WO2016084782A1 - サーミスタ、電子装置およびサーミスタの製造方法 - Google Patents

サーミスタ、電子装置およびサーミスタの製造方法 Download PDF

Info

Publication number
WO2016084782A1
WO2016084782A1 PCT/JP2015/082883 JP2015082883W WO2016084782A1 WO 2016084782 A1 WO2016084782 A1 WO 2016084782A1 JP 2015082883 W JP2015082883 W JP 2015082883W WO 2016084782 A1 WO2016084782 A1 WO 2016084782A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
manufacturing
external electrode
ceramic layer
layer
Prior art date
Application number
PCT/JP2015/082883
Other languages
English (en)
French (fr)
Inventor
圭 戸田
伸一郎 縄井
英輔 田代
隆裕 宮井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016561883A priority Critical patent/JP6489127B2/ja
Publication of WO2016084782A1 publication Critical patent/WO2016084782A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a thermistor, an electronic device, and a method for manufacturing the thermistor.
  • Patent Document 1 Japanese Patent No. 5375963
  • This thermistor has a metal substrate, a thermistor layer formed directly on the metal substrate, and a pair of divided electrodes formed on the thermistor layer, and the thickness of the metal substrate is the thermistor layer Thicker than the thickness of.
  • the thickness of the metal substrate is thicker than the thickness of the thermistor layer, so if there is a difference in shrinkage between the metal substrate and the thermistor layer in the thermistor firing process, the thermistor warps. There is a risk. If the thermistor is warped, a thermistor conveyance failure occurs in a subsequent process facility (for example, a feeder section of a characteristic sorter). Therefore, the equipment operation rate and the yield are deteriorated, and the manufacturing cost is increased.
  • the metal base is located on the surface of the thermistor opposite to the mounting substrate (hereinafter referred to as the non-mounting surface).
  • the non-mounting surface of the thermistor is a metal substrate, the insulation of the non-mounting surface of the thermistor cannot be ensured.
  • an object of the present invention is to provide a thermistor, an electronic device, and a thermistor manufacturing method that can suppress the warp of the thermistor and can ensure the insulation of the non-mounting surface of the thermistor mounted on the mounting board. is there.
  • the thermistor of the present invention is An element made of ceramic, A first external electrode and a second external electrode that are spaced apart from each other on the first surface of the element body; An internal electrode disposed inside the element body and electrically connected to the first external electrode and the second external electrode.
  • the thermistor of the present invention since the internal electrode is disposed inside the element body, even if there is a difference in contraction rate between the internal electrode and the element body in the thermistor firing step, the element body presses the internal electrode. The occurrence of warpage of the thermistor can be suppressed. For this reason, the conveyance failure of the thermistor is improved in the equipment of a post process (for example, the feeder part of a characteristic sorter, etc.). Therefore, the equipment operation rate and yield are improved, and the manufacturing cost is lowered.
  • the second surface opposite to the first surface of the element body is a surface opposite to the mounting substrate (hereinafter referred to as a non-mounting surface).
  • a non-mounting surface Located in. Since the internal electrode is disposed inside the element body, the internal electrode is not exposed from the second surface of the element body. Therefore, since the non-mounting surface of the thermistor is an element body, the insulation of the non-mounting surface of the thermistor can be secured.
  • the thermistor has a first protective layer on the second surface of the element body opposite to the first surface.
  • the weak element body can be reinforced with the first protection layer, and the thermistor strength can be improved.
  • the thermistor has a thickness of 30 ⁇ m or more and 100 ⁇ m or less.
  • the thermistor of the above embodiment since the thermistor has a thickness of 30 ⁇ m or more and 100 ⁇ m or less, the thermistor can be reduced in height.
  • the thermistor has a second protective layer in a region between the first external electrode and the second external electrode on the first surface of the element body.
  • the second protective layer is provided in the region between the first external electrode and the second external electrode on the first surface of the element body, the migration of the first external electrode and the second external electrode is performed. Can be suppressed.
  • the second protective layer is provided in the entire region except the region overlapping the first external electrode and the second external electrode on the first surface of the element body.
  • the second protective layer is provided in the entire region except the region overlapping the first external electrode and the second external electrode on the first surface of the element body, the first external electrode and When the plating layer is provided on the second external electrode, erosion of the second surface of the element body by the plating layer can be prevented.
  • the thermistor In one embodiment of the electronic device, The thermistor; And an insulating member that covers the thermistor.
  • the insulating member covers the thermistor, the strength and reliability of the thermistor can be ensured.
  • the internal electrode is fired in a state of being sandwiched between the first ceramic layer and the second ceramic layer, a difference in shrinkage rate between the internal electrode and the element body in the firing step. Even if there is, the element body can hold down the internal electrode and suppress the warp of the thermistor. Therefore, generation
  • a grinding step of grinding a part of the fired body in the thickness direction is provided.
  • the thickness of the laminate before the firing process is thick.
  • production of the curvature of this laminated body is suppressed.
  • the laminated body during firing may be warped due to the aspect ratio of the laminated body. Therefore, generation
  • a third ceramic layer is further stacked on the second ceramic layer so as to cover the first external electrode and the second external electrode, and the stacked body is manufactured.
  • the grinding step at least a part of the third ceramic layer is ground so that the first external electrode and the second external electrode are exposed from the third ceramic layer.
  • the third ceramic layer is laminated on the second ceramic layer so as to cover the first external electrode and the second external electrode, and in the grinding step, the first external A portion of the third ceramic layer is ground so that the electrode and the second external electrode are exposed from the third ceramic layer.
  • the reinforcing member is attached to the side opposite to the internal electrode of the first ceramic layer to increase the strength of the fired body, and then the grinding process can be performed. The cracking of the fired body in the grinding process can be suppressed.
  • a protection step of providing a first protection layer on the opposite side of the first ceramic layer from the internal electrode is provided between the firing step and the grinding step.
  • the protective step is provided between the firing step and the grinding step, the first protective layer is provided on the side opposite to the internal electrode of the first ceramic layer, and the strength of the fired body After strengthening, the grinding process can be performed, and cracks of the fired body in the grinding process can be suppressed.
  • a part of the first ceramic layer is ground so that the internal electrode is not exposed from the first ceramic layer.
  • a part of the first ceramic layer is ground so that the internal electrode is not exposed from the first ceramic layer.
  • grinding is simplified.
  • the grinding step there is a protection step of providing a first protection layer on the opposite side of the first ceramic layer from the internal electrode.
  • the first protective layer is provided on the side opposite to the internal electrode of the first ceramic layer after the grinding step, the strength of the thermistor can be improved.
  • a first protective layer is provided on the opposite side of the first ceramic layer from the internal electrode, and a second protective layer is provided on the second ceramic layer so as to cover the first external electrode and the second external electrode.
  • the first protective layer is provided on the side of the first ceramic layer opposite to the internal electrode, the strength of the thermistor can be improved.
  • the second protective layer is provided on the second ceramic layer, the second protective layer has a second protective layer between the first external electrode and the second external electrode, and the first external electrode and the second external electrode. Occurrence of migration can be suppressed.
  • the second protective layer is provided on the second ceramic layer, when the plating layer is provided on the first external electrode and the second external electrode, erosion of the second ceramic layer by the plating layer can be prevented.
  • the second protective layer is provided on the second ceramic layer so as to cover the first external electrode and the second external electrode before the grinding step. After strengthening, the grinding process can be performed, and cracking of the fired body in the grinding process can be suppressed.
  • the first protective layer is provided on the side of the first ceramic layer opposite to the internal electrode, the thermistor strength can be improved.
  • the second protective layer is provided on the second ceramic layer, the second protective layer has a second protective layer between the first external electrode and the second external electrode, and the first external electrode and the second external electrode. Occurrence of migration can be suppressed.
  • the second protective layer is provided on the second ceramic layer, when the plating layer is provided on the first external electrode and the second external electrode, erosion of the second ceramic layer by the plating layer can be prevented.
  • a method for producing a plurality of thermistors comprising: In the stacking step, a plurality of sets of the internal electrode, the first external electrode, and the second external electrode corresponding to one thermistor region are provided, After the grinding step, there is a cutting step of cutting the fired body for each thermistor region.
  • the thermistor manufacturing method of the above embodiment after the grinding step, there is a cutting step of cutting the fired body into regions of one thermistor, so that productivity can be achieved by grinding a large-sized fired body before cutting. In addition, the load caused by grinding can be reduced, and a thermistor without damage can be produced.
  • a protection step of providing a first protection layer on the side of the first ceramic layer opposite to the internal electrode is provided between the firing step and the cutting step.
  • the first protective layer is provided on the side opposite to the internal electrode of the first ceramic layer between the firing step and the cutting step, the large format before cutting is large. It becomes easy to attach the first protective layer to the fired body.
  • the thermistor, the electronic device and the thermistor manufacturing method of the present invention it is possible to suppress the warp of the thermistor and to ensure the insulation of the non-mounting surface of the thermistor mounted on the mounting board.
  • FIG. 1A is a plan view showing a thermistor according to a first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the thermistor.
  • the thermistor 1 includes an element body 10, a first external electrode 21 and a second external electrode 22 exposed from the surface of the element body 10, and an internal portion disposed inside the element body 10. Electrode 30.
  • the element body 10 is composed of a plurality of ceramic layers, and the plurality of ceramic layers are integrally laminated.
  • the ceramic layer is made of, for example, ceramic having negative resistance temperature characteristics. That is, the thermistor 1 is an NTC (Negative Temperature Coefficient) thermistor, and the resistance value decreases as the temperature rises.
  • NTC Negative Temperature Coefficient
  • the ceramic for example, various materials containing appropriate amounts of Mn, Ni, Fe, Ti, Co, Al, Zn and the like in any combination can be used. Actually, the ceramic is mixed using an oxide of the transition metal element, but a carbonate, hydroxide or the like of the element may be used as a starting material.
  • the element body 10 has a length direction (L direction), a width direction (W direction), and a thickness direction (T direction). More specifically, the element body 10 is formed in a substantially rectangular parallelepiped shape.
  • the element body 10 has a first surface 10a and a second surface 10b located on the opposite side of the first surface 10a.
  • the first surface 10 a and the second surface 10 b are surfaces (LW surfaces) including the length direction and the width direction of the element body 10.
  • the first external electrode 21 and the second external electrode 22 are exposed from the first surface 10 a of the element body 10. Specifically, the first surface 10a of the element body 10 is provided with a recess, and the first and second external electrodes 21 and 22 are disposed in the recess. The top surfaces of the first and second external electrodes 21 and 22 in the T direction are flush with the first surface 10 a of the element body 10.
  • the first external electrode 21 and the second external electrode 22 are spaced apart from each other in the L direction.
  • the first and second external electrodes 21 and 22 have a rectangular shape in plan view, but may have a shape other than a rectangle.
  • Examples of the material of the first and second external electrodes 21 and 22 include noble metals such as Ag, Pd, Pt, and Au, or simple base metals such as Cu, Ni, Al, W, and Ti, or these simple substances. Alloys can be used.
  • the first and second external electrodes 21 and 22 are located on the inner side of the outline of the first surface 10a of the element body 10 in plan view. More specifically, in the plan view, the end faces in the L direction of the first and second external electrodes 21 and 22 are located on the inner side than the end faces in the L direction of the element body 10. The end faces in the L direction of the first and second external electrodes 21 and 22 may be arranged so as to coincide with the end faces in the L direction of the element body 10.
  • the internal electrode 30 is electrically connected to the first and second external electrodes 21 and 22 through the element body 10.
  • the internal electrode 30 is formed in a flat plate shape, and the internal electrode 30 overlaps the first and second external electrodes 21 and 22 in plan view.
  • the material of the internal electrode 30 is the same as the material of the first and second external electrodes 21 and 22, for example.
  • the thickness T1 of the thermistor 1 corresponds to the length between the first surface 10a and the second surface 10b.
  • the thermistor 1 has a thickness T1 of 30 ⁇ m or more and 100 ⁇ m or less, preferably 50 ⁇ m or more and 100 ⁇ m or less. Thereby, the thermistor 1 can be made low-profile.
  • the thickness of the thermistor 1 may be larger than 100 ⁇ m.
  • the size of the thermistor 1 is, for example, JIS standard 0603 size.
  • the JIS standard 0603 size is (0.6 ⁇ 0.03) mm (L direction) ⁇ (0.3 ⁇ 0.03) mm (W direction).
  • the size of the thermistor 1 may be other sizes such as JIS standard 1005 size and JIS standard 1608 size.
  • the operation of the thermistor 1 will be described.
  • the internal electrode 30 is energized from the first external electrode 21 via the element body 10
  • the second external electrode 22 is energized from the internal electrode 30 via the element body 10.
  • the resistance of the element body 10 decreases and electricity flows more easily.
  • the first ceramic layer 11, the internal electrode 30, the second ceramic layer 12, the first and second external electrodes 21 and 22 are sequentially laminated in the thickness direction (T direction), and Then, the third ceramic layer 13 is laminated on the second ceramic layer 12 so as to cover the first and second external electrodes 21, 22, thereby producing the laminated body 50.
  • the laminated body 50 is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 1B) of the thermistor 1.
  • the target value is a value that matches the thickness T1 of the thermistor 1.
  • the 1st, 2nd, 3rd ceramic layers 11, 12, and 13 may each be comprised from the laminated
  • the laminated body 50 is fired to produce a fired body 51.
  • a firing step a part of the fired body 51 is ground in the thickness direction (T direction) so that the thickness of the fired body 51 becomes a target value.
  • a part of the third ceramic layer 13 and a part of the first and second external electrodes 21 and 22 are exposed so that the first and second external electrodes 21 and 22 are exposed from the third ceramic layer 13.
  • the ground portion of the fired body 51 is indicated by hatching in the drawing.
  • the ground portion is ground along the thickness direction T using, for example, a grinding wheel.
  • the first and second external electrodes 21 and 22 are not ground, but only a part of the third ceramic layer 13 is ground, so that the first and second external electrodes 21 and 22 are ground to the third ceramic layer 13. You may make it expose from.
  • the upper surface of the element body 10 and the upper surfaces of the first and second external electrodes 21 and 22 are flush with each other, and the thermistor 1 is manufactured.
