WO2016084561A1 - 炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2016084561A1
WO2016084561A1 PCT/JP2015/081027 JP2015081027W WO2016084561A1 WO 2016084561 A1 WO2016084561 A1 WO 2016084561A1 JP 2015081027 W JP2015081027 W JP 2015081027W WO 2016084561 A1 WO2016084561 A1 WO 2016084561A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
main surface
carbide substrate
polishing
manufacturing
Prior art date
Application number
PCT/JP2015/081027
Other languages
English (en)
French (fr)
Inventor
翼 本家
恭子 沖田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201910475115.9A priority Critical patent/CN110299403B/zh
Priority to DE112015005348.4T priority patent/DE112015005348T5/de
Priority to CN201580063761.4A priority patent/CN107002280B/zh
Priority to JP2016561469A priority patent/JP6699559B2/ja
Priority to US15/527,121 priority patent/US10030319B2/en
Publication of WO2016084561A1 publication Critical patent/WO2016084561A1/ja
Priority to US15/989,373 priority patent/US10221501B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Definitions

  • the present disclosure relates to a silicon carbide substrate, a manufacturing method thereof, and a manufacturing method of a silicon carbide semiconductor device.
  • a silicon carbide (SiC) substrate can be used for manufacturing a semiconductor device. Specifically, for example, a semiconductor layer made of silicon carbide is formed on a silicon carbide substrate by epitaxial growth, and an electrode or the like is further formed on the semiconductor layer, whereby a semiconductor device such as a diode or a transistor can be manufactured.
  • the quality of the semiconductor layer formed by epitaxial growth on the silicon carbide substrate is greatly affected by the surface roughness of the main surface of the silicon carbide substrate on which the semiconductor layer is formed. Therefore, polishing such as mechanical polishing (MP) or chemical mechanical polishing (CMP) is performed on the main surface of the silicon carbide substrate on which the semiconductor layer is to be formed by epitaxial growth. Thereby, the smoothness of the main surface on which the semiconductor layer is to be formed is ensured, and a high-quality semiconductor layer can be epitaxially grown.
  • polishing such as mechanical polishing (MP) or chemical mechanical polishing (CMP) is performed on the main surface of the silicon carbide substrate on which the semiconductor layer is to be formed by epitaxial growth.
  • the silicon carbide substrate of the present disclosure is made of silicon carbide, and when the main surface is etched with chlorine gas, the total length of the linear etch pit groups observed on the main surface is equal to or less than the substrate diameter.
  • a method for manufacturing a silicon carbide substrate according to the present disclosure includes a step of preparing a raw material substrate and a step of polishing a main surface of the raw material substrate by chemical mechanical polishing.
  • the step of polishing the main surface by chemical mechanical polishing includes the step of chemical mechanical polishing the main surface using a polishing liquid having a permanganate ion concentration exceeding 5 mass%.
  • FIG. 1 is a schematic perspective view showing the shape of a silicon carbide substrate.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing a silicon carbide substrate.
  • FIG. 3 is a schematic view showing the structure of the polishing apparatus.
  • FIG. 4 is a differential interference micrograph showing an example of a linear etch pit group.
  • FIG. 5 is a graph showing the relationship between the permanganate ion concentration and the polishing rate.
  • FIG. 6 is a differential interference micrograph showing an example of a linear etch pit group.
  • FIG. 7 is a diagram showing the relationship between the length of the linear etch pit group and the device defect rate.
  • the silicon carbide substrate according to the present disclosure is made of silicon carbide, and when the main surface is etched with chlorine gas, the total length of the linear etch pit groups observed on the main surface is equal to or less than the substrate diameter.
  • the quality of the semiconductor layer may be insufficient.
  • the etch pit group in which etch pits are linearly arranged on the main surface.
  • the quality of the semiconductor layer becomes insufficient.
  • the total length of the linear etch pit groups which is the total length of the linear etch pit groups observed on the main surface, is equal to or smaller than the substrate diameter, it is formed on the main surface by epitaxial growth.
  • the semiconductor layer has a high quality suitable for manufacturing a semiconductor device such as a diode or a transistor.
  • the total length of the linear etch pit groups observed on the main surface is equal to or less than the substrate diameter.
  • the silicon carbide may have a hexagonal crystal structure.
  • the main surface may be a crystal surface having an off angle of less than 8 ° with respect to the Si surface.
  • a method for manufacturing a silicon carbide substrate according to the present disclosure includes a step of preparing a raw material substrate and a step of polishing a main surface of the raw material substrate by chemical mechanical polishing.
  • the step of polishing the main surface by chemical mechanical polishing includes the step of chemical mechanical polishing the main surface using a polishing liquid having a permanganate ion concentration exceeding 5 mass%.
  • the linear etch pit group can be reduced by setting the concentration of permanganate ions, which are oxidizing agents contained in the CMP polishing liquid, higher than the conventional one. This can be considered for the following reasons, for example.
  • the main surface of the substrate is polished by simultaneously oxidizing the surface region of the silicon carbide substrate with an oxidizing agent and removing the oxidized surface layer region with an abrasive.
  • an oxidation rate capable of ensuring the smoothness of the surface is achieved even at the conventional oxidant concentration level.
  • damage due to the abrasive is introduced into the silicon carbide substrate when the surface layer region is removed by the abrasive.
  • This damage has a small effect on the smoothness of the main surface, it affects the quality of the semiconductor layer formed on the main surface.
  • This damage is manifested as a linear etch pit group by etching with the chlorine gas.
  • the concentration of permanganate ions contained in the CMP polishing liquid to a higher level than that of the prior art, specifically, a concentration exceeding 5% by mass, the oxidation rate is increased. The introduction of damage is suppressed.
  • the concentration of permanganate ions contained in the CMP polishing liquid may be set to a concentration exceeding 10 mass%.
  • the polishing liquid may be passed through a PTFE resin filter having a pore diameter of 5 ⁇ m or less.
  • the temperature of the polishing liquid may be 35 ° C. or higher.
  • the polishing liquid may contain sodium permanganate.
  • the concentration of permanganate ions in the polishing liquid may be 40% by mass or less. Even if the concentration of permanganate ions is increased to a level exceeding 40% by mass, the effect of suppressing damage introduced into the silicon carbide substrate is saturated. Therefore, the concentration of permanganate ions may be set to 40% by mass or less in consideration of the damage caused by the oxidizing agent on the polishing equipment.
  • the polishing liquid may contain a polishing agent made of a metal oxide.
  • a metal oxide having a higher polishing power than SiO 2 (silicon dioxide), which is widely used as an abrasive (abrasive grain), as an abrasive in the method for manufacturing a silicon carbide substrate of the present disclosure linear etch pits are obtained. A high polishing rate can be achieved while suppressing the group.
  • the metal oxide constituting the abrasive for example, Al 2 O 3 (aluminum oxide), Cr 2 O 3 (chromium oxide), ZrO 2 (zirconium oxide) and the like can be employed.
