WO2016084546A1 - 動圧軸受及びその製造方法 - Google Patents

動圧軸受及びその製造方法 Download PDF

Info

Publication number
WO2016084546A1
WO2016084546A1 PCT/JP2015/080562 JP2015080562W WO2016084546A1 WO 2016084546 A1 WO2016084546 A1 WO 2016084546A1 JP 2015080562 W JP2015080562 W JP 2015080562W WO 2016084546 A1 WO2016084546 A1 WO 2016084546A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
green compact
dynamic pressure
hydrodynamic bearing
powder
Prior art date
Application number
PCT/JP2015/080562
Other languages
English (en)
French (fr)
Inventor
哲弥 栗村
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112015005381.6T priority Critical patent/DE112015005381T5/de
Priority to CN201580058166.1A priority patent/CN107110209B/zh
Priority to US15/528,599 priority patent/US10099287B2/en
Publication of WO2016084546A1 publication Critical patent/WO2016084546A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/06Strength or rigidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/42Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the present invention relates to a hydrodynamic bearing and a manufacturing method thereof, and more particularly, to a hydrodynamic bearing using a green compact as a base and a manufacturing method thereof.
  • a dynamic pressure bearing has a dynamic pressure generating section for generating a dynamic pressure action in a lubricating fluid (for example, lubricating oil) in a bearing gap formed between the shaft to be supported.
  • a lubricating fluid for example, lubricating oil
  • the hydrodynamic bearing include those that support only a radial load, those that support only a thrust load, and those that support both a radial load and a thrust load.
  • a dynamic pressure bearing that supports a radial load has a dynamic pressure generating portion (radial dynamic pressure generating portion) on its inner peripheral surface, and a dynamic pressure bearing that supports a thrust load has a dynamic pressure generating portion (thrust dynamic) on its end surface. Pressure generating part).
  • Patent Document 1 describes a manufacturing procedure of a hydrodynamic bearing that supports a radial load among various hydrodynamic bearings. Specifically, at the same time as compression molding of a green compact of a raw material powder containing metal powder as a main raw material, a dynamic pressure generating portion is molded on the inner peripheral surface of the green compact, and then the green compact is sintered. A sintering process for obtaining a sintered body by bonding, and a dimension correcting process for correcting the dimension of the sintered body are performed. In this way, when the dynamic pressure generating portion is not molded into the green compact, and the dynamic pressure generating portion is molded into the sintered body in the dimension correction process (shaping process) or the like (for example, Patent Document 2).
  • a hydrodynamic bearing that supports a thrust load and a hydrodynamic bearing that supports both a radial load and a thrust load can also be manufactured in the same procedure as in Patent Document 1.
  • JP 2000-65065 A Japanese Patent No. 3607661
  • the sintering process is carried out mainly for the purpose of ensuring the strength required for the hydrodynamic bearing.
  • the green compact is usually heated at 800 ° C. or higher.
  • dimension correction processing shape correction processing
  • an object of the present invention is to provide a dynamic pressure that can be manufactured at a relatively low cost but has sufficient strength to withstand actual use and can stably exhibit desired bearing performance. It is to provide a bearing.
  • the first invention of the present application which was created to solve the above problems, is based on a green compact of a raw material powder containing a metal powder capable of forming an oxide film, and has a bearing gap between the shaft to be supported.
  • a hydrodynamic bearing having a dynamic pressure generating portion molded on a surface to be formed, having an oxide film formed between metal powder particles by subjecting the green compact to steam treatment, and 150 MPa or more It is characterized by having a crushing strength of
  • the second invention of the present application which was created to solve the above problems, has a dynamic pressure generating portion on a surface forming a bearing gap between the shaft to be supported and has a crushing strength of 150 MPa or more.
  • a method for manufacturing a hydrodynamic bearing in which a raw material powder containing a metal powder capable of forming an oxide film is compressed, and a hydrodynamic pressure generating portion is formed on a surface that forms a bearing gap with a shaft to be supported.
  • the “metal powder capable of forming an oxide film” in the present invention is, in other words, a metal powder having a high ionization tendency, for example, a powder of iron, aluminum, magnesium, chromium, or the above metal Alloy powder containing can be used. Only one kind of metal powder capable of forming an oxide film may be used, or a plurality of kinds may be mixed and used.
  • the “bearing gap” is a concept including at least one of a radial bearing gap and a thrust bearing gap. Therefore, the present invention can be applied to any of a dynamic pressure bearing that supports a radial load, a dynamic pressure bearing that supports a thrust load, or a dynamic pressure bearing that supports both a radial load and a thrust load.
  • the “dynamic pressure generating portion” may be any one that can cause a dynamic pressure action in a lubricating fluid such as lubricating oil interposed in the bearing gap. Examples include grooves arranged in a herringbone shape or a spiral shape. Further, “crushing strength” is a value calculated based on the method defined in JIS Z 2507.
  • a green compact of a raw material powder containing a metal powder capable of forming an oxide film is reacted with steam while being heated to a predetermined temperature (for example, 400 to 550 ° C.) in an oxidizing atmosphere.
  • a predetermined temperature for example, 400 to 550 ° C.
  • an oxide film is formed (generated) between the particles of the metal powder (particle surfaces of the metal powder).
  • the oxide film is a film of triiron tetroxide (Fe 3 O 4 ).
  • the oxide film formed between the particles of the metal powder functions as a bonding medium between the particles, and substitutes for the role of necking formed when the green compact is sintered.
  • the oxide film formed between the metal powder particles reduces the size of the internal pores of the green compact and lowers the porosity of the green compact. Therefore, it is possible to realize a dynamic pressure bearing that can prevent the decrease in rigidity of the fluid film formed in the bearing gap as much as possible and can stably exhibit desired bearing performance.
  • the steam treatment to be applied to the green compact is much lower than the heating temperature when the green compact is sintered, so that the dimensional change of the workpiece after the treatment can be reduced. Therefore, when the green compact is sintered, shaping processing such as sizing, which is indispensable after the sintering process, can be omitted. Further, if the amount of dimensional change can be reduced, the green compact molding die can be easily designed. Furthermore, if the processing temperature is low, the energy required for processing can be reduced and the processing cost can be reduced. As described above, according to the present invention, it is possible to obtain a hydrodynamic bearing capable of stably exhibiting desired bearing performance at a low cost while having a strength sufficient to withstand actual use.
  • the relative density of the green compact serving as the base is too high, it is difficult to allow water vapor to penetrate into the core of the green compact during the steam treatment, thereby improving the strength of the green compact.
  • it is difficult to form a contributing oxide film on the core of the green compact In addition to the large dimensional change caused by the steam treatment, there is a concern that the amount of lubricating oil that can be held in the internal pores of the dynamic pressure bearing (the amount of oil retained in the dynamic pressure bearing) is reduced.
  • the relative density of the green compact is preferably 80% or more and 88% or less.
  • the “relative density” here is also called a true density ratio and is calculated from the following relational expression.
  • Relative density (density of the whole green compact / true density) ⁇ 100 [%]
  • the “true density” in the above formula means the theoretical density of a material that does not have pores inside the raw material, such as a molten material, and the “density of the whole green compact” is measured by a method defined in, for example, JIS Z2501 can do.
  • the green compact is preferably a green compact of a raw material powder obtained by mixing copper powder and iron powder as a metal powder capable of forming an oxide film.
  • the green compact contains copper powder, the slidability of the surface (bearing surface) that forms the bearing gap can be improved, while the iron powder that is inexpensive and highly available is used as the metal powder.
  • the cost increase of the hydrodynamic bearing can be suppressed.
  • the blending ratio of iron powder is higher than copper powder, and if emphasizing the slidability of the bearing surface, the blending ratio of copper powder is more than iron powder. Can be raised.
  • the strength required for the hydrodynamic bearing (crushing ring strength of 150 MPa or more) can be ensured.
  • the steam treatment applied to the green compact does not mean that the longer the treatment time, the more the oxide film can be produced and the strength of the green compact can be increased. The formation of the film stops and the strength improvement effect of the green compact is saturated.
  • the longer the treatment time of the steam treatment the higher the cost required for the steam treatment, and hence the manufacturing cost of the hydrodynamic bearing. Therefore, it is preferable to set the treatment time of the steam treatment to 20 minutes or more and 60 minutes or less.
  • the hydrodynamic bearing according to the present invention can be used as a state impregnated with lubricating oil, that is, as an oil-impregnated hydrodynamic bearing.
  • the hydrodynamic bearing according to the present invention can be manufactured at a low cost, yet has a strength that can withstand actual use, and can stably exhibit desired bearing performance.
  • a fluid dynamic pressure bearing device that non-contact supports the shaft member so as to be relatively rotatable with respect to the dynamic pressure bearing can be configured by the bearing and the shaft member that rotates relative to the dynamic pressure bearing.
  • This fluid dynamic pressure bearing device can be suitably used by being incorporated in various motors such as a fan motor for a PC and a spindle motor for a disk drive device, and contributes to the cost reduction of various motors. it can.