  • the internal electrode 30 since the internal electrode 30 is disposed inside the element body 10, even if there is a difference in shrinkage between the internal electrode 30 and the element body 10 in the firing process of the thermistor 1, The internal electrode 30 can be pressed down to prevent the thermistor 1 from warping. For this reason, the conveyance failure of the thermistor 1 is improved in the equipment of a post process (for example, the feeder part of a characteristic sorter, etc.). Therefore, the equipment operation rate and yield are improved, and the manufacturing cost is lowered.
  • the second surface 10b opposite to the first surface 10a of the element body 10 is a surface opposite to the mounting substrate ( Hereinafter, it is located on the non-mounting surface). Since the internal electrode 30 is disposed inside the element body 10, the internal electrode 30 is not exposed from the second surface 10 b of the element body 10. Therefore, since the non-mounting surface of the thermistor 1 is the element body 10, the insulation of the non-mounting surface of the thermistor 1 can be ensured.
  • the laminated body 50 having a thickness larger than the target value corresponding to the thickness T1 of the thermistor 1 is produced, and then the laminated body 50 is fired to produce the fired body 51.
  • the thickness of the laminated body 50 is thick, generation
  • the thickness of the laminated body is thin, there is a possibility that the laminated body being fired may be warped. The reason is considered to be due to the aspect ratio of the laminate.
  • the thickness of the laminate is made larger than the target value corresponding to the thickness of the thermistor, thereby reducing the aspect ratio and reliably suppressing the occurrence of warpage of the laminate during firing.
  • the internal electrode 30 is fired in a state of being sandwiched between the first ceramic layer 11 and the second ceramic layer 12, even if there is a difference in shrinkage between the internal electrode 30 and the element body 10 in the firing step,
  • the element body 10 can hold down the internal electrode 30 and suppress the warp of the thermistor 1. Therefore, generation
  • the third ceramic layer 13 is laminated on the second ceramic layer 12 so as to cover the first and second external electrodes 21 and 22, and in the grinding step, the first and second external electrodes 21 and 22 are laminated.
  • a part of the third ceramic layer 13 is ground so that is exposed from the third ceramic layer 13. Since the first ceramic layer 11 is not ground in this way, for example, a reinforcing member is attached to the opposite side of the first ceramic layer 11 to the internal electrode 30 to increase the strength of the fired body 51, and then the grinding step is performed. It is possible to suppress cracking of the fired body 51 in the grinding process.
  • FIG. 3 is a sectional view showing a thermistor according to the second embodiment of the present invention. Note that in the second embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
  • the thermistor 1 ⁇ / b> A of the second embodiment differs from the thermistor 1 of the first embodiment (FIG. 1B) in the positions of the first and second external electrodes 21 and 22.
  • the first and second external electrodes 21 and 22 are disposed on the first surface 10 a of the element body 10. That is, the upper surfaces of the first and second external electrodes 21 and 22 are located above the first surface 10a.
  • the thickness T1 of the thermistor 1A corresponds to the length between the upper surfaces of the first and second external electrodes 21 and 22 and the second surface 10b of the element body 10.
  • the first ceramic layer 11, the internal electrode 30, the second ceramic layer 12, and the first and second external electrodes 21 and 22 are sequentially stacked to produce a stacked body 50 ⁇ / b> A (laminated layer). Process).
  • the laminated body 50A is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 3) of the thermistor 1A.
  • the target value is a value that matches the thickness T1 of the thermistor 1A.
  • the laminated body 50A is fired to produce a fired body 51A (firing step). Then, a part of the fired body 51A is ground so that the thickness of the fired body 51A becomes the target value (grinding step). In this grinding step, a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. The ground portion of the fired body 51A is indicated by hatching in the figure.
  • the first and second external electrodes 21 and 22 are arranged on the upper surface of the element body 10, and the thermistor 1A is manufactured.
  • the thermistor 1A has the same effect as the thermistor 1 of the first embodiment.
  • the method for manufacturing the thermistor 1A has the same effects as the method for manufacturing the thermistor 1 of the first embodiment.
  • the grinding step a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. In this way, since only the first ceramic layer 11 is ground, grinding becomes easy.
  • FIG. 5 is a sectional view showing a thermistor according to a third embodiment of the present invention. Note that in the third embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
  • the thermistor 1B of the third embodiment is different from the thermistor 1 of the first embodiment (FIG. 1B) in that it has a first protective layer 41.
  • the first protective layer 41 is provided on the second surface 10 b of the element body 10.
  • the first protective layer 41 is made of, for example, a resin.
  • the thickness T1 of the thermistor 1B corresponds to the length between the first surface 10a of the element body 10 and the lower surface of the first protective layer 41.
  • the first ceramic layer 11, the internal electrode 30, the second ceramic layer 12, the first and second external electrodes 21 and 22 are sequentially laminated, and the first and second external electrodes are further laminated.
  • the 3rd ceramic layer 13 is laminated
  • the stacked body 50B is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 5) of the thermistor 1B.
  • the target value is a value obtained by subtracting the thickness of the first protective layer 41 from the thickness T1 of the thermistor 1B.
  • the laminated body 50B is fired to produce a fired body 51B (firing step).
  • the 1st protective layer 41 is provided in the opposite side to the internal electrode 30 of the 1st ceramic layer 11 (protection process).
  • the first protective layer 41 is made of, for example, a resin and is cured after being attached to the first ceramic layer 11.
  • a part of the fired body 51B is ground so that the thickness of the fired body 51B becomes a target value (grinding step).
  • grinding step a part of the third ceramic layer 13 and a part of the first and second external electrodes 21 and 22 are exposed so that the first and second external electrodes 21 and 22 are exposed from the third ceramic layer 13.
  • the ground portion of the fired body 51B is indicated by hatching in the drawing.
  • the upper surface of the element body 10 and the upper surfaces of the first and second external electrodes 21 and 22 are flush with each other, and the thermistor 1B is manufactured.
  • the thermistor 1B has the same effect as the thermistor 1 of the first embodiment.
  • the first protective layer 41 is provided on the second surface 10b of the element body 10
  • the weakly strong element body 10 can be reinforced by the first protection layer 41, and the strength of the thermistor 1B can be improved.
  • the method for manufacturing the thermistor 1B has the same effect as the method for manufacturing the thermistor 1 of the first embodiment.
  • the first protective layer 41 is provided on the opposite side of the internal electrode 30 of the first ceramic layer 11 to increase the strength of the fired body 51B. A grinding process can be performed and the crack of the fired body 51B in a grinding process can be suppressed.
  • FIG. 7 is a sectional view showing a thermistor according to a fourth embodiment of the present invention.
  • symbol same as 2nd Embodiment is the same structure as 2nd Embodiment, the description is abbreviate
  • the thermistor 1C of the fourth embodiment is different from the thermistor 1A of the second embodiment (FIG. 3) in that it has a first protective layer 41.
  • the first protective layer 41 is provided on the second surface 10 b of the element body 10.
  • the first protective layer 41 is made of, for example, a resin.
  • the thickness T1 of the thermistor 1C corresponds to the length between the upper surfaces of the first and second external electrodes 21 and 22 and the lower surface of the first protective layer 41.
  • the first ceramic layer 11, the internal electrode 30, the second ceramic layer 12, and the first and second external electrodes 21 and 22 are stacked in this order to produce a stacked body 50C.
  • the stacked body 50C is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 7) of the thermistor 1C.
  • the target value is a value obtained by subtracting the thickness of the first protective layer 41 from the thickness T1 of the thermistor 1C.
  • the laminated body 50C is fired to produce a fired body 51C (firing step). Then, a part of the fired body 51C is ground so that the thickness of the fired body 51C becomes the target value (grinding step). In this grinding step, a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. The ground portion of the fired body 51C is indicated by hatching in the figure. In this way, as shown in FIG. 8C, a fired body 51C having a target thickness is produced.
  • a first protective layer 41 is provided on the side of the first ceramic layer 11 opposite to the internal electrode 30 (protection step).
  • the first protective layer 41 is made of, for example, a resin and is cured after being attached to the first ceramic layer 11. Thereby, the thermistor 1C is manufactured.
  • the thermistor 1C has the same effect as the thermistor 1A of the second embodiment. Further, since the first protective layer 41 is provided on the second surface 10b of the element body 10, the weakly strong element body 10 can be reinforced by the first protection layer 41, and the strength of the thermistor 1C can be improved.
  • the method for manufacturing the thermistor 1C has the same effect as the method for manufacturing the thermistor 1A of the second embodiment. Moreover, since it has the protection process which provides the 1st protective layer 41 on the opposite side to the internal electrode 30 of the 1st ceramic layer 11 after a grinding process, the intensity
  • FIG. 9 is a sectional view showing a thermistor according to a fifth embodiment of the present invention. Note that in the fifth embodiment, the same reference numerals as those in the fourth embodiment have the same configurations as those in the fourth embodiment, and a description thereof will be omitted.
  • the thermistor 1D of the fifth embodiment is different from the thermistor 1C of the fourth embodiment (FIG. 7) in that it has a second protective layer.
  • the second protective layer 42 is provided in the entire region of the first surface 10 a of the element body 10 except for the region overlapping the first and second external electrodes 21 and 22.
  • the second protective layer 42 is made of resin, for example.
  • a plating layer 45 is provided on the first and second external electrodes 21 and 22.
  • the plating layer 45 is made of, for example, Ni / Sn, Ni / Cu, or Cu.
  • the thickness T1 of the thermistor 1D corresponds to the length between the upper surface of the plating layer 45 and the lower surface of the first protective layer 41.
  • the plating layer 45 may be omitted.
  • the first ceramic layer 11, the internal electrode 30, the second ceramic layer 12, and the first and second external electrodes 21 and 22 are sequentially stacked to produce a stacked body 50 ⁇ / b> D (laminated layer).
  • the stacked body 50D is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 9) of the thermistor 1D.
  • the target value is a value obtained by subtracting the thickness of the first protective layer 41 from the thickness T1 of the thermistor 1D.
  • the laminated body 50D is fired to produce a fired body 51D (firing step). Then, a part of the fired body 51D is ground so that the thickness of the fired body 51D becomes the target value (grinding step). In this grinding step, a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. The ground portion of the fired body 51D is indicated by hatching in the drawing. In this way, as shown in FIG. 10C, a fired body 51D having a target thickness is produced.
  • a first protective layer 41 is provided on the side of the first ceramic layer 11 opposite to the internal electrode 30, and the second ceramic layer 12 is covered so as to cover the first and second external electrodes 21 and 22.
  • a second protective layer 42 is provided thereon (protection step).
  • the first protective layer 41 is made of, for example, a resin and is cured after being attached to the first ceramic layer 11.
  • the second protective layer 42 is made of, for example, a resin and is cured after being attached to the second ceramic layer 12.
  • a part of the second protective layer 42 and the first and second external electrodes 21 and 22 are exposed so that the first and second external electrodes 21 and 22 are exposed from the second protective layer 42.
  • Part of the material is ground (protective layer grinding process). This ground portion is indicated by hatching in the figure. Note that the first and second external electrodes 21 and 22 are not ground, but only a part of the second protective layer 42 is ground, so that the first and second external electrodes 21 and 22 are the second protective layer 42. You may make it expose from. In this way, the first and second external electrodes 21 and 22 are exposed from the second protective layer 42 as shown in FIG. 10F.
  • a plating layer 45 is provided on the upper surfaces of the first and second external electrodes 21 and 22 to fabricate the thermistor 1D.
  • the thermistor 1D has the same effect as the thermistor 1C of the fourth embodiment.
  • the second protective layer 42 is provided in the entire region except the region overlapping the first and second external electrodes 21 and 22 on the first surface 10a of the element body 10, the first and second external electrodes 21 are provided. , 22 can prevent erosion of the second surface 10b of the element body 10 by the plating layer 45.
  • the second protective layer 42 is provided in the region between the first external electrode 21 and the second external electrode 22 on the first surface 10a of the element body 10, the migration of the first and second external electrodes 21 and 22 is performed. Generation can be suppressed.
  • the method for manufacturing the thermistor 1D has the same effect as the method for manufacturing the thermistor 1C of the fourth embodiment. Moreover, since the 1st protective layer 41 is provided in the opposite side to the internal electrode 30 of the 1st ceramic layer 11, the intensity
  • a second protective layer 42 may be provided on the second ceramic layer 12 so as to cover the first external electrode 21 and the second external electrode 22 after the firing step and before the grinding step (upper side). Protection process).
  • the first protective layer 41 is provided on the opposite side of the first ceramic layer 11 from the internal electrode 30 after the grinding step (lower protective step).
  • FIGSixth embodiment 11A to 11D are cross-sectional views illustrating a method for manufacturing the thermistor according to the sixth embodiment of the present invention.
  • symbol same as 1st Embodiment is the same structure as 1st Embodiment, the description is abbreviate
  • the thermistor manufacturing method of the first embodiment is a single thermistor manufacturing method, but the thermistor manufacturing method of the sixth embodiment is a method of manufacturing a plurality of thermistors.
  • a first ceramic layer 11, a plurality of internal electrodes 30, a second ceramic layer 12, a plurality of first and second external electrodes 21, 22 are sequentially stacked, and a plurality of first,
  • a third ceramic layer 13 is laminated on the second ceramic layer 12 so as to cover the second external electrodes 21 and 22 to produce a laminated body 50E (lamination step).
  • the first, second, and third ceramic layers 11, 12, and 13 are formed in a sheet shape.
  • a plurality of sets of internal electrodes 30 and first and second external electrodes 21 and 22 corresponding to the region of one thermistor 1 are provided and arranged in an array along the LW surface.
  • One set of internal electrode 30 and first and second external electrodes 21 and 22 correspond to one thermistor 1.
  • the stacked body 50E is formed to be thicker than the target value corresponding to the thickness T1 (see FIG. 1B) of the thermistor 1.
  • the target value is a value that matches the thickness T1 of the thermistor 1.
  • the laminated body 50E is fired to produce a fired body 51E (firing step). Then, a part of the fired body 51E is ground so that the thickness of the fired body 51E becomes the target value (grinding step). In this grinding step, a part of the third ceramic layer 13 and a part of the first and second external electrodes 21 and 22 are exposed so that the first and second external electrodes 21 and 22 are exposed from the third ceramic layer 13. To grind. The ground portion of the fired body 51E is indicated by hatching in the drawing.
  • the fired body 51 ⁇ / b> E having a target value thickness is formed for each set of internal electrode 30 and first and second external electrodes 21 and 22 (that is, for each region of one thermistor 1). Then, it is cut (cutting step). That is, the plurality of sets of internal electrodes 30 and the first and second external electrodes 21 and 22 are adjacent to each other along the LW plane, and the adjacent portions are cut. Thereby, as shown to FIG. 11D, the several thermistor 1 is produced.
  • the plurality of sets of internal electrodes 30 and the first and second external electrodes 21 and 22 correspond to the plurality of thermistors 1.
  • the method for manufacturing the thermistor 1 has the same effects as the method for manufacturing the thermistor 1 of the first embodiment.
  • the aspect ratio of the laminate tends to increase (that is, the length L tends to be very large compared to the thickness T). Warpage is likely to occur in the laminated body. Therefore, in the present invention, by increasing the thickness of the sheet-like laminate 50E, the aspect ratio of the laminate 50E is reduced, and the occurrence of warpage of the laminate 50E during firing is suppressed.