  • the polishing liquid may have a pH (power of Hydrogen) of less than 5.
  • the method for manufacturing a silicon carbide substrate may further include a step of cleaning the main surface polished by chemical mechanical polishing.
  • the step of cleaning the main surface may include a step of cleaning the main surface using hydrochloric acid as a cleaning liquid.
  • the silicon carbide may have a hexagonal crystal structure.
  • the main surface may be a crystal surface having an off angle of less than 8 ° with respect to the Si surface.
  • silicon carbide substrate 1 in the present embodiment has a disc shape and has a main surface 1A.
  • the total length of the linear etch pit groups observed on the main surface 1A is equal to or smaller than the substrate diameter. That is, for example, when the substrate diameter is 100 mm, the total length of the linear etch pit group is 100 mm or less.
  • the substrate diameter is 150 mm, the total length of the linear etch pit group is 150 mm or less.
  • the linear etch pit group can be confirmed by, for example, observing the main surface 1A etched with chlorine gas with a differential interference microscope.
  • the etch rate is lower than when etched with chlorine gas.
  • the total length of the linear etch pit groups observed on the main surface 1A when the main surface 1A is etched with KOH is about the substrate diameter, it is observed when the main surface 1A is etched with chlorine gas.
  • the total length of the linear etch pit group may exceed the substrate diameter.
  • the substrate diameter of the silicon carbide substrate 1 is preferably 4 inches or more (100 mm or more) in consideration of the manufacturing efficiency of the semiconductor device.
  • the substrate diameter of silicon carbide substrate 1 may be, for example, 6 inches or more (150 mm or more).
  • Main surface 1A is a surface on which a semiconductor layer made of silicon carbide is to be formed by epitaxial growth when a semiconductor device using silicon carbide substrate 1 is manufactured. Silicon carbide constituting silicon carbide substrate 1 has, for example, a hexagonal crystal structure.
  • Main surface 1A is, for example, a crystal plane having an off angle of less than 8 ° with respect to the Si surface.
  • silicon carbide substrate 1 is a silicon carbide substrate capable of forming a high-quality semiconductor layer on main surface 1A.
  • a raw material substrate preparation step is first performed as a step (S10).
  • this step (S10) an ingot made of, for example, hexagonal silicon carbide is sliced to obtain raw material substrate 1 having a disk shape.
  • the ingot can be grown in the ⁇ 0001> direction, for example.
  • the ingot is sliced so that, for example, a main surface 1A having an off angle of 8 ° or less with respect to the (0001) plane is formed.
  • the MP step is performed as a step (S20).
  • mechanical polishing (MP) using hard abrasive grains is performed on the main surface 1A of the raw material substrate 1 prepared in the step (S10). Thereby, the roughness of 1 A of main surfaces of the raw material board
  • substrate 1 is reduced.
  • a CMP step is performed as a step (S30).
  • CMP chemical mechanical polishing
  • S30 chemical mechanical polishing
  • CMP can be performed using a polishing apparatus as described below.
  • polishing apparatus 50 used in the present embodiment includes a surface plate 51, a holder 52, and a polishing liquid supply unit 53.
  • Surface plate 51 includes a body portion 51B having a disk shape, and a shaft portion 51C that is connected to the main body portion 51B so as to include the center axis A 1 of the body portion 51B.
  • One main surface of the main body 51B is a polished surface 51A.
  • the shaft portion 51C of the surface plate 51 is connected to a driving device (not shown) such as a motor. It is driven by the driving device, the main body 51B and is rotatable in the direction of arrow ⁇ to the center axis A 1 as the rotation axis.
  • Holder 52 includes a body portion 52B having a disk shape, and a shaft portion 52C that is connected to the main body portion 52B so as to include the central axis A 2 of the main body portion 52B.
  • the diameter of the main body 52B of the holder 52 is smaller than the diameter of the main body 51B of the surface plate 51.
  • One main surface of the main body 52B is a holding surface 52A that holds the raw material substrate 1.
  • the shaft portion 52C of the holder 52 is connected to a driving device (not shown) such as a motor. It is driven by the driving device, the main body 52B and is rotatable on the central axis A 2 in the direction of arrow ⁇ as a rotation axis.
  • the central axis A 2 of the center axis A 1 and the holder 52 of the plate 51 are parallel. That is, the main body portion 52B of the holder 52 and the main body portion 51B of the surface plate 51 are rotatable in the circumferential direction about a parallel and different central axis as a rotation axis.
  • the direction of rotation of the main body 52B of the holder 52 may be the same as the direction of rotation of the main body 51B of the surface plate 51, as shown in FIG.
  • the holding surface 52A of the holder 52 and the polishing surface 51A of the surface plate 51 face each other.
  • the polishing liquid supply unit 53 is disposed on the polishing surface 51A of the surface plate 51 apart from the surface plate 51, and supplies the polishing liquid (slurry) 91 onto the polishing surface 51A.
  • the polishing liquid supply unit 53 is connected to, for example, a tank (not shown) that holds the polishing liquid 91 and supplies the polishing liquid 91 onto the polishing surface 51A with a desired supply amount.
  • the raw material substrate 1 that has been mechanically polished in the step (S20) is attached to and held on a holding surface 52A of the holder 52, for example.
  • raw material substrate 1 is held by holder 52 such that main surface 1B opposite to main surface 1A on which a semiconductor layer made of silicon carbide is to be formed by epitaxial growth in silicon carbide substrate 1 is in contact with holding surface 52A. Is done. Thereby, 1 A of main surfaces in which a semiconductor layer should be formed opposes polishing surface 51A.
  • surface plate 51 and the holder 52 rotates the center axis A 1 and the central axis A 2 as a rotation axis, respectively. And the space
  • the polishing liquid 91 is supplied from the polishing liquid supply unit 53 onto the polishing surface 51A.
  • the main surface 1A of the raw material substrate 1 is subjected to chemical mechanical polishing. More specifically, the region including the main surface 1A is oxidized by the oxidizing agent contained in the polishing liquid 91, and the region is removed by the polishing agent contained in the polishing liquid 91, whereby CMP proceeds.
  • the soot polishing liquid 91 contains permanganate ions as an oxidizing agent.
  • the concentration of permanganate ions exceeds 5% by weight.
  • the concentration of permanganate ions is, for example, 10% by mass or more and 20% by mass or less. Thereby, a sufficient oxidation rate of the raw material substrate 1 by the polishing liquid 91 is ensured.
  • the concentration of permanganate ions contained in the polishing liquid 91 may be 40% by mass or less. Thereby, the damage by the oxidizing agent to the polishing apparatus 50 can be suppressed.
  • Permanganate ions can be derived from, for example, Na (sodium) salts. That is, sodium permanganate may be added to the polishing liquid as an oxidizing agent. By doing so, it becomes easy to achieve the concentration of the permanganate ion at room temperature.
  • the permanganate ion may be derived from, for example, a K (potassium) salt.
  • the soot polishing liquid 91 may have been passed through a PTFE (polytetrafluoroethylene) resin filter having a pore diameter of 5 ⁇ m or less.
  • the temperature of the polishing liquid 91 may be 35 ° C. or higher. This is because the polishing efficiency is improved.
