipation substrate.
  • the reduction ratio of the alloy composite at this stage (that is, the reduction ratio by two steps of densification and cross rolling) is 50% to 80%.
  • the particle shape of Mo and W is approximated to a sphere (volume: 4 / 3 ⁇ r 3, where r is the radius of the sphere), and the particle shape after cross-rolling (rolling ratio P) is a disc-like body (volume: r ⁇ ( 1-P) ⁇ ⁇ r ' 3.
  • the particles after cross rolling are approximately 17 ⁇ m in a plane parallel to the surface of the heat dissipation substrate ( The size when spherical particles with a radius of 15 ⁇ m are used as a raw material and cross-rolled at a reduction rate of 50%) to about 366 ⁇ m (size when spherical particles with a radius of 200 ⁇ m are used as a raw material and cross-rolled at a reduction rate of 80%).
  • the rolling order and the number of rolling in the X-axis direction and the Y-axis direction in cross rolling are not limited. .
  • rolling is performed in two orthogonal directions (X-axis direction and Y-axis direction).
  • the purpose of this cross rolling is to set the linear expansion coefficient in an arbitrary direction in a plane parallel to the surface to 10 ppm / It is to make the anisotropy small while reducing it to K or less. That is, as long as this can be achieved, cross rolling in a plurality of non-parallel directions (that is, a plurality of intersecting directions) may be performed, and the present invention is not necessarily limited to only cross rolling in two orthogonal directions.
  • any of cold, warm, and hot rolling may be used, but productivity is low because a high rolling reduction cannot be obtained in cold.
  • warm rolling at around 400 ° C is desirable, and for CuW, hot rolling at around 600 ° C is desirable.
  • pickling, reduction treatment, buffing, or the like is performed at each rolling for the purpose of removing oxides on the surface layer, the rollability is improved.
  • cold rolling after heat treatment in hydrogen a finished product having a surface state and suitable for a heat dissipation substrate can be obtained.
  • the plating ability of Mo and W is not necessarily good, but the final Ni plating is applied to prevent CuMo and CuW from being eroded during silver brazing and soldering.
  • Au plating may be applied on the final Ni-based plating in order to improve the solderability of the semiconductor device and increase the commercial value.
  • the Ni-based plating means Ni or Ni alloy plating.
  • solder In semiconductor modules, the quality of the solder joint between the heat dissipation substrate and the semiconductor device is important, and a strict void ratio is required.
  • solder materials solder materials of AuSn (melting point 280 ° C) and AuSi (melting point 363 ° C) corresponding to Pb-free and high temperatures are mainly used in the case of semiconductor devices. Since high quality is desired, it may be soldered to an Au-plated heat dissipation board.
  • the final Ni-based plating corresponding to these has already been developed, and in the present invention, if there is a Cu plating layer, the final 3 ⁇ m Ni-B plating treatment is applied directly, Quality control is possible by performing a blister test.
  • a multi-layer final Ni-based plating is often desired, and even in that case, quality can be confirmed and managed by a blister test.
  • Example 1 CuMo of 40 wt% Cu, infiltration method, densification, rolling, sample No. 6
  • Mo powder with an average particle size of 60 ⁇ m is mixed with 3 wt% of 10 ⁇ m electrolytic Cu powder and 1 wt% of paraffin wax. Dewaxing was carried out at 60 ° C. for 60 minutes. Furthermore, the skeleton was manufactured by heating to 1000 ° C. in hydrogen. A Cu plate was placed on the skeleton, and Cu was infiltrated by heating at 1250 ° C. for 60 minutes in hydrogen. Thus, a CuMo alloy composite of 50 mm ⁇ 50 mm ⁇ 6 mm was manufactured with 40 wt% Cu.
  • Example 2 CuMo of 40 wt% Cu, sintering method / densification / rolling, sample No. 7
  • the powders were mixed at a compounding ratio of 40 wt% Cu and the balance Mo, and the obtained mixed powder was press-molded with a 50 mm ⁇ 50 mm mold.
  • the obtained molded body was liquid-phase sintered in hydrogen at 1250 ° C. for 60 minutes to produce a 50 mm ⁇ 50 mm ⁇ 6 mm CuMo alloy composite. Defects on the surface layer of the alloy composite were removed by cutting, the alloy composite was placed in a SUS case and degassed, and then the edges were welded and canned.
  • Example 3 CuW of 45 wt% Cu, sintering method / rolling, sample No. 20
  • the powder was mixed at a blending ratio of 45 wt% Cu and the balance W using W powder having an average particle size of 60 ⁇ m and 10 ⁇ m electrolytic Cu powder, and the obtained mixed powder was press-molded with a 50 mm ⁇ 50 mm mold.
  • the molded body was liquid phase sintered in hydrogen at 1250 ° C. for 60 minutes to obtain a CuW alloy composite of 50 mm ⁇ 50 mm ⁇ 6 mm. Defects on the surface layer of the alloy composite were removed by cutting, the alloy composite was placed in a SUS case and degassed, and then the edges were welded and canned.
  • Example 4 Evaluation of a semiconductor module in which a semiconductor device is mounted on a PKG heat dissipation board
  • a PKG was manufactured by silver brazing a material such as ceramic and Kovar in hydrogen at 800 ° C. on a heat dissipation substrate of Example 2 having a linear expansion coefficient of 9.1 ppm / K and a thermal conductivity of 293 W / m ⁇ K.
  • the PKG was confirmed to be free from peeling and cracking, and a 10 mm x 10 mm x 0.7 mm Si device metal electrode layer was joined at 400 ° C with high-temperature AuSi (melting point 363 ° C) solder to produce a semiconductor module.
  • the void area of the soldering part was 3% or less by ultrasonic.
  • the evaluation of SnAgCu (melting point: 218 ° C) solder is very strict, and if the void ratio is less than 5% by ultrasonic measurement, silver brazing, other
  • Voids generated by soldering reflect the pinholes on the surface of the heat dissipation board before the final Ni plating process. That is, by using a heat dissipation substrate having a surface pinhole (defect) of 5% or less, the SnAgCu (melting point: 218 ° C.) solder evaluation condition can be satisfied.
  • the void area of the soldered portion is 3% or less, which satisfies all the above requirements.
  • the semiconductor module was subjected to a heat cycle test ( ⁇ 40 to 225 ° C., 3000 times).
  • the same PKG is used for the existing 40 wt% Cu CuMo heat dissipation substrate with the same 9.1 ppm / K and thermal conductivity of 213 W / m ⁇ K as in Example 2 with the same dimensions.