  • the grinding step there is a cutting step of cutting the fired body 51E for each set of internal electrode 30 and first and second external electrodes 21 and 22, so that the large-sized fired body 51E before cutting is ground.
  • the thermistor 1 without damage can be produced by reducing the load caused by grinding.
  • (Seventh embodiment) 12A to 12D are cross-sectional views illustrating a method for manufacturing the thermistor according to the seventh embodiment of the present invention.
  • symbol same as 2nd Embodiment is the same structure as 2nd Embodiment, the description is abbreviate
  • the thermistor manufacturing method of the second embodiment (FIGS. 4A to 4C) is a single thermistor manufacturing method, but the thermistor manufacturing method of the seventh embodiment is a method of manufacturing a plurality of thermistors.
  • the first ceramic layer 11, the plurality of internal electrodes 30, the second ceramic layer 12, and the plurality of first and second external electrodes 21 and 22 are sequentially stacked to produce a stacked body 50F. (Lamination process). At this time, the first, second, and third ceramic layers 11, 12, and 13 are formed in a sheet shape. A plurality of sets of internal electrodes 30 and first and second external electrodes 21 and 22 corresponding to the region of one thermistor 1A are provided and arranged in an array along the LW surface.
  • the stacked body 50F is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 3) of the thermistor 1A.
  • the target value is a value that matches the thickness T1 of the thermistor 1A.
  • the laminated body 50F is fired to produce a fired body 51F (firing step). Then, a part of the fired body 51F is ground so that the thickness of the fired body 51F becomes the target value (grinding step). In this grinding step, a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. The ground portion of the fired body 51F is indicated by hatching in the figure.
  • the fired body 51 ⁇ / b> F having a target value thickness is applied to each set of internal electrode 30 and first and second external electrodes 21 and 22 (that is, for each region of one thermistor 1 ⁇ / b> A). Then, it is cut (cutting step). That is, the plurality of sets of internal electrodes 30 and the first and second external electrodes 21 and 22 are adjacent to each other along the LW plane, and the adjacent portions are cut. Thereby, as shown to FIG. 12D, several thermistors 1A are produced.
  • the method for manufacturing the thermistor 1A has the same effect as the method for manufacturing the thermistor 1A of the second embodiment.
  • the aspect ratio of the laminate 50F is reduced, and the occurrence of warpage of the laminate 50F during firing is suppressed.
  • productivity can be improved, and the load caused by grinding can be reduced, so that the thermistor 1A without damage can be manufactured.
  • FIG. 13A to 13E are cross-sectional views illustrating a method for manufacturing the thermistor according to the eighth embodiment of the present invention. Note that in the eighth embodiment, the same reference numerals as those in the third embodiment have the same configurations as those in the third embodiment, and a description thereof will be omitted.
  • the thermistor manufacturing method of the third embodiment is a single thermistor manufacturing method, but the thermistor manufacturing method of the eighth embodiment is a method of manufacturing a plurality of thermistors.
  • a first ceramic layer 11, a plurality of internal electrodes 30, a second ceramic layer 12, a plurality of first and second external electrodes 21, 22 are sequentially stacked, and a plurality of first,
  • a third ceramic layer 13 is laminated on the second ceramic layer 12 so as to cover the second external electrodes 21 and 22 to produce a laminated body 50G (lamination process).
  • the first, second, and third ceramic layers 11, 12, and 13 are formed in a sheet shape.
  • a plurality of sets of internal electrodes 30 and first and second external electrodes 21 and 22 corresponding to the region of one thermistor 1B are provided and arranged in an array along the LW surface.
  • the stacked body 50G is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 5) of the thermistor 1B.
  • the target value is a value obtained by subtracting the thickness of the first protective layer 41 from the thickness T1 of the thermistor 1B.
  • the laminated body 50G is fired to produce a fired body 51G (firing step).
  • the 1st protective layer 41 is provided in the opposite side to the internal electrode 30 of the 1st ceramic layer 11 (protection process).
  • the first protective layer 41 is formed in a sheet shape.
  • the first protective layer 41 is made of, for example, a resin and is cured after being attached to the first ceramic layer 11.
  • a part of the fired body 51G is ground so that the thickness of the fired body 51G becomes a target value (grinding step).
  • grinding step a part of the third ceramic layer 13 and a part of the first and second external electrodes 21 and 22 are exposed so that the first and second external electrodes 21 and 22 are exposed from the third ceramic layer 13.
  • the ground portion of the fired body 51G is indicated by hatching in the figure.
  • the fired body 51G having a target thickness is obtained for each set of internal electrode 30 and first and second external electrodes 21 and 22 (for each region of one thermistor 1B). Cut (cutting step). That is, the plurality of sets of internal electrodes 30 and the first and second external electrodes 21 and 22 are adjacent to each other along the LW plane, and the adjacent portions are cut. Thereby, as shown to FIG. 13E, the several thermistor 1B is produced.
  • the method for manufacturing the thermistor 1B has the same effect as the method for manufacturing the thermistor 1B of the third embodiment.
  • the aspect ratio of the laminate 50G is reduced, and the occurrence of warpage of the laminate 50G during firing is suppressed.
  • productivity can be improved, and the load caused by grinding can be reduced, so that the thermistor 1B without damage can be manufactured.
  • the first protective layer 41 is provided on the side of the first ceramic layer 11 opposite to the internal electrode 30 before the cutting step, the first protective layer 41 is pasted on the large-sized fired body 51G before cutting. It becomes easy to attach.
  • (Ninth embodiment) 14A to 14E are cross-sectional views illustrating a method for manufacturing the thermistor according to the ninth embodiment of the present invention. Note that in the ninth embodiment, the same reference numerals as those in the fourth embodiment have the same configurations as those in the fourth embodiment, and a description thereof will be omitted.
  • the thermistor manufacturing method of the fourth embodiment (FIGS. 8A to 8D) is a single thermistor manufacturing method, but the thermistor manufacturing method of the ninth embodiment is a method of manufacturing a plurality of thermistors.
  • the first ceramic layer 11, the plurality of internal electrodes 30, the second ceramic layer 12, and the plurality of first and second external electrodes 21 and 22 are sequentially stacked to produce a stacked body 50H. (Lamination process). At this time, the first, second, and third ceramic layers 11, 12, and 13 are formed in a sheet shape. A plurality of sets of internal electrodes 30 and first and second external electrodes 21 and 22 corresponding to the region of one thermistor 1C are provided and arranged in an array along the LW surface.
  • the stacked body 50H is formed so as to be thicker than a target value corresponding to the thickness T1 (see FIG. 7) of the thermistor 1C.
  • the target value is a value obtained by subtracting the thickness of the first protective layer 41 from the thickness T1 of the thermistor 1C.
  • the laminated body 50H is fired to produce a fired body 51H (firing step). Then, a part of the fired body 51H is ground so that the thickness of the fired body 51H becomes a target value (grinding step). In this grinding step, a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. The ground portion of the fired body 51H is indicated by hatching in the drawing. In this way, as shown in FIG. 14C, a fired body 51H having a target thickness is produced.
  • a first protective layer 41 is provided on the side of the first ceramic layer 11 opposite to the internal electrode 30 (protection step).
  • the first protective layer 41 is formed in a sheet shape.
  • the first protective layer 41 is made of, for example, a resin and is cured after being attached to the first ceramic layer 11.
  • the fired body 51H provided with the first protective layer 41 is cut for each set of internal electrode 30 and each of the first and second external electrodes 21 and 22 (that is, for each region of one thermistor 1C) ( Cutting step). That is, the plurality of sets of internal electrodes 30 and the first and second external electrodes 21 and 22 are adjacent to each other along the LW plane, and the adjacent portions are cut. Thereby, as shown to FIG. 14E, several thermistors 1C are produced.
  • the method for manufacturing the thermistor 1C has the same effects as the method for manufacturing the thermistor 1C of the fourth embodiment.
  • the aspect ratio of the laminate 50H is reduced, and the occurrence of warpage of the laminate 50H during firing is suppressed.
  • productivity can be improved, and the load caused by grinding can be reduced, so that the thermistor 1C without damage can be manufactured.
  • the first protective layer 41 is provided on the side of the first ceramic layer 11 opposite to the internal electrode 30 before the cutting step, the first protective layer 41 is attached to the large-sized fired body 51H before cutting. It becomes easy to attach.
  • (10th Embodiment) 15A to 15H are cross-sectional views illustrating a thermistor manufacturing method according to the tenth embodiment of the present invention. Note that in the tenth embodiment, the same reference numerals as those in the fifth embodiment have the same configurations as those in the fifth embodiment, and a description thereof will be omitted.
  • the thermistor manufacturing method of the fifth embodiment is a single thermistor manufacturing method, but the thermistor manufacturing method of the tenth embodiment is a method of manufacturing a plurality of thermistors.
  • the first ceramic layer 11, the plurality of internal electrodes 30, the second ceramic layer 12, and the plurality of first and second external electrodes 21 and 22 are sequentially stacked to produce a stacked body 50I. (Lamination process). At this time, the first and second ceramic layers 11 and 12 are formed in a sheet shape. A plurality of sets of internal electrodes 30 and first and second external electrodes 21 and 22 corresponding to the region of one thermistor 1D are provided and arranged in an array along the LW surface.
  • the laminated body 50I is formed to be thicker than a target value corresponding to the thickness T1 (see FIG. 9) of the thermistor 1D.
  • the target value is a value obtained by subtracting the thickness of the first protective layer 41 from the thickness T1 of the thermistor 1D.
  • the laminated body 50I is fired to produce a fired body 51I (firing step). Then, a part of the fired body 51I is ground so that the thickness of the fired body 51I becomes a target value (grinding step). In this grinding step, a part of the first ceramic layer 11 is ground so that the internal electrode 30 is not exposed from the first ceramic layer 11. A ground portion of the fired body 51I is indicated by hatching in the drawing. In this way, as shown in FIG. 15C, a fired body 51I having a target thickness is produced.
  • a first protective layer 41 is provided on the opposite side of the first ceramic layer 11 from the internal electrode 30, and the second ceramic layer 12 is covered so as to cover the first and second external electrodes 21, 22.
  • a second protective layer 42 is provided thereon (protection step).
  • the first and second protective layers 41 and 42 are formed in a sheet shape.
  • the first protective layer 41 is made of, for example, a resin and is cured after being attached to the first ceramic layer 11.
  • the second protective layer 42 is made of, for example, a resin and is cured after being attached to the second ceramic layer 12.
  • FIG. 15E a part of the second protective layer 42 and the first and second external electrodes 21 and 22 are exposed so that the first and second external electrodes 21 and 22 are exposed from the second protective layer 42.
  • Part of the material is ground (protective layer grinding process). This ground portion is indicated by hatching in the figure.
  • FIG. 15F a fired body 51I in which the first and second external electrodes 21 and 22 are exposed from the second protective layer 42 is produced.
  • the fired body 51I provided with the first and second protective layers 41 and 42 is used for each set of the internal electrode 30 and the first and second external electrodes 21 and 22 (that is, 1 It cut
  • a plating layer 45 is provided on the upper surfaces of the first and second external electrodes 21 and 22 to produce a plurality of thermistors 1D.
  • the plating layer 45 may be provided before the cutting step.
  • the method for manufacturing the thermistor 1D has the same effect as the method for manufacturing the thermistor 1D of the fifth embodiment.
  • the aspect ratio of the laminate 50I is reduced, and the occurrence of warpage of the laminate 50I during firing is suppressed.
  • productivity can be improved, and the load caused by grinding can be reduced, so that the thermistor 1D without damage can be manufactured.
  • the first and second protective layers 41 and 42 are provided before the cutting step, the first and second protective layers 41 and 42 can be easily attached to the large-sized fired body 51I before cutting.
  • a second protective layer 42 may be provided on the second ceramic layer 12 so as to cover the first external electrode 21 and the second external electrode 22 after the firing step and before the grinding step (upper side). Protection process).
  • the first protective layer 41 is provided on the opposite side of the first ceramic layer 11 from the internal electrode 30 after the grinding step (lower protective step).
  • FIG. 16A is a perspective view showing an electronic device including the thermistor of the present invention.
  • 16B is a cross-sectional view taken along the line AA in FIG. 16A. Note that in the eleventh embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
  • the electronic device is a thermistor sensor 100.
  • the thermistor sensor 100 includes the thermistor 1 of the first embodiment and an insulating member 128 that covers the thermistor 1.
  • the thermistor 1 is arranged such that the first and second external electrodes 21 and 22 face downward.
  • the thermistor of the first embodiment is used as the thermistor, any thermistor of the second to fifth embodiments may be used.
  • a Sn plating layer 124a, a Ni plating layer 124b, and a Cu plating layer 124c are formed in this order on the lower surfaces of the first and second external electrodes 21 and 22 of the thermistor 1 as mounting electrodes, respectively. Further, a Cu foil 126 is formed on the lower surface of the Cu plating layer 124c.
  • the insulating member 128 covers the Sn plating layer 124a, the Ni plating layer 124b, and the Cu plating layer 124c together with the thermistor 1.
  • the insulating member 128 is made of an insulative resin material that is made of, for example, epoxy resin and has no flexibility.
  • the thermistor sensor 100 includes a strip-like flexible insulating resin sheet 130 made of, for example, polyimide resin.
  • a strip-like flexible insulating resin sheet 130 made of, for example, polyimide resin.
  • two linear flexible lead wires 132 made of, for example, Cu foil are formed at an interval in the width direction of the insulating resin sheet 130.
  • An intermediate portion in the longitudinal direction of the insulating resin sheet 130 and an intermediate portion in the longitudinal direction of the two lead wires 132 are covered with a flexible insulating resin material 134 made of, for example, polyimide resin.
  • Each of the first and second external electrodes 21 and 22 of the thermistor 1 includes a lead wire 132 via an Sn plating layer 124 a, an Ni plating layer 124 b, a Cu plating layer 124 c, a Cu foil 126, and the conductive connection material 140. Is electrically connected to one end of the.
  • the conductive connecting material 140 is, for example, solder, and is disposed at one end of the lead wire 132.
  • the periphery of the Cu foil 126, the lead wire 132, and the conductive connecting material 140 is covered with an insulative resin material 142 made of, for example, epoxy resin and having no flexibility.
  • the thermistor 1 is bonded to the insulating resin sheet 130 via the insulating resin material 142.
  • the insulating member 128 covers the thermistor 1, the strength and reliability of the thermistor 1 can be ensured.
  • the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
  • the feature points of the first to eleventh embodiments may be variously combined.
  • the thermistor is an NTC thermistor, but may be a PTC (Positive Temperature Coefficient) thermistor.
  • the second protective layer is provided in the entire region except for the region overlapping the first and second external electrodes on the first surface of the element body. It may be provided only in a region between the second external electrodes, and migration of the first and second external electrodes can be suppressed.
  • the thermistor may be manufactured by producing a laminated body so as to have a target value and then firing it.
  • the electronic device is a thermistor sensor (a so-called film-type thermistor sensor) in which a thermistor is provided on a flexible insulating resin sheet, but may be another thermistor sensor, or The thermistor may be another electronic device covered with an insulating member.
  • a thermistor sensor a so-called film-type thermistor sensor
  • the thermistor may be another electronic device covered with an insulating member.