  • the polishing liquid 91 includes abrasive grains (free abrasive grains) made of a metal oxide as an abrasive, for example.
  • the polishing liquid 91 may include, for example, one or more kinds of abrasive grains selected from the group consisting of abrasive grains made of Al 2 O 3 , abrasive grains made of Cr 2 O 3, and abrasive grains made of ZrO 2. Good.
  • a metal oxide having a higher polishing power than that of SiO 2 as an abrasive By using a metal oxide having a higher polishing power than that of SiO 2 as an abrasive, a high polishing rate can be achieved while suppressing linear etch pit groups.
  • the average particle size of the abrasive is preferably less than 0.5 ⁇ m.
  • the pH of the soot polishing liquid 91 can be less than 5. By making the polishing liquid 91 sufficiently acidic, a high polishing rate can be achieved while suppressing the linear etch pit group.
  • the polishing liquid 91 may achieve the above pH value, for example, by containing nitric acid.
  • the polishing liquid 91 may contain a surfactant.
  • the viscosity of the polishing liquid 91 can be, for example, 0.002 Pa ⁇ s or more and 0.2 Pa ⁇ s or less.
  • a cleaning step is performed as a step (S40).
  • the main surface 1A of the raw material substrate 1 subjected to the chemical mechanical polishing in the step (S30) is cleaned.
  • silicon carbide substrate 1 of the present embodiment is obtained.
  • the main surface 1A can be cleaned, for example, using hydrochloric acid as a cleaning liquid.
  • washing with water pure water
  • the polishing liquid 91 adhered to the raw material substrate 1 in the step (S30) is removed.
  • Mn (manganese) contained in the polishing liquid 91 can be prevented from being taken into the oxide film formed on the surface of the silicon carbide substrate 1.
  • the concentration of permanganate ions contained in CMP polishing liquid 91 is set to a concentration exceeding 10 mass%.
  • silicon carbide substrate 1 becomes a silicon carbide substrate capable of forming a high-quality semiconductor layer on main surface 1A.
  • Silicon carbide substrate In the same procedure as in the above embodiment, an experiment was performed in which the silicon carbide substrate 1 was produced by changing the concentration of permanganate ions in the polishing liquid used for CMP, and the linear etch pit group was observed.
  • the experimental procedure is as follows.
  • a plurality of raw material substrates 1 having a substrate diameter of 100 mm were prepared, and mechanical polishing was performed under the same conditions (steps (S10) and (S20)).
  • CMP is performed on the main surface 1A of the mechanically polished raw material substrate 1 using a polishing liquid 91 containing permanganate ions as an oxidizing agent, ZrO 2 abrasive grains as an abrasive and nitric acid as a pH adjusting liquid. did.
  • the surface pressure was 600 g / cm 2
  • the polishing time was 1 hour
  • the pH was 4
  • the amount of ZrO 2 abrasive grains added was 15 g / L
  • only the concentration of permanganate ions in the polishing liquid 91 was changed.
  • the obtained sample was etched with chlorine gas in the following procedure.
  • the sample was inserted into the reaction tube, heated to 900 ° C., and the pressure was reduced to 50 Pa.
  • chlorine gas was introduced into the reaction tube at a flow rate of 0.5 slm for 5 minutes to etch the sample.
  • the pressure in the reaction tube is reduced to 50 Pa and held for 30 minutes, and then a mixed gas containing 10 vol% oxygen and 90 vol% nitrogen is introduced into the reaction tube at a flow rate of 2.5 slm for 10 minutes.
  • the surface carbonized layer by chlorine gas etching was removed from the sample.
  • main surface 1A of the obtained sample (silicon carbide substrate 1) was observed with a differential interference microscope, and the total length of the linear etch pit group was investigated.
  • FIG. 4 is a photograph of an example of the observed linear etch pit group. Etch pits formed by etching with chlorine gas are arranged in a line to form a linear etch pit group 19. Each sample was observed, and the relationship between the permanganate ion concentration of the polishing liquid 91 in CMP, the polishing rate, and the total length of the linear etch pit group was investigated. The survey results are shown in FIGS.
  • the horizontal axis represents the permanganate ion concentration
  • the vertical axis represents the polishing rate.
  • the horizontal axis represents the permanganate ion concentration
  • the vertical axis represents the total length of the linear etch pit groups observed in the main surface 1A. Referring to FIG. 6, in the region where the concentration of permanganate ions is up to 10% by mass, the total length of the linear etch pit group is rapidly reduced as the concentration of permanganate ions is increased. And in the range whose concentration of a permanganate ion is 10 mass% or more, the total length of a linear etch pit group is the board
  • the polishing rate increases as the concentration of permanganate ions increases. Therefore, it can be said that the concentration of permanganate ions contained in the polishing liquid 91 should be 10% by mass or more.
  • the concentration of permanganate ions contained in the polishing liquid 91 is preferably 40% by mass or less. Furthermore, referring to FIG. 5, from the viewpoint of increasing the polishing rate, the concentration of permanganate ions is preferably 15% by mass or more. In consideration of damage to the polishing apparatus due to an increase in the concentration of permanganate ions, the concentration of permanganate ions can be set to 15% by mass or more and 20% by volume or less, for example.
  • the concentration of permanganate ions is preferably 20% by mass or more. Moreover, it can be said that the concentration of permanganate ions is preferably 35% by mass or less from the viewpoint of emphasizing the reduction of the total length of the linear etch pit group.
  • a linear etch pit group and a crystal defect are distinguished by the following method.
  • PL (Photo Luminescence) imaging measurement is performed on the surface opposite to the surface subjected to chlorine etching. Crystal defects are detected by PL imaging measurement.
  • the parameters for the PL imaging measurement are exemplified below.
  • the wavelength of the excitation light is 313 nm.
  • the light receiving filter is a band-pass filter having a wavelength of 390 nm and has a function of passing only light having a wavelength of 390 nm.
  • the irradiation time of the excitation light is 5 seconds.
  • the measurement area covers the entire surface with a pitch of 2.3 mm square.
  • a linear etch pit group is detected by subtracting information on crystal defects obtained by PL imaging from information obtained by a differential interference microscope.
  • the defect rate was less than 30%.
  • the defect rate reached 37%.
  • the defect rate exceeded 60% in the sample whose total length of the linear etch pit group was 240 mm. That is, when the total length of the linear etch pit group exceeds 150 mm, the defect rate increases rapidly. Therefore, occurrence of defects can be suppressed when the total length of the linear etch pit group is equal to or smaller than the substrate diameter.
  • a silicon carbide semiconductor device can be manufactured using the silicon carbide substrate 1 of the present disclosure. Since the silicon carbide semiconductor device manufactured using the silicon carbide substrate 1 of the present disclosure includes a high-quality semiconductor layer on the main surface of the silicon carbide substrate 1, it is effective from the viewpoint of yield and reliability.
  • the present disclosure can be particularly advantageously applied to a silicon carbide substrate that is required to form a high-quality semiconductor layer made of silicon carbide on the main surface and a method for manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Weting (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 炭化珪素からなる炭化珪素基板であり、その主面を塩素ガスでエッチングした場合に、主面に観察される線状エッチピット群の総長さは炭化珪素基板の基板径以下である。