  • the device was mounted and a heat cycle test (-40 to 225 ° C, 3000 times) was conducted. As a result, no problem such as peeling or cracking occurred in any of the samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Metal Rolling (AREA)

Abstract

 粗粒のMoまたは粗粒のWとCuからなるCuMoまたはCuWの合金複合体を緻密化処理した後、クロス圧延することにより、表面に平行な面内の任意の方向において室温以上800℃以下における線膨張係数の最大値が10ppm/K以下であって、温度200℃における熱伝導率が250W/m・K以上の放熱基板を製造する。

Description

放熱基板及び該放熱基板の製造方法
 本発明は高性能な半導体モジュールの半導体パッケージ(以下、パッケージと略称し、ときにはPKGと略記する)に搭載するものであって(1)半導体モジュールに適した線膨張係数と、(2)大きな熱伝導率を有し、(3)表面に欠陥の少ない金属層を有するCuMoまたはCuWの放熱基板、及びその製造方法に関する。
 半導体モジュールには、LSI、IGBTパワー半導体、電波・光通信用半導体、レーザー、LED、センサー等の用途があり、これらに必要な性能によって構造も多種多様である。半導体モジュールは、異なる線膨張係数と異なる熱伝導率の材料で構成された非常に高度な精密機器であり、そのPKGに使用される放熱基板も多様な複合材や多様な形状のものが多く提案されている。
 半導体モジュールの放熱基板には、PKGの製作、半導体デバイスのハンダ付けにおいて、性能や寿命を確保するために、半導体モジュールに適した線膨張係数が必要である。熱伝導率についても、半導体デバイスの熱を冷却し性能や寿命を確保するために、高い値が必要である。他に各種部材や半導体デバイスを接合するために、良好なメッキを施し易いことも極めて重要である。
 また放熱基板の形状を大別すると、厚さ3mm以下で数mm角のサブマウント、平板、ネジ止め平板、三次元形状等があり、これらの形状が得やすい製法が望まれる。
 高性能の放熱基板には、当初はCuが用いられていたが、近年の半導体モジュールの高性能化に伴って発熱量が大きくなり、これまでのCuでは線膨張係数が大きすぎるために、PKGの製造工程と耐久性、さらに半導体デバイスの性能および寿命において問題が発生した。そのため、高性能半導体モジュールに対応した線膨張係数を有する放熱基板が求められるようになった。
 この対策として、線膨張係数を変更・調整することができ、高性能半導体モジュールの線膨張係数に対応できるCuW系の放熱基板が開発され、また原価低減と高熱伝導率を目的としてCuMo系の放熱基板が開発された。更にPKG製作に銀ろう付けがなく軽量化が必要な場合の対応としてAlSiCが開発された。しかし、これらのいずれの複合材でも、半導体モジュールに適した線膨張係数を得ようとすると熱伝導率がCuより大幅に小さくなるという問題点があった。
 CuW系放熱基板は室温25℃(以下RTと略記)以上800℃以下における最大線膨張係数が10ppm/K以下であり、半導体モジュール用として適した線膨張係数である。そのため、PKGの製作に際して、線膨張係数の異なる種々の部材と800℃もの高温下において銀ろう付けを施すことが可能であった。また半導体デバイス用として用いる際に、200℃以上400℃以下の温度においてハンダ付けを行うことにも問題がなく、更に、これまでの半導体モジュールに使用されてきたSiやGaAsデバイスのジャンクション温度にも対応することができた。このためCuWはIC、LSI、パワー半導体、通信用半導体、光デバイス、レーザー、センサー等の幅広い半導体モジュールに使用されている。
 また、銀ろう付けの必要がない半導体モジュールの場合でも、半導体デバイスのハンダ付けと、ジャンクション温度においても適切な線膨張係数を有することが求められる。RT以上800℃以下の範囲の最大線膨張係数が10ppm/K以下のCuWであれば、線膨張係数に因る問題が発生しなかったので、CuWは更に幅広い半導体モジュールに拡大して使用されるようになった。
 しかし、CuWはRTにおける熱伝導率が200W/m・K以下とCuにくらべ大幅に小さいという問題があり、熱伝導率の改善が進められた。Cuの割合を30wt%Cuに増やしたCuW(図1、表1)で熱伝導率を向上させるべく開発が行われたが、温度が高くなると線膨張係数が10ppm/Kを超えるという問題が生じ、実用化には至らなかった。
Figure JPOXMLDOC01-appb-T000001
 一方、CuMoはMoがWより比重が小さく粉末単価も安いという利点があるが、Cuとの濡れ性が悪いため溶浸法や焼結法で製造すると相対密度(原料粉末が完全に緻密化した状態を想定した理論密度に対する実際の密度の比)が小さくなり、放熱基板として要求される特性や品質を満足する材料が得られないという問題があった。このため、鍛造、ホットプレス(HP)、圧延等を施すことにより、相対密度が99%以上で熱伝導率200W/m・K以上の放熱基板を製造する技術が開発(表1)され実用化された。しかし、CuMoの場合も、Cuの割合を増やした50wt%Cu以上の高熱伝導率材(表1)では温度が高くなると線膨張係数が10ppm/Kを超えるという問題が生じた。
 更に、半導体モジュールの技術進歩による高性能化でSiデバイスのジャンクション温度が125℃から175℃に上昇したことを受け、高温下で動作可能なGaN、SiCデバイスを採用する検討が進められた。しかし、放熱基板については、何度においてどの程度高い熱伝導率が必要なのか、明確な温度や値が公開されていなかった。放熱基板メーカーは、RTもしくは100℃において250W/m・K以上の熱伝導率を有し、また最終のNi系メッキ性の向上を図るべく、Cu/CuMo/Cu、Cu/Mo/Cu、多層Cu/Mo/Cuといったクラッド材を開発した。しかし、バイメタル現象のために反りが発生すること、この高熱伝導率材は100℃以上200℃以下の温度で線膨張係数に高いピーク(図1)が存在してその値が10ppm/Kを超えること、加えて断面に低熱伝導率のMo層があることで厚さ方向の熱伝導率が小さいことなどから、半導体モジュールの寿命や性能に問題があることが分かってきた。
 これまでに開発されたCuW、CuMo、AlSiCの放熱基板を調査し必要な特性を調べた。
 図1にCuW、CuMoの代表的な放熱基板の温度と線膨張係数の関係のグラフを示す。表1に既存の放熱基板のRTにおける線膨張係数と、RT以上800℃以下の範囲での最大線膨張係数と、RTにおける熱伝導率の関係を示す。
 この調査結果から、放熱基板がRT以上800℃以下の範囲の最大線膨張係数が10ppm/K以上の場合にはPKG製造や半導体モジュールの性能に問題が生じることがあることが分かった。また、放熱基板の熱伝導率については、半導体デバイスがジャンクション温度に達した際の放熱基板の温度における値が高いことが必要なことが分かった。
 他に、既存のCuW、CuMo、AlSiCのいずれの放熱基板材料も、RTよりも高温になると更に熱伝導率が小さくなるので、RT以上800℃以下の範囲における最大線膨張係数が10ppm/K以下であって、かつ100℃から200℃の範囲において250W/m・K以上である既存の放熱基板材料が存在しないことも分かった。
 近年、ジャンクション温度が200~225℃と高温になるGaN、SiCデバイスが本格的に使用されるようになってきている。これらに用いられる放熱基板は高熱伝導率で、かつ寸法が大きいので、放熱基板の温度は半導体デバイスの温度より低くなる。ジャンクション温度が225℃の場合は放熱基板の温度は200℃前後になるため、200℃における熱伝導率が高い放熱基板材料が必要であることが分かってきた。また、半導体モジュールの性能を確保するために、200℃における線膨張係数が10ppm/K以下である放熱基板が強く望まれるようになってきた。
 半導体デバイスのGaNやSiCへの移行が進んだ結果、ジャンクション温度が200℃を超えた値になり、樹脂の使用限界温度を超えてきている。半導体モジュールの設計を工夫し大型の放熱基板を使用したPKGとすることにより樹脂の限界温度にならないようにした半導体モジュールも開発されているが、大型で高価になり経済的でないという問題がある。このためセラミック等の耐熱性の高い部材を銀ろう付けしたPKGが必要になってきている。CuWやCuMoはCu並みに銀ろう付け可能な耐熱性を持つが、Cuよりも熱伝導率が小さいという問題がある。そこで適切な線膨張係数とされる、RT以上800℃以下における最大線膨張係数が10ppm/K以下であるという要件を維持しつつ、200℃での熱伝導率が250W/m・K以上である放熱基板が望まれている。しかし、現在は、これに該当するCuWやCuMoの放熱基板材料が存在しない。