Abstract

 サーミスタは、セラミックからなる素体と、素体の第1面に互いに離隔して配置される第1、第2外部電極と、素体の内部に配置されて第1、第2外部電極と導通される内部電極とを有する。これにより、サーミスタの反りの発生を抑制でき、また、実装基板に実装されたサーミスタの非実装面の絶縁性を確保できる。

Description

サーミスタ、電子装置およびサーミスタの製造方法
 本発明は、サーミスタ、電子装置およびサーミスタの製造方法に関する。
 従来、サーミスタとしては、特許第5375963号公報(特許文献1)に記載されたものがある。このサーミスタは、金属基材と、金属基材上に直接的に形成されたサーミスタ層と、サーミスタ層上に形成された一対の分割電極とを有し、金属基材の厚さは、サーミスタ層の厚さよりも厚い。
特許第5375963号公報
 ところで、前記従来のサーミスタでは、金属基材の厚さは、サーミスタ層の厚さよりも厚いので、サーミスタの焼成工程において金属基材とサーミスタ層に収縮率の差があると、サーミスタに反りが発生するおそれがある。そして、サーミスタの反りが大きいと、後工程の設備(例えば、特性選別機のフィーダ部など)にて、サーミスタの搬送不具合が発生する。したがって、設備稼働率や歩留まりが悪化し、製造コストが高くなる。
 また、サーミスタの分割電極側を実装基板に実装する場合、金属基材は、サーミスタにおける実装基板と反対側の面(以下、非実装面という)に位置する。このように、サーミスタの非実装面は、金属基材であるため、サーミスタの非実装面の絶縁性を確保できない。
 そこで、本発明の課題は、サーミスタの反りの発生を抑制でき、また、実装基板に実装されたサーミスタの非実装面の絶縁性を確保できるサーミスタ、電子装置およびサーミスタの製造方法を提供することにある。
 前記課題を解決するため、本発明のサーミスタは、
 セラミックからなる素体と、
 前記素体の第1面に互いに離隔して配置される第1外部電極および第2外部電極と、
 前記素体の内部に配置されて前記第1外部電極および前記第2外部電極と導通される内部電極と
を備える。
 本発明のサーミスタによれば、内部電極は、素体の内部に配置されるので、サーミスタの焼成工程において内部電極と素体に収縮率の差があっても、素体が内部電極を押さえ込んで、サーミスタの反りの発生を抑制できる。このため、後工程の設備(例えば、特性選別機のフィーダ部など)にてサーミスタの搬送不具合が改善される。したがって、設備稼働率や歩留まりが向上し、製造コストが低くなる。
 また、サーミスタの第1、第2外部電極側を実装基板に実装する場合、素体の第1面と反対側の第2面は、実装基板と反対側の面(以下、非実装面という)に位置する。内部電極は、素体の内部に配置されるので、内部電極は、素体の第2面から露出しない。したがって、サーミスタの非実装面は、素体であるため、サーミスタの非実装面の絶縁性を確保できる。
 また、一実施形態のサーミスタでは、前記素体の前記第1面と反対側の第2面に第1保護層を有する。
 前記実施形態のサーミスタによれば、素体の第2面に第1保護層を有するので、強度の弱い素体を第1保護層で補強できて、サーミスタの強度を向上できる。
 また、一実施形態のサーミスタでは、サーミスタの厚さは、30μm以上で、かつ、100μm以下である。
 前記実施形態のサーミスタによれば、サーミスタの厚さは、30μm以上で、かつ、100μm以下であるので、サーミスタを低背化とできる。
 また、一実施形態のサーミスタでは、前記素体の前記第1面における前記第1外部電極と前記第2外部電極との間の領域に第2保護層を有する。
 前記実施形態のサーミスタによれば、素体の第1面における第1外部電極と第2外部電極との間の領域に第2保護層を有するので、第1外部電極および第2外部電極のマイグレーションの発生を抑制できる。
 また、一実施形態のサーミスタでは、前記第2保護層は、前記素体の前記第1面における前記第1外部電極および前記第2外部電極と重なる領域を除く全領域に設けられている。
 前記実施形態のサーミスタによれば、第2保護層は、素体の第1面における第1外部電極および第2外部電極と重なる領域を除く全領域に設けられているので、第1外部電極および第2外部電極にめっき層を設ける場合、めっき層による素体の第2面の浸食を防止できる。
 また、一実施形態の電子装置では、
 前記サーミスタと、
 前記サーミスタを覆う絶縁部材と
を備える。
 前記実施形態の電子装置によれば、絶縁部材はサーミスタを覆うので、サーミスタの強度と信頼性を確保できる。
 また、一実施形態のサーミスタの製造方法では、
 第1セラミック層と内部電極と第2セラミック層と第1外部電極および第2外部電極とを少なくとも順に厚さ方向に積層して、積層体を作製する積層工程と、
 前記積層体を焼成して、焼成体を作製する焼成工程と
を備える。
 前記実施形態のサーミスタの製造方法によれば、内部電極を第1セラミック層と第2セラミック層との間に挟んだ状態で焼成するので、焼成工程において、内部電極と素体に収縮率の差があっても、素体が内部電極を押さえ込んで、サーミスタの反りの発生を抑制できる。したがって、焼成体の反りの発生が抑制され、反りのないサーミスタを作製できる。
 また、一実施形態のサーミスタの製造方法では、前記焼成工程の後に、前記焼成体の一部を厚さ方向に研削する研削工程を備える。
 前記実施形態のサーミスタの製造方法によれば、焼成工程の後に、焼成体の一部を厚さ方向に研削するので、焼成工程前の積層体の厚さは厚いため、焼成工程において、焼成中の積層体の反りの発生が抑制される。これに対して、積層体の厚さが薄いと、積層体のアスペクト比に起因して、焼成中の積層体に反りが発生するおそれがある。したがって、焼成体の反りの発生が抑制され、反りのないサーミスタを作製できる。
 また、一実施形態のサーミスタの製造方法では、
 前記積層工程では、さらに、前記第1外部電極および前記第2外部電極を覆うように前記第2セラミック層上に第3セラミック層を積層して、前記積層体を作製し、
 前記研削工程では、前記第1外部電極および前記第2外部電極を前記第3セラミック層から露出させるように、少なくとも前記第3セラミック層の一部を研削する。
 前記実施形態のサーミスタの製造方法によれば、積層工程では、第1外部電極および第2外部電極を覆うように第2セラミック層上に第3セラミック層を積層し、研削工程では、第1外部電極および第2外部電極を第3セラミック層から露出させるように、第3セラミック層の一部を研削する。このように、第1セラミック層を研削しないので、例えば、第1セラミック層の内部電極と反対側に補強部材を貼り付けて、焼成体の強度を強くしてから、研削工程を行うことができ、研削工程での焼成体のひび割れを抑制できる。
 また、一実施形態のサーミスタの製造方法では、前記焼成工程と前記研削工程との間に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける保護工程を有する。
 前記実施形態のサーミスタの製造方法によれば、焼成工程と研削工程との間に保護工程を有するので、第1セラミック層の内部電極と反対側に第1保護層を設けて、焼成体の強度を強くしてから、研削工程を行うことができ、研削工程での焼成体のひび割れを抑制できる。
 また、一実施形態のサーミスタの製造方法では、前記研削工程では、前記内部電極を前記第1セラミック層から露出させないように、前記第1セラミック層の一部を研削する。
 前記実施形態のサーミスタの製造方法によれば、研削工程では、内部電極を第1セラミック層から露出させないように、第1セラミック層の一部を研削する。このように、第1セラミック層を研削するだけなので、研削が簡単になる。
 また、一実施形態のサーミスタの製造方法では、前記研削工程の後に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける保護工程を有する。
 前記実施形態のサーミスタの製造方法によれば、研削工程の後に、第1セラミック層の内部電極と反対側に第1保護層を設ける保護工程を有するので、サーミスタの強度を向上できる。
 また、一実施形態のサーミスタの製造方法では、
 前記研削工程の後に、
 前記第1セラミック層の前記内部電極と反対側に第1保護層を設けると共に、前記第1外部電極および前記第2外部電極を覆うように前記第2セラミック層上に第2保護層を設ける保護工程と、
 前記第1外部電極および前記第2外部電極を前記第2保護層から露出させるように、少なくとも前記第2保護層の一部を研削する保護層研削工程と
を有する。
 前記実施形態のサーミスタの製造方法によれば、第1セラミック層の内部電極と反対側に第1保護層を設けるので、サーミスタの強度を向上できる。また、第2保護層は、第2セラミック層上に設けられているので、第1外部電極と第2外部電極との間に第2保護層を有し、第1外部電極および第2外部電極のマイグレーションの発生を抑制できる。また、第2保護層は、第2セラミック層上に設けられているので、第1外部電極および第2外部電極にめっき層を設ける場合、めっき層による第2セラミック層の浸食を防止できる。
 また、一実施形態のサーミスタの製造方法では、
 前記研削工程の前に、前記第1外部電極および前記第2外部電極を覆うように前記第2セラミック層上に第2保護層を設ける上側保護工程と、
 前記研削工程の後に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける下側保護工程と、
 前記下側保護工程の後に、前記第1外部電極および前記第2外部電極を前記第2保護層から露出させるように、少なくとも前記第2保護層の一部を研削する保護層研削工程と
を有する。
 前記実施形態のサーミスタの製造方法によれば、研削工程の前に、第1外部電極および第2外部電極を覆うように第2セラミック層上に第2保護層を設けるので、焼成体の強度を強くしてから、研削工程を行うことができ、研削工程での焼成体のひび割れを抑制できる。また、第1セラミック層の内部電極と反対側に第1保護層を設けるので、サーミスタの強度を向上できる。また、第2保護層は、第2セラミック層上に設けられているので、第1外部電極と第2外部電極との間に第2保護層を有し、第1外部電極および第2外部電極のマイグレーションの発生を抑制できる。また、第2保護層は、第2セラミック層上に設けられているので、第1外部電極および第2外部電極にめっき層を設ける場合、めっき層による第2セラミック層の浸食を防止できる。
 また、一実施形態のサーミスタの製造方法では、
 複数のサーミスタを製造する方法であって、
 前記積層工程では、1つのサーミスタの領域に対応する前記内部電極、前記第1外部電極および前記第2外部電極を、複数組設け、
 前記研削工程の後に、前記焼成体を1つのサーミスタの領域毎に切断する切断工程を有する。
 前記実施形態のサーミスタの製造方法によれば、研削工程の後に、焼成体を1つのサーミスタの領域毎に切断する切断工程を有するので、切断前の大判の焼成体を研削することで、生産性を向上できると共に、研削による負荷を低減して、損傷のないサーミスタを作製できる。
 また、一実施形態のサーミスタの製造方法では、前記焼成工程と前記切断工程との間に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける保護工程を有する。
 前記実施形態のサーミスタの製造方法によれば、焼成工程と切断工程との間に、第1セラミック層の内部電極と反対側に第1保護層を設ける保護工程を有するので、切断前の大判の焼成体に第1保護層を貼り付けやすくなる。
 本発明のサーミスタ、電子装置およびサーミスタの製造方法によれば、サーミスタの反りの発生を抑制でき、また、実装基板に実装されたサーミスタの非実装面の絶縁性を確保できる。
本発明の第1実施形態のサーミスタを示す平面図である。 サーミスタのLT断面図である。 第1実施形態のサーミスタの製法を説明する説明図である。 第1実施形態のサーミスタの製法を説明する説明図である。 第1実施形態のサーミスタの製法を説明する説明図である。 第2実施形態のサーミスタのLT断面図である。 第2実施形態のサーミスタの製法を説明する説明図である。 第2実施形態のサーミスタの製法を説明する説明図である。 第2実施形態のサーミスタの製法を説明する説明図である。 第3実施形態のサーミスタのLT断面図である。 第3実施形態のサーミスタの製法を説明する説明図である。 第3実施形態のサーミスタの製法を説明する説明図である。 第3実施形態のサーミスタの製法を説明する説明図である。 第3実施形態のサーミスタの製法を説明する説明図である。 第4実施形態のサーミスタのLT断面図である。 第4実施形態のサーミスタの製法を説明する説明図である。 第4実施形態のサーミスタの製法を説明する説明図である。 第4実施形態のサーミスタの製法を説明する説明図である。 第4実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタのLT断面図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第5実施形態のサーミスタの製法を説明する説明図である。 第6実施形態のサーミスタの製法を説明する説明図である。 第6実施形態のサーミスタの製法を説明する説明図である。 第6実施形態のサーミスタの製法を説明する説明図である。 第6実施形態のサーミスタの製法を説明する説明図である。 第7実施形態のサーミスタの製法を説明する説明図である。 第7実施形態のサーミスタの製法を説明する説明図である。 第7実施形態のサーミスタの製法を説明する説明図である。 第7実施形態のサーミスタの製法を説明する説明図である。 第8実施形態のサーミスタの製法を説明する説明図である。 第8実施形態のサーミスタの製法を説明する説明図である。 第8実施形態のサーミスタの製法を説明する説明図である。 第8実施形態のサーミスタの製法を説明する説明図である。 第8実施形態のサーミスタの製法を説明する説明図である。 第9実施形態のサーミスタの製法を説明する説明図である。 第9実施形態のサーミスタの製法を説明する説明図である。 第9実施形態のサーミスタの製法を説明する説明図である。 第9実施形態のサーミスタの製法を説明する説明図である。 第9実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 第10実施形態のサーミスタの製法を説明する説明図である。 本発明のサーミスタを含む電子装置を示す斜視図である。 図16AのA-A断面図である。