Description

炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法
 本開示は炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法に関する。
炭化珪素(SiC)基板は、半導体装置の製造に用いることができる。具体的には、たとえば炭化珪素基板上にエピタキシャル成長により炭化珪素からなる半導体層を形成し、さらに半導体層上に電極等を形成することにより、ダイオード、トランジスタなどの半導体装置を製造することができる。
  炭化珪素基板上にエピタキシャル成長により形成される半導体層の品質は、半導体層が形成される炭化珪素基板の主面の表面粗さの影響を大きく受ける。そのため、エピタキシャル成長により半導体層が形成されるべき炭化珪素基板の主面に対しては、機械研磨(Mechanical  Polishing;MP)、化学機械研磨(Chemical  Mechanical  Polishing;CMP)などの研磨が実施される。これにより、半導体層が形成されるべき主面の平滑性が確保され、高品質な半導体層をエピタキシャル成長させることができる。そして、炭化珪素基板の研磨に関しては、主面の平滑性を確保することを目的として種々の検討がなされている(たとえば、特許文献1および2参照)。
特開2009-238891号公報 特開2012-248569号公報
本開示の炭化珪素基板は、炭化珪素からなり、主面を塩素ガスでエッチングした場合に、当該主面に観察される線状エッチピット群の総長さが基板径以下である。
  本開示の炭化珪素基板の製造方法は、原料基板を準備する工程と、原料基板の主面を化学機械研磨により研磨する工程と、を備える。そして、上記主面を化学機械研磨により研磨する工程は、過マンガン酸イオンの濃度が5質量%を超える研磨液を用いて上記主面を化学機械研磨する工程を含む。
図1は炭化珪素基板の形状を示す概略斜視図である。 図2は炭化珪素基板の製造方法の一例を示すフローチャートである。 図3は研磨装置の構造を示す概略図である。 図4は線状エッチピット群の一例を示す微分干渉顕微鏡写真である。 図5は過マンガン酸イオン濃度と研磨レートとの関係を示す図である。 図6は線状エッチピット群の一例を示す微分干渉顕微鏡写真である。 図7は線状エッチピット群の長さとデバイス不良率の関係を示す図である。
  最初に本開示の実施態様を列記して説明する。本開示にかかる炭化珪素基板は、炭化珪素からなり、主面を塩素ガスでエッチングした場合に、当該主面に観察される線状エッチピット群の総長さが基板径以下である。
  上述のように、炭化珪素基板の主面が平滑である場合でも、当該主面上に炭化珪素からなる半導体層をエピタキシャル成長により形成すると、半導体層の品質が不十分となる場合がある。本発明者らの検討によれば、炭化珪素基板の主面が平滑であっても、主面を塩素ガスでエッチングした場合に、当該主面にエッチピットが線状に並んだエッチピット群である線状エッチピット群が多く形成されている場合、半導体層の品質が不十分となる。
具体的には、主面に観察される線状エッチピット群の長さの合計値である線状エッチピット群の総長さが基板径以下である場合、当該主面上にエピタキシャル成長により形成される半導体層が、ダイオード、トランジスタなどの半導体装置の作製に適した高品質なものとなる。本開示の炭化珪素基板においては、主面に観察される線状エッチピット群の総長さが基板径以下である。その結果、本開示の炭化珪素基板によれば、主面上に高品質な半導体層を形成可能な炭化珪素基板を提供することができる。
  上記炭化珪素基板において、上記炭化珪素は六方晶の結晶構造を有していてもよい。そして、上記主面は、Si面に対するオフ角が8°未満の結晶面であってもよい。六方晶炭化珪素の(0001)面であるSi面に近い結晶面に対応する主面において上記線状エッチピット群の総長さを基板径以下とすることにより、より確実に主面上に高品質な半導体層を形成することが可能となる。
  本開示に従った炭化珪素基板の製造方法は、原料基板を準備する工程と、原料基板の主面を化学機械研磨により研磨する工程と、を備える。そして、上記主面を化学機械研磨により研磨する工程は、過マンガン酸イオンの濃度が5質量%を超える研磨液を用いて上記主面を化学機械研磨する工程を含む。
  上述のように、炭化珪素基板の主面が平滑な場合であっても、当該主面を塩素ガスによりエッチングした場合に線状エッチピット群の総長さが長い場合、高品質な半導体層を形成することが困難となる。本発明者らは、CMPの研磨液に含まれる酸化剤である過マンガン酸イオンの濃度を従来よりも高く設定することにより、上記線状エッチピット群の低減が可能であることを見出した。これは、たとえば以下のような理由によるものと考えることができる。
  CMPにおいては、炭化珪素基板の表層領域に対する酸化剤による酸化と、酸化された表層領域の研磨剤による除去とが同時に進行することにより、基板の主面が研磨される。
ここで、従来の酸化剤の濃度レベルであっても、表面の平滑性を確保可能な酸化レートは達成される。しかし、従来のCMPにおける酸化レートでは、研磨剤による表層領域の除去に際して、炭化珪素基板に研磨剤によるダメージが導入される。このダメージは、主面の平滑性に与える影響は小さいものの、主面上に形成される半導体層の品質に影響を与える。このダメージは、上記塩素ガスによるエッチングにより線状エッチピット群として顕在化する。そして、CMPの研磨液に含まれる過マンガン酸イオンの濃度を従来よりも高いレベルの濃度、具体的には5質量%を超える濃度に設定することにより、酸化レートが高くなり、上記研磨剤によるダメージの導入が抑制される。
  本開示の炭化珪素基板の製造方法においては、CMPの研磨液に含まれる過マンガン酸イオンの濃度が10質量%を超える濃度に設定されてもよい。これにより、本開示の炭化珪素基板の製造方法によれば、主面上に高品質な半導体層を形成可能な炭化珪素基板を提供することができる。
  上記研磨液は、ポア径5μm以下のPTFE樹脂製フィルターを通されたものであってもよい。
  上記研磨液の温度は、35℃以上であってもよい。
  上記研磨液は、過マンガン酸ナトリウムを含んでもよい。
  上記炭化珪素基板の製造方法において、研磨液の過マンガン酸イオンの濃度は40質量%以下であってもよい。過マンガン酸イオンの濃度を、40質量%を超えるレベルにまで上昇させても、炭化珪素基板に導入されるダメージを抑制する効果は飽和する。そのため、研磨設備への酸化剤によるダメージを考慮して、過マンガン酸イオンの濃度は40質量%以下に設定してもよい。
  上記炭化珪素基板の製造方法において、上記研磨液は金属酸化物からなる研磨剤を含んでいてもよい。研磨剤(砥粒)として広く使用されるSiO(二酸化珪素)に比べて研磨力の高い金属酸化物を本開示の炭化珪素基板の製造方法における研磨剤として使用することにより、線状エッチピット群を抑制しつつ、高い研磨レートを達成することができる。
研磨剤を構成する金属酸化物としては、たとえばAl(酸化アルミニウム)、Cr(酸化クロム)、ZrO(酸化ジルコニウム)などを採用することができる。
  上記炭化珪素基板の製造方法において、上記研磨液のpH(power  of  Hydrogen)は5未満であってもよい。本開示の炭化珪素基板の製造方法における研磨液を十分な酸性とすることにより、線状エッチピット群を抑制しつつ、高い研磨レートを達成することができる。
  上記炭化珪素基板の製造方法は、化学機械研磨により研磨された上記主面を洗浄する工程をさらに備えていてもよい。そして、上記主面を洗浄する工程は、塩酸を洗浄液として上記主面を洗浄する工程を含んでいてもよい。塩酸を用いた洗浄を実施することにより、CMP後の炭化珪素基板から過マンガン酸イオンを十分に除去することができる。