  • FIG. 1 It is sectional drawing which shows an example of the fluid dynamic pressure bearing apparatus which used the dynamic pressure bearing which concerns on embodiment of this invention as a structural member. It is sectional drawing of the dynamic pressure bearing shown in FIG. It is a top view which shows the lower end surface of the dynamic pressure bearing shown in FIG. It is a figure which shows the compression molding process of a green compact typically, Comprising: It is a figure which shows the initial stage of the process. It is a figure which shows the intermediate stage of the compression molding process of a green compact. It is a figure which shows the correlation of the relative density of the hydrodynamic bearing which concerns on this invention, and the crumbling strength.
  • FIG. 1 shows an example of a fluid dynamic pressure bearing device using a dynamic pressure bearing 10 according to an embodiment of the present invention as a constituent member (using the dynamic pressure bearing 10 as a bearing sleeve 8).
  • a fluid dynamic pressure bearing device 1 shown in FIG. 1 includes a bearing sleeve 8 (dynamic pressure bearing 10), a shaft member 2 that is inserted into the inner periphery of the bearing sleeve 8 and rotates relative to the bearing sleeve 8, and the bearing sleeve 8 Is provided with a bottomed cylindrical housing 7 and a seal member 9 for sealing the opening of the housing 7.
  • the interior space of the housing 7 is filled with lubricating oil (shown by dense scattered hatching) as a lubricating fluid.
  • the seal member 9 is provided as the lower side and the opposite side in the axial direction as the lower side.
  • the housing 7 has a bottomed cylindrical shape integrally including a cylindrical cylindrical portion 7a and a bottom portion 7b that closes a lower end opening of the cylindrical portion 7a.
  • a step portion 7c is provided at the boundary between the cylindrical portion 7a and the bottom portion 7b, and the shaft of the bearing sleeve 8 with respect to the housing 7 is brought into contact with the upper end surface of the step portion 7c by contacting the lower end surface 8b of the bearing sleeve 8.
  • a direction relative position is determined.
  • this thrust dynamic pressure generating portion includes, for example, a spiral-shaped dynamic pressure groove and a convex hill portion that divides the dynamic pressure groove, as in a thrust dynamic pressure generating portion B described later. It is arranged alternately in the circumferential direction.
  • the seal member 9 is formed in an annular shape, and is fixed to the inner peripheral surface 7a1 of the cylindrical portion 7a of the housing 7 by an appropriate means.
  • the inner peripheral surface 9a of the seal member 9 is formed in a tapered surface shape that is gradually reduced in diameter downward, and the radial dimension is gradually reduced downward between the outer peripheral surface 2a1 of the opposing shaft member 2.
  • a seal space S is formed.
  • the seal space S has a buffer function that absorbs the volume change amount accompanying the temperature change of the lubricating oil filled in the internal space of the housing 7, and always seals the oil surface of the lubricating oil within the assumed temperature change range. It is held within the range of the space S in the axial direction.
  • the shaft member 2 includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a.
  • the portion facing the inner peripheral surface 8a of the bearing sleeve 8 is smooth without irregularities except that a relatively small diameter cylindrical surface escape portion 2c is provided. It is formed on a cylindrical surface.
  • the upper end surface 2b1 and the lower end surface 2b2 of the flange part 2b are formed in the smooth flat surface.
  • the bearing sleeve 8 has a cylindrical shape and is fixed to the inner peripheral surface of the housing 7 by an appropriate means.
  • a cylinder that forms a radial bearing gap between the radial bearing portions R1 and R2 between the shaft member 2 and the outer peripheral surface 2a1 of the opposing shaft portion 2a when the shaft member 2 and the bearing sleeve 8 are rotated relative to each other.
  • Shaped radial bearing surfaces are spaced apart at two axial positions. As shown in FIG. 2, radial dynamic pressure generating portions A1 and A2 for generating a dynamic pressure action on the lubricating oil in the radial bearing gap are formed on the two radial bearing surfaces.
  • Each of the radial dynamic pressure generating portions A1 and A2 in the illustrated example includes a plurality of upper dynamic pressure grooves Aa1 inclined with respect to the axial direction and a plurality of lower dynamic pressure grooves inclined in the opposite direction to the upper dynamic pressure grooves Aa1. It consists of Aa2 and convex hills that define the dynamic pressure grooves Aa1 and Aa2, and the dynamic pressure grooves Aa1 and Aa2 are arranged in a herringbone shape as a whole.
  • the hill part is provided between the inclined hill part Ab provided between the dynamic pressure grooves adjacent in the circumferential direction, and the annular hill part Ac provided between the upper and lower dynamic pressure grooves Aa1 and Aa2 and having substantially the same diameter as the inclined hill part Ab. Consists of.
  • An annular thrust is formed on the lower end surface 8b of the bearing sleeve 8 to form a thrust bearing gap of the thrust bearing portion T1 between the upper end surface 2b1 of the opposing flange portion 2b when the shaft member 2 and the bearing sleeve 8 are relatively rotated.
  • a bearing surface is provided.
  • a dynamic pressure generating portion (thrust dynamic pressure generating portion) B for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap of the thrust bearing portion T1 is formed on the thrust bearing surface.
  • the thrust dynamic pressure generating portion B in the illustrated example is configured by alternately arranging spiral-shaped dynamic pressure grooves Ba and convex hill portions Bb that define the dynamic pressure grooves Ba in the circumferential direction.
  • a radial bearing gap is formed between the radial bearing portions R1 and R2, and at the same time, a thrust bearing surface B provided on the lower end surface 8b of the bearing sleeve 8 and a flange facing the thrust bearing surface B are provided.
  • Thrust bearing gaps are respectively formed between the upper end surface 2b1 of the portion 2b and between the inner bottom surface 7b1 of the bottom portion 7b of the housing 7 and the lower end surface 2b2 of the flange portion 2b opposed thereto.
  • the thrust bearing portions T1 and T2 that support the shaft member 2 in a non-contact manner so as to be relatively rotatable in one thrust direction and the other are formed.
  • the fluid dynamic bearing device 1 described above includes, for example, (1) a spindle motor for a disk device, (2) a polygon scanner motor for a laser beam printer (LBP), or (3) a PC. It is used as a bearing device for a motor such as a fan motor.
  • a disk hub having a disk mounting surface is integrally or separately provided on the shaft member 2
  • a polygon mirror is integrally or separately provided on the shaft member 2.
  • a fan having blades on the shaft member 2 is provided integrally or separately.
  • the dynamic pressure bearing 10 used as the bearing sleeve 8 has a characteristic configuration.
  • the structure and manufacturing method of the hydrodynamic bearing 10 of this embodiment will be described in detail.
  • the hydrodynamic bearing 10 is based on a metal powder (here, iron powder) capable of forming an oxide film, and a green compact of a raw material powder containing copper powder, and the relative density of the green compact is 80% or more. 88% or less.
  • the hydrodynamic bearing 10 using such a green compact as a base is an oxide film 11 formed between iron powder particles (Fe particles) (more details).
  • the crushing strength of The hydrodynamic bearing 10 having such a configuration is mainly manufactured through a compression molding process, a steam treatment process, and an oil impregnation process in this order. Hereinafter, each step will be described in detail.
  • compression molding process In the compression molding process, a raw material powder containing a metal powder capable of forming an oxide film is compressed to form a bearing gap (here, an inner circumferential surface and a shaft) between the shaft to be supported (shaft member 2). A green compact 10 ′ having a dynamic pressure generating part molded on one end surface is obtained.
  • the green compact 10 ′ can be molded by, for example, a uniaxial pressure molding method. Specifically, the green compact 10 ′ can be obtained by using a molding die apparatus 20 as shown in FIGS. 4A and 4B. it can.
  • the molding die apparatus 20 includes a cylindrical die 21 that molds the outer peripheral surface of the green compact 10 ′, and a core pin 22 that is arranged on the inner periphery of the die 21 and molds the inner peripheral surface of the green compact 10 ′.
  • a pair of lower punch 23 and upper punch 24 for forming one end surface (lower end surface) and the other end surface (upper end surface) of the green compact 10 ′, and the core pin 22, lower punch 23 and upper punch 24 are attached to the die 21.
  • relative movement is possible in the axial direction (up and down).
  • concave and convex mold portions 25, 25 corresponding to the shapes of the radial dynamic pressure generating portions A1, A2 to be provided on the inner peripheral surface of the green compact 10 ′ are provided apart from each other in the vertical direction.
  • an uneven mold portion 26 corresponding to the shape of the thrust dynamic pressure generating portion B to be provided on the lower end surface of the green compact 10 ′ is provided.
  • the height difference between the concave and convex portions in the mold portions 25 and 26 is actually about several ⁇ m to several tens of ⁇ m, but is exaggerated in FIGS. 4A and 4B.
  • the lower punch 23 is lowered in a state where the core pin 22 is arranged on the inner periphery of the die 21, and the inner peripheral surface of the die 21, the core pin 22.
  • the cavity 27 is defined by the outer peripheral surface of the lower punch 23 and the upper end surface of the lower punch 23, and then the raw material powder M is filled into the cavity 27.
  • the raw material powder M of the present embodiment is a mixed powder obtained by mixing an iron powder as a metal powder capable of forming an oxide film, a copper powder, and an amide wax-based solid lubricant powder, for example.
  • the solid lubricant powder in the raw material powder M it is possible to improve the moldability of the green compact 10 ′ by reducing the friction between the powder particles and also the friction between the powder and the mold.
  • iron powder constituting the raw material powder M for example, reduced iron powder or atomized iron powder can be used.
  • reduced iron powder having a porous shape and excellent in oil content is used.
  • copper powder electrolytic copper powder, atomized copper powder, etc. can be used.
  • electrolytic copper powder and atomized copper powder are used. Use a mixture.
  • the mixing ratio of the iron powder and the copper powder in the raw material powder M can be arbitrarily set according to the required characteristics. For example, the mass ratio can be iron powder: 40% and copper powder: 60%.