 以下、本発明を図示の実施の形態により詳細に説明する。
 (第1実施形態)
 図1Aは、本発明の第1実施形態のサーミスタを示す平面図である。図1Bは、サーミスタの断面図である。図1Aと図1Bに示すように、サーミスタ1は、素体10と、素体10の表面から露出する第1外部電極21および第2外部電極22と、素体10の内部に配置される内部電極30とを有する。
 素体10は、複数のセラミック層から構成され、複数のセラミック層は、一体的に積層される。セラミック層は、例えば、負の抵抗温度特性を有するセラミックからなる。つまり、サーミスタ1は、NTC(Negative Temperature Coefficient)サーミスタであり、温度の上昇に伴って抵抗値が減少する。セラミックとしては、例えば、Mn,Ni,Fe,Ti,Co,Al,Znなどを任意の組み合わせで適量含む種々の材料を用いることができる。実際、セラミックとして、前記遷移金属元素の酸化物を用いて混合されるが、前記元素の炭酸塩、水酸化物などを出発原料として用いてもよい。
 素体10は、長さ方向(L方向)と幅方向(W方向)と厚さ方向(T方向)とを有する。具体的に述べると、素体10は、略直方体状に形成されている。素体10は、第1面10aと、第1面10aと反対側に位置する第2面10bとを有する。第1面10aおよび第2面10bは、素体10の長さ方向と幅方向とを含む面(LW面)である。
 第1外部電極21および第2外部電極22は、素体10の第1面10aから露出する。具体的に述べると、素体10の第1面10aには、凹部が設けられ、この凹部内に、第1、第2外部電極21,22が配置される。第1、第2外部電極21,22のT方向の上面は、素体10の第1面10aと同一面となる。
 第1外部電極21および第2外部電極22は、L方向に、互いに離隔して配置される。第1、第2外部電極21,22は、平面視矩形状であるが、矩形以外の形状であってもよい。第1、第2外部電極21,22の材料としては、例えば、Ag,Pd,Pt,Auなどの貴金属またはCu,Ni,Al,W,Tiなどの卑金属の単体、あるいは、これらの単体を含む合金を用いることができる。
 第1、第2外部電極21,22は、平面視、素体10の第1面10aの外形線よりも、内側に位置している。具体的に述べると、平面視、第1、第2外部電極21,22のL方向の端面は、素体10のL方向の端面よりも、内側に位置している。なお、第1、第2外部電極21,22のL方向の端面は、素体10のL方向の端面に一致するように配置されてもよい。
 内部電極30は、素体10を介して、第1、第2外部電極21,22と導通される。内部電極30は、平板状に形成され、内部電極30は、平面視、第1、第2外部電極21,22と重なる。内部電極30の材料としては、例えば、第1、第2外部電極21,22の材料と同一である。
 サーミスタ1の厚さT1は、第1面10aと第2面10bとの間の長さに相当する。サーミスタ1の厚さT1は、30μm以上で、かつ、100μm以下であり、好ましくは、50μm以上で、かつ、100μm以下である。これにより、サーミスタ1を低背化とできる。なお、サーミスタ1の厚さは、100μmより大きくてもよい。
 サーミスタ1のサイズは、例えば、JIS規格0603サイズである。JIS規格0603サイズとは、(0.6±0.03)mm(L方向)×(0.3±0.03)mm(W方向)である。なお、サーミスタ1のサイズは、JIS規格1005サイズやJIS規格1608サイズなどの他のサイズであってもよい。
 次に、サーミスタ1の動作について説明する。第1外部電極21に通電すると、第1外部電極21から素体10を介して内部電極30に通電され、内部電極30から素体10を介して第2外部電極22に通電される。素体10の温度が高くなるほど、素体10の抵抗が低くなって、電気が流れやすくなる。
 次に、前記サーミスタ1の製造方法について説明する。
 まず、図2Aに示すように、第1セラミック層11と内部電極30と第2セラミック層12と第1、第2外部電極21,22とを順に厚さ方向(T方向)に積層し、さらに、第1、第2外部電極21,22を覆うように第2セラミック層12上に第3セラミック層13を積層して、積層体50を作製する。これを、積層工程という。積層体50は、サーミスタ1の厚さT1(図1B参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1の厚さT1に一致する値である。なお、第1、第2、第3セラミック層11,12,13は、それぞれ、積層された複数のシート体から構成されていてもよい。
 その後、図2Bに示すように、積層体50を焼成して、焼成体51を作製する。これを、焼成工程という。そして、焼成体51の厚さが目標値となるように、焼成体51の一部を厚さ方向(T方向)に研削する。これを、研削工程という。この研削工程では、第1、第2外部電極21,22を第3セラミック層13から露出させるように、第3セラミック層13の一部と第1、第2外部電極21,22の一部とを研削する。焼成体51の研削部分を、図中、ハッチングにて示す。研削部分は、例えばグラインディングホイールを用いて、厚さ方向Tに沿って研削される。なお、第1、第2外部電極21,22の一部を研削しないで、第3セラミック層13の一部のみを研削して、第1、第2外部電極21,22を第3セラミック層13から露出させるようにしてもよい。
 これにより、図2Cに示すように、素体10の上面と第1、第2外部電極21,22の上面とが同一面となり、前記サーミスタ1が作製される。
 前記サーミスタ1によれば、内部電極30は、素体10の内部に配置されるので、サーミスタ1の焼成工程において内部電極30と素体10に収縮率の差があっても、素体10が内部電極30を押さえ込んで、サーミスタ1の反りの発生を抑制できる。このため、後工程の設備(例えば、特性選別機のフィーダ部など)にてサーミスタ1の搬送不具合が改善される。したがって、設備稼働率や歩留まりが向上し、製造コストが低くなる。
 また、サーミスタ1の第1、第2外部電極21,22側を実装基板に実装する場合、素体10の第1面10aと反対側の第2面10bは、実装基板と反対側の面(以下、非実装面という)に位置する。内部電極30は、素体10の内部に配置されるので、内部電極30は、素体10の第2面10bから露出しない。したがって、サーミスタ1の非実装面は、素体10であるため、サーミスタ1の非実装面の絶縁性を確保できる。
 前記サーミスタ1の製造方法によれば、サーミスタ1の厚さT1に対応する目標値よりも厚くなる積層体50を作製してから、積層体50を焼成して焼成体51を作製する。このように、積層体50の厚さは厚いため、焼成工程において、焼成中の積層体50の反りの発生が抑制される。これに対して、積層体の厚さが薄いと、焼成中の積層体に反りが発生するおそれがある。この理由として、積層体のアスペクト比が起因していると考えられる。つまり、積層体のアスペクト比が大きい、つまり、長さLが厚さTに比べて所定比率以上に大きくなると、積層体の焼成中に反りが発生するおそれがある。そこで、本発明では、積層体の厚さをサーミスタの厚さに対応する目標値よりも厚くすることで、アスペクト比を小さくして、焼成中の積層体の反りの発生を確実に抑制している。
 また、内部電極30を第1セラミック層11と第2セラミック層12との間に挟んだ状態で焼成するので、焼成工程において、内部電極30と素体10に収縮率の差があっても、素体10が内部電極30を押さえ込んで、サーミスタ1の反りの発生を抑制できる。したがって、焼成体51の反りの発生が抑制され、反りのないサーミスタ1を作製できる。
 また、積層工程では、第1、第2外部電極21,22を覆うように第2セラミック層12上に第3セラミック層13を積層し、研削工程では、第1、第2外部電極21,22を第3セラミック層13から露出させるように、第3セラミック層13の一部を研削する。このように、第1セラミック層11を研削しないので、例えば、第1セラミック層11の内部電極30と反対側に補強部材を貼り付けて、焼成体51の強度を強くしてから、研削工程を行うことができ、研削工程での焼成体51のひび割れを抑制できる。
 (第2実施形態)
 図3は、本発明の第2実施形態のサーミスタを示す断面図である。なお、第2実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 図3に示すように、第2実施形態のサーミスタ1Aは、第1実施形態(図1B)のサーミスタ1と比べて、第1、第2外部電極21,22の位置が異なる。第2実施形態では、第1、第2外部電極21,22は、素体10の第1面10a上に、配置される。つまり、第1、第2外部電極21,22の上面は、第1面10aよりも上側に位置する。サーミスタ1Aの厚さT1は、第1、第2外部電極21,22の上面と素体10の第2面10bとの間の長さに相当する。
 次に、前記サーミスタ1Aの製造方法について説明する。
 まず、図4Aに示すように、第1セラミック層11と内部電極30と第2セラミック層12と第1、第2外部電極21,22とを順に積層して、積層体50Aを作製する(積層工程)。積層体50Aは、サーミスタ1Aの厚さT1(図3参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1Aの厚さT1に一致する値である。
 その後、図4Bに示すように、積層体50Aを焼成して、焼成体51Aを作製する(焼成工程)。そして、焼成体51Aの厚さが目標値となるように、焼成体51Aの一部を研削する(研削工程)。この研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。焼成体51Aの研削部分を、図中、ハッチングにて示す。
 これにより、図4Cに示すように、第1、第2外部電極21,22が素体10の上面に配置され、前記サーミスタ1Aが作製される。
 前記サーミスタ1Aによれば、第1実施形態のサーミスタ1と同様の効果を有する。
 前記サーミスタ1Aの製造方法によれば、第1実施形態のサーミスタ1の製造方法と同様の効果を有する。また、研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。このように、第1セラミック層11を研削するだけなので、研削が簡単になる。
 (第3実施形態)
 図5は、本発明の第3実施形態のサーミスタを示す断面図である。なお、第3実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 図5に示すように、第3実施形態のサーミスタ1Bは、第1実施形態(図1B)のサーミスタ1と比べて、第1保護層41を有する点が異なる。第3実施形態では、素体10の第2面10bに第1保護層41を有する。第1保護層41は、例えば樹脂から構成される。サーミスタ1Bの厚さT1は、素体10の第1面10aと第1保護層41の下面との間の長さに相当する。
 次に、前記サーミスタ1Bの製造方法について説明する。
 まず、図6Aに示すように、第1セラミック層11と内部電極30と第2セラミック層12と第1、第2外部電極21,22とを順に積層し、さらに、第1、第2外部電極21,22を覆うように第2セラミック層12上に第3セラミック層13を積層して、積層体50Bを作製する(積層工程)。積層体50Bは、サーミスタ1Bの厚さT1(図5参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1Bの厚さT1から第1保護層41の厚さを引いた値である。
 その後、図6Bに示すように、積層体50Bを焼成して、焼成体51Bを作製する(焼成工程)。そして、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける(保護工程)。第1保護層41は、例えば樹脂から構成され、第1セラミック層11に貼り付けられてから硬化される。
 その後、図6Cに示すように、焼成体51Bの厚さが目標値となるように、焼成体51Bの一部を研削する(研削工程)。この研削工程では、第1、第2外部電極21,22を第3セラミック層13から露出させるように、第3セラミック層13の一部と第1、第2外部電極21,22の一部とを研削する。焼成体51Bの研削部分を、図中、ハッチングにて示す。
 これにより、図6Dに示すように、素体10の上面と第1、第2外部電極21,22の上面とが同一面となり、前記サーミスタ1Bが作製される。
 前記サーミスタ1Bによれば、第1実施形態のサーミスタ1と同様の効果を有する。また、素体10の第2面10bに第1保護層41を有するので、強度の弱い素体10を第1保護層41で補強できて、サーミスタ1Bの強度を向上できる。
 前記サーミスタ1Bの製造方法によれば、第1実施形態のサーミスタ1の製造方法と同様の効果を有する。また、焼成工程と研削工程との間に保護工程を有するので、第1セラミック層11の内部電極30と反対側に第1保護層41を設けて、焼成体51Bの強度を強くしてから、研削工程を行うことができ、研削工程での焼成体51Bのひび割れを抑制できる。
 (第4実施形態)
 図7は、本発明の第4実施形態のサーミスタを示す断面図である。なお、第4実施形態において、第2実施形態と同一の符号は、第2実施形態と同じ構成であるため、その説明を省略する。