  上記炭化珪素基板の製造方法において、上記炭化珪素は六方晶の結晶構造を有していてもよい。そして、上記主面は、Si面に対するオフ角が8°未満の結晶面であってもよい。六方晶炭化珪素の(0001)面であるSi面に近い結晶面に対応する主面に対して上記CMPを実施することにより、より確実に主面上に高品質な半導体層を形成することが可能となる。
  [実施形態の詳細]
  次に、本開示にかかる炭化珪素基板の一実施の形態を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない場合がある。
  図1を参照して、本実施の形態における炭化珪素基板1は、円盤状の形状を有しており、かつ主面1Aを有している。主面1Aを塩素ガスでエッチングした場合に、主面1Aに観察される線状エッチピット群の総長さは基板径以下である。つまり、たとえば基板径が100mmである場合、線状エッチピット群の総長さは100mm以下である。基板径が150mmである場合、線状エッチピット群の総長さは150mm以下である。線状エッチピット群は、たとえば塩素ガスでエッチングした主面1Aを微分干渉顕微鏡により観察して確認することができる。なお、主面1AをKOH(水酸化カリウム)でエッチングした場合は、塩素ガスでエッチングした場合よりエッチレートが低い。つまり、主面1AをKOHでエッチングした場合に主面1Aに観察される線状エッチピット群の総長さが基板径程度であれば、当該主面1Aを塩素ガスでエッチングした場合に観察される線状エッチピット群の総長さは基板径を超える可能性がある。
  炭化珪素基板1の基板径は、半導体装置の製造効率等を考慮して、4インチ以上(100mm以上)であることが好ましい。炭化珪素基板1の基板径は、たとえば6インチ以上(150mm以上)であってもよい。主面1Aは、炭化珪素基板1を用いた半導体装置の製造に際して、この上にエピタキシャル成長により炭化珪素からなる半導体層が形成されるべき表面である。炭化珪素基板1を構成する炭化珪素は、たとえば六方晶の結晶構造を有している。主面1Aは、たとえばSi面に対するオフ角が8°未満の結晶面である。
  上述のように、炭化珪素基板1の主面1Aに観察される線状エッチピット群の総長さは基板径以下である。その結果、炭化珪素基板1は、主面1A上に高品質な半導体層を形成可能な炭化珪素基板となっている。
  次に、上記炭化珪素基板1の製造方法について、その一例を説明する。図2を参照して、まず工程(S10)として原料基板準備工程が実施される。この工程(S10)では、たとえば六方晶炭化珪素からなるインゴットがスライスされ、円盤状の形状を有する原料基板1が得られる。インゴットは、たとえば<0001>方向に成長したものとすることができる。そして、このインゴットが、たとえば(0001)面に対するオフ角が8°以下となる主面1Aが形成されるようにスライスされる。
  次に、工程(S20)としてMP工程が実施される。この工程(S20)では、工程(S10)において準備された原料基板1の主面1Aに対して、硬質の砥粒を用いた機械研磨(MP)が実施される。これにより、原料基板1の主面1Aの粗さが低減される。
  次に、工程(S30)としてCMP工程が実施される。この工程(S30)では、工程(S20)において機械研磨された原料基板1の主面1Aに対して化学機械研磨(CMP)が実施される。CMPは、以下のような研磨装置を用いて実施することができる。
  図3を参照して、本実施の形態において用いられる研磨装置50は、定盤51と、ホルダ52と、研磨液供給部53とを備えている。定盤51は、円盤状の形状を有する本体部51Bと、本体部51Bの中心軸Aを含むように本体部51Bに接続された軸部51Cとを含む。本体部51Bの一方の主面が研磨面51Aとなっている。定盤51の軸部51Cは、モータなどの駆動装置(図示しない)に接続されている。この駆動装置により駆動されて、本体部51Bは中心軸Aを回転軸として矢印αの向きに回転可能となっている。
  ホルダ52は、円盤状の形状を有する本体部52Bと、本体部52Bの中心軸Aを含むように本体部52Bに接続された軸部52Cとを含む。ホルダ52の本体部52Bの直径は、定盤51の本体部51Bの直径よりも小さい。本体部52Bの一方の主面が、原料基板1を保持する保持面52Aとなっている。ホルダ52の軸部52Cは、モータなどの駆動装置(図示しない)に接続されている。この駆動装置により駆動されて、本体部52Bは中心軸Aを回転軸として矢印βの向きに回転可能となっている。定盤51の中心軸Aとホルダ52の中心軸Aとは、平行である。すなわち、ホルダ52の本体部52Bと、定盤51の本体部51Bとは、平行かつ異なった中心軸を回転軸として、周方向に回転可能となっている。ホルダ52の本体部52Bの回転の向きは、図3に示すように、定盤51の本体部51Bの回転の向きと同じであってもよい。ホルダ52の保持面52Aと定盤51の研磨面51Aとが対向する。
  研磨液供給部53は、定盤51の研磨面51A上に定盤51から離れて配置され、研磨面51A上に研磨液(スラリー)91を供給する。研磨液供給部53は、たとえば研磨液91を保持するタンク(図示しない)に接続され、所望の供給量にて研磨液91を研磨面51A上に供給する。
  次に、研磨装置50を用いたCMPについて説明する。まず、工程(S20)において機械研磨された原料基板1が、たとえばホルダ52の保持面52Aに貼り付けられて保持される。このとき、炭化珪素基板1において炭化珪素からなる半導体層がエピタキシャル成長により形成されるべき主面1Aとは反対側の主面1Bが、保持面52Aに接触するように原料基板1がホルダ52に保持される。これにより、半導体層が形成されるべき主面1Aが、研磨面51Aに対向する。
  次に、定盤51およびホルダ52が、それぞれ中心軸Aおよび中心軸Aを回転軸として回転する。そして、定盤51の本体部51Bとホルダ52の本体部52Bとの間隔が調整され、定盤51の研磨面51Aと原料基板1の主面1Aとが接触する。このとき、研磨液供給部53から研磨液91が研磨面51A上に供給される。これにより、原料基板1の主面1Aが化学機械研磨される。より具体的には、研磨液91に含まれる酸化剤により主面1Aを含む領域が酸化されつつ、研磨液91に含まれる研磨剤により当該領域が除去されることによりCMPが進行する。
  研磨液91には、酸化剤として過マンガン酸イオンが含まれる。過マンガン酸イオンの濃度は5質量%を超える。過マンガン酸イオンの濃度は、たとえば10質量%以上20質量%以下である。これにより、研磨液91による原料基板1の十分な酸化レートが確保される。研磨液91に含まれる過マンガン酸イオンの濃度は、40質量%以下であってもよい。これにより、研磨装置50への酸化剤によるダメージを抑制することができる。過マンガン酸イオンは、たとえばNa(ナトリウム)塩由来のものとすることができる。すなわち、過マンガン酸ナトリウムが、酸化剤として研磨液に添加されてもよい。このようにすることにより、常温において上記過マンガン酸イオンの濃度を達成することが容易となる。過マンガン酸イオンは、たとえばK(カリウム)塩由来のものであってもよい。
  研磨液91は、ポア径5μm以下のPTFE(ポリテトラフルオロエチレン)樹脂製フィルターを通されたものであってもよい。また研磨液91の温度は、35℃以上であってもよい。研磨の効率が向上するからである。
  研磨液91には、たとえば研磨剤として金属酸化物からなる砥粒(遊離砥粒)が含まれる。研磨液91には、たとえばAlからなる砥粒、Crからなる砥粒およびZrOからなる砥粒からなる群から選択される1種以上の砥粒が含まれていてもよい。
SiOに比べて研磨力の高い金属酸化物を研磨剤に採用することにより、線状エッチピット群を抑制しつつ、高い研磨レートを達成することができる。研磨剤の平均粒径は、0.5μm未満とすることが好ましい。
  研磨液91のpHは5未満とすることができる。研磨液91を十分な酸性とすることにより、線状エッチピット群を抑制しつつ、高い研磨レートを達成することができる。研磨液91には、たとえば硝酸が含まれることにより、上記pHの値が達成されてもよい。研磨液91には、界面活性剤が含まれていてもよい。研磨液91の粘度は、たとえば0.002Pa・s以上0.2Pa・s以下とすることができる。