  • the mixing ratio of the copper powder is higher than that of the iron powder, the slidability of the radial bearing surface and the thrust bearing surface of the dynamic pressure bearing 10 can be sufficiently enhanced.
  • iron powder having an average particle size of 20 ⁇ m to 100 ⁇ m.
  • copper powder having an average particle size of less than 45 ⁇ m.
  • the upper punch 24, the lower punch 23, and the core pin 22 are moved upward, and the green compact 10 ′ is discharged from the die 21.
  • the inner peripheral surface and the outer peripheral surface of the green compact 10 ′ are expanded by a so-called spring back, and the inner peripheral surface of the green compact 10 ′ and the outer peripheral surface of the core pin 22.
  • the uneven engagement state in the axial direction with the mold part 25 provided on the surface is eliminated.
  • the core pin 22 can be extracted from the inner periphery of the green compact 10 ′ without breaking the shapes of the radial dynamic pressure generating portions A 1 and A 2 molded on the inner peripheral surface of the green compact 10 ′.
  • the green compact 10 ′ having a relative density of 80% or more can be reliably obtained even by the uniaxial pressure molding method employed in the present embodiment.
  • the uniaxial pressure forming method other pressure forming methods (for example, forming using a multi-axis CNC press, cold isostatic pressing method, hot isostatic method) that can be used for obtaining the green compact 10 ′.
  • the green compact 10 ′ can be obtained at a lower cost than the pressure pressing method or the like.
  • the green compact 10 ' may be formed by using a multi-axis CNC press, a cold isostatic pressing method, a hot isostatic pressing method, or the like instead of the uniaxial pressing method. I do not care.
  • the green compact 10 ′ is reacted with water vapor for a predetermined time while being heated in the range of 400 to 550 ° C. in an oxidizing atmosphere.
  • a film of triiron tetroxide (Fe 3 O 4 ) as the oxide film 11 is gradually formed on the surface of the Fe particles constituting the green compact 10 ′, and as this film grows, A hydrodynamic bearing 10 in which adjacent particles are bonded via an oxide film 11 is obtained.
  • the treatment time of the steam treatment is 20 minutes or more. This is because if the steam treatment is performed for 20 minutes or more, the oxide film 11 that can ensure the strength required for the hydrodynamic bearing 10 can be formed on the green compact 10 ′.
  • the strength of the green compact 10 ′ (dynamic pressure bearing 10) cannot be increased as the treatment time is increased. If the treatment time exceeds a predetermined treatment time, the growth of the oxide film 11 is stopped. The strength improvement effect of the green compact 10 'is saturated. Moreover, the cost required for the water vapor treatment increases as the treatment time for the water vapor treatment increases. Therefore, the treatment time for the steam treatment is 20 minutes or more and 60 minutes or less.
  • the green compact 10 ′ is used prior to performing the steam treatment. It is preferable to carry out a degreasing treatment for removing the solid lubricant powder contained in. This is because the growth of the oxide film 11 is promoted, and the strength required for the dynamic pressure bearing 10 (the pressure ring strength of 150 MPa or more) is reliably obtained.
  • oil impregnation process In this oil impregnation step, lubricating oil is impregnated into the internal pores of the green compact 10 ′ in which the oxide film 11 (triiron tetroxide film) is formed between adjacent particles by a technique such as so-called vacuum impregnation. Note that this oil impregnation step is not necessarily performed, and may be performed only when the green compact 10 ′ is used as a so-called oil-impregnated dynamic pressure bearing.
  • the hydrodynamic bearing 10 uses the green compact 10 ′ as a base, and performs water vapor treatment on the green compact 10 ′ so that the Fe particles can be bonded to each other. It has a film of triiron tetroxide as an oxide film 11 formed between Cu particles. This film functions as a bonding medium between the particles constituting the green compact 10 ′, and substitutes for the role of necking formed when the green compact is sintered. It is possible to increase the strength to a level that can be used as the dynamic pressure bearing 10 (bearing sleeve 8), specifically, a crushing strength of 150 MPa or more.
  • the radial bearing can be obtained without unnecessarily increasing the density (relative density) of the green compact 10 ′ and without performing a separate sealing process or the like. It is possible to realize the fluid dynamic bearing device 1 capable of preventing the oil film formed in the gap and the thrust bearing gap from being lowered as much as possible and stably exhibiting desired bearing performance.
  • the water vapor treatment applied to the green compact 10 ′ to produce the oxide film 11 is much lower than the heating temperature when sintering the green compact 10 ′.
  • the amount of dimensional change of the green compact 10 ′ can be reduced later. Specifically, in the case of a green compact 10 ′ (Cu: 40 mass%, Fe: 60 mass% green compact 10 ′) having the material composition employed in the present embodiment, sintering is performed after the treatment. The amount of dimensional change (shrinkage amount here) that is approximately 0.5% can be reduced to approximately 0.3% in the steam treatment. For this reason, when the green compact 10 ′ is sintered, it is possible to omit a shaping process such as sizing, which was indispensable after the sintering process.
  • the oil permeability was measured and calculated for each of the above-mentioned five types of hydrodynamic bearings 10 produced experimentally. Furthermore, in order to clarify how the oil film forming ability of the dynamic pressure bearing 10 according to the present invention differs from that of a general dynamic pressure bearing made of a sintered body, the above five types of green compacts 10 ′ are used. The oil permeability was also measured and calculated for each of the hydrodynamic bearings (sintered hydrodynamic bearings) obtained by sintering. In addition, since the value of oil permeability depends on the size of the specimen, the transmittance that can be used as a judgment material for oil film formation ability is calculated using the calculated oil permeability regardless of the size of the specimen. did.
  • a test apparatus 100 shown in FIG. 1 includes a cylindrical holding unit 101 in which a cylindrical test body W (here, the above-mentioned dynamic pressure bearing 10 or a sintered body of a green compact 10 ′) is clamped and fixed from both sides in the axial direction. , 102, a tank 103 for storing oil, and a pipe 104 for supplying the oil stored in the tank 103 to the holding unit 101.
  • a cylindrical test body W here, the above-mentioned dynamic pressure bearing 10 or a sintered body of a green compact 10 ′
  • a gap between both ends of the sample W in the axial direction and the holding portions 101 and 102 is sealed by a seal body (not shown).
  • 0.4 MPa is applied to oil stored in the tank 103 under the room temperature (26 to 27 ° C.) environment (the same type of lubricating oil as that filled in the internal space of the fluid dynamic bearing device 1).
  • the applied pressure is applied, and the lubricating oil is continuously supplied to the axial through hole of the specimen W for 10 minutes via the internal flow path of the pipe 104 and the internal flow path 105 of the holding unit 101.
  • a paper or cloth oil absorbing body 106 is disposed below the test body W, and from the surface opening that opens to the outer diameter surface of the test body W when the lubricating oil is supplied to the test body W in the above-described manner. Oil that has oozed out and dropped is collected by the oil absorber 106. Then, the oil penetration degree is calculated from the weight difference between the oil absorbent bodies 106 before and after the test.
  • the “transmittance” can also be referred to as a transmission amount [unit: m 2 ], and is calculated from the following relational expression.
  • k transmittance [m 2 ]
  • absolute viscosity [Pa ⁇ s] of the lubricating oil
  • L axial dimension [m] of the test specimen
  • r 1 inner diameter dimension of the test specimen [m ]
  • R 2 outer diameter size [m] of the test specimen
  • ⁇ p pressure difference [Pa]
  • q volume flow rate [m 3 / s].
  • FIG. 6 shows the transmittance of a sintered body obtained by sintering the five types of dynamic pressure bearings 10 and the five types of green compacts 10 ′.
  • the calculated transmittance of the dynamic pressure bearing 10 based on the green compact 10 ′ having a relative density of 89.5% is smaller than 1E ⁇ 18 [m 2 ].
  • the description in FIG. 6 is omitted.
  • a general dynamic obtained by sintering the green compact 10 ′ in which the green compact 10 ′ is subjected to the water vapor treatment, a general dynamic obtained by sintering the green compact 10 ′.
  • the oil film forming ability (bearing performance) equivalent to that when the green compact 10 ′ having a relative density of about 5% smaller than that of the pressure bearing is used can be exhibited.
  • the green compact 10 ′ having a relative density of 80% or more is used as a base and the green compact 10 ′ is subjected to water vapor treatment, the strength required for the dynamic pressure bearing 10 and further the oil film forming ability are secured. can do.
  • the relative density of the green compact 10 'increases to an extent exceeding 88% it is difficult for water vapor to penetrate into the core of the green compact during steam treatment, and oxidation contributes to improving the strength of the green compact.
  • the relative density of the green compact 10 ' is preferably 80% or more and 88% or less.
  • the present invention is applied to the hydrodynamic bearing 10 that supports the radial load and the thrust load (strictly, the load in one thrust direction).
  • the present invention is applicable to the hydrodynamic bearing 10 that supports only the radial load, It can be preferably applied to the hydrodynamic bearing 10 that supports only the load.
  • the radial dynamic pressure generating portions A1 and A2 are not particularly limited as long as they can generate a dynamic pressure action on the lubricating oil in the radial bearing gap, and may be configured with, for example, a multi-arc surface.
  • fluid dynamic bearing device that can use the fluid dynamic bearing 10 according to the present invention as a constituent member is not limited to the fluid dynamic bearing device 1 shown in FIG.
  • Fluid dynamic bearing device Shaft member (shaft to be supported) 2a Shaft portion 2b Flange portion 8 Bearing sleeve 8a Inner peripheral surface 8b Lower end surface 9 Seal member 10 Dynamic pressure bearing 11 Oxide coating 20 Molding device A1, A2 Radial dynamic pressure generating portion (dynamic pressure generating portion) B Thrust dynamic pressure generator (dynamic pressure generator) R1, R2 Radial bearing part T1, T2 Thrust bearing part