 図7に示すように、第4実施形態のサーミスタ1Cは、第2実施形態(図3)のサーミスタ1Aと比べて、第1保護層41を有する点が異なる。第4実施形態では、素体10の第2面10bに第1保護層41を有する。第1保護層41は、例えば樹脂から構成される。サーミスタ1Cの厚さT1は、第1、第2外部電極21,22の上面と第1保護層41の下面との間の長さに相当する。
 次に、前記サーミスタ1Cの製造方法について説明する。
 まず、図8Aに示すように、第1セラミック層11と内部電極30と第2セラミック層12と第1、第2外部電極21,22とを順に積層して、積層体50Cを作製する(積層工程)。積層体50Cは、サーミスタ1Cの厚さT1(図7参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1Cの厚さT1から第1保護層41の厚さを引いた値である。
 その後、図8Bに示すように、積層体50Cを焼成して、焼成体51Cを作製する(焼成工程)。そして、焼成体51Cの厚さが目標値となるように、焼成体51Cの一部を研削する(研削工程)。この研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。焼成体51Cの研削部分を、図中、ハッチングにて示す。このようにして、図8Cに示すように、目標値の厚さを有する焼成体51Cが作製される。
 そして、図8Dに示すように、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける(保護工程)。第1保護層41は、例えば樹脂から構成され、第1セラミック層11に貼り付けられてから硬化される。これにより、前記サーミスタ1Cが作製される。
 前記サーミスタ1Cによれば、第2実施形態のサーミスタ1Aと同様の効果を有する。また、素体10の第2面10bに第1保護層41を有するので、強度の弱い素体10を第1保護層41で補強できて、サーミスタ1Cの強度を向上できる。
 前記サーミスタ1Cの製造方法によれば、第2実施形態のサーミスタ1Aの製造方法と同様の効果を有する。また、研削工程の後に、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける保護工程を有するので、サーミスタ1Cの強度を向上できる。
 (第5実施形態)
 図9は、本発明の第5実施形態のサーミスタを示す断面図である。なお、第5実施形態において、第4実施形態と同一の符号は、第4実施形態と同じ構成であるため、その説明を省略する。
 図9に示すように、第5実施形態のサーミスタ1Dは、第4実施形態(図7)のサーミスタ1Cと比べて、第2保護層42を有する点が異なる。第5実施形態では、第2保護層42は、素体10の第1面10aにおける第1、第2外部電極21,22と重なる領域を除く全領域に設けられている。第2保護層42は、例えば、樹脂から構成される。第1、第2外部電極21,22には、めっき層45が設けられている。めっき層45は、例えば、Ni/SnまたはNi/CuまたはCuから構成される。サーミスタ1Dの厚さT1は、めっき層45の上面と第1保護層41の下面との間の長さに相当する。なお、めっき層45を省略してもよい。
 次に、前記サーミスタ1Dの製造方法について説明する。
 まず、図10Aに示すように、第1セラミック層11と内部電極30と第2セラミック層12と第1、第2外部電極21,22とを順に積層して、積層体50Dを作製する(積層工程)。積層体50Dは、サーミスタ1Dの厚さT1(図9参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、おおよそ、サーミスタ1Dの厚さT1から第1保護層41の厚さを引いた値である。
 その後、図10Bに示すように、積層体50Dを焼成して、焼成体51Dを作製する(焼成工程)。そして、焼成体51Dの厚さが目標値となるように、焼成体51Dの一部を研削する(研削工程)。この研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。焼成体51Dの研削部分を、図中、ハッチングにて示す。このようにして、図10Cに示すように、目標値の厚さを有する焼成体51Dが作製される。
 そして、図10Dに示すように、第1セラミック層11の内部電極30と反対側に第1保護層41を設けると共に、第1、第2外部電極21,22を覆うように第2セラミック層12上に第2保護層42を設ける(保護工程)。第1保護層41は、例えば樹脂から構成され、第1セラミック層11に貼り付けられてから硬化される。第2保護層42は、例えば樹脂から構成され、第2セラミック層12に貼り付けられてから硬化される。
 その後、図10Eに示すように、第1、第2外部電極21,22を第2保護層42から露出させるように、第2保護層42の一部と第1、第2外部電極21,22の一部とを研削する(保護層研削工程)。この研削部分を、図中、ハッチングにて示す。なお、第1、第2外部電極21,22の一部を研削しないで、第2保護層42の一部のみを研削して、第1、第2外部電極21,22を第2保護層42から露出させるようにしてもよい。このようにして、図10Fに示すように、第1、第2外部電極21,22が第2保護層42から露出される。
 そして、図10Gに示すように、第1、第2外部電極21,22の上面にめっき層45を設けて、前記サーミスタ1Dを作製する。
 前記サーミスタ1Dによれば、第4実施形態のサーミスタ1Cと同様の効果を有する。また、第2保護層42は、素体10の第1面10aにおける第1、第2外部電極21,22と重なる領域を除く全領域に設けられているので、第1、第2外部電極21,22にめっき層45を設ける場合、めっき層45による素体10の第2面10bの浸食を防止できる。また、素体10の第1面10aにおける第1外部電極21と第2外部電極22との間の領域に第2保護層42を有するので、第1、第2外部電極21,22のマイグレーションの発生を抑制できる。
 前記サーミスタ1Dの製造方法によれば、第4実施形態のサーミスタ1Cの製造方法と同様の効果を有する。また、第1セラミック層11の内部電極30と反対側に第1保護層41を設けるので、サーミスタ1Dの強度を向上できる。また、第2保護層42は、第2セラミック層12上に設けられているので、第1外部電極21と第2外部電極22との間に第2保護層42を有し、第1、第2外部電極21,22のマイグレーションの発生を抑制できる。また、第2保護層42は、第2セラミック層12上に設けられているので、第1、第2外部電極21,22にめっき層45を設ける場合、めっき層45による第2セラミック層12の浸食を防止できる。
 なお、焼成工程の後で、研削工程の前に、第1外部電極21および第2外部電極22を覆うように第2セラミック層12上に第2保護層42を設けるようにしてもよい(上側保護工程)。これにより、焼成体51Dの強度を強くしてから、研削工程を行うことができ、研削工程での焼成体51Dのひび割れを抑制できる。この場合も、研削工程の後に、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける(下側保護工程)。
 (第6実施形態)
 図11Aから図11Dは、本発明の第6実施形態のサーミスタの製造方法を示す断面図である。なお、第6実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 第1実施形態(図2Aから図2C)のサーミスタの製造方法は、単体のサーミスタの製造方法であるが、第6実施形態のサーミスタの製造方法は、複数のサーミスタの製造方法である。
 図11Aに示すように、第1セラミック層11と複数の内部電極30と第2セラミック層12と複数の第1、第2外部電極21,22とを順に積層し、さらに、複数の第1、第2外部電極21,22を覆うように第2セラミック層12上に第3セラミック層13を積層して、積層体50Eを作製する(積層工程)。このとき、第1、第2、第3セラミック層11,12,13をシート状に形成する。また、1つのサーミスタ1の領域に対応する内部電極30および第1、第2外部電極21,22を複数組設けて、LW面に沿ってアレイ状に配置する。一組の内部電極30および第1、第2外部電極21,22は、1つのサーミスタ1に相当する。積層体50Eは、サーミスタ1の厚さT1(図1B参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1の厚さT1に一致する値である。
 その後、図11Bに示すように、積層体50Eを焼成して、焼成体51Eを作製する(焼成工程)。そして、焼成体51Eの厚さが目標値となるように、焼成体51Eの一部を研削する(研削工程)。この研削工程では、第1、第2外部電極21,22を第3セラミック層13から露出させるように、第3セラミック層13の一部と第1、第2外部電極21,22の一部とを研削する。焼成体51Eの研削部分を、図中、ハッチングにて示す。
 そして、図11Cに示すように、目標値の厚さを有する焼成体51Eを、一組の内部電極30および第1、第2外部電極21,22毎(つまり、1つのサーミスタ1の領域毎)に、切断する(切断工程)。つまり、複数組の内部電極30および第1、第2外部電極21,22は、LW面に沿って隣り合っており、この隣接部分を切断する。これにより、図11Dに示すように、複数のサーミスタ1を作製する。複数組の内部電極30および第1、第2外部電極21,22は、複数のサーミスタ1に相当する。
 前記サーミスタ1の製造方法によれば、第1実施形態のサーミスタ1の製造方法と同様の効果を有する。ここで、一般的に、シート状の積層体を焼成する場合、積層体のアスペクト比が大きくなる(つまり、長さLが厚さTに比べて非常に大きくなる)傾向にあることから、焼成中の積層体に反りが発生しやすい。そこで、本発明では、シート状の積層体50Eの厚さを厚くすることで、積層体50Eのアスペクト比を小さくして、焼成中の積層体50Eの反りの発生を抑制している。
 また、研削工程の後に、焼成体51Eを一組の内部電極30および第1、第2外部電極21,22毎に切断する切断工程を有するので、切断前の大判の焼成体51Eを研削することで、研削による負荷を低減して、損傷のないサーミスタ1を作製できる。
 (第7実施形態)
 図12Aから図12Dは、本発明の第7実施形態のサーミスタの製造方法を示す断面図である。なお、第7実施形態において、第2実施形態と同一の符号は、第2実施形態と同じ構成であるため、その説明を省略する。
 第2実施形態(図4Aから図4C)のサーミスタの製造方法は、単体のサーミスタの製造方法であるが、第7実施形態のサーミスタの製造方法は、複数のサーミスタの製造方法である。
 図12Aに示すように、第1セラミック層11と複数の内部電極30と第2セラミック層12と複数の第1、第2外部電極21,22とを順に積層して、積層体50Fを作製する(積層工程)。このとき、第1、第2、第3セラミック層11,12,13をシート状に形成する。また、1つのサーミスタ1Aの領域に対応する内部電極30および第1、第2外部電極21,22を複数組設けて、LW面に沿ってアレイ状に配置する。積層体50Fは、サーミスタ1Aの厚さT1(図3参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1Aの厚さT1に一致する値である。
 その後、図12Bに示すように、積層体50Fを焼成して、焼成体51Fを作製する(焼成工程)。そして、焼成体51Fの厚さが目標値となるように、焼成体51Fの一部を研削する(研削工程)。この研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。焼成体51Fの研削部分を、図中、ハッチングにて示す。
 そして、図12Cに示すように、目標値の厚さを有する焼成体51Fを、一組の内部電極30および第1、第2外部電極21,22毎(つまり、1つのサーミスタ1Aの領域毎)に、切断する(切断工程)。つまり、複数組の内部電極30および第1、第2外部電極21,22は、LW面に沿って隣り合っており、この隣接部分を切断する。これにより、図12Dに示すように、複数のサーミスタ1Aを作製する。
 前記サーミスタ1Aの製造方法によれば、第2実施形態のサーミスタ1Aの製造方法と同様の効果を有する。特に、シート状の積層体50Fの厚さを厚くすることで、積層体50Fのアスペクト比を小さくして、焼成中の積層体50Fの反りの発生を抑制している。また、研削工程の後に、焼成体51Fを一組の内部電極30および第1、第2外部電極21,22毎に切断する切断工程を有するので、切断前の大判の焼成体51Fを研削することで、生産性を向上できると共に、研削による負荷を低減して、損傷のないサーミスタ1Aを作製できる。
 (第8実施形態)
 図13Aから図13Eは、本発明の第8実施形態のサーミスタの製造方法を示す断面図である。なお、第8実施形態において、第3実施形態と同一の符号は、第3実施形態と同じ構成であるため、その説明を省略する。
 第3実施形態(図6Aから図6D)のサーミスタの製造方法は、単体のサーミスタの製造方法であるが、第8実施形態のサーミスタの製造方法は、複数のサーミスタの製造方法である。
 図13Aに示すように、第1セラミック層11と複数の内部電極30と第2セラミック層12と複数の第1、第2外部電極21,22とを順に積層し、さらに、複数の第1、第2外部電極21,22を覆うように第2セラミック層12上に第3セラミック層13を積層して、積層体50Gを作製する(積層工程)。このとき、第1、第2、第3セラミック層11,12,13をシート状に形成する。また、1つのサーミスタ1Bの領域に対応する内部電極30および第1、第2外部電極21,22を複数組設けて、LW面に沿ってアレイ状に配置する。積層体50Gは、サーミスタ1Bの厚さT1(図5参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1Bの厚さT1から第1保護層41の厚さを引いた値である。