  次に、工程(S40)として洗浄工程が実施される。この工程(S40)では、工程(S30)において化学機械研磨された原料基板1の主面1Aが洗浄される。これにより、本実施の形態の炭化珪素基板1が得られる。主面1Aの洗浄は、たとえば塩酸を洗浄液として実施することができる。さらに、塩酸を洗浄液とした洗浄の後、水(純水)を用いた洗浄を行ってもよい。これにより、上記工程(S30)において原料基板1に付着した研磨液91が除去される。その結果、研磨液91に含まれるMn(マンガン)が炭化珪素基板1の表面に形成される酸化膜に取り込まれることを抑制することができる。以上の手順により、本実施の形態における炭化珪素基板の製造方法は完了する。
  本実施の形態の炭化珪素基板1の製造方法においては、CMPの研磨液91に含まれる過マンガン酸イオンの濃度が10質量%を超える濃度に設定される。これにより、炭化珪素基板1は、主面1A上に高品質な半導体層を形成することが可能な炭化珪素基板となる。
  [炭化珪素基板]
  上記実施の形態と同様の手順において、CMPに用いる研磨液の過マンガン酸イオンの濃度を変化させて炭化珪素基板1を作製し、線状エッチピット群を観察する実験を行った。実験の手順は以下の通りである。
  まず、複数枚の基板径100mmの原料基板1を準備し、同条件で機械研磨を実施した(工程(S10)および(S20))。機械研磨された原料基板1の主面1Aに対して、酸化剤としての過マンガン酸イオン、研磨剤としてのZrO砥粒およびpH調整液としての硝酸を含む研磨液91を用いてCMPを実施した。面圧は600g/cm、研磨時間は1時間、pHは4、ZrO砥粒の添加量は15g/Lの条件で、研磨液91中の過マンガン酸イオンの濃度のみを変化させてCMPを実施した(工程(S30))。その後、塩酸を用いた洗浄、純水を用いた洗浄を同条件で順次実施し(工程(S40))、得られた炭化珪素基板をサンプルとした。
  次に、得られたサンプルを以下の手順で塩素ガスによりエッチングした。まず、サンプルを反応管内に挿入して900℃まで昇温し、圧力を50Paにまで減圧した。次に、塩素ガスを反応管内に0.5slmの流量で5分間導入し、サンプルをエッチングした。その後、反応管内の圧力を50Paにまで減圧し、30分間保持した後、10体積%の酸素と90体積%の窒素とを含む混合ガスを10分間、2.5slmの流量で反応管内に導入して塩素ガスエッチングによる表面炭化層をサンプルから除去した。そして、得られたサンプル(炭化珪素基板1)の主面1Aを微分干渉顕微鏡にて観察し、線状エッチピット群の総長さを調査した。
  図4は、観察された線状エッチピット群の一例の写真である。塩素ガスによるエッチングにより形成されるエッチピットが線状に並んで線状エッチピット群19が構成されている。各サンプルについて観察を行い、CMPにおける研磨液91の過マンガン酸イオン濃度と研磨レートおよび線状エッチピット群の総長さとの関係を調査した。調査結果を図5および図6に示す。
  図5において、横軸は過マンガン酸イオン濃度、縦軸は研磨レートである。また、図6において、横軸は過マンガン酸イオン濃度、縦軸は主面1A内に観察された線状エッチピット群の総長さである。図6を参照して、過マンガン酸イオンの濃度が10質量%までの領域において、線状エッチピット群の総長さは過マンガン酸イオンの濃度の上昇の伴って急激に小さくなっている。そして、過マンガン酸イオンの濃度が10質量%以上の範囲において、線状エッチピット群の総長さが基板径(100mm)以下となっている。また、図5を参照して、過マンガン酸イオンの濃度が10質量%までの領域において、研磨レートは過マンガン酸イオンの濃度の上昇の伴って大きくなっている。したがって、研磨液91に含まれる過マンガン酸イオンの濃度は、10質量%以上とすべきであるといえる。
  一方、図6を参照して、過マンガン酸イオンの濃度が40質量%を超えると、線状エッチピット群の総長さは増大する傾向にある。また、図5を参照して、過マンガン酸イオンの濃度が40質量%を超えると、研磨レートの上昇は飽和している。したがって、研磨液91に含まれる過マンガン酸イオンの濃度は、40質量%以下とすることが好ましい。さらに、図5を参照して、研磨レート上昇の観点から、過マンガン酸イオンの濃度は15質量%以上とすることが好ましい。過マンガン酸イオンの濃度増大による研磨装置へのダメージを考慮して、過マンガン酸イオンの濃度は、たとえば15質量%以上20体積%以下とすることができる。また、線状エッチピット群の総長さの低減を重視する観点からは、過マンガン酸イオンの濃度は20質量%以上とすることが好ましい。また、線状エッチピット群の総長さの低減を重視する観点からは、過マンガン酸イオンの濃度は35質量%以下とすることが好ましいといえる。
 なお線状エッチピット群の検出にあたり、炭化珪素基板1に結晶欠陥が存在している場合、線状エッチピット群と結晶欠陥を区別することが好ましい。具体的には、塩素エッチング後のサンプルを微分干渉顕微鏡にて観察するときに洗浄エッチピット群と結晶欠陥が混在して検出される場合がある。よって一例として、以下の方法で線状エッチピット群と結晶欠陥を区別する。
まず、塩素エッチングされる面の反対側の面について、PL(Photo Luminescence)イメージング測定がなされる。PLイメージング測定によって、結晶欠陥が検出される。PLイメージング測定に際してのパラメータが以下に例示される。励起光の波長は313nmである。受光フィルターは、波長390nmのバンドパスフィルターであり、波長390nmの光のみを通す機能を有する。励起光の照射時間は5秒である。測定領域は、2.3mm角のピッチで全面をカバーする。
微分干渉顕微鏡で得られた情報からPLイメージングで得られた結晶欠陥の情報を差分することにより、線状エッチピット群が検出される。
  [デバイス不良率]
図7に示されるように、線状エッチピット群の総長さとデバイスの不良率には関係が認められる。デバイスの作成には、直径が150mmの炭化珪素基板1が用いられた。炭化珪素基板1上にチップサイズ6mm角のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)デバイスが形成された。不良の判断は、ゲート電極とソース電極間に0Vから20Vまで電圧を印加したときに10nA以上のリーク電流が発生すること、あるいはゲート電極とソース電極間がショートし、電圧を印加できない状態になることである。
図7を参照して、線状エッチピット群の総長さが0mm、20mm、60mm、100mmおよび150mmのサンプルにおいては、不良率が30%未満にとどまった。一方、線状エッチピット群の総長さが180mmのサンプルでは、不良率が37%におよんだ。また、線状エッチピット群の総長さが240mmのサンプルでは、不良率が60%を超えた。つまり、線状エッチピット群の総長さが150mmを超えると不良率が急増する。したがって、線状エッチピット群の総長さが基板径以下であると不良の発生を抑制できる。
なお、本開示の炭化珪素基板1を用いて炭化珪素半導体装置を製造することができる。本開示の炭化珪素基板1を用いて製造された炭化珪素半導体装置は、炭化珪素基板1の主面上に高品質な半導体層を備えるので、歩留りと信頼性の観点から有効である。
  今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本開示は、主面上に炭化珪素からなる高品質な半導体層を形成することが求められる炭化珪素基板およびその製造方法に、特に有利に適用され得る。
1  炭化珪素基板(原料基板)
1A  主面
1B  主面
19  線状エッチピット群
50  研磨装置
51  定盤
51A  研磨面
51B  本体部
51C  軸部、
52  ホルダ
52A  保持面
52B  本体部
52C  軸部
53  研磨液供給部
91  研磨液