Abstract

 酸化物皮膜を形成可能な金属粉末を含む原料粉末の圧粉体10'を母体とし、支持すべき軸(軸部材2)の外周面2a1との間にラジアル軸受隙間を形成する内周面8aに型成形された動圧発生部A1,A2を有する動圧軸受10であって、圧粉体10'に水蒸気処理を施すことにより金属粉末の粒子間に形成された酸化物皮膜11を有し、150MPa以上の圧環強度を有する。

Description

動圧軸受及びその製造方法
 本発明は、動圧軸受及びその製造方法に関し、特に、圧粉体を母体とする動圧軸受及びその製造方法に関する。
 周知のように、動圧軸受は、支持すべき軸との間に形成される軸受隙間内の潤滑流体(例えば潤滑油)に動圧作用を発生させるための動圧発生部を有する。動圧軸受としては、ラジアル荷重のみを支持するもの、スラスト荷重のみを支持するもの、ラジアル荷重及びスラスト荷重の双方を支持するもの、などがある。ラジアル荷重を支持する動圧軸受は、その内周面に動圧発生部(ラジアル動圧発生部)を有し、スラスト荷重を支持する動圧軸受は、その端面に動圧発生部(スラスト動圧発生部)を有する。
 例えば下記の特許文献1には、各種動圧軸受のうち、ラジアル荷重を支持する動圧軸受の製造手順が記載されている。具体的には、金属粉末を主原料とした原料粉末の圧粉体を圧縮成形するのと同時に圧粉体の内周面に動圧発生部を型成形し、その後、この圧粉体を焼結して焼結体を得る焼結工程、さらには焼結体の寸法矯正を行う寸法矯正工程を実施する、というものである。このようにすれば、圧粉体に動圧発生部を型成形せず、寸法矯正工程(整形工程)等において焼結体に動圧発生部を型成形する場合(例えば、特許文献2)に必要となる別途の成形金型が不要となるので、動圧軸受を低コストに製造することができるという利点がある。なお、スラスト荷重を支持する動圧軸受や、ラジアル荷重及びスラスト荷重の双方を支持する動圧軸受も特許文献1と同様の手順で製造することができる。
特開2000-65065号公報 特許第3607661号
 ところで、焼結工程は、動圧軸受に必要とされる強度を確保することを主たる目的として実施されるが、焼結工程では、通常、800℃以上で圧粉体が加熱される。このため、焼結工程の実施により得られる焼結体には、焼結後の熱収縮等に伴って各部の寸法精度に崩れが生じ易い。従って、焼結体に動圧軸受として必要とされる各部精度を確保するには、焼結体にサイジング等の寸法矯正加工(整形加工)を施すことが必要不可欠となる。逆に言えば、圧粉体に、動圧軸受としてそのまま使用できるだけの強度を確保できれば、焼結工程およびその後の整形工程を省略することができ、動圧軸受の製造コストを大幅に低廉化できると考えられる。
 プレス装置(成形金型装置)による原料粉末の加圧力(成形圧力)を高めて原料粉末を高密度に圧縮すれば、圧粉体の強度を高めることができることに加え、この圧粉体をそのまま動圧軸受として使用した場合に、軸受隙間に形成される流体膜の剛性低下(いわゆる圧力抜けの発生)を可及的に防止して所望の軸受性能を安定的に発揮し得るとも考えられる。しかしながら、プレス装置による圧縮だけで、圧粉体の強度を動圧軸受として使用可能なレベルにまで高めることは現実的ではない。そもそも、圧粉体は、原料粉末が押し固められたものに過ぎないため、取り扱い性や他部材への組込み性等も考慮すると、高密度に成形された圧粉体であってもこれをそのまま動圧軸受として使用するのは無理がある。
 以上の実情に鑑み、本発明の課題は、比較的低コストに製造可能でありながら、実使用に耐え得るだけの強度を具備し、所望の軸受性能を安定的に発揮することのできる動圧軸受を提供することにある。
 上記の課題を解決するために創案された本願の第1発明は、酸化物皮膜を形成可能な金属粉末を含む原料粉末の圧粉体を母体とし、支持すべき軸との間に軸受隙間を形成する面に、型成形された動圧発生部を有する動圧軸受であって、圧粉体に水蒸気処理を施すことにより金属粉末の粒子間に形成された酸化物皮膜を有し、150MPa以上の圧環強度を有することを特徴とする。
 また、上記の課題を解決するために創案された本願の第2発明は、支持すべき軸との間に軸受隙間を形成する面に動圧発生部を有し、150MPa以上の圧環強度を有する動圧軸受を製造するための方法であって、酸化物皮膜を形成可能な金属粉末を含む原料粉末を圧縮し、支持すべき軸との間に軸受隙間を形成する面に動圧発生部が型成形された圧粉体を得る圧縮成形工程と、圧粉体に水蒸気処理を施し、圧粉体を構成する金属粉末の粒子間に酸化物皮膜を形成する水蒸気処理工程と、からなることを特徴とする。
 なお、本願発明でいう「酸化物皮膜を形成可能な金属粉末」とは、換言するならばイオン化傾向が大きい金属の粉末であり、例えば、鉄、アルミニウム、マグネシウム、クロム等の粉末、あるいは上記金属が含まれる合金粉末を採用できる。酸化物皮膜を形成可能な金属粉末は、一種のみ用いても良いし、複数種混合して用いても良い。また、「軸受隙間」とは、ラジアル軸受隙間及びスラスト軸受隙間の少なくとも一方を含む概念である。従って、本発明は、ラジアル荷重を支持する動圧軸受、スラスト荷重を支持する動圧軸受、あるいは、ラジアル荷重及びスラスト荷重の双方を支持する動圧軸受の何れにも適用できる。また、「動圧発生部」とは、軸受隙間に介在する潤滑油等の潤滑流体に動圧作用を生じさせ得るものであればどのようなものであっても良く、例えば、複数の動圧溝をヘリングボーン形状やスパイラル形状に配列したものを挙げることができる。さらに、「圧環強度」とは、JIS Z 2507に規定された方法に基づいて算出される値である。
 本発明で採用する水蒸気処理は、酸化物皮膜を形成可能な金属粉末を含む原料粉末の圧粉体を酸化雰囲気中で所定温度(例えば400~550℃)に加熱しながら水蒸気と反応させることにより、上記金属粉末の粒子間(上記金属粉末の粒子表面)に酸化物皮膜を形成(生成)する処理である。上記の金属粉末として鉄粉末を採用した場合、酸化物皮膜は四酸化三鉄(Fe)の皮膜である。そして、上記金属粉末の粒子間に形成される酸化物皮膜が粒子同士の結合媒体として機能し、圧粉体を焼結したときに形成されるネッキングの役割を代替するので、圧粉体を、そのまま動圧軸受として使用可能なレベル、具体的には圧環強度150MPa以上にまで高強度化することができる。また、金属粉末の粒子間に形成される酸化物皮膜により、圧粉体の内部気孔の大きさが小さくなって圧粉体の気孔率が低下する。従って、軸受隙間に形成される流体膜の剛性低下を可及的に防止し、所望の軸受性能を安定的に発揮し得る動圧軸受を実現することができる。
 また、圧粉体に施すべき水蒸気処理は、その処理温度が、圧粉体を焼結する場合の加熱温度よりも格段に低いので、処理後におけるワークの寸法変化量を小さくすることができる。そのため、圧粉体を焼結した場合には、焼結工程後の実施が必要不可欠であったサイジング等の整形加工を省略することができる。また、寸法変化量を小さくできれば、圧粉体の成形金型の設計が容易となる。さらに、処理温度が低ければ、処理時に必要なエネルギーも削減できて処理コストが減じられる。以上より、本発明によれば、実使用に耐え得るだけの強度を具備しつつ、所望の軸受性能を安定的に発揮することのできる動圧軸受を低コストに得ることができる。
 本発明に係る動圧軸受において、その母体となる圧粉体の相対密度が高すぎると、水蒸気処理時に圧粉体の芯部にまで水蒸気を侵入させることが難しく、圧粉体の強度向上に寄与する酸化物皮膜を圧粉体の芯部に形成することが難しくなるという懸念がある。また、水蒸気処理に伴って大きな寸法変化が生じる他、動圧軸受の内部気孔で保持し得る潤滑油量(動圧軸受の保油量)が少なくなる懸念もある。これとは逆に、圧粉体の相対密度が低すぎると、圧粉体の取り扱い性が低下する、金属粉末の粒子間距離が拡大するため酸化物皮膜を所定態様で形成することが難しくなる、などといった懸念がある。従って、圧粉体の相対密度は、80%以上88%以下とするのが好ましい。なお、ここでいう「相対密度」は真密度比とも称され、以下の関係式から算出される。
 相対密度=(圧粉体全体の密度/真密度)×100[%]
 上式における「真密度」とは、溶製材のように素材内部に気孔が存在しない材料の理論密度を意味し、「圧粉体全体の密度」は、例えばJIS Z2501に規定された方法により測定することができる。
 圧粉体は、銅粉末と、酸化物皮膜を形成可能な金属粉末としての鉄粉末とを混合してなる原料粉末の圧粉体とするのが好ましい。圧粉体が銅粉末を含むことにより、軸受隙間を形成する面(軸受面)の摺動性を高めることができる一方、上記金属粉末として安価で入手性に優れた鉄粉末を採用することにより、動圧軸受のコスト増を抑制することができる。この場合、例えば、コスト及び強度を重視するのであれば、銅粉末よりも鉄粉末の配合割合を高くし、軸受面の摺動性を重視するのであれば、鉄粉末よりも銅粉末の配合割合を高くすれば良い。
 水蒸気処理を圧粉体に20分以上施せば、動圧軸受に必要とされる強度(圧環強度150MPa以上)を確保することができる。一方、圧粉体に施す水蒸気処理は、その処理時間を長くするほど酸化物皮膜の生成が進展して圧粉体の強度を高め得るというわけではなく、所定の処理時間を超えると、酸化物皮膜の生成が停止して圧粉体の強度向上効果が飽和する。また、水蒸気処理の処理時間が長くなるほど、水蒸気処理に要するコスト、ひいては動圧軸受の製造コストが増大する。従って、水蒸気処理の処理時間は、20分以上60分以下に設定するのが好ましい。
 本発明に係る動圧軸受は、潤滑油を含浸させた状態、すなわち含油動圧軸受として使用することができる。
 また、本発明に係る動圧軸受は、低コストに製造可能でありながら、実使用に耐え得るだけの強度を具備し、所望の軸受性能を安定的に発揮することができるので、この動圧軸受と、動圧軸受に対して相対回転する軸部材とで、軸部材を動圧軸受に対して相対回転可能に非接触支持する流体動圧軸受装置を構成することができる。この流体動圧軸受装置は、例えばPC用のファンモータや、ディスク駆動装置用のスピンドルモータ等の各種モータに組み込んで好適に使用することができ、しかも各種モータの低コスト化に寄与することができる。
 以上より、本発明によれば、低コストに製造可能でありながら、実使用に耐え得るだけの強度を具備し、所望の軸受性能を安定的に発揮することのできる動圧軸受を提供することができる。
本発明の実施形態に係る動圧軸受を構成部材とした流体動圧軸受装置の一例を示す断面図である。 図1に示す動圧軸受の断面図である。 図1に示す動圧軸受の下端面を示す平面図である。 圧粉体の圧縮成形工程を模式的に示す図であって、同工程の初期段階を示す図である。 圧粉体の圧縮成形工程の途中段階を示す図である。 本発明に係る動圧軸受の相対密度と圧環強度の相関関係を示す図である。 本発明に係る動圧軸受および焼結体からなる動圧軸受の相対密度と透過率の相関関係を示す図である。 通油度の測定装置を概念的に示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に、本発明の一実施形態に係る動圧軸受10を構成部材とした(動圧軸受10を軸受スリーブ8として用いた)流体動圧軸受装置の一例を示す。図1に示す流体動圧軸受装置1は、軸受スリーブ8(動圧軸受10)と、軸受スリーブ8の内周に挿入され、軸受スリーブ8に対して相対回転する軸部材2と、軸受スリーブ8を内周に保持した有底筒状のハウジング7と、ハウジング7の開口部をシールするシール部材9とを備える。ハウジング7の内部空間には、潤滑流体としての潤滑油(密な散点ハッチングで示す)が充填されている。なお、以下では、便宜上、シール部材9が設けられた側を下側、その軸方向反対側を下側として説明を進める。