 AlSiCは耐熱性が不足のため銀ろう付けが出来ず、また温度が高くなるにつれ主成分のSiCの熱伝導率が大幅に低下するので高性能半導体モジュールの放熱基板として問題がある。
 他に金属ダイヤモンド系の放熱基板材料には要求特性を満たすものがあるがNi系メッキの品質確保が難しく、加えて価格があまりにも高く実用化には向かないという問題がある。
 他に、高性能モジュールの放熱基板については、半導体デバイスをハンダ付けした際にボイドが多いと冷却が阻害され、半導体デバイスの熱による破壊や剥離が起こるという問題がある。CuWやCuMo中のMoやWが露出した面は最終のNi系メッキとの密着性が良くないため、密着性を改善すべくメッキ毎に熱処理を施した多層のメッキ処理を施すことで問題の解決を図っている。このように放熱基板の表層に良好な最終のNi系メッキを行うため、既存のCuWやCuMoでは数回のメッキ処理と熱処理を施すことからメッキに高い費用が掛かるという問題がある。
(従来技術の調査)
 これまでに、CuMoやCuWの熱伝導率の向上を図るための研究開発が行われ、報告がなされている。
 特許文献1には、10wt%CuのCuWの放熱基板にNi-Pメッキを施してセラミックに銀ろう付けしたLSIの半導体モジュールが開示されている。
 特許文献2には、溶浸法で製造した、相対密度100%の5~22wt%CuのCuWにセラミックを接合した半導体モジュールが開示されている。また、Cuが少なくても多くても半導体モジュールの製造や性能に問題が生じることも記載されている。
 特許文献3には、Cu量を増やし粗粒のW粉末を用いてスケルトンを形成し、Cuを溶浸したCuWにおいて熱伝導率を向上させた放熱基板が開示されている。
 しかし、粗粒のW粉末を用いて相対密度の高いCuWを製作することは難度が高い。また、熱伝導率が大きい材質はCuが30wt%以上(図1)であるが、これまでの30wt%CuWと同様に、高温における線膨張係数が大きくなってしまうという問題がある。
 特許文献4には、焼結法で製造された相対密度90~98%で10~70wt%CuのCuMoを圧延加工した放熱基板が開示されている。
 CuMoは、線膨張係数をCuWと同じにすると熱伝導率が劣り、また、適切な線膨張係数(半導体モジュールに適した線膨張係数)である10ppm/K以下にするために50wt%Cu以下の組成にすると、焼結法により相対密度90%以上の複合材を製作することが困難であるという問題がある。
 特許文献5には、Cu/Mo/CuやCu/W/Cuの放熱基板をホットプレス(以降HPと略記)で多段に製造する方法が開示されている。
 特許文献6には、Cu/CuW/CuやCu/CuMo/Cuの放熱基板と、それを使用した半導体モジュールが開示されている。
 特許文献7には、0.5~8μmのMo粉末、50μmのCu粉末を用い、焼結法で相対密度90%以上の複合材を製造し、650℃以上で一軸と多軸で圧延した良好率の高い(クラックや破断の少ない)放熱基板の製造方法が開示されている。しかし、650℃以上での圧延は表層と内部でCuやMoの酸化が生じてクラックが入り必ずしも被圧延性が良くない。また熱伝導率も非常に不安定になるので放熱基板としては問題がある。
 特許文献8には、焼結法で製造したCuMoを鍛造して相対密度を高くし、これを圧延することにより製造された、線膨張係数が12ppm/K以下であり200℃における熱伝導率が230W/m・K以上である放熱基板と、それを使用した半導体モジュールが開示されている。
 しかし、相対密度が低いCuMoの複合材は冷間鍛造すると破断してしまう。また、熱間鍛造すると表層と内部のCuやMoが酸化してクラックが入り易く、必ずしも被圧延性が良くない。さらに、熱伝導率も非常に不安定になるので放熱基板としては問題がある。
 特許文献9には、2~6μmのMo粉末を用いてスケルトンを製作し、当該スケルトンにCuを含浸する溶浸法で作製した20~60wt%CuのCuMoを、冷間もしくは温間にて圧延することにより製造された、打ち抜き加工や3D形状加工が可能で、線膨張係数が7~12ppm/Kであり熱伝導率が170~280W/m・Kである放熱基板が開示されている。
 しかし、2~6μmの範囲外のMo粉末、例えば1μm以下のMo粉末や6μmを超えるようなMo粒子では製造が困難であり製造可能な範囲が狭い。また、この製法では適切な線膨張係数とされる、RT以上800℃以下における最大線膨張係数が10ppm/K以下で、かつ温度200℃における熱伝導率が250W/m・K以上である放熱基板は得られていない。
 特許文献10には、Cu/Mo/Cu/Mo/Cu・・・・とCuとMoを積層したクラッドの放熱基板が開示されている。また、少ないMo量であっても小さな線膨張係数で大きな熱伝導率が得られ、また表層がCuのため被メッキ性に優れるとの報告がある。
 しかし、高熱伝導率の材質では、高温での線膨張係数は小さな値であるが100~200℃近辺に線膨張係数のピークが存在し、適切な線膨張係数である10ppm/Kを超えるという問題がある。また、平面方向に対し厚さ方向の熱伝導率が小さいという問題がある。更にクラッド材の上下のバランスがとれていない場合、温度が高くなると構造的にバイメタル効果で反りが生じるため性能および寿命に問題が生じる。
特開平4-340752号公報 特開平6-13494号公報 特開2002-356731号公報 特開平5-1255407号公報 特開平6-268115号公報 特開平6-26117号公報 特開平10-72602号公報 特開平11-26966号公報 特開平11-307701号公報 特開2010-56148号公報
 半導体モジュールの高性能化が進んでおり、放熱基板として実績のあるCuMoまたはCuWにおいて、半導体モジュール用放熱基板として適した線膨張係数であるRT以上800℃以下の範囲の最大線膨張係数が10ppm/K以下であって、200℃における熱伝導率が250W/m・K以上である放熱基板が強く望まれている。
 従来、CuWではCuの割合を増やすことや粗粒粉を使用することによる熱伝導率の向上が試みられたが、このような高熱伝導率材では高温での線膨張係数が放熱基板として適した値である10ppm/Kより大きくなる問題があって未だ実用化されていない。
 また、CuMoにおいてもCuの割合を増やすことやクラッド材にすることで熱伝導率の向上が試みられたが、このような高熱伝導率材においても線膨張係数が放熱基板として適した値である10ppm/Kより大きくなるという問題があり、放熱基板としての用途が限定されている。
 本発明者は、既存のCuMoおよびCuWの各種放熱基板の技術調査や測定を行った。表1に、RT以上800℃以下における最大線膨張係数とRTにおける熱伝導率の関係のグラフを示す。
 熱伝導率が250W/m・K以上であるという要件を満たす材質は認められない。また、温度がRTから100℃に上昇するとより熱伝導率が小さくなる。さらに、200℃に達すると更に熱伝導率が小さくなる。そのため、従来、200℃において熱伝導率が250W/m・K 以上であることを満たす材質の可能性はないと思われてきた。
 本発明者はこうした問題を解決するために、粗粒のMo又はWと、CuからなるCuMo又はCuWの合金複合体を緻密化した後にクロス圧延することによって、表面に平行な面内の任意の方向においてRT以上800℃以下における線膨張係数の最大値が10ppm/K以下であって、200℃における熱伝導率が250W/m・K以上である放熱基板が得られることを見いだした。
 即ち、本発明に係る放熱基板は、
 Mo又はWと、Cuを主成分とする合金複合体を主体とし、
 表面に平行な面内の任意の方向において25℃以上800℃以下における最大線膨張係数が10ppm/K以下であり、200℃における熱伝導率が250W/m・K以上である
 ことを特徴とする。
 また、本発明に係る放熱基板の製造方法は、
 Mo又はWと、Cuの混合粒子を主成分とする合金複合体を作製し、
 前記合金複合体を緻密化し、
 前記緻密化後の合金複合体をクロス圧延する
 ことを特徴とする。
 ここで、「合金複合体」とは、金属の粉体や粒子の混合物を押し固めたものや、金属の粉体群や粒子群に溶融金属を流し込んで固化させたもののように、一定の自立した形状を有するものをいう。本発明に係る合金複合体は、例えば、上記混合粒子を型押しして焼結することにより作製することできる。また、溶浸法等、他の方法により合金複合体を作製することもできる。