Claims (12)

  1.   炭化珪素からなり、
      主面を塩素ガスでエッチングした場合に、前記主面に観察される線状エッチピット群の総長さが基板径以下である、炭化珪素基板。
  2.   前記炭化珪素は六方晶の結晶構造を有し、
      前記主面は、Si面に対するオフ角が8°未満の結晶面である、請求項1に記載の炭化珪素基板。
  3.   原料基板を準備する工程と、
      前記原料基板の主面を化学機械研磨により研磨する工程と、を備え、
      前記主面を化学機械研磨により研磨する工程は、過マンガン酸イオンの濃度が5質量%を超える研磨液を用いて前記主面を化学機械研磨する工程を含む、炭化珪素基板の製造方法。
  4.   前記過マンガン酸イオンの濃度は10質量%以上である、請求項3に記載の炭化珪素基板の製造方法。
  5.   前記研磨液の温度は、35℃以上である、請求項3に記載の炭化珪素基板の製造方法。
  6.   前記研磨液は、過マンガン酸ナトリウムまたは過マンガン酸カリウムを含む、請求項3に記載の炭化珪素基板の製造方法。
  7.   前記研磨液の過マンガン酸イオンの濃度は40質量%以下である、請求項3に記載の炭化珪素基板の製造方法。
  8.   前記研磨液は金属酸化物からなる研磨剤を含む、請求項3から7のいずれか1項に記載の炭化珪素基板の製造方法。
  9.   前記研磨液のpHは5未満である、請求項3~8のいずれか1項に記載の炭化珪素基板の製造方法。
  10.   化学機械研磨により研磨された前記主面を洗浄する工程をさらに備え、
      前記主面を洗浄する工程は、塩酸を洗浄液として前記主面を洗浄する工程を含む、請求項3~9のいずれか1項に記載の炭化珪素基板の製造方法。
  11.   前記炭化珪素は六方晶の結晶構造を有し、
      前記主面は、Si面に対するオフ角が8°未満の結晶面である、請求項3~10のいずれか1項に記載の炭化珪素基板の製造方法。
  12.  請求項1または2に記載の炭化珪素基板を用いる炭化珪素半導体装置の製造方法。
PCT/JP2015/081027 2014-11-27 2015-11-04 炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法 WO2016084561A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201910475115.9A CN110299403B (zh) 2014-11-27 2015-11-04 碳化硅基板
DE112015005348.4T DE112015005348T5 (de) 2014-11-27 2015-11-04 Siliziumkarbid-Substrat, Verfahren zur Herstellung desselben und Verfahren zur Hersteliung einer Siliziumkarbid-Halbleitervorrichtung
CN201580063761.4A CN107002280B (zh) 2014-11-27 2015-11-04 碳化硅基板、其制造方法和制造碳化硅半导体装置的方法
JP2016561469A JP6699559B2 (ja) 2014-11-27 2015-11-04 炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法
US15/527,121 US10030319B2 (en) 2014-11-27 2015-11-04 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
US15/989,373 US10221501B2 (en) 2014-11-27 2018-05-25 Silicon carbide substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014240106 2014-11-27
JP2014-240106 2014-11-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/527,121 A-371-Of-International US10030319B2 (en) 2014-11-27 2015-11-04 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
US15/989,373 Continuation US10221501B2 (en) 2014-11-27 2018-05-25 Silicon carbide substrate

Publications (1)

Publication Number Publication Date
WO2016084561A1 true WO2016084561A1 (ja) 2016-06-02

Family

ID=56074132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081027 WO2016084561A1 (ja) 2014-11-27 2015-11-04 炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法

Country Status (5)