 ハウジング7は、円筒状の筒部7aと、筒部7aの下端開口を閉塞する底部7bとを一体に有する有底筒状をなしている。筒部7aと底部7bの境界部には段部7cが設けられており、この段部7cの上端面に軸受スリーブ8の下端面8bを当接させることにより、ハウジング7に対する軸受スリーブ8の軸方向相対位置が決定付けられる。
 底部7bの内底面7b1には、軸部材2と軸受スリーブ8の相対回転時に、対向する軸部材2のフランジ部2bの下端面2b2との間にスラスト軸受部T2のスラスト軸受隙間を形成する円環状のスラスト軸受面が設けられている。このスラスト軸受面には、スラスト軸受部T2のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)が設けられている。図示は省略するが、このスラスト動圧発生部は、後述するスラスト動圧発生部Bと同様に、例えば、スパイラル形状の動圧溝と、この動圧溝を区画する凸状の丘部とを円周方向に交互に配して構成される。
 シール部材9は円環状に形成され、ハウジング7の筒部7aの内周面7a1に適宜の手段で固定される。シール部材9の内周面9aは、下方に向けて漸次縮径したテーパ面状に形成され、対向する軸部材2の外周面2a1との間に下方に向けて径方向寸法を漸次縮小させたシール空間Sを形成する。シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間Sの軸方向範囲内に保持する。
 軸部材2は、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備える。軸部2aの外周面2a1のうち、軸受スリーブ8の内周面8aと対向する部分は、相対的に小径な円筒面状の中逃げ部2cが設けられている点を除いて凹凸のない平滑な円筒面に形成されている。また、フランジ部2bの上端面2b1及び下端面2b2は平滑な平坦面に形成されている。
 軸受スリーブ8は、円筒状をなし、ハウジング7の内周面に適宜の手段で固定されている。軸受スリーブ8の内周面8aには、軸部材2と軸受スリーブ8の相対回転時に、対向する軸部2aの外周面2a1との間にラジアル軸受部R1,R2のラジアル軸受隙間を形成する円筒状のラジアル軸受面が軸方向の二箇所に離間して設けられている。2つのラジアル軸受面には、図2に示すように、ラジアル軸受隙間内の潤滑油に動圧作用を発生させるためのラジアル動圧発生部A1,A2がそれぞれ形成されている。図示例のラジアル動圧発生部A1,A2のそれぞれは、軸方向に対して傾斜した複数の上側動圧溝Aa1と、上側動圧溝Aa1とは反対方向に傾斜した複数の下側動圧溝Aa2と、動圧溝Aa1,Aa2を区画する凸状の丘部とで構成され、動圧溝Aa1,Aa2は全体としてヘリングボーン形状に配列されている。丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。
 軸受スリーブ8の下端面8bには、軸部材2と軸受スリーブ8の相対回転時に、対向するフランジ部2bの上端面2b1との間にスラスト軸受部T1のスラスト軸受隙間を形成する円環状のスラスト軸受面が設けられている。このスラスト軸受面には、図3に示すように、スラスト軸受部T1のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)Bが形成されている。図示例のスラスト動圧発生部Bは、スパイラル形状の動圧溝Baと、動圧溝Baを区画する凸状の丘部Bbとを円周方向に交互に配して構成される。
 以上の構成を有する流体動圧軸受装置1において、軸部材2と軸受スリーブ8が相対回転すると、軸受スリーブ8の内周面8aに設けた二つのラジアル軸受面と、これらに対向する軸部2aの外周面2a1との間にラジアル軸受隙間がそれぞれ形成される。そして軸部材2と軸受スリーブ8の相対回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力がラジアル動圧発生部A1,A2(動圧溝Aa1,Aa2)の動圧作用によって高められ、その結果、軸部材2をラジアル方向に相対回転自在に非接触支持するラジアル軸受部R1,R2が軸方向に離間した二箇所に形成される。このとき、軸部2aの外周面2a1に中逃げ部2cを設けたことにより、二つのラジアル軸受隙間間には円筒状の潤滑油溜りが形成される。そのため、ラジアル軸受隙間における油膜切れ、すなわちラジアル軸受部R1,R2の軸受性能低下を可及的に防止することができる。
 軸部材2と軸受スリーブ8の相対回転時には、ラジアル軸受部R1,R2のラジアル軸受隙間が形成されるのと同時に、軸受スリーブ8の下端面8bに設けたスラスト軸受面Bとこれに対向するフランジ部2bの上端面2b1との間、および、ハウジング7の底部7bの内底面7b1とこれに対向するフランジ部2bの下端面2b2との間にスラスト軸受隙間がそれぞれ形成される。そして、軸部材2と軸受スリーブ8の相対回転に伴い、両スラスト軸受隙間に形成される油膜の圧力がスラスト動圧発生部B,C(動圧溝Ba,Ca)の動圧作用によってそれぞれ高められ、その結果、軸部材2をスラスト一方向および他方向に相対回転自在に非接触支持するスラスト軸受部T1,T2が形成される。
 図示は省略するが、以上で説明した流体動圧軸受装置1は、例えば、(1)ディスク装置用のスピンドルモータ、(2)レーザビームプリンタ(LBP)用のポリゴンスキャナモータ、あるいは(3)PC用のファンモータなどのモータ用軸受装置として用いられる。(1)の場合、例えば、軸部材2にディスク搭載面を有するディスクハブが一体又は別体に設けられ、(2)の場合、例えば、軸部材2にポリゴンミラーが一体又は別体に設けられる。また、(3)の場合、例えば、軸部材2に羽根を有するファンが一体又は別体に設けられる。
 以上で説明した流体動圧軸受装置1では、軸受スリーブ8として用いた動圧軸受10が特徴的な構成を有する。以下、本実施形態の動圧軸受10の構造および製造方法について詳細に説明する。
 動圧軸受10は、酸化物皮膜を形成可能な金属粉末(ここでは鉄粉末)、さらには銅粉末を含む原料粉末の圧粉体を母体としており、圧粉体の相対密度は、80%以上88%以下とされる。このような圧粉体を母体とした動圧軸受10は、図2中の拡大図に模式的に示すように、鉄粉末の粒子(Fe粒子)間に形成された酸化物皮膜11(より詳細には、各Fe粒子の表面に生成され、隣接する粒子同士を結合した酸化物皮膜11)を有しており、流体動圧軸受装置1に組み込んで使用できるだけの強度、具体的には150MPa以上の圧環強度を有する。このような構成を有する動圧軸受10は、主に、圧縮成形工程、水蒸気処理工程および含油工程を順に経て製造される。以下、各工程について詳細に説明する。
 [圧縮成形工程]
 圧縮成形工程では、酸化物皮膜を形成可能な金属粉末を含む原料粉末を圧縮することにより、支持すべき軸(軸部材2)との間に軸受隙間を形成する面(ここでは内周面および一端面)に動圧発生部が型成形された圧粉体10’を得る。圧粉体10’は、例えば一軸加圧成形法により成形することができ、具体的には図4A,図4Bに示すような成形金型装置20を用いて圧粉体10’を得ることができる。この成形金型装置20は、圧粉体10’の外周面を成形する円筒状のダイ21と、ダイ21の内周に配され、圧粉体10’の内周面を成形するコアピン22と、圧粉体10’の一端面(下端面)および他端面(上端面)を成形する一対の下パンチ23および上パンチ24とを備え、コアピン22、下パンチ23および上パンチ24はダイ21に対して軸方向(上下)に相対移動可能とされる。コアピン22の外周面には、圧粉体10’の内周面に設けるべきラジアル動圧発生部A1,A2の形状に対応した凹凸状の型部25,25が上下に離間して設けられ、下パンチ23の上端面には、圧粉体10’の下端面に設けるべきスラスト動圧発生部Bの形状に対応した凹凸状の型部26が設けられている。なお、型部25,26における凹部と凸部間の高低差は実際には数μm~十数μm程度であるが、図4A,図4Bでは誇張して描いている。
 以上の構成を有する成形金型装置20において、まず、図4Aに示すように、ダイ21の内周にコアピン22を配置した状態で下パンチ23を下降させ、ダイ21の内周面、コアピン22の外周面および下パンチ23の上端面でキャビティ27を画成してから、キャビティ27に原料粉末Mを充填する。ここで、本実施形態の原料粉末Mは、酸化物皮膜を形成可能な金属粉末としての鉄粉末と、銅粉末と、例えばアミドワックス系の固体潤滑剤粉末とを混合した混合粉末である。原料粉末Mに固体潤滑剤粉末を含めることにより、粉末の粒子同士の摩擦、さらには粉末と金型間の摩擦を低減して圧粉体10’の成形性を高めることができる。
 原料粉末Mを構成する鉄粉末としては、例えば還元鉄粉やアトマイズ鉄粉を使用可能であり、ここでは、多孔質状をなし、含油性に優れた還元鉄粉を使用する。また、銅粉末としては、電解銅粉やアトマイズ銅粉等を使用可能であり、ここでは、型内での流動性、さらには圧縮成形性を考慮して、電解銅粉とアトマイズ銅粉とを混合したものを使用する。原料粉末Mにおける鉄粉末と銅粉末の配合割合は要求特性に応じて任意に設定可能であり、例えば、質量比で、鉄粉末:40%、銅粉末:60%とすることができる。このように、鉄粉末よりも銅粉末の配合割合を高くした場合には、動圧軸受10のラジアル軸受面およびスラスト軸受面の摺動性を十分に高めることができる。但し、動圧軸受10に必要とされる強度を確保するためには、Fe粒子間(Fe粒子表面)に形成される酸化物皮膜11(四酸化三鉄の皮膜)を介して隣接する粒子同士を結合する必要がある。このため、鉄粉末は、質量比で少なくとも30%以上配合するのが好ましい。
 また、コストや圧粉体10’の成形性を考慮すると、鉄粉末として、その平均粒径が20μm以上100μm以下のものを使用するのが好ましい。また、型内での流動性や圧縮成形を考慮すると、銅粉末としては、その平均粒径が45μm未満のものを使用するのが好ましい。
 そして、図4Bに示すように上パンチ24を下降移動させ、キャビティ27に充填した原料粉末Mを軸方向に圧縮すると、円筒状の圧粉体10’が成形される。このとき、圧粉体10’の内周面には型部25の形状が転写され、また、圧粉体10’の一端面には型部26の形状が転写される。これにより、円筒状の圧粉体10’が圧縮成形されるのと同時に、圧粉体10’の内周面および一端面にラジアル動圧発生部A1,A2およびスラスト動圧発生部Bが型成形される。図示は省略するが、圧粉体10’の成形後には、上パンチ24、下パンチ23およびコアピン22を上昇移動させ、圧粉体10’をダイ21から排出する。圧粉体10’がダイ21から排出されると、いわゆるスプリングバックにより圧粉体10’の内周面および外周面が拡径し、圧粉体10’の内周面とコアピン22の外周面に設けた型部25との軸方向における凹凸係合状態が解消される。これにより、圧粉体10’の内周面に型成形されたラジアル動圧発生部A1,A2の形状を崩すことなく、圧粉体10’の内周からコアピン22を抜き取ることができる。