 その後、図13Bに示すように、積層体50Gを焼成して、焼成体51Gを作製する(焼成工程)。そして、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける(保護工程)。第1保護層41は、シート状に形成される。第1保護層41は、例えば樹脂から構成され、第1セラミック層11に貼り付けられてから硬化される。
 その後、図13Cに示すように、焼成体51Gの厚さが目標値となるように、焼成体51Gの一部を研削する(研削工程)。この研削工程では、第1、第2外部電極21,22を第3セラミック層13から露出させるように、第3セラミック層13の一部と第1、第2外部電極21,22の一部とを研削する。焼成体51Gの研削部分を、図中、ハッチングにて示す。
 その後、図13Dに示すように、目標値の厚さを有する焼成体51Gを、一組の内部電極30および第1、第2外部電極21,22毎(1つのサーミスタ1Bの領域毎)に、切断する(切断工程)。つまり、複数組の内部電極30および第1、第2外部電極21,22は、LW面に沿って隣り合っており、この隣接部分を切断する。これにより、図13Eに示すように、複数のサーミスタ1Bを作製する。
 前記サーミスタ1Bの製造方法によれば、第3実施形態のサーミスタ1Bの製造方法と同様の効果を有する。特に、シート状の積層体50Gの厚さを厚くすることで、積層体50Gのアスペクト比を小さくして、焼成中の積層体50Gの反りの発生を抑制している。また、研削工程の後に、焼成体51Gを一組の内部電極30および第1、第2外部電極21,22毎に切断する切断工程を有するので、切断前の大判の焼成体50Gを研削することで、生産性を向上できると共に、研削による負荷を低減して、損傷のないサーミスタ1Bを作製できる。また、切断工程の前に、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける保護工程を有するので、切断前の大判の焼成体51Gに第1保護層41を貼り付けやすくなる。
 (第9実施形態)
 図14Aから図14Eは、本発明の第9実施形態のサーミスタの製造方法を示す断面図である。なお、第9実施形態において、第4実施形態と同一の符号は、第4実施形態と同じ構成であるため、その説明を省略する。
 第4実施形態(図8Aから図8D)のサーミスタの製造方法は、単体のサーミスタの製造方法であるが、第9実施形態のサーミスタの製造方法は、複数のサーミスタの製造方法である。
 図14Aに示すように、第1セラミック層11と複数の内部電極30と第2セラミック層12と複数の第1、第2外部電極21,22とを順に積層して、積層体50Hを作製する(積層工程)。このとき、第1、第2、第3セラミック層11,12,13をシート状に形成する。また、1つのサーミスタ1Cの領域に対応する内部電極30および第1、第2外部電極21,22を複数組設けて、LW面に沿ってアレイ状に配置する。積層体50Hは、サーミスタ1Cの厚さT1(図7参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、サーミスタ1Cの厚さT1から第1保護層41の厚さを引いた値である。
 その後、図14Bに示すように、積層体50Hを焼成して、焼成体51Hを作製する(焼成工程)。そして、焼成体51Hの厚さが目標値となるように、焼成体51Hの一部を研削する(研削工程)。この研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。焼成体51Hの研削部分を、図中、ハッチングにて示す。このようにして、図14Cに示すように、目標値の厚さを有する焼成体51Hが作製される。
 その後、図14Dに示すように、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける(保護工程)。第1保護層41は、シート状に形成される。第1保護層41は、例えば樹脂から構成され、第1セラミック層11に貼り付けられてから硬化される。
 その後、第1保護層41が設けられた焼成体51Hを、一組の内部電極30および第1、第2外部電極21,22毎(つまり、1つのサーミスタ1Cの領域毎)に、切断する(切断工程)。つまり、複数組の内部電極30および第1、第2外部電極21,22は、LW面に沿って隣り合っており、この隣接部分を切断する。これにより、図14Eに示すように、複数のサーミスタ1Cを作製する。
 前記サーミスタ1Cの製造方法によれば、第4実施形態のサーミスタ1Cの製造方法と同様の効果を有する。特に、シート状の積層体50Hの厚さを厚くすることで、積層体50Hのアスペクト比を小さくして、焼成中の積層体50Hの反りの発生を抑制している。また、研削工程の後に、焼成体51Hを一組の内部電極30および第1、第2外部電極21,22毎に切断する切断工程を有するので、切断前の大判の焼成体51Hを研削することで、生産性を向上できると共に、研削による負荷を低減して、損傷のないサーミスタ1Cを作製できる。また、切断工程の前に、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける保護工程を有するので、切断前の大判の焼成体51Hに第1保護層41を貼り付けやすくなる。
 (第10実施形態)
 図15Aから図15Hは、本発明の第10実施形態のサーミスタの製造方法を示す断面図である。なお、第10実施形態において、第5実施形態と同一の符号は、第5実施形態と同じ構成であるため、その説明を省略する。
 第5実施形態(図10Aから図10G)のサーミスタの製造方法は、単体のサーミスタの製造方法であるが、第10実施形態のサーミスタの製造方法は、複数のサーミスタの製造方法である。
 図15Aに示すように、第1セラミック層11と複数の内部電極30と第2セラミック層12と複数の第1、第2外部電極21,22とを順に積層して、積層体50Iを作製する(積層工程)。このとき、第1、第2セラミック層11,12をシート状に形成する。また、1つのサーミスタ1Dの領域に対応する内部電極30および第1、第2外部電極21,22を複数組設けて、LW面に沿ってアレイ状に配置する。積層体50Iは、サーミスタ1Dの厚さT1(図9参照)に対応する目標値よりも厚くなるように、形成される。ここで、目標値とは、おおよそ、サーミスタ1Dの厚さT1から第1保護層41の厚さを引いた値である。
 その後、図15Bに示すように、積層体50Iを焼成して、焼成体51Iを作製する(焼成工程)。そして、焼成体51Iの厚さが目標値となるように、焼成体51Iの一部を研削する(研削工程)。この研削工程では、内部電極30を第1セラミック層11から露出させないように、第1セラミック層11の一部を研削する。焼成体51Iの研削部分を、図中、ハッチングにて示す。このようにして、図15Cに示すように、目標値の厚さを有する焼成体51Iが作製される。
 その後、図15Dに示すように、第1セラミック層11の内部電極30と反対側に第1保護層41を設けると共に、第1、第2外部電極21,22を覆うように第2セラミック層12上に第2保護層42を設ける(保護工程)。第1、第2保護層41,42は、シート状に形成される。第1保護層41は、例えば樹脂から構成され、第1セラミック層11に貼り付けられてから硬化される。第2保護層42は、例えば樹脂から構成され、第2セラミック層12に貼り付けられてから硬化される。
 その後、図15Eに示すように、第1、第2外部電極21,22を第2保護層42から露出させるように、第2保護層42の一部と第1、第2外部電極21,22の一部とを研削する(保護層研削工程)。この研削部分を、図中、ハッチングにて示す。このようにして、図15Fに示すように、第1、第2外部電極21,22を第2保護層42から露出した焼成体51Iを作製する。
 その後、図15Gに示すように、第1、第2保護層41,42が設けられた焼成体51Iを、一組の内部電極30および第1、第2外部電極21,22毎(つまり、1つのサーミスタ1Dの領域毎)に、切断する(切断工程)。つまり、複数組の内部電極30および第1、第2外部電極21,22は、LW面に沿って隣り合っており、この隣接部分を切断する。
 その後、図15Hに示すように、第1、第2外部電極21,22の上面にめっき層45を設けて、複数のサーミスタ1Dを作製する。なお、切断工程後にめっき層45を設けたが、切断工程前にめっき層45を設けるようにしてもよい。
 前記サーミスタ1Dの製造方法によれば、第5実施形態のサーミスタ1Dの製造方法と同様の効果を有する。特に、シート状の積層体50Iの厚さを厚くすることで、積層体50Iのアスペクト比を小さくして、焼成中の積層体50Iの反りの発生を抑制している。また、研削工程の後に、焼成体51Iを一組の内部電極30および第1、第2外部電極21,22毎に切断する切断工程を有するので、切断前の大判の焼成体51Iを研削することで、生産性を向上できると共に、研削による負荷を低減して、損傷のないサーミスタ1Dを作製できる。また、切断工程の前に第1、第2保護層41,42を設ける保護工程を有するので、切断前の大判の焼成体51Iに第1、第2保護層41,42を貼り付けやすくなる。
 なお、焼成工程の後で、研削工程の前に、第1外部電極21および第2外部電極22を覆うように第2セラミック層12上に第2保護層42を設けるようにしてもよい(上側保護工程)。これにより、焼成体51Iの強度を強くしてから、研削工程を行うことができ、研削工程での焼成体51Iのひび割れを抑制できる。この場合も、研削工程の後に、第1セラミック層11の内部電極30と反対側に第1保護層41を設ける(下側保護工程)。
 (第11実施形態)
 図16Aは、本発明のサーミスタを含む電子装置を示す斜視図である。図16Bは、図16AのA-A断面図である。なお、第11実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 図16Aと図16Bに示すように、電子装置は、サーミスタセンサ100である。サーミスタセンサ100は、第1実施形態のサーミスタ1と、サーミスタ1を覆う絶縁部材128とを有する。図中、サーミスタ1は、第1、第2外部電極21,22が下側を向くように、配置される。なお、サーミスタとして、第1実施形態のサーミスタを用いているが、第2から第5実施形態の何れのサーミスタを用いてもよい。
 サーミスタ1の第1、第2外部電極21,22の下面には、それぞれ、実装用電極として、例えばSnめっき層124a、Niめっき層124bおよびCuめっき層124cがこの順に形成される。さらに、Cuめっき層124cの下面には、Cu箔126が形成される。
 絶縁部材128は、サーミスタ1とともに、Snめっき層124a、Niめっき層124bおよびCuめっき層124cを被覆する。絶縁部材128は、例えばエポキシ樹脂からなる可撓性を有しない絶縁性樹脂材から構成される。
 サーミスタセンサ100は、例えばポリイミド樹脂からなる短冊状の可撓性を有する絶縁性樹脂シート130を含む。絶縁性樹脂シート130上には、例えばCu箔からなる直線状の可撓性を有する2つのリード線132が絶縁性樹脂シート130の幅方向に間隔を隔てて形成される。絶縁性樹脂シート130の長手方向における中間部および2つのリード線132の長手方向における中間部には、例えばポリイミド樹脂からなる可撓性を有する絶縁性樹脂材134が被覆される。
 サーミスタ1の第1、第2外部電極21,22のそれぞれは、Snめっき層124a、Niめっき層124b、Cuめっき層124c、Cu箔126、および、導電性接続材140を介して、リード線132の一端部に、電気的に接続される。導電性接続材140は、例えばはんだなどであり、リード線132の一端部に配置される。
 Cu箔126、リード線132および導電性接続材140の周囲は、例えばエポキシ樹脂からなる可撓性を有しない絶縁性樹脂材142にて、被覆される。サーミスタ1は、絶縁性樹脂材142を介して、絶縁性樹脂シート130に接着される。
 前記サーミスタセンサ100によれば、絶縁部材128はサーミスタ1を覆うので、サーミスタ1の強度と信頼性を確保できる。
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第11実施形態のそれぞれの特徴点を様々に組み合わせてもよい。
 前記実施形態では、サーミスタは、NTCサーミスタとしているが、PTC(Positive Temperature Coefficient)サーミスタとしてもよい。
 前記第5実施形態では、第2保護層を、素体の第1面における第1、第2外部電極と重なる領域を除く全領域に設けているが、素体の第1面における第1、第2外部電極との間の領域にのみ設けてもよく、第1、第2外部電極のマイグレーションの発生を抑制できる。
 前記実施形態では、研削工程を設けているが、研削工程を省略してもよい。つまり、積層体を目標値となるように作製してから焼成して、サーミスタを製造するようにしてもよい。
 前記第11実施形態では、電子装置を、可撓性の絶縁性樹脂シートにサーミスタを設けたサーミスタセンサ(いわゆる、フィルムタイプのサーミスタセンサ)としているが、その他のサーミスタセンサであってもよく、または、サーミスタが絶縁部材により覆われているその他の電子装置であってもよい。
 1,1A~1D サーミスタ
 10 素体
 10a 第1面
 10b 第2面
 11 第1セラミック層
 12 第2セラミック層
 13 第3セラミック層
 21 第1外部電極
 22 第2外部電極
 30 内部電極
 41 第1保護層
 42 第2保護層
 45 めっき層
 50,50A~50I 積層体
 51,51A~51I 焼成体
 100 サーミスタセンサ(電子装置)
 128 絶縁部材
 T1 サーミスタの厚さ