Country Link
US (2) US10030319B2 (ja)
JP (2) JP6699559B2 (ja)
CN (2) CN107002280B (ja)
DE (1) DE112015005348T5 (ja)
WO (1) WO2016084561A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203568A1 (ja) * 2019-03-29 2020-10-08 株式会社フジミインコーポレーテッド 研磨用組成物の製造方法および研磨方法
WO2022196292A1 (ja) * 2021-03-16 2022-09-22 信越半導体株式会社 炭化珪素単結晶ウェーハの結晶欠陥評価方法
WO2023054386A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023054385A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023189512A1 (ja) * 2022-03-30 2023-10-05 株式会社フジミインコーポレーテッド 研磨用組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292926B2 (ja) * 2013-11-08 2018-03-14 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP6585799B1 (ja) * 2018-10-15 2019-10-02 昭和電工株式会社 SiC基板の評価方法及びSiCエピタキシャルウェハの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226300A (ja) * 2000-04-07 2002-08-14 Hoya Corp 炭化珪素およびその製造方法
JP2008068390A (ja) * 2006-09-15 2008-03-27 Noritake Co Ltd 結晶材料の研磨加工方法
JP2009091222A (ja) * 2007-10-11 2009-04-30 Sumitomo Metal Ind Ltd SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP2009238891A (ja) * 2008-03-26 2009-10-15 Hitachi Metals Ltd SiC単結晶基板の製造方法
JP2011513991A (ja) * 2008-03-05 2011-04-28 キャボット マイクロエレクトロニクス コーポレイション 水溶性酸化剤を用いた炭化ケイ素の研磨方法
JP2012004270A (ja) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd 炭化珪素半導体の洗浄方法、炭化珪素半導体および炭化珪素半導体装置
JP2012248569A (ja) * 2011-05-25 2012-12-13 Asahi Glass Co Ltd 研磨剤および研磨方法
JP2013247329A (ja) * 2012-05-29 2013-12-09 Mitsui Mining & Smelting Co Ltd 研摩材スラリー

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427472B2 (ja) * 2005-03-18 2010-03-10 新日本製鐵株式会社 SiC単結晶基板の製造方法
CN101162693B (zh) * 2006-10-09 2011-02-16 西安能讯微电子有限公司 氮化镓表面低损伤蚀刻
CN101649162A (zh) * 2008-08-15 2010-02-17 安集微电子(上海)有限公司 一种用于化学机械研磨的抛光液
CN102301043B (zh) * 2009-01-30 2014-07-23 新日铁住金株式会社 外延碳化硅单晶基板及其制造方法
CN102533124A (zh) * 2010-12-31 2012-07-04 上海硅酸盐研究所中试基地 碳化硅衬底用抛光液
JP5506954B2 (ja) * 2011-08-29 2014-05-28 新日鐵住金株式会社 炭化珪素単結晶基板
CN102888193A (zh) * 2012-06-25 2013-01-23 上海应用技术学院 一种led衬底片用的蓝宝石或碳化硅晶片的表面处理用的化学机械抛光液及其制备方法
JP2014024701A (ja) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法
JP2014027093A (ja) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法
JP2014210690A (ja) * 2013-04-22 2014-11-13 住友電気工業株式会社 炭化珪素基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226300A (ja) * 2000-04-07 2002-08-14 Hoya Corp 炭化珪素およびその製造方法
JP2008068390A (ja) * 2006-09-15 2008-03-27 Noritake Co Ltd 結晶材料の研磨加工方法
JP2009091222A (ja) * 2007-10-11 2009-04-30 Sumitomo Metal Ind Ltd SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP2011513991A (ja) * 2008-03-05 2011-04-28 キャボット マイクロエレクトロニクス コーポレイション 水溶性酸化剤を用いた炭化ケイ素の研磨方法
JP2009238891A (ja) * 2008-03-26 2009-10-15 Hitachi Metals Ltd SiC単結晶基板の製造方法
JP2012004270A (ja) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd 炭化珪素半導体の洗浄方法、炭化珪素半導体および炭化珪素半導体装置
JP2012248569A (ja) * 2011-05-25 2012-12-13 Asahi Glass Co Ltd 研磨剤および研磨方法
JP2013247329A (ja) * 2012-05-29 2013-12-09 Mitsui Mining & Smelting Co Ltd 研摩材スラリー

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203568A1 (ja) * 2019-03-29 2020-10-08 株式会社フジミインコーポレーテッド 研磨用組成物の製造方法および研磨方法
WO2022196292A1 (ja) * 2021-03-16 2022-09-22 信越半導体株式会社 炭化珪素単結晶ウェーハの結晶欠陥評価方法
JP7494768B2 (ja) 2021-03-16 2024-06-04 信越半導体株式会社 炭化珪素単結晶ウェーハの結晶欠陥評価方法
WO2023054386A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023054385A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023189512A1 (ja) * 2022-03-30 2023-10-05 株式会社フジミインコーポレーテッド 研磨用組成物

Also Published As

Publication number Publication date
CN110299403B (zh) 2022-03-25
JP6699559B2 (ja) 2020-05-27
US10221501B2 (en) 2019-03-05
JP6939844B2 (ja) 2021-09-22
JPWO2016084561A1 (ja) 2017-09-07
DE112015005348T5 (de) 2017-08-10
CN107002280A (zh) 2017-08-01
JP2019178062A (ja) 2019-10-17
US10030319B2 (en) 2018-07-24
US20180274129A1 (en) 2018-09-27
CN107002280B (zh) 2019-06-18
CN110299403A (zh) 2019-10-01
US20170335489A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JP6939844B2 (ja) 炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法
JP4523935B2 (ja) 炭化珪素単結晶基板の研磨用水系研磨スラリー及び研磨法。
JP5358996B2 (ja) SiC単結晶基板の製造方法
US20110156058A1 (en) Silicon carbide monocrystal substrate and manufacturing method therefor
JP2020061562A (ja) 炭化珪素基板およびその製造方法
JP2007103463A (ja) ポリシングスラリー、GaxIn1−xAsyP1−y結晶の表面処理方法およびGaxIn1−xAsyP1−y結晶基板
WO2011021691A1 (ja) エピタキシャルシリコンウェーハの製造方法
JP5707682B2 (ja) エピタキシャルシリコンウェーハの製造方法
JP2010087106A (ja) 炭化珪素単結晶基板
WO2016125404A1 (ja) 炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置
JP2011042536A5 (ja)
CN110114518B (zh) GaAs衬底及其制造方法
JP5277722B2 (ja) 炭化珪素単結晶ウェハ表面の研磨方法
JP2007150167A (ja) 半導体ウエーハの平面研削方法および製造方法
WO2020084931A1 (ja) レーザマーク付きシリコンウェーハの製造方法およびレーザマーク付きシリコンウェーハ
JP2007123486A (ja) サファイア基板の表面処理方法
JP3651440B2 (ja) シリコンウェーハの評価方法及びそのエッチング液
JP6421505B2 (ja) サファイア基板の製造方法
JP2006093453A (ja) アルカリエッチング液及びアルカリエッチング方法
JP2008264952A (ja) 多結晶シリコン基板の平面研磨加工方法
JP4087345B2 (ja) Soiウェーハの結晶欠陥の評価方法
JP2011044606A (ja) エピタキシャルシリコンウェーハの製造方法
JP2011044606A5 (ja)
Kirino et al. Development of abrasive-free polishing method for Cu utilizing vacuum ultra-violet light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561469

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527121

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005348

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863101

Country of ref document: EP

Kind code of ref document: A1