 動圧軸受10の母体となる圧粉体10’は、その相対密度が80%以上あれば、動圧軸受10に必要とされる強度(圧環強度150MPa以上)を最終的に確保することができることが判明した(図5を参照)。そのため、本実施形態で採用した一軸加圧成形法であっても、相対密度80%以上の圧粉体10’を確実に得ることができる。一軸加圧成形法であれば、圧粉体10’を得る際に利用できるその他の加圧成形法(例えば、多軸CNCプレスを用いた成形、冷間等方圧加圧法、熱間等方圧加圧法等)に比べて圧粉体10’を低コストに得ることができるという利点がある。もちろん、一軸加圧成形法に替えて、多軸CNCプレスを用いた成形、冷間等方圧加圧法、熱間等方圧加圧法等を利用して圧粉体10’を成形しても構わない。
 [水蒸気処理工程]
 水蒸気処理工程では、圧粉体10’を酸化雰囲気中で400~550℃の範囲で加熱しながら所定時間水蒸気と反応させる。これにより、圧粉体10’を構成するFe粒子の表面に酸化物皮膜11としての四酸化三鉄(Fe)の皮膜が徐々に形成され、この皮膜が成長するのに伴って、隣接する粒子同士が酸化物皮膜11を介して結合した動圧軸受10が得られる。なお、水蒸気処理の処理時間は20分以上とする。水蒸気処理を20分以上施せば、動圧軸受10に必要とされる強度を確保し得るだけの酸化物皮膜11を圧粉体10’に形成することができるからである。水蒸気処理は、その処理時間を長くするほど圧粉体10’(動圧軸受10)の強度を高め得るというわけではなく、所定の処理時間を超えると、酸化物皮膜11の成長が停止して圧粉体10’の強度向上効果が飽和する。また、水蒸気処理の処理時間が長くなるほど、水蒸気処理に要するコストが増大する。従って、水蒸気処理の処理時間は、20分以上60分以下とする。
 なお、本実施形態では、圧粉体10’の成形用粉末として、固体潤滑剤粉末を含む原料粉末Mを使用していることから、水蒸気処理を実施するのに先立って、圧粉体10’に含まれる固体潤滑剤粉末を除去するための脱脂処理を実施するのが好ましい。酸化物皮膜11の成長を促進し、動圧軸受10に必要とされる強度(圧環強度150MPa以上)を確実に得るためである。
 [含油工程]
 この含油工程では、いわゆる真空含浸等の手法により、隣接する粒子間に酸化物皮膜11(四酸化三鉄の皮膜)が形成された圧粉体10’の内部気孔に潤滑油を含浸させる。なお、この含油工程は、必ずしも実施する必要はなく、圧粉体10’をいわゆる含油動圧軸受として使用する場合にのみ実施すれば良い。
 以上で説明したように、本実施形態に係る動圧軸受10は、圧粉体10’を母体とし、かつ圧粉体10’に水蒸気処理を施すことによりFe粒子相互間、さらにはFe粒子-Cu粒子間に形成された酸化物皮膜11としての四酸化三鉄の皮膜を有する。そして、この皮膜が、圧粉体10’を構成する粒子同士の結合媒体として機能し、圧粉体を焼結したときに形成されるネッキングの役割を代替するので、圧粉体10’をそのまま動圧軸受10(軸受スリーブ8)として使用可能なレベル、具体的には圧環強度150MPa以上にまで高強度化することができる。
 また、酸化物皮膜11の存在により、圧粉体10’の内部気孔の大きさが小さくなって圧粉体10’の気孔率が低下する。そのため、この圧粉体10’を動圧軸受10として用いれば、圧粉体10’の密度(相対密度)をいたずらに上げずとも、また、別途の封孔処理等を施さずとも、ラジアル軸受隙間およびスラスト軸受隙間に形成される油膜の剛性低下を可及的に防止し、所望の軸受性能を安定的に発揮可能な流体動圧軸受装置1を実現することができる。
 また、酸化物皮膜11を生成するために圧粉体10’に施される水蒸気処理は、その処理温度が、圧粉体10’を焼結する場合の加熱温度よりも格段に低いので、処理後における圧粉体10’の寸法変化量を小さくすることができる。具体的に述べると、本実施形態で採用している材料組成の圧粉体10’(Cu:40質量%、Fe:60質量%の圧粉体10’)の場合、焼結ではその処理後に概ね0.5%程度生じる寸法変化量(ここでは収縮量)を、水蒸気処理では概ね0.3%程度にまで小さくすることができる。そのため、圧粉体10’を焼結した場合には、焼結工程後の実施が必要不可欠であったサイジング等の整形加工を省略することも可能になる。また、寸法変化量を小さくできれば、圧粉体10’を成形するための成形金型装置20の設計が容易となる。さらに、処理温度が低ければ、処理時に必要なエネルギーも削減できるため、処理コストを低減できる。以上より、本発明によれば、実使用に耐え得るだけの強度を具備しつつ、所望の軸受性能を安定的に発揮することのできる動圧軸受10を低コストに得ることができる。
 ここで、本発明に係る動圧軸受10が所望の圧環強度を有すると共に所望の軸受性能を安定的に発揮可能であることを実証するための確認試験を実施したので、詳細に述べる。これらの確認試験の実施に際し、成形金型装置20の加圧力(成形圧力)を調整することで相対密度が相互に異なる5種類の圧粉体10’(具体的には、鉄粉末及び銅粉末の配合割合を質量比で40%及び60%とした原料粉末Mを、相対密度が概ね80%、82.3%、84.7%、87%および89.5%となるように圧縮成形した圧粉体10’)を試験的に作製し、その後、これらの圧粉体10’のそれぞれに水蒸気処理を510℃×40分の条件で施して動圧軸受10を得た。そして、まず、これら5種類の動圧軸受10それぞれの圧環強度を測定したので、その結果を図5に示す。図5からも明らかなように、80%以上の相対密度を有する圧粉体10’に水蒸気処理を施した場合、動圧軸受10に必要とされる圧環強度150MPa以上を確保することができる。
 また、本発明に係る動圧軸受10の油膜形成能力(軸受性能)を評価するために、試験的に作製した上記5種類の動圧軸受10のそれぞれについて通油度を測定・算出した。さらに、本発明に係る動圧軸受10の油膜形成能力が、焼結体からなる一般的な動圧軸受のそれとどの程度異なるのかを明らかにするために、上記5種類の圧粉体10’を焼結することで得られた動圧軸受(焼結体からなる動圧軸受)のそれぞれについても通油度を測定・算出した。なお、通油度の値は、試験体のサイズによって左右されるため、算出した通油度を用いて、試験体のサイズに左右されずに油膜形成能力の判断材料として用い得る透過率を算出した。
 上記の「通油度」とは、多孔質のワークが、その多孔質組織を介してどの程度潤滑油を流通させることができるのかを定量的に示すためのパラメータ[単位:g/10min]であり、図7に示すような試験装置100を用いて測定することができる。同図に示す試験装置100は、円筒状の試験体W(ここでは上記の動圧軸受10、あるいは圧粉体10’の焼結体)を軸方向両側から挟持固定した筒状の保持部101,102と、油を貯留するタンク103と、タンク103内に貯留された油を保持部101に供給するための配管104とを備える。試料Wの軸方向両端部と保持部101,102との間は、図示しないシール体によりシールされている。以上の構成において、室温(26~27℃)環境下でタンク103内に貯留された油(流体動圧軸受装置1の内部空間に充填される潤滑油と同種の潤滑油)に0.4MPaの加圧力を負荷し、潤滑油を、配管104の内部流路および保持部101の内部流路105を介して試験体Wの軸方向貫通孔に10分間供給し続ける。試験体Wの下方には、紙製又は布製の吸油体106が配されており、上記態様で試験体Wに潤滑油が供給されたときに試験体Wの外径面に開口した表面開口から滲み出して滴下した油を吸油体106で採取する。そして、試験前後における吸油体106の重量差から通油度を算出する。
 次に、上記の「透過率」は、透過量[単位:m]とも言うことができ、以下の関係式から算出される。
Figure JPOXMLDOC01-appb-M000001
 上記の関係式において、k:透過率[m]、μ:潤滑油の絶対粘度[Pa・s]、L:試験体の軸方向寸法[m]、r:試験体の内径寸法[m]、r:試験体の外径寸法[m]、Δp:圧力差[Pa]、q:体積流量[m/s]である。但し、ここでの圧力差Δpは上述した「通油度」の測定手順に倣ってΔp=0.4MPa(0.4×10Pa)であり、また、体積流量qは、上記の試験装置100を用いて算出した「通油度」を換算して得られる。
 上記5種類の動圧軸受10、および上記5種類の圧粉体10’を焼結してなる焼結体の透過率を図6に示す。なお、動圧軸受10のうち、相対密度89.5%の圧粉体10’を母体とする動圧軸受10については、求められた透過率が1E-18[m]よりも小さくなったために図6中への記載を省略している。図6からも明らかなように、圧粉体10’に水蒸気処理を施してなる本発明に係る動圧軸受10であれば、圧粉体10’を焼結することで得られる一般的な動圧軸受よりも、相対密度が5%程度小さい圧粉体10’を用いた場合と同等の油膜形成能力(軸受性能)を発揮することができる。
 さらに言えば、相対密度が80%以上の圧粉体10’を母体とし、この圧粉体10’に水蒸気処理を施せば動圧軸受10に必要とされる強度、さらには油膜形成能力を確保することができる。但し、圧粉体10’の相対密度が88%を超える程度にまで高まると、水蒸気処理時に圧粉体の芯部にまで水蒸気を侵入させることが難しく、圧粉体の強度向上に寄与する酸化物皮膜を圧粉体の芯部に形成することが難しくなる、水蒸気処理に伴って大きな寸法変化が生じる、動圧軸受の内部気孔で保持し得る潤滑油量(動圧軸受の保油量)が少なくなる、などといった不都合が生じ得る。従って、圧粉体10’の相対密度は、80%以上88%以下とするのが好ましい。
 以上では、ラジアル荷重およびスラスト荷重(厳密にはスラスト一方向の荷重)を支持する動圧軸受10に本発明を適用したが、本発明は、ラジアル荷重のみを支持する動圧軸受10や、スラスト荷重のみを支持する動圧軸受10にも好ましく適用することができる。また、ラジアル動圧発生部A1,A2は、ラジアル軸受隙間内の潤滑油に動圧作用を発生させ得るものであればその形態は特に問わず、例えば多円弧面で構成することもできる。
 また、本発明に係る動圧軸受10を構成部材として用い得る流体動圧軸受装置は、図1に示す流体動圧軸受装置1に限定されないのはもちろんである。
1    流体動圧軸受装置
2    軸部材(支持すべき軸)
2a   軸部
2b   フランジ部
8    軸受スリーブ
8a   内周面
8b   下端面
9    シール部材
10   動圧軸受
11   酸化物皮膜
20   成形金型装置
A1,A2 ラジアル動圧発生部(動圧発生部)
B    スラスト動圧発生部(動圧発生部)
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部