Claims (16)

  1.  セラミックからなる素体と、
     前記素体の第1面に互いに離隔して配置される第1外部電極および第2外部電極と、
     前記素体の内部に配置されて前記第1外部電極および前記第2外部電極と導通される内部電極と
    を備える、サーミスタ。
  2.  前記素体の前記第1面と反対側の第2面に第1保護層を有する、請求項1に記載のサーミスタ。
  3.  サーミスタの厚さは、30μm以上で、かつ、100μm以下である、請求項1または2に記載のサーミスタ。
  4.  前記素体の前記第1面における前記第1外部電極と前記第2外部電極との間の領域に第2保護層を有する、請求項1から3の何れか一つに記載のサーミスタ。
  5.  前記第2保護層は、前記素体の前記第1面における前記第1外部電極および前記第2外部電極と重なる領域を除く全領域に設けられている、請求項4に記載のサーミスタ。
  6.  請求項1から5の何れか一つに記載のサーミスタと、
     前記サーミスタを覆う絶縁部材と
    を備える、電子装置。
  7.  第1セラミック層と内部電極と第2セラミック層と第1外部電極および第2外部電極とを少なくとも順に厚さ方向に積層して、積層体を作製する積層工程と、
     前記積層体を焼成して、焼成体を作製する焼成工程と
    を備える、サーミスタの製造方法。
  8.  前記焼成工程の後に、前記焼成体の一部を厚さ方向に研削する研削工程を備える、請求項7に記載のサーミスタの製造方法。
  9.  前記積層工程では、さらに、前記第1外部電極および前記第2外部電極を覆うように前記第2セラミック層上に第3セラミック層を積層して、前記積層体を作製し、
     前記研削工程では、前記第1外部電極および前記第2外部電極を前記第3セラミック層から露出させるように、少なくとも前記第3セラミック層の一部を研削する、請求項8に記載のサーミスタの製造方法。
  10.  前記焼成工程と前記研削工程との間に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける保護工程を有する、請求項9に記載のサーミスタの製造方法。
  11.  前記研削工程では、前記内部電極を前記第1セラミック層から露出させないように、前記第1セラミック層の一部を研削する、請求項8に記載のサーミスタの製造方法。
  12.  前記研削工程の後に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける保護工程を有する、請求項11に記載のサーミスタの製造方法。
  13.  前記研削工程の後に、
     前記第1セラミック層の前記内部電極と反対側に第1保護層を設けると共に、前記第1外部電極および前記第2外部電極を覆うように前記第2セラミック層上に第2保護層を設ける保護工程と、
     前記第1外部電極および前記第2外部電極を前記第2保護層から露出させるように、少なくとも前記第2保護層の一部を研削する保護層研削工程と
    を有する、請求項11に記載のサーミスタの製造方法。
  14.  前記研削工程の前に、前記第1外部電極および前記第2外部電極を覆うように前記第2セラミック層上に第2保護層を設ける上側保護工程と、
     前記研削工程の後に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける下側保護工程と、
     前記下側保護工程の後に、前記第1外部電極および前記第2外部電極を前記第2保護層から露出させるように、少なくとも前記第2保護層の一部を研削する保護層研削工程と
    を有する、請求項11に記載のサーミスタの製造方法。
  15.  複数のサーミスタを製造する方法であって、
     前記積層工程では、1つのサーミスタの領域に対応する前記内部電極、前記第1外部電極および前記第2外部電極を、複数組設け、
     前記研削工程の後に、前記焼成体を1つのサーミスタの領域毎に切断する切断工程を有する、請求項8に記載のサーミスタの製造方法。
  16.  前記焼成工程と前記切断工程との間に、前記第1セラミック層の前記内部電極と反対側に第1保護層を設ける保護工程を有する、請求項15に記載のサーミスタの製造方法。
PCT/JP2015/082883 2014-11-26 2015-11-24 サーミスタ、電子装置およびサーミスタの製造方法 WO2016084782A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561883A JP6489127B2 (ja) 2014-11-26 2015-11-24 サーミスタ、電子装置およびサーミスタの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-239079 2014-11-26
JP2014239079 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016084782A1 true WO2016084782A1 (ja) 2016-06-02

Family

ID=56074342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082883 WO2016084782A1 (ja) 2014-11-26 2015-11-24 サーミスタ、電子装置およびサーミスタの製造方法

Country Status (3)

Country Link
JP (1) JP6489127B2 (ja)
TW (1) TWI587324B (ja)
WO (1) WO2016084782A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074616A1 (ja) * 2021-11-01 2023-05-04 株式会社大真空 サーミスタ搭載型圧電振動デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261507A (ja) * 1997-03-18 1998-09-29 Murata Mfg Co Ltd サーミスタ素子
JPH11283804A (ja) * 1998-03-31 1999-10-15 Murata Mfg Co Ltd 抵抗器
JP2002198202A (ja) * 2000-12-26 2002-07-12 Murata Mfg Co Ltd 多連チップ抵抗器及びその製造方法
WO2006073018A1 (ja) * 2005-01-06 2006-07-13 Murata Manufacturing Co., Ltd. 圧電アクチュエータの製造方法及び圧電アクチュエータ
JP2009302355A (ja) * 2008-06-16 2009-12-24 Murata Mfg Co Ltd 電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261507A (ja) * 1997-03-18 1998-09-29 Murata Mfg Co Ltd サーミスタ素子
JPH11283804A (ja) * 1998-03-31 1999-10-15 Murata Mfg Co Ltd 抵抗器
JP2002198202A (ja) * 2000-12-26 2002-07-12 Murata Mfg Co Ltd 多連チップ抵抗器及びその製造方法
WO2006073018A1 (ja) * 2005-01-06 2006-07-13 Murata Manufacturing Co., Ltd. 圧電アクチュエータの製造方法及び圧電アクチュエータ
JP2009302355A (ja) * 2008-06-16 2009-12-24 Murata Mfg Co Ltd 電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074616A1 (ja) * 2021-11-01 2023-05-04 株式会社大真空 サーミスタ搭載型圧電振動デバイス
TWI822418B (zh) * 2021-11-01 2023-11-11 日商大真空股份有限公司 搭載熱敏電阻的壓電振動裝置

Also Published As

Publication number Publication date
TW201629995A (zh) 2016-08-16
TWI587324B (zh) 2017-06-11
JPWO2016084782A1 (ja) 2017-08-31
JP6489127B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
JP5206440B2 (ja) セラミック電子部品
US10964479B2 (en) Electronic component
CN110098050B (zh) 电子部件
CN108109807B (zh) 电子部件
JP4929487B2 (ja) 積層セラミック電子部品
CN110098049B (zh) 电子部件
CN109727768B (zh) 电子部件
JP6870428B2 (ja) 電子部品
CN110098046B (zh) 电子部件
JP7139677B2 (ja) 電子部品
US10600570B2 (en) Electronic component
CN110828165B (zh) 多层陶瓷电容器及制造多层陶瓷电容器的方法
US10622150B2 (en) Electronic component and electronic component device
JP6740874B2 (ja) 電子部品
JP5672091B2 (ja) 多層基板
JP2000306765A (ja) 積層セラミック電子部品
JP6489128B2 (ja) 電子部品の製造方法、電子部品および電子装置
JP5786751B2 (ja) 積層電子部品
JP6489127B2 (ja) サーミスタ、電子装置およびサーミスタの製造方法
JP6338011B2 (ja) 基板埋め込み用ntcサーミスタおよびその製造方法
JP6100617B2 (ja) 多層配線基板およびプローブカード用基板
JP2009176829A (ja) 電子部品
JP2013153119A (ja) 積層インダクタ
KR101508838B1 (ko) 다층 세라믹 소자 및 이를 구비하는 실장 구조물
JP2012009680A (ja) セラミック電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863041

Country of ref document: EP

Kind code of ref document: A1