 既に、MoやWの粗粒粉を使用して粉末冶金法により合金複合体を製造すると、電気伝導率や熱伝導率等の特性が向上することが知られている。しかし、粗粒のMoやWを用いて高い相対密度(原料粉末が完全に緻密化した状態を想定した理論密度に対する実際の合金複合体の密度の比)の合金複合体を製造することはあまりにも難しく、これまでは10μm以下の微粒子粉末を用い、製造条件の最適化を行って放熱基板を製作してきた。CuWの場合は、溶浸法により放熱基板として使用できる相対密度が99%以上の放熱基板を製造することが出来た。一方、CuMoではCuのMoへの濡れ性の悪さから相対密度が99%以上の放熱基板の製作が難しいので、先ず90%以上の合金複合体を作り、それを加熱し鍛造や圧延等することにより相対密度が99%以上の放熱基板を得てきた。
 MoやWが粗粒になると、CuWの溶浸法でも相対密度の小さい合金複合体しか得られない。CuMoでは更に相対密度の小さい合金複合体しか得られないため、温間や熱間で圧延すると合金複合体の表層部や端部にクラックや破断が起こり、圧延材から得られる良好な部分の量が少なくなるという問題がある。これは、相対密度の小さい合金複合体に温間や熱間の圧延を行うと、強度不足によって、また、加熱時に表層や内部のCuやMo、Wが酸化することによって欠陥が生じるためである。
 さらに、良好な圧延を行うための緻密な合金複合体を得るには、高温で高い圧力が必要であり、大型の装置が必要となって大きなサイズの合金複合体の製作難度が高くなるという問題がある。
 特に、CuMoはCuWに比べて軽く、またMo粉末は安価である。しかし、MoはWに比べCuへの濡れ性が悪く、粗粒のMo粉末では溶浸法、焼結法共に圧延し得る合金複合体が得にくい。そのため、圧延してもCuMoの方が製造する難度が高いという問題があった。しかし、CuWに比べCuMoの方がMoの原料費が安く、かつ放熱基板として軽量になり、最も使用実績があることから、CuMoにおいてRT以上800℃以下における線膨張係数の最大値が10ppm/K以下であって、200℃における熱伝導率が250W/m・K以上である放熱基板が強く求められている。一方、CuWは機械加工性に優れることから3D形状品に用いることができる放熱基板が求められている。
 本発明者は60μmのMo粉末を使用して40wt%CuのCuMoを溶浸法と焼結法で製作し、それらの合金複合体の表層部を除去し、温間の450℃における低圧下率のクロス圧延を繰り返し、得られた圧延材の良好な部分から測定試料を切り出して線膨張係数と熱伝導率を測定した。その結果、溶浸法と焼結法で得られた合金複合体の測定値には有意な差が認められないことを確認した。
 しかし、圧延体の内部におけるクラックや酸化のために、既存の40wt%CuのCuMoに比べて熱伝導率が大幅に小さかった。また被メッキ性の確認のため、既存のCuMoと同じように、この合金複合体を熱処理した後、5μmのNiメッキ処理、熱処理、3μmのNi-Bメッキ処理により多層メッキ処理をしたものと、合金複合体に単層メッキとしてダイレクトに3μmのNi-Bメッキ処理を行ったものの2種類のメッキに対して、大気中において400℃で30分保持を行うフクレテストを行ったところ多数のフクレが生じた。フクレの原因は、放熱基板の表層が酸化しており、熱処理の際にMoの脱落やささくれ等の欠陥が生じたためであることが判明した。
 また、CuWでも溶浸法と焼結法で合金複合体を製作し、圧延後に確認したがCuMoと同様の結果になった。
 また、上記同様に、60μmのMo粉末を使用し、40wt%CuのCuMoを溶浸法と焼結法で製作した。それらの合金複合体の表層部を除去し、酸化防止のためステンレススチール(以下SUSと略記)製のケースでキャニングにより密封し(図2)、800℃でクロス圧延し相対密度99%以上の合金複合体を製作した。その合金複合体をSUSケースから取り出して水素中において、950℃で60分間の固相焼結を行うことによって酸化物を還元し圧延時の欠陥を修復した。その後に厚さ10μmのCuメッキを形成し、450℃において温間のクロス圧延を繰り返した。最後に水素中において、400℃で10分間の熱処理を行い、その後に軽い冷間圧延で表面を整えた。そして、溶浸法と焼結法で製作した材料からそれぞれ試料を切り出して線膨張係数と熱伝導率を測定した。線膨張係数は既存の40wt%CuのCuMoと大差なかったが、熱伝導率が大幅に向上していた。また、この合金複合体を熱処理した後、5μmのNiメッキ処理、熱処理、3μmのNi-Bメッキ処理により多層メッキを施したものと、合金複合体に単層メッキとしてダイレクトに3μmのNi-Bメッキ処理を行ったものの2種類のメッキに対して、大気中において400℃で30分保持を行うフクレテストを行ったところフクレは見られなかった。
 また、CuWでも溶浸法と焼結法で合金複合体を製作し、緻密化してCuメッキ処理し、圧延後に確認したが、CuMoと同様の結果になった。
 本発明によれば、粗粒のMoやWと、CuからなるCuMoやCuWの緻密化した合金複合体を固相焼結後にクロス圧延することで、表面に平行な面内の任意の方向においてRT以上800℃以下における最大線膨張係数が10ppm/K以下であって、かつ200℃での熱伝導率が250W/m・K以上であるという要件を満たす材料が得られる。
 また、最終のNi系メッキの品質についても、表面にCu層がある場合には、Cuの放熱基板と同様にダイレクトで最終のNi系メッキ処理が可能となって経済的である。
 本発明に係る製造方法より、高熱伝導率で線膨張係数が小さく、かつメッキ処理が容易なCuMoとCuWの放熱基板が得られる。
 本発明は、新しいアイデアとして、粗粒のMoやWの粉末を用いてなるCuMoやCuWをクロス圧延することによって、低熱膨張で高熱伝導率のCuMoやCuWの放熱基板を得るものである。
 更に、銀ろう付けのないPKGを使用する半導体モジュールにおいてもハンダ付けやジャンクション温度への対応が必要である。本発明に係るCuMoとCuWの放熱基板は、これらに適した線膨張係数と大きな熱伝導率を有しているので、広範囲の半導体モジュールのメモリ、IC、LSI、パワー半導体、通信用半導体、光デバイス、レーザー、LED、センサー等に使用することが可能である。
 表2に、本発明に係るCuMoやCuWの放熱基板の各実施形態について、RT以上800℃以下における最大線膨張係数と温度200℃における熱伝導率を示す。また、比較材の値も併せて示す。
Figure JPOXMLDOC01-appb-T000002
CuW、CuMoの代表的な放熱基板の温度と線膨張係数の関係を示すグラフ。 SUSケースでキャニングした構造の断面図。
(原料)
 粗粒のMoやWを使用したCuMoやCuWにより、熱伝導率の大きい放熱基板の製作が可能になる。本実施形態では、MoやWの粒子の90%以上が15μm以上200μm以下の範囲の大きさであればよく、残りの10%にこの範囲外の大きさの粉末が含まれていても問題はない。15μm以下の大きさの粒子が10%以上含まれていると、適切な線膨張係数である10ppm/K以下で、温度200℃での熱伝導率が250W/m・K以上であることを達成できない。また、200μm以上の大きさの粒子が10%以上含まれていると、熱伝導率の向上効果が小さく、また粉末の価格も大幅に高くなってしまう。一方、Cu粉末には特に指定はないが、5μm以上10μm以下の電解銅粉が好適である。
(組成)
 CuMo、CuW共に、組成は(1)半導体モジュールに適した線膨張係数と、(2)大きな熱伝導率を有することを満たせば特に指定はない。また、WとMoが混合されていても線膨張係数と熱伝導率について要求される特性を満たせば構わない。
 添加金属については、適当な金属の添加により溶浸性や焼結性が向上することが既に報告されており、(1)半導体モジュールに適した線膨張係数と、(2)大きな熱伝導率を有することを満たせば添加金属の元素や量については特に指定はない。但し、添加金属によって熱伝導率が低下するので金属の添加はあまり好ましくない。従って、本実施形態では、合金複合体の製作の難度は増すが、添加金属なしで高い熱伝導率を得ている。
(合金複合体)
 粗粒のMo粉末やW粉末とCuを用いる場合、CuMoやCuWでは溶浸法と焼結法のどちらの製法でも、同程度の大きさのMo粉末やW粉末を用いて圧延後に相対密度が99%以上となる合金複合体が得られれば特性等には大差がないため、いずれの製法でもよく、経済的な方式を選べばよい。
(緻密化)