Claims (8)

  1.  酸化物皮膜を形成可能な金属粉末を含む原料粉末の圧粉体を母体とし、支持すべき軸との間に軸受隙間を形成する面に、型成形された動圧発生部を有する動圧軸受であって、
     前記圧粉体に水蒸気処理を施すことにより前記金属粉末の粒子間に形成された酸化物皮膜を有し、150MPa以上の圧環強度を有することを特徴とする動圧軸受。
  2.  前記圧粉体の相対密度が80%以上88%以下である請求項1に記載の動圧軸受。
  3.  前記圧粉体が、銅粉末と、前記金属粉末としての鉄粉末とを混合してなる原料粉末の圧粉体である請求項1又は2に記載の動圧軸受。
  4.  前記圧粉体の内部気孔に潤滑油を含浸させてなる請求項1~3の何れか一項に記載の動圧軸受。
  5.  請求項1~4の何れか一項に記載の動圧軸受と、該動圧軸受に対して相対回転する軸部材と、を備える流体動圧軸受装置。
  6.  150MPa以上の圧環強度を有する動圧軸受を製造するための方法であって、
     酸化物皮膜を形成可能な金属粉末を含む原料粉末を圧縮し、支持すべき軸との間に軸受隙間を形成する面に動圧発生部が型成形された圧粉体を得る圧縮成形工程と、
     前記圧粉体に水蒸気処理を施し、前記圧粉体を構成する前記金属粉末の粒子間に酸化物皮膜を形成する水蒸気処理工程と、を備えることを特徴とする動圧軸受の製造方法。
  7.  前記水蒸気処理の処理温度を400℃以上550℃以下に設定した請求項6に記載の動圧軸受の製造方法。
  8.  前記水蒸気処理の処理時間を20分以上60分以下に設定した請求項6又は7に記載の動圧軸受の製造方法。
PCT/JP2015/080562 2014-11-28 2015-10-29 動圧軸受及びその製造方法 WO2016084546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015005381.6T DE112015005381T5 (de) 2014-11-28 2015-10-29 Dynamisches Drucklager und Verfahren zu dessen Herstellung
CN201580058166.1A CN107110209B (zh) 2014-11-28 2015-10-29 动压轴承及其制造方法
US15/528,599 US10099287B2 (en) 2014-11-28 2015-10-29 Dynamic pressure bearing and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241268A JP6625321B2 (ja) 2014-11-28 2014-11-28 動圧軸受及びその製造方法
JP2014-241268 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084546A1 true WO2016084546A1 (ja) 2016-06-02