 クロス圧延により放熱基板を得るためには、相対密度の高い緻密な合金複合体が必要であるが、緻密化の方法については特に指定はない。CuMoやCuWの相対密度を99%以上に緻密化するには、通常は高い温度と圧力が必要である。例えばホットプレスや鍛造といった方法を採ることができるが装置が大型になり経済的でない。また熱間鍛造では合金複合体の表層や内部のCu、Mo、Wの酸化が起こるので好ましくない。
 一方、加熱圧延後に固相焼結することにより合金複合体を緻密化する方式は、その後の製造工程も圧延(後述するクロス圧延)であるので有効な方法である。しかし、相対密度の低い合金複合体の場合は酸化を防止しなければ圧延時に表層や内部が酸化するという問題がある。そこで、酸化防止と外周割れ防止のためにSUSのケースに合金複合体を収容(キャニング)して脱気し、これを圧延することで、相対密度99%以上に緻密化され、その後のクロス圧延に適した合金複合体が得られる。なお、事前の実験により条件を最適化しておくことにより、相対密度が99%以上になる工程を管理することができる。更にキャニングすることで合金複合体の外周の割れや亀裂を最小限にできるので、クロス圧延での歩留まりを向上できる。更に、その合金複合体を水素中においてCuの融点以下の温度で固相焼結すれば、MoやWとCuの粒子面の剥離の修復や残存酸素により生じた酸化物の還元ができ、圧延に適した合金複合体になる。固相焼結の条件としては、水素中において、800℃以上Cuの融点未満(合金複合体の主成分である全ての金属の融点未満)の温度にて60分間保持することが好適である。この固相焼結により良好な圧延が可能となり、800℃の銀ろう付けの高温下でも合金複合体のメッキフクレ等の問題が起こらない緻密な放熱基板が得られる。
 なお、相対密度の低い合金複合体を用い、これに低い圧下率の圧延と固相焼結を繰り返すことによって相対密度を99%以上とすることでクロス圧延に適した合金複合体を得る方法もあるが、この方法は手間がかかり、また経済的でない。
(表層のCuメッキ)
 50%以下のMoや60%以下のWで残部がCuであるCuMoやCuWのように、Cuが多い組成の場合は、圧延する際に表層のCuメッキは必ずしも必要ではない。しかし、Cuが少なくなるとMoやWの粒子同士が接触している箇所や重なっている箇所が多くなり、圧延時にMoやWの粒子の脱落やささくれといった現象が起こる。この問題はCuメッキ処理を施してから圧延することで改善が可能である。経済的な面から考えるとメッキの厚さは10μm以下が好適であるが、3μm以下と薄すぎると効果が出ないことがある。圧延することでメッキ層は薄くなるが、最終的に全体に1μm程度のCu層が残っていれば最終のNiメッキには問題ない。
 また、Cuメッキの厚さを増やすことでCu/CuMo/CuやCu/CuW/Cuと同じようなクラッド構造にすることも可能である。なお、クラッド構造とは、合金複合体の表面及び裏面にそれぞれ1乃至複数の金属層を形成した構造をいう。このようなクラッド構造の放熱基板を用いると、放熱基板の最終工程で施されるNi系メッキ処理への適合性(Ni系メッキの密着性)を高めることができ、高品質なNi系メッキが形成された放熱基板を製造することができる。
(クロス圧延)
 クロス圧延では、非酸化もしくは還元雰囲気中において、300℃以上の温度に加熱した合金複合体をX軸方向とY軸方向(X軸及びY軸はいずれも表面に平行な面内で規定される軸であり、厚さ方向はZ軸と規定する)で交互に圧延する。このクロス圧延により、表面に平行な面内の任意の方向において(該面内の、クロス圧延を行うX軸とY軸以外の方向においても)RT以上800℃以下の範囲での最大線膨張係数が小さくなって安定し、熱伝導率も向上して安定する。圧延が一軸のみではクロス圧延を行った方向(例えばX軸方向)と、それに直交するY軸方向の線膨張係数の差が大きくなり、放熱基板として適さない。X軸方向とY軸方向でクロス圧延を交互に行うことが望ましい。このクロス圧延により、合金複合体の内部に分布するMo又はWの粒子は放熱基板の表面に平行な面内で円盤状に広がった扁平な形状になる。この段階での合金複合体の圧下率(即ち、緻密化及びクロス圧延の2工程による圧下率)は50%~80%である。上述のとおり、MoやWの粒子の90%以上が15μm以上200μm以下の範囲の大きさである。従って、MoとWの粒子形状を球体(体積:4/3πr3。rは球の半径)と近似し、クロス圧延後(圧下率P)の粒子形状を円盤板状体(体積:r×(1-P)×πr'3。r'はクロス圧延後の円盤板状体の底面の円の半径)と近似すると、クロス圧延後の粒子は放熱基板の表面に平行な面内において約17μm(半径15μmの球状粒子を原料とし、圧下率50%でクロス圧延した場合の大きさ)~約366μm(半径200μm球状粒子を原料とし、圧下率80%でクロス圧延した場合の大きさ)となる。
 過去の実績から、X軸方向とY軸方向の線膨張係数差が20%以下であれば使用上の問題はないが、それ以上の差が生じると使用上の制約が出てくる。材質と組成および使用するMoとWの粉末の形状を適切に選択し、クロス圧延条件の最適化を行うことによって要求特性を満たす放熱基板が得られる。
 しかし、得られた放熱基板のX軸方向とY軸方向の線膨張係数の差が20%以下になるのであれば、クロス圧延におけるX軸方向とY軸方向の圧延順や圧延回数は問わない。また、本実施形態では直交する2方向(X軸方向とY軸方向)で圧延を行っているが、このクロス圧延の目的は表面に平行な面内の任意の方向における線膨張係数を10ppm/K以下に小さくするとともに、その異方性を小さくすることである。即ち、これを達成することができれば、非平行な複数の方向(即ち、交差する複数の方向)でのクロス圧延であってもよく、必ずしも直交する2方向でのクロス圧延のみには限定されない。
 なお、相対密度99%以上の合金複合体においては、厚さが圧延前の1/5以下になると偏平化したMoやWが分断され、線膨張係数と熱伝導率にバラツキが生じることがあるので、圧延前の合金複合体の厚さの1/5を超える厚さまでで圧延を止めることが望ましい。
 冷間、温間、及び熱間の圧延のいずれかは問わないが、冷間では高い圧下率が取れないので生産性が低い。CuMoは400℃前後の温間圧延が望ましく、CuWの場合は600℃前後の熱間圧延が望ましい。また、表層の酸化物除去を目的として圧延毎に酸洗い、還元処理、またはバフ掛け等を行うと被圧延性が改善される。水素中で熱処理後に冷間圧延することにより、表面状態が整った、放熱基板に適した状態の完成品が得られる。
(最終メッキ)
 MoやWの被メッキ性は必ずしもよくないが、銀ろう付けやハンダ付けの際にCuMoやCuW中のCuが浸食されるという問題を防ぐために、最終のNi系のメッキが施される。高級品の場合は半導体デバイスのハンダ付け性を向上するためと商品価値を上げるために、最終のNi系のメッキの上にAuメッキ処理を施すこともある。なお、Ni系メッキとは、NiやNi合金のメッキを意味する。
 Cuの放熱基板の場合には熱処理なしの1回のダイレクトNi系メッキ処理で十分であるが、CuMoやCuWでは、MoやWの露出面での被メッキ性が良くないので、熱処理+Niメッキ+熱処理+Niメッキといった多層メッキ処理が行われるが、工程が長く納期やコストがかかる。本実施形態の放熱基板では、同様に多層メッキ処理を施すことも可能であるが、圧延前に施したCuメッキ層が残存している場合は、ダイレクトに1回の最終Ni系メッキ処理のみを施すことも可能である。
(その他)
 半導体モジュールにおいては、放熱基板と半導体デバイスのハンダ接合部の品質が重要であり、厳しいボイド率が求められる。ハンダ材としては半導体デバイスの場合はPbフリー化と高温化に対応したAuSn(融点280℃)、AuSi(融点363℃)のハンダ材が主に使われ、200℃以上の半導体デバイスの場合は更なる高品質が望まれるのでAuメッキした放熱基板にハンダ付されることもある。
 既にCu、CuMo、CuWでは、これらに対応する最終のNi系のメッキが開発されており、本発明ではCuメッキ層がある場合にはダイレクトに最終の3μmのNi-Bメッキ処理を施し、そのフクレテストを行うことで品質の管理が可能である。しかし、従来のCuMo、CuWと同様に多層の最終Ni系メッキを望まれることも多く、その場合でもフクレテストで品質の確認と管理が可能である。フクレテストで問題なければAgろう付けやハンダ接合や使用上の問題が起こらないとの知見がある。
<放熱基板の評価>
(線膨張係数の測定)
 上記クロス圧延後の合金複合体から放電加工(以下WEDMと略記)でX軸方向10mm×Y軸方向4mm×厚さ(Z軸方向)2~2.5mmの試料を切り出し、線膨張係数測定装置(セイコーインスツル社製)を用いてRT~800℃の範囲の線膨張係数の測定を行い、X軸とY軸での大きい方を値として採用した。