Family

ID=56074120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080562 WO2016084546A1 (ja) 2014-11-28 2015-10-29 動圧軸受及びその製造方法

Country Status (5)

Country Link
US (1) US10099287B2 (ja)
JP (1) JP6625321B2 (ja)
CN (1) CN107110209B (ja)
DE (1) DE112015005381T5 (ja)
WO (1) WO2016084546A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040458A (ja) * 2016-09-09 2018-03-15 Ntn株式会社 動圧軸受およびその製造方法
JP2018040401A (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
WO2018047765A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
JP2018091369A (ja) * 2016-11-30 2018-06-14 Ntn株式会社 動圧軸受及びその製造方法
WO2019172244A1 (ja) * 2018-03-08 2019-09-12 Ntn株式会社 動圧軸受及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186221A1 (ja) * 2017-04-03 2018-10-11 Ntn株式会社 多孔質動圧軸受、流体動圧軸受装置、及びモータ
JP2019167569A (ja) * 2018-03-22 2019-10-03 Ntn株式会社 機械部品およびその製造方法
JP2024034792A (ja) * 2022-09-01 2024-03-13 Ntn株式会社 焼結含油軸受

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057068A (ja) * 2005-08-26 2007-03-08 Pooraito Kk 流体動圧軸受の製造方法
JP2007113728A (ja) * 2005-10-21 2007-05-10 Matsushita Electric Ind Co Ltd 流体軸受装置及びその製造方法
JP2007154959A (ja) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd 動圧流体軸受装置及びその製造方法
JP2012031965A (ja) * 2010-08-02 2012-02-16 Porite Corp 流体動圧軸受の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331686A (en) * 1964-09-29 1967-07-18 Ilikon Corp Method of heating and forming powdered metals
FR2487235B1 (ja) * 1980-07-25 1983-05-13 Metafran Alliages Frittes
JP3607661B2 (ja) 1997-03-06 2005-01-05 Ntn株式会社 動圧型多孔質含油軸受およびその製造方法
JP2000065065A (ja) 1998-08-12 2000-03-03 Mitsubishi Materials Corp 動圧軸受
US6358298B1 (en) * 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
JP2002241804A (ja) * 2001-02-15 2002-08-28 Aisin Seiki Co Ltd 内径中間空洞状軸受の製造方法
JP3652632B2 (ja) * 2001-09-21 2005-05-25 日本科学冶金株式会社 球形焼結軸受の製造方法
KR100499348B1 (ko) * 2002-11-05 2005-07-04 주식회사 엔비켐 금속 모노리스형 촉매 모듈 제조를 위한 금속구조체 표면상에 금속-금속산화물 층상입자층의 피복방법 및 촉매부착방법
JP2004251256A (ja) * 2003-02-21 2004-09-09 Sanden Corp 斜板式圧縮機
JP4275576B2 (ja) * 2004-05-24 2009-06-10 日立粉末冶金株式会社 焼結軸受部材の製造方法、並びに流体動圧軸受装置及びスピンドルモータ
JP4573349B2 (ja) * 2004-10-21 2010-11-04 日立粉末冶金株式会社 動圧軸受の製造方法
US20070092171A1 (en) 2005-10-21 2007-04-26 Takafumi Asada Hydrodynamic bearing device and manufacturing method thereof
JP2007232113A (ja) * 2006-03-02 2007-09-13 Hitachi Powdered Metals Co Ltd 焼結動圧軸受の製造方法
JP5384014B2 (ja) * 2008-02-21 2014-01-08 Ntn株式会社 焼結軸受
JP2010001514A (ja) * 2008-06-18 2010-01-07 Ntn Corp Fe系焼結金属製軸受およびその製造方法
WO2011145426A1 (ja) * 2010-05-21 2011-11-24 Ntn株式会社 軸受部材及びこれを用いた流体動圧軸受装置
CN103415716B (zh) * 2011-03-09 2016-06-08 Ntn株式会社 流体动压轴承装置
US10081056B2 (en) * 2011-09-22 2018-09-25 Ntn Corporation Sintered bearing and method for manufacturing same
JP5442145B1 (ja) * 2012-10-24 2014-03-12 Ntn株式会社 焼結軸受
JP6100046B2 (ja) * 2013-03-19 2017-03-22 Ntn株式会社 流体動圧軸受装置およびこれを備えるモータ
US10536048B2 (en) * 2013-03-25 2020-01-14 Ntn Corporation Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
JP6461626B2 (ja) * 2015-01-29 2019-01-30 Ntn株式会社 摺動部材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057068A (ja) * 2005-08-26 2007-03-08 Pooraito Kk 流体動圧軸受の製造方法
JP2007113728A (ja) * 2005-10-21 2007-05-10 Matsushita Electric Ind Co Ltd 流体軸受装置及びその製造方法
JP2007154959A (ja) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd 動圧流体軸受装置及びその製造方法
JP2012031965A (ja) * 2010-08-02 2012-02-16 Porite Corp 流体動圧軸受の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040401A (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
WO2018047765A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
CN109642611A (zh) * 2016-09-06 2019-04-16 Ntn株式会社 滑动轴承
CN109642611B (zh) * 2016-09-06 2021-05-25 Ntn株式会社 滑动轴承
JP6999259B2 (ja) 2016-09-06 2022-01-18 Ntn株式会社 すべり軸受
US11428266B2 (en) 2016-09-06 2022-08-30 Ntn Corporation Slide bearing
JP2018040458A (ja) * 2016-09-09 2018-03-15 Ntn株式会社 動圧軸受およびその製造方法
JP2018091369A (ja) * 2016-11-30 2018-06-14 Ntn株式会社 動圧軸受及びその製造方法
WO2019172244A1 (ja) * 2018-03-08 2019-09-12 Ntn株式会社 動圧軸受及びその製造方法
JP2019157924A (ja) * 2018-03-08 2019-09-19 Ntn株式会社 動圧軸受及びその製造方法
JP7253874B2 (ja) 2018-03-08 2023-04-07 Ntn株式会社 動圧軸受及びその製造方法

Also Published As

Publication number Publication date
DE112015005381T5 (de) 2017-08-10
CN107110209B (zh) 2019-07-19
CN107110209A (zh) 2017-08-29
US20170266725A1 (en) 2017-09-21
JP2016102553A (ja) 2016-06-02
JP6625321B2 (ja) 2019-12-25
US10099287B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2016084546A1 (ja) 動圧軸受及びその製造方法
KR20100125251A (ko) 소결 베어링
JP6199106B2 (ja) 焼結軸受及びその製造方法、並びに焼結軸受を備えた流体動圧軸受装置
CN111936755B (zh) 动压轴承及其制造方法
JP6812113B2 (ja) 焼結含油軸受及びその製造方法
JP2016117926A (ja) 圧粉体及びその製造方法
JP7199969B2 (ja) 焼結含油軸受及びその製造方法
CN206988281U (zh) 流体动压轴承装置及具备该流体动压轴承装置的电动机
JP6961332B2 (ja) 動圧軸受およびその製造方法
JP2016141815A (ja) 摺動部材およびその製造方法
WO2018047765A1 (ja) すべり軸受
JP2018048694A (ja) 焼結軸受およびその製造方法
JP6999259B2 (ja) すべり軸受
JP6890405B2 (ja) 動圧軸受及びその製造方法
JP2019183868A (ja) 焼結含油軸受、流体動圧軸受装置、および焼結含油軸受の製造方法
WO2019181976A1 (ja) 機械部品およびその製造方法
JP2016186101A (ja) 焼結部材
JP6836366B2 (ja) 焼結軸受およびその製造方法
JP2010091002A (ja) 焼結軸受及びその製造方法
JP2021001629A (ja) 軸受部材およびこれを備えた流体動圧軸受装置
JP2019157918A (ja) 焼結金属製動圧軸受
JP2010091001A (ja) 焼結軸受及びその製造方法
JP2018096420A (ja) 流体動圧軸受装置と、これに用いられる多孔質含油軸受及びその製造方法
JP2018179018A (ja) 多孔質動圧軸受
JP2017155307A (ja) 機械部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15528599

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005381

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863400

Country of ref document: EP

Kind code of ref document: A1