(熱伝導率の測定)
 上記クロス圧延後の合金複合体からWEDMでφ10mm×厚さ2~2.5mmの試料を切り出し、レーザーフラッシュ法の熱伝導率測定装置(アルバック理工社製 TC-7000)を用いて水素中、200℃で熱伝導率の測定を行った。
(メッキのフクレテスト)
 5mm×25mmの試料に多層のNiメッキ処理と単層のダイレクトメッキ処理を行い、それらを大気中で400℃、30分間保持し、実体顕微鏡を用いて10倍の倍率で外観観察した。そして、金属層のメッキのフクレがない場合はOKと判断し、大小にかかわらずフクレが認められた場合にはNGと判断した。
(実施例1;40wt%CuのCuMo、溶浸法・緻密化・圧延、試料No. 6)
 平均粒度60μmのMo粉末に、10μmの電解Cu粉末3wt%、及びパラフィンワックス1wt%を混合し、得られた混合粉末を50mm×50mmの金型でプレス成型し、その成型体を水素中において600℃にて60分間加熱して脱ワックスを行った。更に水素中において1000℃に加熱してスケルトンを製作した。このスケルトンにCu板を載せ、水素中において1250℃にて60分間加熱することによりCuを溶浸した。このようにして40wt%Cuで50mm×50mm×6mmのCuMo合金複合体を製作した。合金複合体の表層に残存した余剰の溶浸Cuや表層の欠陥を切削で除去した。その合金複合体をSUSのケースに入れて脱気した後に端部を溶接しキャニングした。それを800℃においてクロス圧延し、合金複合体の相対密度が99%以上になったところで取り出し、水素中において950℃にて60分間の固相焼結を行った。固相焼結後(緻密化後)の合金複合体に10μmのCuメッキ処理を施したのち400℃において温間のクロス圧延を行い、厚さを2mmにした。即ち、二度のクロス圧延による合金複合体の圧下率(=(6mm-2mm)/6mm)は66.6%である。
 さらに、それを水素中で450℃において15分間の熱処理を行った後に冷間圧延して表面を整えた。
 その放熱基板に多層のNi系のメッキ処理を施したものと、ダイレクトの単層Niメッキ処理を施したものとで、それぞれフクレテストを行った。
 併せて線膨張係数と熱伝導率の測定を行った。
 結果を表2に示す。
(実施例2;40wt%CuのCuMo、焼結法・緻密化・圧延、試料No. 7)
 平均粒度60μmのMo粉末および10μmの電解Cu粉末を用い、40wt%のCuと残部Moの配合比率で粉末を混合し、得られた混合粉末を50mm×50mmの金型でプレス成型した。得られた成型体を水素中において1250℃にて60分間、液相焼結して、50mm×50mm×6mmのCuMo合金複合体を製作した。合金複合体の表層の欠陥を切削で除去し、その合金複合体をSUSのケースに入れ脱気した後に端部を溶接しキャニングした。それを800℃にてクロス圧延し、合金複合体が相対密度99%以上になったところで取り出し、水素中において950℃にて60分間加熱して固相焼結を行った。その合金複合体に10μmのCuメッキ処理を施したのちに400℃にてクロス圧延を行い、厚さ2mmの板材を得た。即ち、二度のクロス圧延による合金複合体の圧下率(=(6mm-2mm)/6mm)は66.6%である。その板材を水素中において450℃にて15分間の熱処理を行い、その後に冷間圧延を行って表面を整えた。
 その放熱基板にNi系の多層メッキ処理を施したものと、単層のダイレクトメッキ処理を施したものに、それぞれフクレテストを行った。
 併せて線膨張係数と熱伝導率の測定を行った。
 結果を表2に示す。
(実施例3;45wt%CuのCuW、焼結法・圧延、試料No. 20)
 平均粒度60μmのW粉末および10μmの電解Cu粉末を用いて45wt%のCuと残部Wの配合比率で粉末を混合し、得られた混合粉末を50mm×50mmの金型でプレス成型を行った。その成型体を水素中において、1250℃にて60分間液相焼結し、50mm×50mm×6mmのCuW合金複合体を得た。
 合金複合体の表層の欠陥を切削で除去し、その合金複合体をSUSのケースに入れ脱気した後に端部を溶接しキャニングした。それを800℃でクロス圧延し、合金複合体が相対密度99%以上になったところで取り出し、水素中において1000℃にて60分間の固相焼結を行った。その合金複合体に10μmのCuメッキ処理を施したのち、600℃にてクロス圧延を行い、厚さを2mmにした。即ち、二度のクロス圧延による複合体の圧下率(=(6mm-2mm)/6mm)は66.6%である。
 その放熱基板にNi系の多層メッキ処理を施したものと、単層のダイレクトメッキ処理を施したものに、それぞれフクレテストを行った。
 併せて線膨張係数と熱伝導率の測定を行った。
 結果を表2に示す。
(実施例4;PKGの放熱基板に半導体デバイスを搭載した半導体モジュールの評価)
 実施例2の、線膨張係数9.1ppm/Kで熱伝導率293W/m・Kの放熱基板にセラミックとコバール等の部材を水素中において800℃にて銀ろう付けしてPKGを製作した。そのPKGに剥離や割れのない事を確認し、それに10mm×10mm×0.7mmのSiデバイスの金属電極層を高温AuSi(融点363℃)ハンダにより400℃で接合して半導体モジュールを製作した。そして、超音波でハンダ付け部のボイド面積が3%以下であることを確認した。一般に、最終のメッキが3μmのNi-Bである場合には、SnAgCu(融点218℃)ハンダの評価は非常に厳しく、超音波測定でボイド率5%以下を合格すれば銀ろう付、他のハンダ付け、樹脂付等で問題が起こらない知見がある。ハンダ付けにおいて生じるボイドは、最終のNi系メッキ処理を行う前の放熱基板の表面のピンホールを反映している。即ち、表面のピンホール(欠陥)が5%以下である放熱基板を用いることにより、SnAgCu(融点218℃)ハンダの評価条件を満たすことができる。実施例4では、ハンダ付け部のボイド面積が3%以下であり、上記要件を全て満たしている。
 また、その半導体モジュールに対してヒートサイクルテスト(-40~225℃、3000回)を行った。併せて、比較のため、同寸法の実施例2と線膨張係数の値が同じ9.1ppm/Kで熱伝導率が213W/m・Kの既存の40wt%CuのCuMoの放熱基板で同じPKGを作り、デバイスを搭載した上でヒートサイクルテスト(-40~225℃、3000回)を行った。
 その結果、いずれの試料においても剥離や割れ等の問題は起こらなかった。
(今回開示の解釈-1)
 本発明により将来的な高性能半導体モジュール用としての要求を満たす高性能放熱基板を得ることができる。
(今回開示の解釈-2)
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲で変形した形態も本発明に含まれる。本発明を実施する際の具体的な構造や実施形態等は本発明の目的を達成できる範囲内で他のものでもよい。
(今回開示の解釈-3)
 今回開示された実施形態及び実施例はすべての点で例示であって制限的なものでないと考えられるべきである。上記した説明に限定されるものではなく請求の範囲によって示される。
1…溶浸法または焼結法で製作された合金複合体
2…SUSキャニングケース
3…全周溶接した接合部

Claims (14)

  1.  Mo又はWの粒子と、Cuとを主成分とする合金複合体を作製し、
     前記合金複合体を緻密化し、
     前記緻密化後の合金複合体をクロス圧延する
     ことを特徴とする放熱基板の製造方法。
  2.  前記クロス圧延の前に、前記緻密化した合金複合体を固相処理する
     ことを特徴とする請求項1に記載の放熱基板の製造方法。
  3.  90wt%以上が15μm以上200μm以下であるMo又はWの粒子と、Cuとを主成分とするCuMo又はCuWの合金複合体を作製し、
     前記合金複合体を緻密化して該合金複合体の相対密度を向上させ、
     該緻密化後の合金複合体を固相焼結し、
     前記固相焼結後の合金複合体をクロス圧延する
     ことにより、
     表面に平行な面内の任意の方向において25℃以上800℃以下における線膨張係数の最大値が10ppm/K以下であり、温度200℃における熱伝導率が250W/m・K以上である放熱基板を製造する
     ことを特徴とする放熱基板の製造方法。
  4.  前記合金複合体を圧延することにより前記緻密化を行って該合金複合体の相対密度を99%以上にする
     ことを特徴とする請求項1から3のいずれかに記載の放熱基板の製造方法。
  5.  前記圧延をキャニングして脱気して状態で行う
     ことを特徴とする請求項4に記載の放熱基板の製造方法。
  6.  前記クロス圧延する前に、前記緻密化した合金複合体に金属のメッキ処理を施す
     ことを特徴とする請求項1から5のいずれかに記載の放熱基板の製造方法。
  7.  前記クロス圧延が温間、熱間、冷間もしくはこれらを組み合わせたクロス圧延である
     ことを特徴とする請求項1から6のいずれかに記載の放熱基板の製造方法。
  8.  Mo又はWの粒子と、Cuを主成分とする合金複合体を主体とする放熱基板であって
     表面に平行な面内の任意の方向において25℃以上800℃以下におけるX軸とY軸の最大線膨張係数が10ppm/K以下であり、200℃における熱伝導率が250W/m・K以上である
     ことを特徴とする放熱基板。
  9.  前記放熱基板の内部に分布する前記Mo又はWの粒子が前記放熱基板の表面に平行な面内に広がる扁平な形状であり、該Mo又はWの粒子の90wt%以上の粒子の前記面内における最大径が17μm以上366μm以下である
     ことを特徴とする請求項8に記載の放熱基板。
  10.  前記合金複合体の表面に、厚さ1μm以上の金属層が形成されている
     ことを特徴とする請求項8又は9に記載の放熱基板。
  11.  前記合金複合体の表面及び裏面のそれぞれに、1乃至複数の金属層が形成されている
     ことを特徴とする請求項8又は9に記載の放熱基板。
  12.  請求項8から11のいずれかに記載の放熱基板を備える
     ことを特徴とする半導体用パッケージ。
  13.  請求項8から11のいずれかに記載の放熱基板を備える
     ことを特徴とする半導体用モジュール。
  14.  請求項8から11のいずれかに記載の放熱基板の表面にNi系メッキを介して施されたハンダ付けのボイド率が5%以下である
     ことを特徴とする半導体モジュール。
PCT/JP2015/083480 2014-12-05 2015-11-27 放熱基板及び該放熱基板の製造方法 WO2016088687A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580065996.7A CN107004654A (zh) 2014-12-05 2015-11-27 散热基板和该散热基板的制造方法
EP15865455.8A EP3229268A4 (en) 2014-12-05 2015-11-27 Heat-dissipating substrate and method for manufacturing same
US15/531,400 US20170317009A1 (en) 2014-12-05 2015-11-27 Heat dissipation substrate and method for producing heat dissipation substrate
JP2016520126A JP6083634B2 (ja) 2014-12-05 2015-11-27 放熱基板及び該放熱基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014246636A JP5818045B1 (ja) 2014-12-05 2014-12-05 放熱基板と、それを使用した半導体パッケージと半導体モジュール
JP2014-246636 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088687A1 true WO2016088687A1 (ja) 2016-06-09

Family

ID=54602149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083480 WO2016088687A1 (ja) 2014-12-05 2015-11-27 放熱基板及び該放熱基板の製造方法

Country Status (5)

Country Link
US (1) US20170317009A1 (ja)
EP (1) EP3229268A4 (ja)
JP (2) JP5818045B1 (ja)
CN (1) CN107004654A (ja)
WO (1) WO2016088687A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455896B1 (ja) * 2017-11-18 2019-01-23 Jfe精密株式会社 放熱板及びその製造方法
JP6462172B1 (ja) * 2018-08-02 2019-01-30 Jfe精密株式会社 放熱板及びその製造方法
KR20190042676A (ko) * 2016-08-31 2019-04-24 제이에프이 세이미츠 가부시키가이샤 방열판 및 그 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108356375B (zh) * 2018-02-12 2024-01-30 无锡格林沃科技有限公司 钎焊一体式平板超导冷却器及其生产工艺
WO2023145911A1 (ja) * 2022-01-31 2023-08-03 株式会社Flosfia 積層構造体、半導体素子および半導体装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921032A (ja) * 1982-07-26 1984-02-02 Sumitomo Electric Ind Ltd 半導体装置用基板
JPS63118003A (ja) * 1986-11-06 1988-05-23 Furukawa Alum Co Ltd 粉末の圧縮成形方法
JPH0892667A (ja) * 1994-09-22 1996-04-09 Tokyo Tungsten Co Ltd 金属複合材料及びその製造方法
JPH08153836A (ja) * 1994-09-28 1996-06-11 Tokyo Tungsten Co Ltd 金属複合材料,及びその製造方法とそれを備えたパッケージ
JPH1126966A (ja) * 1997-07-08 1999-01-29 Tokyo Tungsten Co Ltd 大面積放熱基板及びその製造方法
JP2003007886A (ja) * 2001-06-26 2003-01-10 Kyocera Corp 半導体素子収納用パッケージ
JP2003007932A (ja) * 2001-06-26 2003-01-10 Kyocera Corp 半導体素子収納用パッケージ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116573B2 (ja) * 1985-03-05 1995-12-13 古河電気工業株式会社 リードフレーム用Cu系条材の製造方法
JPH06220597A (ja) * 1992-05-15 1994-08-09 Japan Energy Corp モリブデン又はモリブデン合金冷延板の製造方法
JPH1197609A (ja) * 1997-09-17 1999-04-09 Dowa Mining Co Ltd 酸化膜密着性に優れたリードフレーム用銅合金及びその製造方法
JP3856640B2 (ja) * 2000-01-26 2006-12-13 株式会社アライドマテリアル 半導体搭載用放熱基板材料、その製造方法、及びそれを用いたセラミックパッケージ
JP2001230350A (ja) * 2000-02-14 2001-08-24 Sumitomo Metal Electronics Devices Inc 放熱用金属板の製造方法
ATE306119T1 (de) * 2000-04-14 2005-10-15 Almt Corp Material für eine wärme-abführende platte auf der ein halbleiter montiert ist, herstellungsmethode und keramisches gehäuse,produziert unter verwendung derselben
JP2002356731A (ja) * 2001-03-30 2002-12-13 Nippon Tungsten Co Ltd 半導体基板材料
JP2003234441A (ja) * 2002-02-06 2003-08-22 Toho Kinzoku Co Ltd 放熱基板用複合材料
CN100475991C (zh) * 2002-10-28 2009-04-08 联合材料公司 复合材料、其制造方法及使用其的构件
JP2004190084A (ja) * 2002-12-10 2004-07-08 Nippon Tungsten Co Ltd 焼結合金とその製造法
JP2004232049A (ja) * 2003-01-31 2004-08-19 Nikko Metal Manufacturing Co Ltd Cuめっきチタン銅
JP5030633B2 (ja) * 2007-03-26 2012-09-19 Jfeスチール株式会社 Cr−Cu合金板、半導体用放熱板及び半導体用放熱部品
US20140308536A1 (en) * 2011-12-07 2014-10-16 A.L.M.T. Corp Sintered tungsten alloy
CN102605307A (zh) * 2012-03-22 2012-07-25 西安理工大学 一种钨铜合金薄板的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921032A (ja) * 1982-07-26 1984-02-02 Sumitomo Electric Ind Ltd 半導体装置用基板
JPS63118003A (ja) * 1986-11-06 1988-05-23 Furukawa Alum Co Ltd 粉末の圧縮成形方法
JPH0892667A (ja) * 1994-09-22 1996-04-09 Tokyo Tungsten Co Ltd 金属複合材料及びその製造方法
JPH08153836A (ja) * 1994-09-28 1996-06-11 Tokyo Tungsten Co Ltd 金属複合材料,及びその製造方法とそれを備えたパッケージ
JPH1126966A (ja) * 1997-07-08 1999-01-29 Tokyo Tungsten Co Ltd 大面積放熱基板及びその製造方法
JP2003007886A (ja) * 2001-06-26 2003-01-10 Kyocera Corp 半導体素子収納用パッケージ
JP2003007932A (ja) * 2001-06-26 2003-01-10 Kyocera Corp 半導体素子収納用パッケージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229268A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324373B1 (ko) 2016-08-31 2021-11-09 제이에프이 세이미츠 가부시키가이샤 방열판 및 그 제조 방법
EP3509100A4 (en) * 2016-08-31 2019-07-10 JFE Precision Corporation COOLING BODY AND METHOD FOR THE PRODUCTION THEREOF
KR20190042676A (ko) * 2016-08-31 2019-04-24 제이에프이 세이미츠 가부시키가이샤 방열판 및 그 제조 방법
CN109690760A (zh) * 2016-08-31 2019-04-26 Jfe精密株式会社 散热板及其制造方法
CN109690760B (zh) * 2016-08-31 2022-12-27 Jfe精密株式会社 散热板及其制造方法
US11270926B2 (en) 2016-08-31 2022-03-08 Jfe Precision Corporation Heat sink and method for manufacturing same
JP2019096654A (ja) * 2017-11-18 2019-06-20 Jfe精密株式会社 放熱板及びその製造方法
KR102347859B1 (ko) * 2017-11-18 2022-01-05 제이에프이 세이미츠 가부시키가이샤 방열판 및 그 제조 방법
JP6455896B1 (ja) * 2017-11-18 2019-01-23 Jfe精密株式会社 放熱板及びその製造方法
KR20200088404A (ko) * 2017-11-18 2020-07-22 제이에프이 세이미츠 가부시키가이샤 방열판 및 그 제조 방법
WO2019098350A1 (ja) * 2017-11-18 2019-05-23 Jfe精密株式会社 放熱板及びその製造方法
US11646243B2 (en) 2017-11-18 2023-05-09 Jfe Precision Corporation Heat sink and method for manufacturing same
JP6462172B1 (ja) * 2018-08-02 2019-01-30 Jfe精密株式会社 放熱板及びその製造方法
JP2019096860A (ja) * 2018-08-02 2019-06-20 Jfe精密株式会社 放熱板及びその製造方法

Also Published As

Publication number Publication date
EP3229268A1 (en) 2017-10-11
EP3229268A4 (en) 2018-01-03
JP6083634B2 (ja) 2017-02-22
JP5818045B1 (ja) 2015-11-18
CN107004654A (zh) 2017-08-01
JPWO2016088687A1 (ja) 2017-04-27
US20170317009A1 (en) 2017-11-02
JP2016167474A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6083634B2 (ja) 放熱基板及び該放熱基板の製造方法
US10115655B2 (en) Heat dissipation substrate and method for producing heat dissipation substrate
JP5698947B2 (ja) 電子機器用放熱板およびその製造方法
KR102324373B1 (ko) 방열판 및 그 제조 방법
JP6462899B2 (ja) 高出力素子用放熱板材
TWI796503B (zh) 金屬-碳化矽質複合體、及金屬-碳化矽質複合體之製造方法
WO2007094507A1 (ja) Cr-Cu合金、その製造方法、半導体用放熱板および半導体用放熱部品
JP2012216844A (ja) 半導体用放熱部品およびそれを取付けた半導体用ケース、半導体用キャリア
JP2017075397A (ja) 放熱基板及び該放熱基板の製造方法
JP5030633B2 (ja) Cr−Cu合金板、半導体用放熱板及び半導体用放熱部品
JP6595740B1 (ja) 金属−炭化珪素質複合体及びその製造方法
JP4138844B2 (ja) Cr−Cu合金およびその製造方法ならびに半導体用放熱板と半導体用放熱部品
JP2016111328A (ja) 放熱基板と、それを使用した半導体パッケージと半導体モジュール
JP2017098574A (ja) 放熱基板及び該放熱基板の製造方法
JP5286507B2 (ja) Cr−Cu合金板の製造方法
JP2010126791A (ja) 放熱材料およびそれを用いた半導体用放熱板と半導体用放熱部品、並びに放熱材料の製造方法
WO2020130039A1 (ja) 半導体デバイス接合部材
JP5211314B2 (ja) Cr−Cu合金板およびそれを用いた電子機器用放熱板と電子機器用放熱部品
JP2004055761A (ja) アルミニウム−炭化珪素質複合体とその製造方法
JP2001217364A (ja) Al−SiC複合体
JP2003268482A (ja) Al−SiC系複合体
JP2001332668A (ja) Al−SiC複合体
JP2024039593A (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2003268478A (ja) Al−SiC系複合体
JP2006054297A (ja) 放熱基板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520126

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15531400

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015865455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE